

# **D60 Line Distance Relay**

# **UR Series Instruction Manual**

D60 Revision: 2.9X

Manual P/N: 1601-0089-**B7** (GEK-106233D) Copyright © 2002 GE Power Management



**D60 LINE DISTANCE RELAY** 

837707A7.CDR

# **GE Power Management**

215 Anderson Avenue, Markham, Ontario Canada L6E 1B3

Tel: (905) 294-6222 Fax: (905) 294-8512 Internet: http://www.GEindustrial.com/pm





Manufactured under an ISO9000 Registered system.



# **ADDENDUM**

This Addendum contains information that relates to the D60 relay, version 2.9X. This addendum lists a number of information items that appear in the instruction manual 1601-0089-B7 (GEK-106233D) but are not included in the current D60 operations.

The following functions/items are not yet available with the current version of the D60 relay:

• Signal Sources SRC 3 to SRC 6

# STUB BUS:

The final Stub Bus protection is not implemented for this release. This feature can be implemented using a Phase IOC function and the auxiliary contact from the line disconnect, incorporated into a simple FlexLogic™ equation.

#### NOTE:

 The UCA2 specifications are not yet finalized. There will be changes to the object models described in Appendix C: UCA/MMS.

# **GE Power Management**

215 Anderson Avenue, Markham, Ontario Canada L6E 1B3

Tel: (905) 294-6222 Fax: (905) 294-8512

Internet: http://www.GEindustrial.com/pm

| 1.     | GETTING STARTED     | 1.1 IMPOF         | TANT PROCEDURES  CAUTIONS AND WARNINGS                | 1_1                                     |
|--------|---------------------|-------------------|-------------------------------------------------------|-----------------------------------------|
|        |                     | 1.1.2             | INSPECTION CHECKLIST                                  |                                         |
|        |                     | 1.2 UR OV         | ERVIEW                                                |                                         |
|        |                     | 1.2.1             | INTRODUCTION TO THE UR RELAY                          | 1-2                                     |
|        |                     | 1.2.2             | UR HARDWARE ARCHITECTURE                              |                                         |
|        |                     | 1.2.3             | UR SOFTWARE ARCHITECTURE                              |                                         |
|        |                     | 1.2.4             | IMPORTANT UR CONCEPTS                                 | 1-4                                     |
|        |                     | 1.3 URPC<br>1.3.1 | SOFTWARE PC REQUIREMENTS                              | 1-5                                     |
|        |                     | 1.3.2             | SOFTWARE INSTALLATION                                 |                                         |
|        |                     | 1.3.3             | CONNECTING URPC® WITH THE D60                         |                                         |
|        |                     | 1.4 UR HA         | RDWARE                                                |                                         |
|        |                     | 1.4.1             | MOUNTING AND WIRING                                   | 1-8                                     |
|        |                     | 1.4.2             | COMMUNICATIONS                                        |                                         |
|        |                     | 1.4.3             | FACEPLATE DISPLAY                                     | 1-8                                     |
|        |                     |                   | THE RELAY                                             |                                         |
|        |                     | 1.5.1             | FACEPLATE KEYPAD                                      |                                         |
|        |                     | 1.5.2             | MENU NAVIGATION                                       |                                         |
|        |                     | 1.5.3             | MENU HIERARCHYRELAY ACTIVATION                        |                                         |
|        |                     | 1.5.4<br>1.5.5    | BATTERY TAB                                           |                                         |
|        |                     | 1.5.6             | RELAY PASSWORDS                                       | ••••••••••••••••••••••••••••••••••••••• |
|        |                     | 1.5.7             | FLEXLOGICTM CUSTOMIZATION                             |                                         |
|        |                     | 1.5.8             | COMMISSIONING                                         |                                         |
| <br>2. | PRODUCT DESCRIPTION | 2.1 INTRO         | DUCTION                                               |                                         |
|        |                     | 2.1.1             | OVERVIEW                                              |                                         |
|        |                     | 2.1.2             | ORDERING                                              | 2-3                                     |
|        |                     |                   | FICATIONS                                             |                                         |
|        |                     | 2.2.1             | PROTECTION ELEMENTS                                   |                                         |
|        |                     | 2.2.2             | USER-PROGRAMMABLE ELEMENTS                            |                                         |
|        |                     | 2.2.3             | MONITORINGMETERING                                    |                                         |
|        |                     | 2.2.4<br>2.2.5    | INPUTS                                                |                                         |
|        |                     | 2.2.5             | POWER SUPPLY                                          |                                         |
|        |                     | 2.2.7             | OUTPUTS                                               |                                         |
|        |                     | 2.2.8             | COMMUNICATIONS                                        |                                         |
|        |                     | 2.2.9             | ENVIRONMENTAL                                         |                                         |
|        |                     | 2.2.10            | TYPE TESTS                                            | 2-12                                    |
|        |                     | 2.2.11            | PRODUCTION TESTS                                      | 2-12                                    |
|        |                     |                   | APPROVALS                                             |                                         |
|        |                     | 2.2.13            | MAINTENANCE                                           | 2-12                                    |
| 3.     | HARDWARE            | 3.1 DESCI         | RIPTION PANEL CUTOUT                                  | 2.1                                     |
|        |                     | 3.1.1             | MODULE WITHDRAWAL / INSERTION                         |                                         |
|        |                     | 3.1.3             | REAR TERMINAL LAYOUT                                  |                                         |
|        |                     | 3.2 WIRIN         | G                                                     |                                         |
|        |                     | 3.2.1             | TYPICAL WIRING DIAGRAM                                |                                         |
|        |                     | 3.2.2             | DIELECTRIC STRENGTH                                   |                                         |
|        |                     | 3.2.3             | CONTROL POWER                                         |                                         |
|        |                     | 3.2.4             | CT/VT MODULES                                         |                                         |
|        |                     | 3.2.5             | CONTACT INPUTS/OUTPUTS                                |                                         |
|        |                     | 3.2.6<br>3.2.7    | TRANSDUCER INPUTS/OUTPUTSRS232 FACEPLATE PROGRAM PORT |                                         |
|        |                     | 3.2.7<br>3.2.8    | CPU COMMUNICATION PORTS                               |                                         |
|        |                     | 3.2.9             | IRIG-B                                                |                                         |
|        |                     |                   |                                                       |                                         |

| 4.     | HUMAN INTERFACES | 4.1 URPC       | ® SOFTWARE INTERFACE              |      |
|--------|------------------|----------------|-----------------------------------|------|
|        |                  | 4.1.1          | GRAPHICAL USER INTERFACE          | 4-1  |
|        |                  | 4.1.2          | CREATING A SITE LIST              | 4-1  |
|        |                  | 4.1.3          | URPC® SOFTWARE OVERVIEW           | 4-1  |
|        |                  | 4.1.4          | URPC® SOFTWARE MAIN WINDOW        |      |
|        |                  | 4.2 FACE       | PLATE INTERFACE                   |      |
|        |                  | 4.2.1          | FACEPLATE                         | 4-4  |
|        |                  | 4.2.2          | LED INDICATORS                    | 4-5  |
|        |                  | 4.2.3          | CUSTOM LABELING OF LEDs           | 4-7  |
|        |                  | 4.2.4          | CUSTOMIZING THE DISPLAY MODULE    | 4-7  |
|        |                  | 4.2.5          | DISPLAY                           | 4-8  |
|        |                  | 4.2.6          | KEYPAD                            | 4-8  |
|        |                  | 4.2.7          | BREAKER CONTROL                   | 4-9  |
|        |                  | 4.2.8          | MENUS                             | 4-10 |
|        |                  | 4.2.9          | CHANGING SETTINGS                 | 4-11 |
| <br>5. | SETTINGS         | 5.1 OVER       | VIEW                              |      |
|        |                  | 5.1.1          | SETTINGS MAIN MENU                | 5-1  |
|        |                  | 5.1.2          | INTRODUCTION TO ELEMENTS          |      |
|        |                  | 5.1.3          | INTRODUCTION TO AC SOURCES        | 5-4  |
|        |                  | 5 2 PROD       | UCT SETUP                         |      |
|        |                  | 5.2.1          | PASSWORD SECURITY                 | 5-7  |
|        |                  | 5.2.2          | DISPLAY PROPERTIES                |      |
|        |                  | 5.2.3          | COMMUNICATIONS                    |      |
|        |                  | 5.2.4          | MODBUS USER MAP                   |      |
|        |                  | 5.2.5          | REAL TIME CLOCK                   |      |
|        |                  | 5.2.6          | FAULT REPORT                      |      |
|        |                  | 5.2.7          | OSCILLOGRAPHY                     |      |
|        |                  | 5.2.8          | DATA LOGGER                       |      |
|        |                  | 5.2.9          | USER-PROGRAMMABLE LEDS            |      |
|        |                  | 5.2.10         | FLEX STATE PARAMETERS             |      |
|        |                  | 5.2.11         | USER-DEFINABLE DISPLAYS           |      |
|        |                  |                | INSTALLATION                      |      |
|        |                  | 5 3 SYSTI      | EM SETUP                          |      |
|        |                  | 5.3.1          | AC INPUTS                         | 5-23 |
|        |                  | 5.3.2          | POWER SYSTEM                      |      |
|        |                  | 5.3.3          | SIGNAL SOURCES                    |      |
|        |                  | 5.3.4          | LINE                              |      |
|        |                  | 5.3.5          | BREAKERS                          |      |
|        |                  | 5.3.6          | FLEXCURVES <sup>TM</sup>          |      |
|        |                  |                |                                   |      |
|        |                  | 5.4 FLEXI      | INTRODUCTION TO FLEXLOGIC™        | F 22 |
|        |                  | 5.4.1<br>5.4.2 | FLEXLOGIC <sup>TM</sup> RULES     |      |
|        |                  | 5.4.2<br>5.4.3 | FLEXLOGIC*** RULES                |      |
|        |                  | 5.4.3<br>5.4.4 | FLEXLOGIC*** EVALUATION           |      |
|        |                  | 5.4.5          | FLEXLOGIC™ FROCEDURE EXAMPLE      |      |
|        |                  | 5.4.6          | FLEXLOGIC™ EQUATION EDITOR        |      |
|        |                  | 5.4.7          | FLEXELEMENTSTM                    |      |
|        |                  |                |                                   |      |
|        |                  |                | PED ELEMENTS                      | 5.54 |
|        |                  | 5.5.1          | OVERVIEW                          |      |
|        |                  | 5.5.2          | SETTING GROUP                     |      |
|        |                  | 5.5.3          | LINE PICKUP                       |      |
|        |                  | 5.5.4<br>5.5.5 | DISTANCE POWER SWING DETECT       |      |
|        |                  |                | LOAD ENCROACHMENT                 |      |
|        |                  | 5.5.6<br>5.5.7 | CURRENT ELEMENTS                  |      |
|        |                  | 5.5.7<br>5.5.8 | INVERSE TOC CURVE CHARACTERISTICS |      |
|        |                  | 5.5.9          | PHASE CURRENT                     |      |
|        |                  | 5.5.10         | NEUTRAL CURRENT                   |      |
|        |                  |                | GROUND CURRENT                    |      |
|        |                  |                | NEGATIVE SEQUENCE CURRENT         |      |

|                  | 5.5.13                                                                                                                                                      | BREAKER FAILURE                                                  | 5-103                                                                        |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|
|                  | 5.5.14                                                                                                                                                      | VOLTAGE ELEMENTS                                                 | 5-112                                                                        |
|                  | 5.5.15                                                                                                                                                      | PHASE VOLTAGE                                                    | 5-113                                                                        |
|                  | 5.5.16                                                                                                                                                      | NEUTRAL VOLTAGE                                                  | 5-115                                                                        |
|                  | 5.5.17                                                                                                                                                      | NEGATIVE SEQUENCE VOLTAGE                                        | 5-116                                                                        |
|                  | 5.5.18                                                                                                                                                      | AUXILIARY VOLTAGE                                                | 5-117                                                                        |
|                  | 5.6 CONTI                                                                                                                                                   | ROL ELEMENTS                                                     |                                                                              |
|                  | 5.6.1                                                                                                                                                       | OVERVIEW                                                         | 5-119                                                                        |
|                  | 5.6.2                                                                                                                                                       | SETTING GROUPS                                                   | 5-119                                                                        |
|                  | 5.6.3                                                                                                                                                       | TRIP OUTPUT                                                      |                                                                              |
|                  | 5.6.4                                                                                                                                                       | SYNCHROCHECK                                                     |                                                                              |
|                  | 5.6.5                                                                                                                                                       | AUTORECLOSE                                                      |                                                                              |
|                  | 5.6.6                                                                                                                                                       | DIGITAL ELEMENTS                                                 |                                                                              |
|                  | 5.6.7                                                                                                                                                       | DIGITAL COUNTERS                                                 |                                                                              |
|                  | 5.6.8                                                                                                                                                       | MONITORING ELEMENTS                                              |                                                                              |
|                  | 5.6.9                                                                                                                                                       | PILOT SCHEMES                                                    | 5-149                                                                        |
|                  |                                                                                                                                                             | S / OUTPUTS                                                      |                                                                              |
|                  | 5.7.1                                                                                                                                                       | CONTACT INPUTS                                                   |                                                                              |
|                  | 5.7.2                                                                                                                                                       | VIRTUAL INPUTS                                                   |                                                                              |
|                  | 5.7.3                                                                                                                                                       | CONTACT OUTPUTS                                                  |                                                                              |
|                  | 5.7.4                                                                                                                                                       | VIRTUAL OUTPUTS                                                  |                                                                              |
|                  | 5.7.5                                                                                                                                                       | REMOTE DEVICES                                                   |                                                                              |
|                  | 5.7.6                                                                                                                                                       | REMOTE INPUTS                                                    |                                                                              |
|                  | 5.7.7                                                                                                                                                       | REMOTE OUTPUTS: DNA BIT PAIRS                                    | 5-171                                                                        |
|                  | 5.7.8                                                                                                                                                       | REMOTE OUTPUTS: UserSt BIT PAIRS                                 | 5-172                                                                        |
|                  | 5.7.9                                                                                                                                                       | RESETTING                                                        | 5-172                                                                        |
|                  | 5.8 TRANS                                                                                                                                                   | SDUCER I/O                                                       |                                                                              |
|                  | 5.8.1                                                                                                                                                       | DCMA INPUTS                                                      |                                                                              |
|                  | 5.8.2                                                                                                                                                       | RTD INPUTS                                                       | 5-174                                                                        |
|                  | 5.9 TESTII                                                                                                                                                  |                                                                  |                                                                              |
|                  | 5.9.1                                                                                                                                                       | TEST MODE                                                        |                                                                              |
|                  | 5.9.2<br>5.9.3                                                                                                                                              | FORCE CONTACT INPUTS FORCE CONTACT OUTPUTS                       |                                                                              |
|                  |                                                                                                                                                             |                                                                  |                                                                              |
| 6. ACTUAL VALUES | 6.1 OVER                                                                                                                                                    |                                                                  |                                                                              |
| 6. ACTUAL VALUES | 6.1.1                                                                                                                                                       | ACTUAL VALUES MAIN MENU                                          | 6-1                                                                          |
| 6. ACTUAL VALUES |                                                                                                                                                             | ACTUAL VALUES MAIN MENU<br>JS                                    |                                                                              |
| 6. ACTUAL VALUES | 6.1.1                                                                                                                                                       | ACTUAL VALUES MAIN MENU                                          | 6-3                                                                          |
| 6. ACTUAL VALUES | 6.1.1<br><b>6.2 STATU</b>                                                                                                                                   | ACTUAL VALUES MAIN MENU                                          | 6-3<br>6-3                                                                   |
| 6. ACTUAL VALUES | 6.1.1<br><b>6.2 STATU</b><br>6.2.1                                                                                                                          | ACTUAL VALUES MAIN MENU  JS  NOTES CONTACT INPUTS VIRTUAL INPUTS |                                                                              |
| 6. ACTUAL VALUES | 6.1.1<br><b>6.2 STATU</b><br>6.2.1<br>6.2.2                                                                                                                 | ACTUAL VALUES MAIN MENU                                          |                                                                              |
| 6. ACTUAL VALUES | 6.1.1<br>6.2 STATU<br>6.2.1<br>6.2.2<br>6.2.3                                                                                                               | ACTUAL VALUES MAIN MENU  JS  NOTES CONTACT INPUTS VIRTUAL INPUTS |                                                                              |
| 6. ACTUAL VALUES | 6.1.1<br><b>6.2 STATU</b><br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.4                                                                                               | ACTUAL VALUES MAIN MENU  JS  NOTES                               |                                                                              |
| 6. ACTUAL VALUES | 6.1.1<br><b>6.2 STATU</b> 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5                                                                                                     | ACTUAL VALUES MAIN MENU  JS  NOTES                               |                                                                              |
| 6. ACTUAL VALUES | 6.1.1<br><b>6.2 STATU</b> 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6                                                                                               | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-4                         |
| 6. ACTUAL VALUES | 6.1.1<br>6.2 STATU<br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.4<br>6.2.5<br>6.2.6<br>6.2.7                                                                           | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-4                         |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9                                                                                      | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-4                         |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10                                                                               | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-5<br>6-5                  |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11                                                                        | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-5<br>6-5<br>6-5           |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11                                                                        | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-5<br>6-5<br>6-5           |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12                                                                 | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-5<br>6-5<br>6-5<br>6-5    |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER                                                      | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3<br>6-3<br>6-3<br>6-3<br>6-4<br>6-4<br>6-4<br>6-5<br>6-5<br>6-5<br>6-5    |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1                                                | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-5 6-6-5 6-6-9                  |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2                                          | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-6-1 6-9 6-11                   |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3                                    | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-6-1 6-9 6-11                   |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3 6.3.4                              | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-1 6-1 6-11                     |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5                        | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-1 6-1 6-11                     |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6                  | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-1 6-6 6-9 6-11 6-12 6-12       |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6  6.4 RECO        | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-1 6-1 6-11 6-12 6-13           |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6  6.4 RECOI 6.4.1 | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-1 6-1 6-11 6-12 6-13 6-13      |
| 6. ACTUAL VALUES | 6.1.1  6.2 STATU 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12  6.3 METER 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6  6.4 RECO        | ACTUAL VALUES MAIN MENU  JS  NOTES                               | 6-3 6-3 6-3 6-3 6-4 6-4 6-4 6-5 6-5 6-5 6-5 6-1 6-1 6-11 6-12 6-13 6-13 6-13 |

|        |                     | 6.4.5<br>6.4.6              | DATA LOGGERMAINTENANCE                                                                                                                                                                                                       |      |
|--------|---------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        |                     | <b>6.5 PROD</b> 6.5.1 6.5.2 | MODEL INFORMATION                                                                                                                                                                                                            |      |
| 7.     | COMMANDS AND        | 7.1 COM                     |                                                                                                                                                                                                                              |      |
|        | TARGETS             | 7.1.1                       | COMMANDS MENU                                                                                                                                                                                                                |      |
|        |                     | 7.1.2<br>7.1.3              | VIRTUAL INPUTS CLEAR RECORDS                                                                                                                                                                                                 |      |
|        |                     | 7.1.3<br>7.1.4              | SET DATE AND TIME                                                                                                                                                                                                            |      |
|        |                     | 7.1.5                       | RELAY MAINTENANCE                                                                                                                                                                                                            |      |
|        |                     |                             |                                                                                                                                                                                                                              |      |
|        |                     | 7.2 TARG                    | TARGETS MENU                                                                                                                                                                                                                 | 7.0  |
|        |                     | 7.2.1<br>7.2.2              | RELAY SELF-TESTS                                                                                                                                                                                                             |      |
|        |                     | 1.2.2                       | NELAT GER - TEGTO                                                                                                                                                                                                            |      |
| 8.     | THEORY OF OPERATION | 8.1 DISTA                   | NCE ELEMENTS                                                                                                                                                                                                                 |      |
|        |                     | 8.1.1                       | INTRODUCTION                                                                                                                                                                                                                 |      |
|        |                     | 8.1.2                       | PHASOR ESTIMATION                                                                                                                                                                                                            |      |
|        |                     | 8.1.3                       | DISTANCE CHARACTERISTICS                                                                                                                                                                                                     |      |
|        |                     | 8.1.4<br>8.1.5              | MEMORY POLARIZATION DISTANCE ELEMENTS ANALYSIS                                                                                                                                                                               |      |
|        |                     |                             |                                                                                                                                                                                                                              | 0-1  |
|        |                     |                             | IND DIRECTIONAL OVERCURRENT                                                                                                                                                                                                  |      |
|        |                     | 8.2.1                       | DESCRIPTION                                                                                                                                                                                                                  |      |
|        |                     | 8.2.2                       | EXAMPLE                                                                                                                                                                                                                      | 8-10 |
|        |                     |                             | S COMPENSATED LINES  DESCRIPTION                                                                                                                                                                                             | 0.44 |
|        |                     | 8.3.1                       |                                                                                                                                                                                                                              | 8-11 |
|        |                     |                             | E-POLE TRIPPING                                                                                                                                                                                                              |      |
|        |                     | 8.4.1                       | OVERVIEW                                                                                                                                                                                                                     |      |
|        |                     | 8.4.2<br>8.4.3              | PHASE SELECTION COMMUNICATIONS CHANNELS FOR PILOT-AIDED SCHEMES                                                                                                                                                              |      |
|        |                     | 8.4.4                       | PERMISSIVE ECHO SIGNALING                                                                                                                                                                                                    |      |
|        |                     | 8.4.5                       | COORDINATION BETWEEN PILOT SCHEMES AND PHASE SELECT                                                                                                                                                                          |      |
|        |                     | 8.4.6                       | CROSS COUNTRY FAULT EXAMPLE                                                                                                                                                                                                  |      |
| <br>9. | APPLICATION OF      | 9.1 APPL                    | ICATION GUIDELINES                                                                                                                                                                                                           |      |
| -      | SETTINGS            | 9.1.1                       | INTRODUCTION                                                                                                                                                                                                                 | 9-1  |
|        | 5211mt66            | 9.1.2                       | IMPACT OF THE USE OF MEMORY POLARIZATION                                                                                                                                                                                     |      |
|        |                     | 9.1.3                       | HIGH SET OVERCURRENT ELEMENTS                                                                                                                                                                                                | 9-1  |
|        |                     | 9.2 DISTA                   | NCE ELEMENTS (STEPPED DISTANCE SCHEME)                                                                                                                                                                                       |      |
|        |                     | 9.2.1                       | PHASE DISTANCE                                                                                                                                                                                                               | 9-2  |
|        |                     | 9.2.2                       | GROUND DISTANCE                                                                                                                                                                                                              | 9-3  |
|        |                     | 9.3 PROT                    | ECTION SIGNALING SCHEMES                                                                                                                                                                                                     |      |
|        |                     | 9.3.1                       | DESCRIPTION                                                                                                                                                                                                                  | 9-4  |
|        |                     | 9.3.2                       | DIRECT UNDER-REACHING TRANSFER TRIP (DUTT)                                                                                                                                                                                   | 9-4  |
|        |                     | 9.3.3                       | PERMISSIVE UNDER-REACHING TRANSFER TRIP (PUTT)                                                                                                                                                                               |      |
|        |                     | 9.3.4                       | PERMISSIVE OVERREACHING TRANSFER TRIP (POTT)                                                                                                                                                                                 |      |
|        |                     | 9.3.5                       | HYBRID POTT SCHEME (HYB-POTT)                                                                                                                                                                                                |      |
|        |                     | 9.3.6                       | DIRECTIONAL COMPARISON BLOCKING SCHEME                                                                                                                                                                                       | 9-6  |
|        |                     | _                           | ICATIONS ON SERIES COMPENSATED LINES                                                                                                                                                                                         |      |
|        |                     | 9.4.1                       | INTRODUCTION                                                                                                                                                                                                                 |      |
|        |                     | 9.4.2<br>9.4.3              | DISTANCEGROUND DIRECTIONAL OVERCURRENT                                                                                                                                                                                       |      |
|        |                     | 9.4.3                       | HIGH-SET PHASE OVERCURRENT                                                                                                                                                                                                   |      |
|        |                     | 3.7.4                       | THOSE OF THE OF THE OFFICE OF THE OFFI |      |

| 10. COMMISSIONING                   | 10.1 PRODUCT SETUP  10.1.1 PRODUCT SETUP                                                               | 10-1          |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
|                                     | 10.2 SYSTEM SETUP  10.2.1 SETTINGS                                                                     | 10-8<br>10-10 |  |  |  |  |
|                                     | 10.3 FLEXLOGIC™ 10.3.1 SETTINGS                                                                        |               |  |  |  |  |
|                                     | 10.4 GROUPED ELEMENTS  10.4.1 SETTINGS                                                                 |               |  |  |  |  |
|                                     | 10.5 CONTROL ELEMENTS  10.5.1 SETTINGS                                                                 |               |  |  |  |  |
|                                     | 10.6 INPUTS / OUTPUTS                                                                                  | 10 20         |  |  |  |  |
|                                     | 10.6.1 CONTACT INPUTS                                                                                  |               |  |  |  |  |
|                                     | 10.6.2 VIRTUAL INPUTS                                                                                  |               |  |  |  |  |
|                                     | 10.6.3 UCA SBO TIMER                                                                                   |               |  |  |  |  |
|                                     | 10.6.4 CONTACT OUTPUTS                                                                                 |               |  |  |  |  |
|                                     | 10.6.6 REMOTE DEVICES                                                                                  |               |  |  |  |  |
|                                     | 10.6.7 REMOTE INPUTS                                                                                   |               |  |  |  |  |
|                                     | 10.6.8 REMOTE OUTPUTS                                                                                  | 10-39         |  |  |  |  |
|                                     | 10.6.9 RESETTING                                                                                       | 10-39         |  |  |  |  |
|                                     | 10.7 TRANSDUCER I/O                                                                                    |               |  |  |  |  |
|                                     | 10.7.1 DCMA INPUTS                                                                                     |               |  |  |  |  |
|                                     | 10.7.2 RTD INPUTS                                                                                      | 10-41         |  |  |  |  |
|                                     | 10.8 TESTING                                                                                           |               |  |  |  |  |
| A. FLEXANALOG                       | A.1 FLEXANALOG PARAMETERS  A.1.1 PARAMETER LIST                                                        | A-1           |  |  |  |  |
| B. MODBUS <sup>®</sup> RTU PROTOCOL | B.1 OVERVIEW  B.1.1 INTRODUCTION  B.1.2 PHYSICAL LAYER  B.1.3 DATA LINK LAYER  B.1.4 CRC-16 ALGORITHM. | B-1<br>B-1    |  |  |  |  |
|                                     | B.2 FUNCTION CODES                                                                                     |               |  |  |  |  |
|                                     | B.2.1 SUPPORTED FUNCTION CODES                                                                         | R-/           |  |  |  |  |
|                                     | B.2.2 FUNCTION CODE 03H/04H: READ ACTUAL VALUES OR SETTINGS                                            |               |  |  |  |  |
|                                     | B.2.3 FUNCTION CODE 05H: EXECUTE OPERATION                                                             | B-5           |  |  |  |  |
|                                     | B.2.4 .FUNCTION CODE 06H: STORE SINGLE SETTING                                                         |               |  |  |  |  |
|                                     | B.2.5 FUNCTION CODE 10H: STORE MULTIPLE SETTINGS                                                       |               |  |  |  |  |
|                                     |                                                                                                        | D-0           |  |  |  |  |
|                                     | B.3 FILE TRANSFERS                                                                                     |               |  |  |  |  |
|                                     | B.3.1 OBTAINING UR FILES USING MODBUS <sup>®</sup> PROTOCOL                                            |               |  |  |  |  |
|                                     |                                                                                                        | ద-8           |  |  |  |  |
|                                     | B.4 MEMORY MAPPING                                                                                     |               |  |  |  |  |
|                                     | B.4.1 MODBUS <sup>®</sup> MEMORY MAP<br>B.4.2 MEMORY MAP DATA FORMATS                                  |               |  |  |  |  |
| C. UCA/MMS                          | C.1 UCA/MMS OVERVIEW                                                                                   |               |  |  |  |  |
| o. cominio                          | C.1.1 UCA                                                                                              | C-1           |  |  |  |  |
|                                     |                                                                                                        |               |  |  |  |  |

|                    | C.1.2 MMS<br>C.1.3 UCA REPORTING                                                | _                                       |
|--------------------|---------------------------------------------------------------------------------|-----------------------------------------|
| D. IEC 60870-5-104 | D.1 IEC 60870-5-104 PROTOCOL  D.1.1 INTEROPERABILITY DOCUMENT  D.1.2 POINT LIST |                                         |
| E. DNP             | E.1 DNP DEVICE PROFILE  E.1.1 DNP V3.00 DEVICE PROFILE                          | E-1                                     |
|                    | E.2 DNP IMPLEMENTATION TABLE  E.2.1 IMPLEMENTATION TABLE                        | F-4                                     |
|                    | E.3 DNP POINT LISTS  E.3.1 BINARY INPUT POINTS                                  | E-13<br>E-14                            |
| F. REVISIONS       | F.1 CHANGE NOTES  F.1.1 REVISION HISTORYF.1.2 CHANGES TO D60 MANUAL             |                                         |
|                    | F.2 FIGURES AND TABLES  F.2.1 LIST OF FIGURES                                   | • • • • • • • • • • • • • • • • • • • • |
|                    | F.3 ABBREVIATIONS F.3.1 STANDARD ABBREVIATIONS                                  | F-7                                     |
|                    | F.4 WARRANTY F.4.1 GE POWER MANAGEMENT WARRANTY                                 | F-9                                     |

**INDEX** 

Please read this chapter to help guide you through the initial setup of your new relay.

#### 1.1.1 CAUTIONS AND WARNINGS





Before attempting to install or use the relay, it is imperative that all WARNINGS and CAU-TIONS in this manual are reviewed to help prevent personal injury, equipment damage, and/ or downtime.

# 1.1.2 INSPECTION CHECKLIST

- Open the relay packaging and inspect the unit for physical damage.
- Check that the battery tab is intact on the power supply module (for more details, see the section BATTERY TAB in this chapter).
- View the rear name-plate and verify that the correct model has been ordered.



Figure 1-1: REAR NAME-PLATE (EXAMPLE)

- Ensure that the following items are included:
  - · Instruction Manual
  - · Products CD (includes URPC software and manuals in PDF format)
  - mounting screws
  - · registration card (attached as the last page of the manual)
- Fill out the registration form and mail it back to GE Power Management (include the serial number located on the rear nameplate).
- For product information, instruction manual updates, and the latest software updates, please visit the GE Power Management Home Page.



If there is any noticeable physical damage, or any of the contents listed are missing, please contact GE Power Management immediately.

# GE POWER MANAGEMENT CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Power Management 215 Anderson Avenue Markham, Ontario Canada L6E 1B3

**TELEPHONE**: (905) 294-6222, 1-800-547-8629 (North America only)

**FAX**: (905) 201-2098 **E-MAIL**: info.pm@indsys.ge.com

HOME PAGE: http://www.GEindustrial.com/pm

#### 1.2.1 INTRODUCTION TO THE UR RELAY

Historically, substation protection, control, and metering functions were performed with electromechanical equipment. This first generation of equipment was gradually replaced by analog electronic equipment, most of which emulated the single-function approach of their electromechanical precursors. Both of these technologies required expensive cabling and auxiliary equipment to produce functioning systems.

Recently, digital electronic equipment has begun to provide protection, control, and metering functions. Initially, this equipment was either single function or had very limited multi-function capability, and did not significantly reduce the cabling and auxiliary equipment required. However, recent digital relays have become quite multi-functional, reducing cabling and auxiliaries significantly. These devices also transfer data to central control facilities and Human Machine Interfaces using electronic communications. The functions performed by these products have become so broad that many users now prefer the term IED (Intelligent Electronic Device).

It is obvious to station designers that the amount of cabling and auxiliary equipment installed in stations can be even further reduced, to 20% to 70% of the levels common in 1990, to achieve large cost reductions. This requires placing even more functions within the IEDs.

Users of power equipment are also interested in reducing cost by improving power quality and personnel productivity, and as always, in increasing system reliability and efficiency. These objectives are realized through software which is used to perform functions at both the station and supervisory levels. The use of these systems is growing rapidly.

High speed communications are required to meet the data transfer rates required by modern automatic control and monitoring systems. In the near future, very high speed communications will be required to perform protection signaling with a performance target response time for a command signal between two IEDs, from transmission to reception, of less than 5 milliseconds. This has been established by the Electric Power Research Institute, a collective body of many American and Canadian power utilities, in their Utilities Communications Architecture 2 (MMS/UCA2) project. In late 1998, some European utilities began to show an interest in this ongoing initiative.

IEDs with the capabilities outlined above will also provide significantly more power system data than is presently available, enhance operations and maintenance, and permit the use of adaptive system configuration for protection and control systems. This new generation of equipment must also be easily incorporated into automation systems, at both the station and enterprise levels. The GE Power Management Universal Relay (UR) has been developed to meet these goals.

1.2 UR OVERVIEW

#### 1.2.2 UR HARDWARE ARCHITECTURE

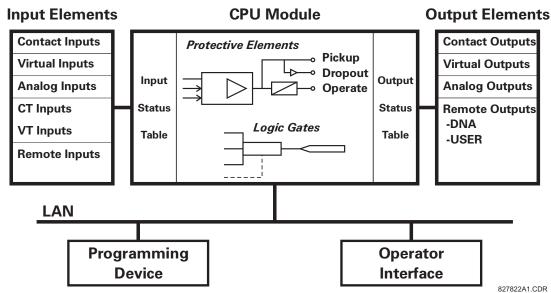



Figure 1-2: UR CONCEPT BLOCK DIAGRAM

#### a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

The **CPU module** contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.

**Input elements** accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.

**Output elements** convert and isolate the logic signals generated by the relay into digital or analog signals that can be used to control field devices.

# b) UR SIGNAL TYPES

The **contact inputs and outputs** are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.

The **virtual inputs and outputs** are digital signals associated with UR internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic<sup>™</sup> equations used to customize the UR device. Virtual outputs can also serve as virtual inputs to FlexLogic<sup>™</sup> equations.

The **analog inputs and outputs** are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The **CT and VT inputs** refer to analog current transformer and voltage transformer signals used to monitor AC power lines. The UR supports 1 A and 5 A CTs.

The **remote inputs** and **outputs** provide a means of sharing digital point state information between remote UR devices. The remote outputs interface to the remote inputs of other UR devices. Remote outputs are FlexLogic<sup>™</sup> operands inserted into UCA2 GOOSE messages and are of two assignment types: DNA standard functions and USER defined functions.

### c) UR SCAN OPERATION

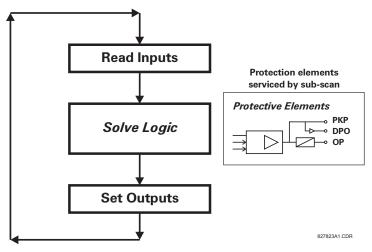



Figure 1-3: UR SCAN OPERATION

The UR device operates in a cyclic scan fashion. The UR reads the inputs into an input status table, solves the logic program (FlexLogic™ equation), and then sets each output to the appropriate state in an output status table. Any resulting task execution is priority interrupt-driven.

#### 1.2.3 UR SOFTWARE ARCHITECTURE

The firmware (software embedded in the relay) is designed in functional modules which can be installed in any relay as required. This is achieved with Object-Oriented Design and Programming (OOD/OOP) techniques.

Object-Oriented techniques involve the use of 'objects' and 'classes'. An 'object' is defined as "a logical entity that contains both data and code that manipulates that data". A 'class' is the generalized form of similar objects. By using this concept, one can create a Protection Class with the Protection Elements as objects of the class such as Time Overcurrent, Instantaneous Overcurrent, Current Differential, Undervoltage, Overvoltage, Underfrequency, and Distance. These objects represent completely self-contained software modules. The same object-class concept can be used for Metering, I/O Control, HMI, Communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the Universal Relay achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any Universal Relay (e.g. Feeder Protection, Transformer Protection, Distance Protection) is constructed by combining objects from the various functionality classes. This results in a 'common look and feel' across the entire family of UR platform-based applications.

# 1.2.4 IMPORTANT UR CONCEPTS

As described above, the architecture of the UR relay is different from previous devices. In order to achieve a general understanding of this device, some sections of Chapter 5 are quite helpful. The most important functions of the relay are contained in "Elements". A description of UR elements can be found in the INTRODUCTION TO ELEMENTS section. An example of a simple element, and some of the organization of this manual, can be found in the DIGITAL ELEMENTS MENU section. An explanation of the use of inputs from CTs and VTs is in the INTRODUCTION TO AC SOURCES section. A description of how digital signals are used and routed within the relay is contained in the INTRODUCTION TO FLEX-LOGIC<sup>TM</sup> section.

#### 1.3.1 PC REQUIREMENTS

The Faceplate keypad and display or the URPC software interface can be used to communicate with the relay.

The URPC software interface is the preferred method to edit settings and view actual values because the PC monitor can display more information in a simple comprehensible format.

The following minimum requirements must be met for the URPC software to properly operate on a PC.

Processor: Intel<sup>®</sup> Pentium 300 or higher

RAM Memory: 64 MB minimum (128 MB recommended)

Hard Disk: 50 MB free space required before installation of URPC software

O/S: Windows<sup>®</sup> NT 4.x or Windows<sup>®</sup> 9x/2000

Device: CD-ROM drive
Port: COM1(2) / Ethernet

1.3.2 SOFTWARE INSTALLATION

Refer to the following procedure to install the URPC software:

- 1. **Start** the Windows<sup>®</sup> operating system.
- 2. Insert the URPC software CD into the CD-ROM drive.
- 3. If the installation program does not start automatically, choose **Run** from the Windows<sup>®</sup> **Start** menu and type D:\SETUP.EXE. Press Enter to start the installation.
- 4. Follow the on-screen instructions to install the URPC software. When the **Welcome** window appears, click on **Next** to continue with the installation procedure.
- 5. When the **Choose Destination Location** window appears and if the software is not to be located in the default directory, click **Browse** and type in the complete path name including the new directory name.
- 6. Click **Next** to continue with the installation procedure.
- 7. The default program group where the application will be added to is shown in the **Select Program Folder** window. If it is desired that the application be added to an already existing program group, choose the group name from the list shown.
- 8. Click **Next** to begin the installation process.
- 9. To launch the URPC application, click Finish in the Setup Complete window.
- 10. Subsequently, double click on the URPC software icon to activate the application.



Refer to the HUMAN INTERFACES chapter in this manual and the URPC Software Help program for more information about the URPC software interface.

#### 1.3.3 CONNECTING URPC® WITH THE D60

This section is intended as a quick start guide to using the URPC software. Please refer to the URPC Help File and the HUMAN INTERFACES chapter for more information.

# a) CONFIGURING AN ETHERNET CONNECTION

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay.

- 1. Start the URPC software. Enter the password "URPC" at the login password box.
- 2. Select the Help > Connection Wizard menu item to open the Connection Wizard. Click "Next" to continue.
- 3. Click the "New Interface" button to open the Edit New Interface window.
  - Enter the desired interface name in the Enter Interface Name field.
  - Select the "Ethernet" interface from the drop down list and press "Next" to continue.
- Click the "New Device" button to open the Edit New Device Window.
  - Enter the desired name in the Enter Interface Name field.
  - Enter the Modbus address of the relay (from SETTINGS 

    → PRODUCT SETUP 

    → 

    ↓ COMMUNICATIONS 

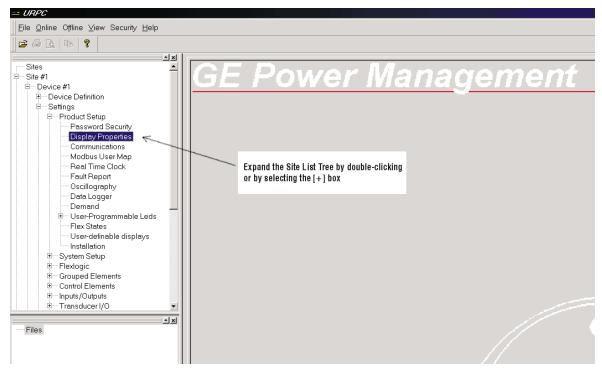
    → MODBUS
    PROTOCOL 

    → MODBUS SLAVE ADDRESS) in the Enter Modbus Address field.
  - Enter the IP address (from SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS) in the Enter TCPIP Address field.
- Click the "4.1 Read Device Information" button then "OK" when the relay information has been received. Click "Next" to continue.
- 6. Click the "New Site" button to open the Edit Site Name window.
  - Enter the desired site name in the Enter Site Name field.
- Click the "OK" button then click "Finish". The new Site List tree will be added to the Site List window (or Online window) located in the top left corner of the main URPC window.

The Site Device has now been configured for Ethernet communications. Proceed to Section c) CONNECTING TO THE RELAY below to begin communications.

# b) CONFIGURING AN RS232 CONNECTION

Before starting, verify that the RS232 serial cable is properly connected to the RS232 port on the front panel of the relay.


- 1. Start the URPC software. Enter the password "URPC" at the login password box.
- 2. Select the Help > Connection Wizard menu item to open the Connection Wizard. Click "Next" to continue.
- 3. Click the "New Interface" button to open the Edit New Interface window.
  - Enter the desired interface name in the Enter Interface Name field.
  - Select the "RS232" interface from the drop down list and press "Next" to continue.
- 4. Click the "New Device" button to open the Edit New Device Window.
  - Enter the desired name in the Enter Interface Name field.
  - Enter the PC COM port number in the COM Port field.
- 5. Click "OK" then click "Next" to continue.
- 6. Click the "New Site" button to open the Edit Site Name window.
  - Enter the desired site name in the Enter Site Name field.
- 7. Click the "OK" button then click "Finish". The new Site List tree will be added to the Site List window (or Online window) located in the top left corner of the main URPC window.

The Site Device has now been configured for RS232 communications. Proceed to Section c) CONNECTING TO THE RELAY below to begin communications.

1 GETTING STARTED 1.3 URPC SOFTWARE

# c) CONNECTING TO THE RELAY

1. Select the Display Properties window through the Site List tree as shown below:



- 2. The Display Properties window will open with a flashing status indicator.
  - If the indicator is red, click the Connect button (lightning bolt) in the menu bar of the Displayed Properties window.
- 3. In a few moments, the flashing light should turn green, indicating that URPC is communicating with the relay.



Refer to the HUMAN INTERFACES chapter in this manual and the URPC Software Help program for more information about the URPC software interface.

1.4.1 MOUNTING AND WIRING

Please refer to the HARDWARE chapter for detailed relay mounting and wiring instructions. Review all **WARNINGS** and **CAUTIONS**.

#### 1.4.2 COMMUNICATIONS

The URPC software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard "straight-through" serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the PC COM1 or COM2 port as described in the HARDWARE chapter.

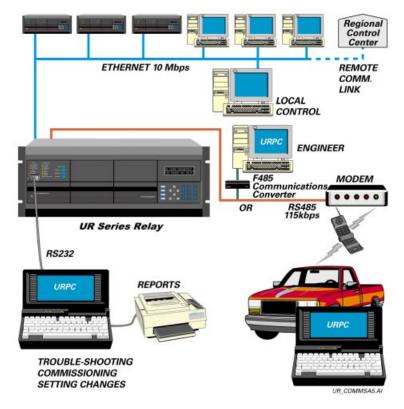


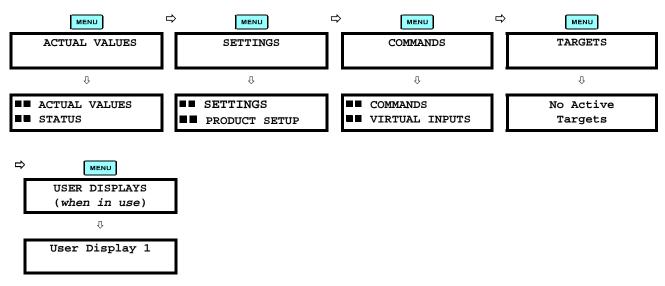

Figure 1-4: RELAY COMMUNICATIONS OPTIONS

To communicate through the D60 rear RS485 port from a PC RS232 port, the GE Power Management RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a "straight-through" serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the D60 rear communications port. The converter terminals (+, -, GND) are connected to the D60 communication module (+, -, COM) terminals. Refer to the CPU COMMUNICATION PORTS section in the HARDWARE chapter for option details. The line should be terminated with an R-C network (i.e.  $120 \Omega$ , 1 nF) as described in the HARDWARE chapter.

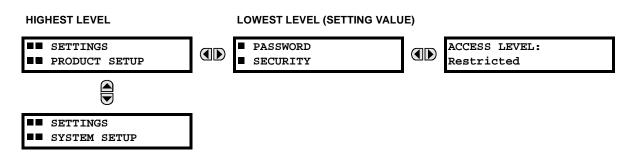
#### 1.4.3 FACEPLATE DISPLAY

All messages are displayed on a  $2 \times 20$  character vacuum fluorescent display to make them visible under poor lighting conditions. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

#### 1.5.1 FACEPLATE KEYPAD


Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The key navigates through these pages. Each heading page is broken down further into logical subgroups.

The MESSAGE keys navigate through the subgroups. The VALUE keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.


The key initiates and advance to the next character in text edit mode or enters a decimal point. The key may be pressed at any time for context sensitive help messages. The key stores altered setting values.

#### 1.5.2 MENU NAVIGATION

Press the key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the key advances through the main heading pages as illustrated below.



1.5.3 MENU HIERARCHY



#### 1.5.4 RELAY ACTIVATION

The relay is defaulted to the "Not Programmed" state when it leaves the factory. This safeguards against the installation of a relay whose settings have not been entered. When powered up successfully, the TROUBLE indicator will be on and the IN SERVICE indicator off. The relay in the "Not Programmed" state will block signaling of any output relay. These conditions will remain until the relay is explicitly put in the "Programmed" state.

Select the menu message SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial \text{ INSTALLATION } ⇒ RELAY SETTINGS

RELAY SETTINGS: Not Programmed

To put the relay in the "Programmed" state, press either of the VALUE value when keys once and then press Interest the face-plate TROUBLE indicator will turn off and the IN SERVICE indicator will turn on. The settings for the relay can be programmed manually (refer to the SETTINGS chapter) via the faceplate keypad or remotely (refer to the URPC Help file) via the URPC software interface.

1.5.5 BATTERY TAB

The battery tab is installed in the power supply module before the D60 shipped from the factory. The battery tab prolongs battery life in the event the relay is powered down for long periods of time before installation. The battery is responsible for backing up event records, oscillography, data logger, and real-time clock information when the relay is powered off. The battery failure self-test error generated by the relay is a minor and should not affect the relay functionality. When the relay is installed and ready for commissioning, the tab should be removed. The battery tab should be re-inserted if the relay is powered off for an extended period of time. If required, contact the factory for a replacement battery or battery tab.

#### 1.5.6 RELAY PASSWORDS

It is recommended that passwords be set up for each security level and assigned to specific personnel. There are two user password SECURITY access levels:

#### 1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- operate breakers via faceplate keypad
- · change state of virtual inputs
- clear event records
- clear oscillography records

#### 2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

NOTE

Refer to the CHANGING SETTINGS section (in the HUMAN INTERFACES chapter) for complete instructions on setting up security level passwords.

1.5.7 FLEXLOGIC™ CUSTOMIZATION

FlexLogic<sup>™</sup> equation editing is required for setting up user-defined logic for customizing the relay operations. See section FLEXLOGIC<sup>™</sup> in the SETTINGS chapter.

1.5.8 COMMISSIONING

Templated tables for charting all the required settings before entering them via the keypad are available in the COMMIS-SIONING chapter.

2.1.1 OVERVIEW

The D60 Line Distance Relay is a microprocessor-based relay intended for use on transmission lines of any voltage level, without, with, and in the vicinity of series compensation, in three-pole and single-pole tripping applications. The primary function of the relay consists of four phase and ground distance zones of protection, either mho or quadrilateral as per user selection, with built-in logic for the five common pilot-aided schemes. The distance elements are optimized to provide good measurement accuracy with a fast operating time, even when used with Capacitive Voltage Transformers, and can be supervised by detection of power swings. The relay also provides directional ground overcurrent elements, which are commonly used as part of an overall line protection system.

A Close-Into-Fault, or Switch-On-To-Fault, function is performed by the Line Pickup element. Out-of-step tripping, three-pole/single-pole dual breaker, autoreclosing, synchrocheck, fault location, and many other functions are also available. In addition, overcurrent and undervoltage protection, fault diagnostics, power metering, and RTU functions are provided. The D60 provides phase, neutral, and ground time overcurrent protection. The time overcurrent functions can be programmed with multiple curve shapes or FlexCurve<sup>TM</sup> for optimum coordination.

Voltage and current metering is included as a standard feature. Additionally, currents are available as total RMS values. Power, power factor and frequency measurements are also provided.

Diagnostic features include an Event Recorder capable of storing 1024 time-tagged events, Oscillography capable of storing up to 64 records with programmable trigger, content and sampling rate, and Data Logger acquisition of up to 16 channels, with programmable content and sampling rate. The internal clock used for time-tagging can be synchronized with an IRIG-B signal. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic<sup>TM</sup> equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.

A faceplate RS232 port may be used to connect to a PC for the programming of settings and the monitoring of actual values. A variety of communications modules are available. Two rear RS485 ports allow independent access by operating and engineering staff. All serial ports use the Modbus<sup>®</sup> RTU protocol. The RS485 ports may be connected to system computers with baud rates up to 115.2 kbps. The RS232 port has a fixed baud rate of 19.2 kbps. Optional communications modules include a 10BaseF Ethernet interface which can be used to provide fast, reliable communications in noisy environments. Another option provides two 10BaseF fiber optic ports for redundancy. The Ethernet port supports MMS/UCA2, Modbus<sup>®</sup>/TCP, and TFTP protocols, and allows access to the relay via any standard web browser (UR web pages). The DNP 3.0 or IEC 60870-5-104 protocol is supported on a user-specified port, including serial and Ethernet ports.

The relay uses flash memory technology which allows field upgrading as new features are added. The following SINGLE LINE DIAGRAM illustrates the relay functionality using ANSI (American National Standards Institute) device numbers.

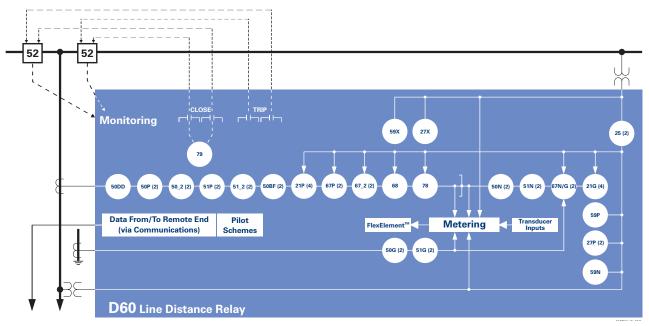



Figure 2-1: SINGLE LINE DIAGRAM

Table 2-1: DEVICE NUMBERS AND FUNCTIONS

| DEVICE<br>NUMBER | FUNCTION                                    |
|------------------|---------------------------------------------|
| 21G              | Ground Distance                             |
| 21P              | Phase Distance                              |
| 25               | Synchrocheck                                |
| 27P              | Phase Undervoltage                          |
| 27X              | Auxiliary Undervoltage                      |
| 50BF             | Breaker Failure                             |
| 50DD             | Current Disturbance Detector                |
| 50G              | Ground Instantaneous Overcurrent            |
| 50N              | Neutral Instantaneous Overcurrent           |
| 50P              | Phase Instantaneous Overcurrent             |
| 50_2             | Negative Sequence Instantaneous Overcurrent |
| 51G              | Ground Time Overcurrent                     |
| 51N              | Neutral Time Overcurrent                    |

| DEVICE<br>NUMBER | FUNCTION                                  |
|------------------|-------------------------------------------|
| 51P              | Phase Time Overcurrent                    |
| 51_2             | Negative Sequence Time Overcurrent        |
| 52               | AC Circuit Breaker                        |
| 59N              | Neutral Overvoltage                       |
| 59P              | Phase Overvoltage                         |
| 59X              | Auxiliary Overvoltage                     |
| 59_2             | Negative Sequence Overvoltage             |
| 67N              | Neutral Directional Overcurrent           |
| 67P              | Phase Directional Overcurrent             |
| 67_2             | Negative Sequence Directional Overcurrent |
| 68               | Power Swing Blocking                      |
| 78               | Out-of-Step Tripping                      |
| 79               | Automatic Recloser                        |

Table 2-2: OTHER DEVICE FUNCTIONS

| FUNCTION                                  |
|-------------------------------------------|
| Breaker Arcing Current (I <sup>2</sup> t) |
| Breaker Control                           |
| Contact Inputs (up to 96)                 |
| Contact Outputs (up to 64)                |
| Data Logger                               |
| Digital Counters (8)                      |
| Digital Elements (16)                     |
| DNP 3.0 or IEC 60870-5-104                |
| Event Recorder                            |
| Fault Locator                             |

| FUNCTION                                                      |
|---------------------------------------------------------------|
| Fault Reporting                                               |
| FlexElements™                                                 |
| FlexLogic™ Equations                                          |
| Line Pickup                                                   |
| Metering: Current, Voltage, Power,<br>Power Factor, Frequency |
| MMS/UCA Communications                                        |
| MMS/UCA Remote I/O ("GOOSE")                                  |
| Modbus Communications                                         |
| Modbus User Map                                               |

| FUNCTION                |
|-------------------------|
| Oscillography           |
| Pilot Schemes           |
| Setting Groups (8)      |
| Transducer I/O          |
| User-Definable Displays |
| User Programmable LEDs  |
| Virtual Inputs (32)     |
| Virtual Outputs (64)    |
| VT Fuse Failure         |

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size (¾) vertical mount unit, and consists of the following UR module functions: Power Supply, CPU, CT/VT DSP, Digital Input/Output, and Transducer I/O. Each of these modules can be supplied in a number of configurations which must be specified at the time of ordering. The information required to completely specify the relay is provided in the following table (full details of the modules that are available for the relay are contained in the HARDWARE chapter).

Table 2-3: ORDER CODES

|                                | D60 · | . * | 00 - | - H | C * | -F**- | H ** -N  | **    | -P ** -U | **  | ■ W ** For Full Sized Horizontal Mount                                                  |
|--------------------------------|-------|-----|------|-----|-----|-------|----------|-------|----------|-----|-----------------------------------------------------------------------------------------|
|                                | D60 - | *   | 00 - | - V | F * | -F**- | H ** - N | 1 * * | -P**     | 1   | For Reduced Size Vertical Mount                                                         |
| BASE UNIT                      | D60   | Т   | T    | Т   | П   | Т     | Т        | Т     | T        | Ť   | Base Unit                                                                               |
| CPU                            |       | Α   | İ    | İ   | 11  | i     | Ì        | İ     | Ì        | Ì   | RS485 + RS485 (ModBus RTU, DNP)                                                         |
|                                |       | С   | Ĺ    | Ì   | Ϊİ  | i     | Ĺ        | Ì     | Ĺ        | Ĺ   | RS485 + 10BaseF (MMS/UCA2, ModBus TCP/IP, DNP)                                          |
|                                |       | D   | Τ    | 1   | П   | - 1   | - 1      | - 1   | - 1      | 1   | RS485 + Redundant 10BaseF (MMS/UCA2, ModBus TCP/IP, DNP)                                |
| SOFTWARE OPTIONS               |       |     | 00   | I   | П   | I     | I        | Ι     | I        | 1   | No Software Options                                                                     |
| MOUNT/                         |       |     |      | Н   | Cl  | I     | 1        | - 1   | 1        | -1  | Horizontal (19" rack)                                                                   |
| FACEPLATE                      |       |     |      | V   | F   | - 1   | - 1      | - 1   | - 1      | -1  | Vertical (3/4 size)                                                                     |
| POWER SUPPLY                   |       |     |      |     | Н   | I     | I        | - 1   | I        | - 1 | 125 / 250 V AC/DC                                                                       |
|                                |       |     |      |     | L   | - 1   | 1        | - 1   | 1        | -1  | 24 - 48 V (DC only)                                                                     |
| CT/VT DSP                      |       |     |      |     |     | 8A    | - 1      | - [   | - 1      | - 1 | Standard 4CT/4VT                                                                        |
|                                |       |     |      |     |     | 8B    | - 1      | - 1   | - 1      | 1   | Sensitive Ground 4CT/4VT                                                                |
| DIGITAL I/O                    |       |     |      |     |     |       | - 1      | XX    | XX       | XX  | XX No module                                                                            |
|                                |       |     |      |     |     |       | 6A       | 6A    | 6A       | 6A  | 6A 2 Form-A (Voltage w/ opt Current) & 2 Form-C Outputs, 8 Digital Inputs               |
|                                |       |     |      |     |     |       | 6B       | 6B    | 6B       | 6B  | 6B 2 Form-A (Voltage w/ opt Current) & 4 Form-C Outputs, 4 Digital Inputs               |
|                                |       |     |      |     |     |       | 6C       | 6C    | 6C       | 6C  | 6C 8 Form-C Outputs                                                                     |
|                                |       |     |      |     |     |       | 6D       | 6D    | 6D       | 6D  | 6D 16 Digital Inputs                                                                    |
|                                |       |     |      |     |     |       | 6E       | 6E    | 6E       | 6E  | 6E 4 Form-C Outputs, 8 Digital Inputs                                                   |
|                                |       |     |      |     |     |       | 6F       | 6F    | 6F       | 6F  | 6F 8 Fast Form-C Outputs                                                                |
|                                |       |     |      |     |     |       | 6G       | 6G    | 6G       | 6G  | 6G 4 Form-A (Voltage w/ opt Current) Outputs, 8 Digital Inputs                          |
|                                |       |     |      |     |     |       | 6H       | 6H    | 6H       | 6H  | 6H 6 Form-A (Voltage w/ opt Current) Outputs, 4 Digital Inputs                          |
|                                |       |     |      |     |     |       | 6K       | 6K    | 6K       | 6K  | 6K 4 Form-C & 4 Fast Form-C Outputs                                                     |
|                                |       |     |      |     |     |       | 6L       | 6L    | 6L       | 6L  | 6L 2 Form-A (Current w/ opt Voltage) & 2 Form-C Outputs, 8 Digital Inputs               |
|                                |       |     |      |     |     |       | 6M       | 6M    | 6M       | 6M  | 6M <sup>2</sup> Form-A (Current w/ opt Voltage) & 4 Form-C Outputs,<br>4 Digital Inputs |
|                                |       |     |      |     |     |       | 6N       | 6N    | 6N       | 6N  | 6N 4 Form-A (Current w/ opt Voltage) Outputs, 8 Digital Inputs                          |
|                                |       |     |      |     |     |       | 6P       | 6P    | 6P       | 6P  | 6P 6 Form-A (Current w/ opt Voltage) Outputs, 4 Digital Inputs                          |
|                                |       |     |      |     |     |       | 6R       | 6R    | 6R       | 6R  | 6R 2 Form-A (No Monitoring) & 2 Form-C Outputs, 8 Digital Inputs                        |
|                                |       |     |      |     |     |       | 6S       | 6S    | 6S       | 6S  | 6S 2 Form-A (No Monitoring) & 4 Form-C Outputs, 4 Digital Inputs                        |
|                                |       |     |      |     |     |       | 6T       | 6T    | 6T       | 6T  | 6T 4 Form-A (No Monitoring) Outputs, 8 Digital Inputs                                   |
|                                |       |     |      |     |     |       | 6U       | 6U    | 6U       | 6U  | 6U 6 Form-A (No Monitoring) Outputs, 4 Digital Inputs                                   |
| TRANSDUCER                     |       |     |      |     |     |       | 5C       | 5C    | 5C       | 5C  | 5C 8 RTD Inputs                                                                         |
| I/O (MAXIMUM OF<br>4 PER UNIT) |       |     |      |     |     |       | 5E       | 5E    | 5E       | 5E  | 5E 4 dcmA Inputs, 4 RTD Inputs                                                          |
| TI LIX OINII)                  |       |     |      |     |     |       | 5F       | 5F    | 5F       | 5F  | 5F 8 dcmA Inputs                                                                        |

The order codes for replacement modules to be ordered separately are shown in the following table. When ordering a replacement CPU module or Faceplate, please provide the serial number of your existing unit.

Table 2–4: ORDER CODES FOR REPLACEMENT MODULES

|                                | UR - ** -    |                                                                                                                              |
|--------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| POWER SUPPLY                   | 1H           | 125 / 250 V AC/DC                                                                                                            |
|                                | 1L           | 24 - 48 V (DC only)                                                                                                          |
| CPU                            | 9A           | RS485 + RS485 (ModBus RTU, DNP 3.0)                                                                                          |
|                                | 9C           | RS485 + 10BaseF (MMS/UCA2, ModBus TCP/IP, DNP 3.0)                                                                           |
| FACEDI ATE                     | 9D           | RS485 + Redundant 10BaseF (MMS/UCA2, ModBus TCP/IP, DNP 3.0)                                                                 |
| FACEPLATE                      | 3C  <br>  3F | Horizontal Faceplate with Display & Keypad                                                                                   |
| DIGITAL I/O                    | 3F  <br>  6A | Vertical Faceplate with Display & Keypad 2 Form-A (Voltage w/ opt Current) & 2 Form-C Outputs, 8 Digital Inputs              |
| DIGITAL I/O                    | 6A           | 2 Form-A (Voltage w/ opt Current) & 4 Form-C Outputs, 4 Digital Inputs                                                       |
|                                | 6C           | 8 Form-C Outputs                                                                                                             |
|                                | 6D           | 16 Digital Inputs                                                                                                            |
|                                | 6E           | 4 Form-C Outputs, 8 Digital Inputs                                                                                           |
|                                | j 6F j       | 8 Fast Form-C Outputs                                                                                                        |
|                                | 6G           | 4 Form-A (Voltage w/ opt Current) Outputs, 8 Digital Inputs                                                                  |
|                                | 6H           | 6 Form-A (Voltage w/ opt Current) Outputs, 4 Digital Inputs                                                                  |
|                                | 6K           | 4 Form-C & 4 Fast Form-C Outputs                                                                                             |
|                                | 6L           | 2 Form-A (Current w/ opt Voltage) & 2 Form-C Outputs, 8 Digital Inputs                                                       |
|                                | 6M           | 2 Form-A (Current w/ opt Voltage) & 4 Form-C Outputs, 4 Digital Inputs                                                       |
|                                | 6N  <br>  6P | 4 Form-A (Current w/ opt Voltage) Outputs, 8 Digital Inputs                                                                  |
|                                | 6P  <br>  6R | 6 Form-A (Current w/ opt Voltage) Outputs, 4 Digital Inputs<br>2 Form-A (No Monitoring) & 2 Form-C Outputs, 8 Digital Inputs |
|                                | 6K           | 2 Form-A (No Monitoring) & 4 Form-C Outputs, 4 Digital Inputs                                                                |
|                                | 6T           | 4 Form-A (No Monitoring) Outputs, 8 Digital Inputs                                                                           |
|                                | i 6U i       | 6 Form-A (No Monitoring) Outputs, 4 Digital Inputs                                                                           |
| CT/VT DSP                      | 8A           | Standard 4CT/4VT                                                                                                             |
|                                | 8B           | Sensitive Ground 4CT/4VT                                                                                                     |
|                                | 8C           | Standard 8CT                                                                                                                 |
|                                | 8D           | Sensitive Ground 8CT                                                                                                         |
| I SO INTED DEL AV              | 8Z           | HI-Z 4CT                                                                                                                     |
| L60 INTER-RELAY COMMUNICATIONS | 7U  <br>  7V | 110/125 V, 20 mA Input/Output Channel Interface<br>48/60 V, 20 mA Input/Output Channel Interface                             |
|                                | 7V           | 125 V Input, 5V Output, 20 mA Channel Interface                                                                              |
|                                | 7Z           | 5 V Input, 5V Output, 20 mA Channel Interface                                                                                |
| L90 INTER-RELAY                | , 7A         | 820 nm, multi-mode, LED, 1 Channel                                                                                           |
| COMMUNICATIONS                 | 7B           | 1300 nm, multi-mode, LED, 1 Channel                                                                                          |
|                                | 7C           | 1300 nm, single-mode, ELED, 1 Channel                                                                                        |
|                                | 7D           | 1300 nm, single-mode, LASER, 1 Channel                                                                                       |
|                                | 7E           | Channel 1: G.703; Channel 2: 820 nm, multi-mode LED                                                                          |
|                                | 7F  <br>  7G | Channel 1: G.703; Channel 2: 1300 nm, multi-mode LED Channel 1: G.703; Channel 2: 1300 nm, single-mode ELED                  |
|                                | 7G           | Channel 1: G.703; Channel 2: 820 nm, single-mode LASER                                                                       |
|                                | 7H           | 820 nm, multi-mode, LED, 2 Channels                                                                                          |
|                                | 71           | 1300 nm, multi-mode, LED, 2 Channels                                                                                         |
|                                | j 7J         | 1300 nm, single-mode, ELED, 2 Channels                                                                                       |
|                                | 7K           | 1300 nm, single-mode, LASER, 2 Channels                                                                                      |
|                                | 7L           | Channel 1 - RS422; Channel 2 - 820 nm, multi-mode, LED                                                                       |
|                                | 7M           | Channel 1 - RS422; Channel 2 - 1300 nm, multi-mode, LED                                                                      |
|                                | 7N           | Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED                                                                    |
|                                | 7P  <br>  7R | Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, LASER G.703, 1 Channel                                                  |
|                                | 7K           | G.703, 2 Channels                                                                                                            |
|                                | 7T           | RS422, 1 Channel                                                                                                             |
|                                | 7W           | RS422, 2 Channels                                                                                                            |
|                                | 72           | 1550 nm, single-mode, LASER, 1 Channel                                                                                       |
|                                | 73           | 1550 nm, single-mode, LASER, 2 Channel                                                                                       |
|                                | 74           | Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, LASER                                                                   |
| TRANSDUCED VO                  | 75           | Channel 1 - G.703, Channel 2 - 1550 nm, single -mode, LASER                                                                  |
| TRANSDUCER I/O                 | 5C           | 8 RTD Inputs 4 dom A Inputs 4 RTD Inputs                                                                                     |
|                                | 5E  <br>  5F | 4 dcmA Inputs, 4 RTD Inputs<br>8 dcmA Inputs                                                                                 |
|                                | , 51         |                                                                                                                              |

#### SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

#### 2.2.1 PROTECTION ELEMENTS



The operating times below include the activation time of a trip rated Form-A output contact unless otherwise indicated. FlexLogic<sup>™</sup> operands of a given element are 4 ms faster. This should be taken into account when using FlexLogic<sup>™</sup> to interconnect with other protection or control elements of the relay, building FlexLogic<sup>™</sup> equations, or interfacing with other IEDs or power system devices via communications or different output contacts.

#### **PHASE DISTANCE**

Characteristic: Dynamic (100% memory-polarized)

MHO or QUAD, selectable individually

per zone

Number of Zones: 4

Directionality: All zones reversible

 $\begin{array}{ll} \mbox{Reach (secondary $\Omega$):} & 0.02 \mbox{ to } 250.00 \ \Omega \mbox{ in steps of } 0.01 \\ \mbox{Reach Accuracy:} & \pm 5\% \mbox{ including the effect of CVT trans-} \\ \end{array}$ 

sients up to an SIR of 30

Distance Characteristic Angle: 30 to 90° in steps of 1 Distance Comparator Limit Angle: 30 to 90° in steps of 1

**Directional Supervision:** 

Characteristic Angle: 30 to 90° in steps of 1 Limit Angle: 30 to 90° in steps of 1 Right Blinder (QUAD only):

Reach: 0.02 to 250  $\Omega$  in steps of 0.01

Characteristic Angle: 60 to 90° in steps of 1

Left Blinder (QUAD only):

Reach: 0.02 to 250  $\Omega$  in steps of 0.01 Characteristic Angle: 60 to 90° in steps of 1

Time Delay: 0.000 to 65.535 s in steps of 0.001
Timing Accuracy: ±3% or 4 ms, whichever is greater

**Current Supervision:** 

Level: line-to-line current

Pickup: 0.050 to 30.000 pu in steps of 0.001

Dropout: 97 to 98%

Memory Duration: 5 to 25 cycles in steps of 1

Voltage Supervision Pickup (series compensation applications):

0 to 5.000 pu in steps of 0.001

#### PHASE DISTANCE OPERATING TIME CURVES

The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).



837717A1.CDR

#### **GROUND DISTANCE**

Characteristic: Dynamic (100% memory-polarized)

MHO, or QUAD, selectable individually

per zone

Number of Zones:

Directionality: All zones reversible

Reach (secondary  $\Omega$ ): 0.02 to 250.00  $\Omega$  in steps of 0.01 Reach Accuracy:

±5% including the effect of CVT tran-

sients up to an SIR of 30

Distance Characteristic Angle: 30 to 90° in steps of 1 Distance Comparator Limit Angle: 30 to 90° in steps of 1

Directional Supervision:

Characteristic Angle: 30 to 90° in steps of 1 Limit Angle: 30 to 90° in steps of 1

Zero-Sequence Compensation

Z0/Z1 magnitude: 0.50 to 7.00 in steps of 0.01 Z0/Z1 angle: -90 to 90° in steps of 1

Zero-Sequence Mutual Compensation

Z0M/Z1 magnitude: 0.00 to 7.00 in steps of 0.01 -90 to 90° in steps of 1 Z0M/Z1 angle:

Right Blinder (QUAD only):

Reach: 0.02 to 250  $\Omega$  in steps of 0.01 Characteristic Angle: 60 to 90° in steps of 1

Left Blinder (QUAD only):

0.02 to 250  $\Omega$  in steps of 0.01 Reach: Characteristic Angle: 60 to 90° in steps of 1

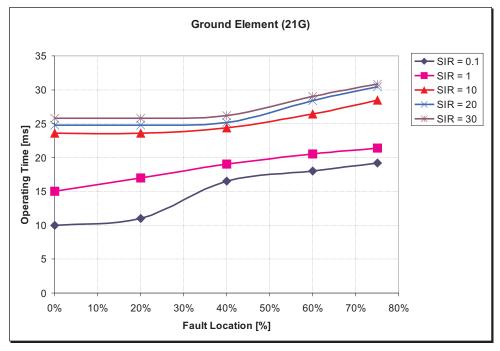
Time Delay: 0.000 to 65.535 s in steps of 0.001 Timing Accuracy: ±3% or 4 ms, whichever is greater

**Current Supervision:** 

Level: neutral current (3I\_0)

Pickup: 0.050 to 30.000 pu in steps of 0.001

Dropout: 97 to 98%


Memory Duration: 5 to 25 cycles in steps of 1

Voltage Supervision Pickup (series compensation applications):

0 to 5.000 pu in steps of 0.001

# **GROUND DISTANCE OPERATING TIME CURVES**

The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).



837718A1.CDR

**LINE PICKUP** 

Phase IOC: 0.000 to 30.000 pu
Positive Sequence UV: 0.000 to 3.000 pu
Positive Seq. OV Delay: 0.000 to 65.535 s

PHASE/NEUTRAL/GROUND TOC

Current: Phasor or RMS

Pickup Level: 0.000 to 30.000 pu in steps of 0.001

Dropout Level: 97% to 98% of Pickup

Level Accuracy:

for 0.1 to 2.0  $\times$  CT:  $\pm 0.5\%$  of reading or  $\pm 1\%$  of rated

(whichever is greater)

for  $> 2.0 \times CT$ :  $\pm 1.5\%$  of reading  $> 2.0 \times CT$  rating Curve Shapes: IEEE Moderately/Very/Extremely

Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; I<sup>2</sup>t; FlexCurve<sup>™</sup> (programmable); Definite Time (0.01 s base

curve)

Curve Multiplier: Time Dial = 0.00 to 600.00 in steps of

0.01

Reset Type: Instantaneous/Timed (per IEEE)
Timing Accuracy: Operate at >  $1.03 \times$  Actual Pickup

±3.5% of operate time or ±1/2 cycle

(whichever is greater)

PHASE/NEUTRAL/GROUND IOC

Pickup Level: 0.000 to 30.000 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Level Accuracy:

0.1 to  $2.0 \times CT$  rating:  $\pm 0.5\%$  of reading or  $\pm 1\%$  of rated

(whichever is greater)

 $> 2.0 \times CT$  rating  $\pm 1.5\%$  of reading

Overreach: <2%

Pickup Delay: 0.00 to 600.00 s in steps of 0.01 Reset Delay: 0.00 to 600.00 s in steps of 0.01 Operate Time: <20 ms at  $3 \times$  Pickup at 60 Hz

Timing Accuracy: Operate at  $1.5 \times Pickup$ 

±3% or ±4 ms (whichever is greater)

**NEGATIVE SEQUENCE TOC** 

Pickup Level: 0.000 to 30.000 pu in steps of 0.001

Dropout Level: 97% to 98% of Pickup

Level Accuracy: ±0.5% of reading or ±1% of rated (which-

ever is greater)

from 0.1 to 2.0 x CT rating ±1.5% of reading > 2.0 x CT rating IEEE Moderately/Very/Extremely

Curve Shapes: IEEE Moderately/Very/Extremely

Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; I<sup>2</sup>t; FlexCurve™ (programmable); Definite Time (0.01 s base

curve)

Curve Multiplier (Time Dial): 0.00 to 600.00 in steps of 0.01

Reset Type: Instantaneous/Timed (per IEEE) and

Linea

Timing Accuracy: Operate at  $> 1.03 \times$  Actual Pickup

±3.5% of operate time or ±1/2 cycle

(whichever is greater)

**NEGATIVE SEQUENCE IOC** 

Pickup Level: 0.000 to 30.000 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Level Accuracy:

0.1 to 2.0  $\times$  CT rating: ±0.5% of reading or ±1% of rated

(whichever is greater)

> 2.0 × CT rating: ±1.5% of reading

Overreach: < 2 %

Pickup Delay: 0.00 to 600.00 s in steps of 0.01 Reset Delay: 0.00 to 600.00 s in steps of 0.01 Operate Time: < 20 ms at  $3 \times$  Pickup at 60 Hz

Timing Accuracy: Operate at  $1.5 \times Pickup$ 

±3% or ± 4 ms (whichever is greater)

PHASE DIRECTIONAL OVERCURRENT

Relay Connection: 90° (quadrature)

Quadrature Voltage:

ABC Phase Seq.: phase A  $(V_{BC})$ , phase B  $(V_{CA})$ , phase C  $(V_{AB})$  ACB Phase Seq.: phase A  $(V_{CB})$ , phase B  $(V_{AC})$ , phase C  $(V_{BA})$  Polarizing Voltage Threshold: 0.000 to 3.000 pu in steps of 0.001

Current Sensitivity Threshold: 0.05 pu

Characteristic Angle: 0 to 359° in steps of 1

Angle Accuracy: ±2°

Operation Time (FlexLogic™ Operands):

Tripping (reverse load, forward fault):< 12 ms, typically Blocking (forward load, reverse fault):< 8 ms, typically

**NEUTRAL DIRECTIONAL OVERCURRENT** 

Directionality: Co-existing forward and reverse

Polarizing: Voltage, Current, Dual

Polarizing Voltage: V\_0 or VX

Polarizing Current: IG
Operating Current: I\_0

Level Sensing:  $3 \times (|I_0| - K \times |I_1|), K = 0.0625$ ; IG

Characteristic Angle: -90 to 90° in steps of 1

Limit Angle: 40 to 90° in steps of 1, independent for

forward and reverse

Angle Accuracy: ±2°

Offset Impedance: 0.00 to 250.00  $\Omega$  in steps of 0.01 Pickup Level: 0.05 to 30.00 pu in steps of 0.01

Dropuot Level: 97 to 98%

Operation Time: < 16 ms at 3  $\times$  Pickup at 60 Hz

#### **NEGATIVE SEQUENCE DIRECTIONAL OC**

Directionality: Co-existing forward and reverse

Polarizing: Voltage
Polarizing Voltage: V\_2
Operating Current: I\_2

Level Sensing:

Zero-sequence:  $|I\_0| - K \times |I\_1|$ , K = 0.0625Negative-sequence:  $|I\_2| - K \times |I\_1|$ , K = 0.125

Characteristic Angle: 0 to 90° in steps of 1

Limit Angle: 40 to 90° in steps of 1, independent for

forward and reverse

Angle Accuracy: ±2°

Offset Impedance: 0.00 to 250.00  $\Omega$  in steps of 0.01 Pickup Level: 0.05 to 30.00 pu in steps of 0.01

Dropout Level: 97 to 98%

Operation Time: < 16 ms at 3 × Pickup at 60 Hz

**BREAKER FAILURE** 

Mode: 1-pole, 3-pole Current Supv. Level: Phase, Neutral

Current Supv. Pickup: 0.001 to 30.000 pu in steps of 0.001

Current Supv. DPO: 97 to 98% of Pickup

Current Supv. Accuracy:

0.1 to  $2.0 \times CT$  rating:  $\pm 0.75\%$  of reading or  $\pm 1\%$  of rated

(whichever is greater)

 $> 2 \times CT$  rating:  $\pm 1.5\%$  of reading

**PHASE UNDERVOLTAGE** 

Pickup Level: 0.000 to 3.000 pu in steps of 0.001

Dropout Level: 102 to 103% of Pickup

Level Accuracy: ±0.5% of reading from 10 to 208 V

Curve Shapes: GE IAV Inverse;

Definite Time (0.1s base curve)

Curve Multiplier: Time Dial = 0.00 to 600.00 in steps of

0.01

Timing Accuracy: Operate at  $< 0.90 \times Pickup$ 

±3.5% of operate time or ±4 ms (which-

ever is greater)

**PHASE OVERVOLTAGE** 

Voltage: Phasor only

Pickup Level: 0.000 to 3.000 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Level Accuracy:  $\pm 0.5\%$  of reading from 10 to 208 V Pickup Delay: 0.00 to 600.00 in steps of 0.01 s Operate Time: < 30 ms at  $1.10 \times$  Pickup at 60 Hz Timing Accuracy:  $\pm 3\%$  or  $\pm 4$  ms (whichever is greater)

**NEUTRAL OVERVOLTAGE** 

Pickup Level: 0.000 to 1.250 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Level Accuracy:  $\pm 0.5\%$  of reading from 10 to 208 V Pickup Delay: 0.00 to 600.00 s in steps of 0.01 Reset Delay: 0.00 to 600.00 s in steps of 0.01 Timing Accuracy:  $\pm 3\%$  or  $\pm 4$  ms (whichever is greater) Operate Time: < 30 ms at  $1.10 \times$  Pickup at 60 Hz

**AUXILIARY UNDERVOLTAGE** 

Pickup Level: 0.000 to 3.000 pu in steps of 0.001

Dropout Level: 102 to 103% of Pickup

Level Accuracy: ±0.5% of reading from 10 to 208 V

Curve Shapes: GE IAV Inverse

Definite Time

Curve Multiplier: Time Dial = 0 to 600.00 in steps of 0.01

Timing Accuracy: ±3% of operate time or ±4 ms

(whichever is greater)

**NEGATIVE SEQUENCE OVERVOLTAGE** 

Pickup Level: 0.000 to 1.250 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Level Accuracy: ±0.5% of reading from 10 to 208 V
Pickup Delay: 0 to 600.00 s in steps of 0.01
Reset Delay: 0 to 600.00 s in steps of 0.01
Time Accuracy: ±3% or ±20 ms, whichever is greater
Operate Time: < 30 ms at 1.10 × Pickup at 60 Hz

**AUXILIARY OVERVOLTAGE** 

Pickup Level: 0.000 to 3.000 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Level Accuracy: ±0.5% of reading from 10 to 208 V
Pickup Delay: 0 to 600.00 s in steps of 0.01
Reset Delay: 0 to 600.00 s in steps of 0.01
Timing Accuracy: ±3% of operate time or ±4 ms

(whichever is greater)

Operate Time: < 30 ms at 1.10 × pickup at 60 Hz

**SYNCHROCHECK** 

Max Volt Difference: 0 to 100000 V in steps of 1

Max Angle Difference: 0 to 100° in steps of 1

Max Freq Difference: 0.00 to 2.00 Hz in steps of 0.01

Dead Source Function: None, LV1 & DV2, DV1 & LV2, DV1 or

DV2, DV1 xor DV2, DV1 & DV2 (L=Live,

D=Dead)

**AUTORECLOSURE** 

Two breakers applications

Single- and three-pole tripping schemes Up to 2 reclose attempts before lockout

Selectable reclosing mode and breaker sequence

**PILOT-AIDED SCHEMES** 

Direct Underreaching Transfer Trip (DUTT)
Permissive Underreaching Transfer Trip (PUTT)
Permissive Overreaching Transfer Trip (POTT)

Hybrid POTT Scheme

**Directional Comparison Blocking Scheme** 

**POWER SWING DETECT** 

Functions: Power swing block, Out-of-step trip

Measured Impedance: Positive-sequence
Blocking & Tripping Modes: 2-step or 3-step
Tripping Mode: Early or Delayed

Current Supervision:

Pickup Level: 0.050 to 30.000 pu in steps of 0.001

Dropout Level: 97 to 98% of Pickup

Fwd / Reverse Reach (sec.  $\Omega$ ): 0.10 to 500.00  $\Omega$  in steps of 0.01

Impedance Accuracy: ±5%

Fwd / Reverse Angle Impedances: 40 to 90° in steps of 1

Angle Accuracy: ±2°

Characteristic Limit Angles: 40 to 140° in steps of 1

Timers: 0.000 to 65.535 s in steps of 0.001
Timing Accuracy: ±3% or 4 ms, whichever is greater

# LOAD ENCROACHMENT

Measured Impedance: Positive-sequence

Minumum Voltage: 0.000 to 3.000 pu in steps of 0.001 Reach (sec.  $\Omega$ ): 0.02 to 250.00  $\Omega$  in steps of 0.01

Impedance Accuracy: ±5%

Angle: 5 to 50° in steps of 1

Angle Accuracy: ±2°

Pickup Delay: 0 to 65.535 s in steps of 0.001

Reset Delay: 0 to 65.535 s in steps of 0.001

Time Accuracy: ±3% or ±4 ms, whichever is greater

Operate Time: < 30 ms at 60 Hz

#### TRIP OUTPUT

Collects trip and reclose input requests and issues outputs to control tripping and reclosing.

Communications Timer Delay: 0 to 65535 s in steps of 0.001 Timing Accuracy: ±3% or 4 ms, whichever is greater

#### **OPEN POLE DETECTOR**

Detects an open pole condition, monitoring breaker auxiliary contacts, the current in each phase and optional voltages on the line

Current Pickup Level: 0.000 to 30.000 pu in steps of 0.001

Current Dropout Level: Pickup + 3%, not less than 0.05 pu

Time Delay: 0 to 65.535 s in steps of 0.001

Timing Accuracy: ±3% or 4 ms, whichever is greater

#### 2.2.2 USER-PROGRAMMABLE ELEMENTS

#### FLEXLOGIC™

Programming language: Reverse Polish Notation with graphical

visualization (keypad programmable)

Lines of code: 512 Number of Internal Variables: 64

Supported operations: NOT, XOR, OR (2 to 16 inputs), AND (2

to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), LATCH (Reset dominant), EDGE DETECTORS, TIM-

ERS

Inputs: any logical variable, contact, or virtual

input

Number of timers: 32

Pickup delay: 0 to 60000 (ms, sec., min.) in steps of 1
Dropout delay: 0 to 60000 (ms, sec., min.) in steps of 1

### **FLEXCURVES™**

Number: 2 (A and B)

Number of reset points: 40 (0 through 1 of pickup)

Number of operate points: 80 (1 through 20 of pickup)

Time delay: 0 to 65535 ms in steps of 1

#### **FLEXELEMENTS™**

Number of elements: 8

Operating signal: any analog actual value, or two values in

differential mode

Operating signal mode: Signed or Absolute Value

Operating mode: Level, Delta Compensation direction: Over, Under

Pickup Level: -30.000 to 30.000 pu in steps of 0.001

Hysteresis: 0.1 to 50.0% in steps of 0.1

Delta dt: 20 ms to 60 days

Pickup and dropout delay: 0.000 to 65.535 in steps of 0.001

**FLEX STATES** 

Number: up to 256 logical variables grouped

under 16 Modbus addresses

Programmability: any logical variable, contact, or virtual

input

### **USER-PROGRAMMABLE LEDS**

Number: 48 plus Trip and Alarm

Programmability: from any logical variable, contact, or vir-

tual input

Reset mode: Self-reset or Latched

# **USER-DEFINABLE DISPLAYS**

Number of displays: 8

Lines of display:  $2 \times 20$  alphanumeric characters

Parameters up to 5, any Modbus register addresses

#### 2.2.3 MONITORING

**OSCILLOGRAPHY** 

Max. No. of Records: 64

Sampling Rate: 64 samples per power cycle

Triggers: Any element pickup, dropout or operate

Digital input change of state
Digital output change of state

FlexLogic™ equation

Data: AC input channels

Element state Digital input state Digital output state

Data Storage: In non-volatile memory

**EVENT RECORDER** 

Capacity: 1024 events
Time-tag: to 1 microsecond

Triggers: Any element pickup, dropout or operate

Digital input change of state
Digital output change of state

Self-test events

Data Storage: In non-volatile memory

**DATA LOGGER** 

Number of Channels: 1 to 16

Parameters: Any available analog Actual Value
Sampling Rate: 1 sec.; 1, 5, 10, 15, 20, 30, 60 min.
Storage Capacity: (NN is dependent on memory)

1-second rate: 01 channel for NN days

16 channels for NN days

60-minute rate: 01 channel for NN days

16 channels for NN days

**FAULT LOCATOR** 

Method: Single-ended

Maximum accuracy if: Fault resistance is zero or fault currents

from all line terminals are in phase

Relay Accuracy:  $\pm 1.5\%$  (V > 10 V, I > 0.1 pu)

Worst-case Accuracy:

VT<sub>%error</sub> + (user data)
CT<sub>%error</sub> + (user data)
Z<sub>Line%error</sub> + (user data)
METHOD<sub>%error</sub> + (Chapter 6)
RELAY ACCURACY<sub>%error</sub> + (1.5%)

2.2.4 METERING

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at

0.1 to  $2.0 \times CT$  rating:  $\pm 0.25\%$  of reading or  $\pm 0.1\%$  of rated

(whichever is greater)

 $> 2.0 \times CT$  rating:  $\pm 1.0\%$  of reading

**RMS VOLTAGE** 

Accuracy: ±0.5% of reading from 10 to 208 V

**REAL POWER WATT** 

Accuracy: ±1.0% of reading at

 $-0.8 < PF \leq -1.0$  and  $0.8 < PF \leq 1.0$ 

**REACTIVE POWER VAR** 

Accuracy:  $\pm 1.0\%$  of reading  $-0.2 \le PF \le 0.2$ 

APPARENT POWER VA

Accuracy: ±1.0% of reading

**FREQUENCY** 

Accuracy at

V = 0.8 to 1.2 pu:  $\pm 0.01$  Hz (when voltage signal is used

for frequency measurement)

I = 0.1 to 0.25 pu:  $\pm 0.05 \text{ Hz}$ 

I > 0.25 pu  $\pm 0.02$  Hz (when current signal is used for

frequency measurement)

**2.2.5 INPUTS** 

**AC CURRENT** 

CT Rated Primary: 1 to 50000 A

CT Rated Secondary: 1 A or 5 A by connection

Nominal Frequency: 20 to 65 Hz

Relay Burden: < 0.2 VA at rated secondary

Conversion Range:

Standard CT Module: 0.02 to 46 × CT rating RMS symmetrical

Sensitive Ground Module:

0.002 to 4.6  $\times\,\text{CT}$  rating RMS symmetrical

Current Withstand: 20 ms at 250 times rated

1 sec. at 100 times rated Cont. at 3 times rated

AC VOLTAGE

 VT Rated Secondary:
 50.0 to 240.0 V

 VT Ratio:
 0.1 to 24000.0

 Nominal Frequency:
 20 to 65 Hz

 Relay Burden:
 < 0.25 VA at 120 V</td>

Conversion Range: 1 to 275 V

Voltage Withstand: cont. at 260 V to neutral 1 min./hr at 420 V to neutral

**CONTACT INPUTS** 

Dry Contacts:  $1000 \Omega$  maximum Wet Contacts: 300 V DC maximum Selectable Thresholds: 16 V, 30 V, 80 V, 140 V

Recognition Time: < 1 ms

Debounce Timer: 0.0 to 16.0 ms in steps of 0.5

**DCMA INPUTS** 

Current Input (mA DC): 0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to 10,

0 to 20, 4 to 20 (programmable)

Type: Passive

**RTD INPUTS** 

Types (3-wire):  $100 \Omega$  Platinum,  $100 \& 120 \Omega$  Nickel, 10

 $\Omega$  Copper

Sensing Current: 5 mA

Range: -50 to +250°C

Accuracy: ±2°C Isolation: 36 V pk-pk

**IRIG-B INPUT** 

Amplitude Modulation: 1 to 10 V pk-pk

DC Shift: TTL Input Impedance:  $22 \text{ k}\Omega$ 

2.2.6 POWER SUPPLY

**LOW RANGE** 

Nominal DC Voltage: 24 to 48 V at 3 A Min./Max. DC Voltage: 20 / 60 V NOTE: Low range is DC only.

**HIGH RANGE** 

Nominal DC Voltage: 125 to 250 V at 0.7 A

Min./Max. DC Voltage: 88 / 300 V

Nominal AC Voltage: 100 to 240 V at 50/60 Hz, 0.7 A Min./Max. AC Voltage: 88 / 265 V at 48 to 62 Hz **ALL RANGES** 

Volt Withstand:  $2 \times \text{Highest Nominal Voltage for 10 ms}$ 

Voltage Loss Hold-Up: 50 ms duration at nominal Power Consumption: Typical = 35 VA; Max. = 75 VA

**INTERNAL FUSE** 

**RATINGS** 

Low Range Power Supply: 7.5 A / 600 V High Range Power Supply: 5 A / 600 V

INTERRUPTING CAPACITY

AC: 100 000 A RMS symmetrical

DC: 10 000 A

**2.2.7 OUTPUTS** 

#### **FORM-A RELAY**

Make and Carry for 0.2 sec.: 30 A as per ANSI C37.90

Carry Continuous: 6 A

Break at L/R of 40 ms: 0.25 A DC max.

Operate Time: < 4 ms
Contact Material: Silver alloy

**FORM-A VOLTAGE MONITOR** 

Applicable Voltage: approx. 15 to 250 V DC Trickle Current: approx. 1 to 2.5 mA

**FORM-A CURRENT MONITOR** 

Threshold Current: approx. 80 to 100 mA

FORM-C AND CRITICAL FAILURE RELAY

Make and Carry for 0.2 sec: 10 A Carry Continuous: 6 A

Break at L/R of 40 ms: 0.1 A DC max.

Operate Time: < 8 ms
Contact Material: Silver alloy

**FAST FORM-C RELAY** 

Make and Carry: 0.1 A max. (resistive load)

Minimum Load Impedance:

| INPUT    | IMPEDANCE    |              |  |  |  |  |  |
|----------|--------------|--------------|--|--|--|--|--|
| VOLTAGE  | 2 W RESISTOR | 1 W RESISTOR |  |  |  |  |  |
| 250 V DC | 20 ΚΩ        | 50 KΩ        |  |  |  |  |  |
| 120 V DC | 5 ΚΩ         | 2 ΚΩ         |  |  |  |  |  |
| 48 V DC  | 2 ΚΩ         | 2 ΚΩ         |  |  |  |  |  |
| 24 V DC  | 2 ΚΩ         | 2 ΚΩ         |  |  |  |  |  |

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.

Operate Time: < 0.6 ms
INTERNAL LIMITING RESISTOR:
Power: 2 watts
Resistance: 100 ohms

CONTROL POWER EXTERNAL OUTPUT (FOR DRY CONTACT INPUT)

Capacity: 100 mA DC at 48 V DC

Isolation: ±300 Vpk

#### 2.2.8 COMMUNICATIONS

**RS232** 

19.2 kbps, Modbus® RTU Front Port:

**RS485** 

Up to 115 kbps, Modbus® RTU, isolated 1 or 2 Rear Ports:

together at 36 Vpk

Typical Distance: 1200 m **ETHERNET PORT** 

10BaseF: 820 nm, multi-mode, supports half-

duplex/full-duplex fiber optic with ST

connector

Redundant 10BaseF: 820 nm, multi-mode, half-duplex/full-

duplex fiber optic with ST connector

Power Budget: 10 db Max Optical Ip Power: -7.6 dBm Typical Distance: 1.65 km

2.2.9 ENVIRONMENTAL

**Operating Temperatures:** 

Cold: IEC 60028-2-1, 16 h at -40°C Dry Heat: IEC 60028-2-2, 16 h at 85°C Humidity (noncondensing): IEC 60068-2-30, 95%, Variant 1, 6

days

Altitude: Up to 2000 m

Installation Category: Ш

**2.2.10 TYPE TESTS** 

Electrical Fast Transient: ANSI/IEEE C37.90.1

IEC 61000-4-4 IEC 60255-22-4

Oscillatory Transient: ANSI/IEEE C37.90.1

IEC 61000-4-12

Insulation Resistance: IEC 60255-5 Dielectric Strength: IEC 60255-6

ANSI/IEEE C37.90

Electrostatic Discharge: EN 61000-4-2 Surge Immunity: EN 61000-4-5

RFI Susceptibility: ANSI/IEEE C37.90.2

IEC 61000-4-3 IEC 60255-22-3

Ontario Hydro C-5047-77

Conducted RFI: IEC 61000-4-6

Voltage Dips/Interruptions/Variations:

IEC 61000-4-11 IEC 60255-11

Power Frequency Magnetic Field Immunity:

IEC 61000-4-8

Vibration Test (sinusoidal): IEC 60255-21-1 Shock and Bump: IEC 60255-21-2

NOTE

LVD 73/23/EEC:

Type test report available upon request.

IEC 1010-1

EN 50081-2

EN 50082-2

2.2.11 PRODUCTION TESTS

### **THERMAL**

Products go through a 12 h burn-in process at 60°C

2.2.12 APPROVALS

**APPROVALS** 

UL approval pending

EMC 81/336/EEC: CSA approval pending

Manufactured under an ISO9000 Registered system.

2.2.13 MAINTENANCE

Cleaning: Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

3.1.1 PANEL CUTOUT

The relay is available as a 19-inch rack horizontal mount unit or as a reduced size (¾) vertical mount unit, with a removable faceplate. The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth. There is also a removable dust cover that fits over the faceplate, which must be removed when attempting to access the keypad or RS232 communications port.

The vertical and horizontal case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

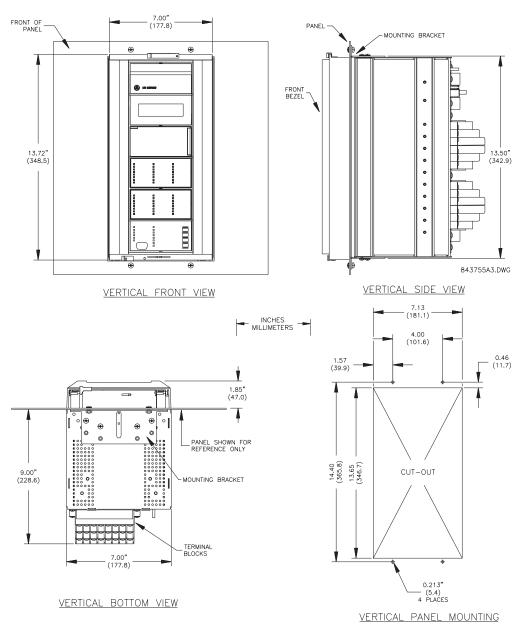



Figure 3-1: D60 VERTICAL MOUNTING AND DIMENSIONS

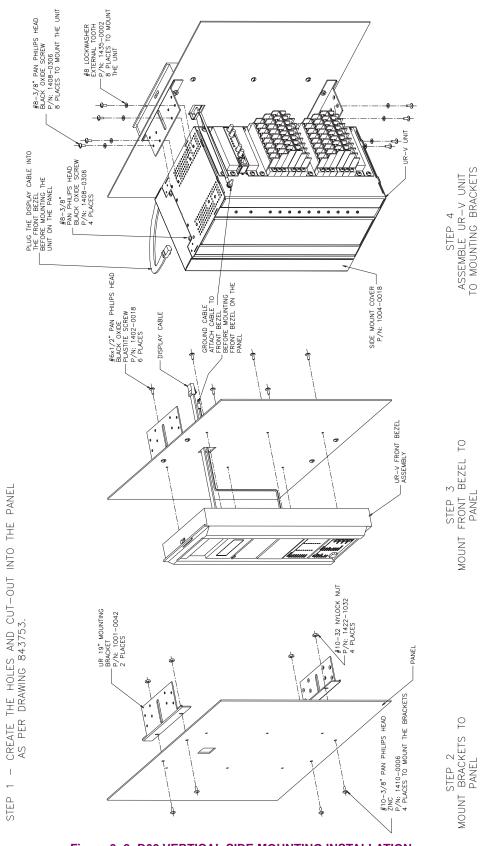



Figure 3-2: D60 VERTICAL SIDE MOUNTING INSTALLATION

3 HARDWARE 3.1 DESCRIPTION

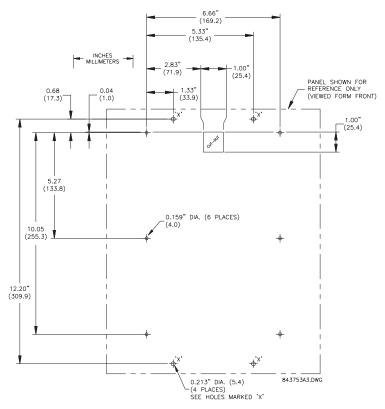



Figure 3-3: D60 VERTICAL SIDE MOUNTING REAR DIMENSIONS

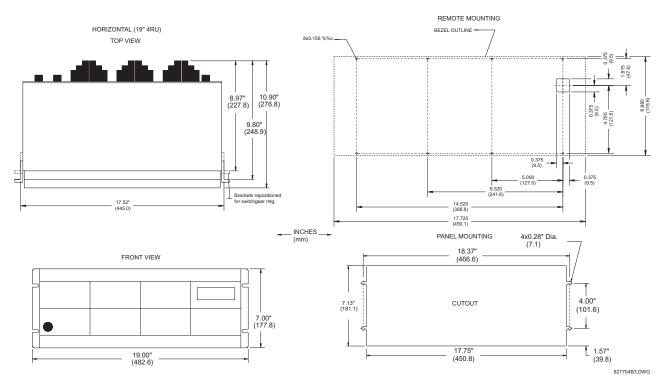



Figure 3-4: D60 HORIZONTAL MOUNTING AND DIMENSIONS

3.1.2 MODULE WITHDRAWAL / INSERTION



Module withdrawal and insertion may only be performed when control power has been removed from the unit. Inserting an incorrect module type into a slot may result in personal injury, damage to the unit or connected equipment, or undesired operation!



Proper electrostatic discharge protection (i.e. a static strap) must be used when coming in contact with modules while the relay is energized!

The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots.

The faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown in the figure below. This allows for easy accessibility of the modules for withdrawal.



Figure 3-5: UR MODULE WITHDRAWAL/INSERTION

**WITHDRAWAL:** The ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously to release the module for removal. Before performing this action, **control power must be removed from the relay**. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot.

**INSERTION:** Ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.



Type 9C and 9D CPU modules are equipped with 10BaseT and 10BaseF Ethernet connectors for communications. These connectors must be individually disconnected from the module before the it can be removed from the chassis.

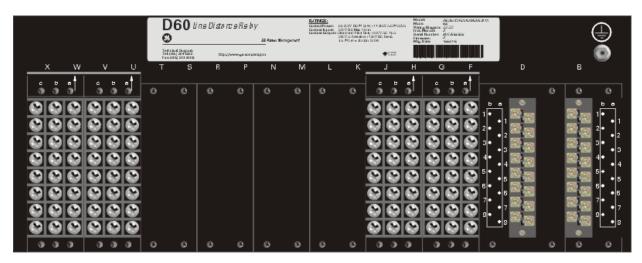



Figure 3-6: REAR TERMINAL VIEW



Do not touch any rear terminals while the relay is energized!

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.




Figure 3-7: EXAMPLE OF MODULES IN F & H SLOTS

## 3.2.1 TYPICAL WIRING DIAGRAM

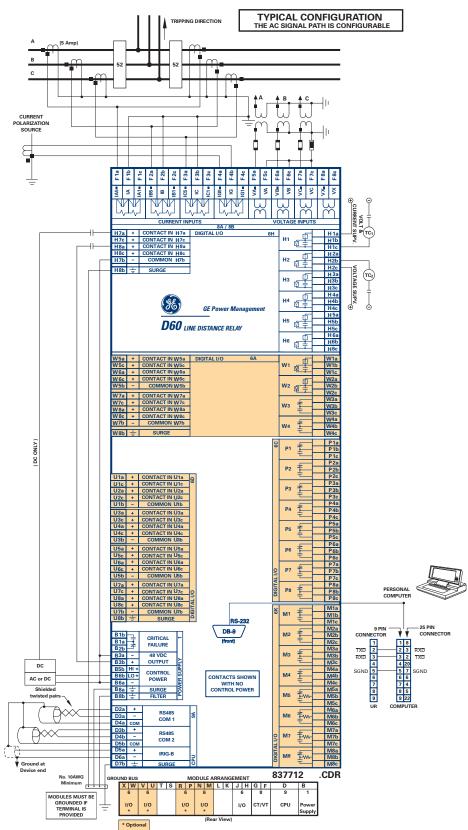



Figure 3-8: TYPICAL WIRING DIAGRAM

This diagram is based on the following order code: D60-A00-HCL-F8A-H6H-M6K-P6C-U6D-W6A.

The purpose of this diagram is to provide an example of how the relay is typically wired, not specifically how to wire your own relay. Please refer to the following pages for examples to help you wire your relay correctly based on your own relay configuration and order code.

### a) RATINGS

The dielectric strength of UR module hardware is shown in the following table:

Table 3-1: DIELECTRIC STRENGTH OF UR MODULE HARDWARE

| MODULE | MODULE FUNCTION     | TERMINALS              |         | DIELECTRIC STRENGTH                        |
|--------|---------------------|------------------------|---------|--------------------------------------------|
| TYPE   |                     | FROM                   | ТО      | (AC)                                       |
| 1      | Power Supply        | High (+); Low (+); (–) | Chassis | 2000 V AC for 1 min.<br>(See Precaution 1) |
| 1      | Power Supply        | 48 V DC (+) and (-)    | Chassis | 2000 V AC for 1 min.<br>(See Precaution 1) |
| 1      | Power Supply        | Relay Terminals        | Chassis | 2000 V AC for 1 min.<br>(See Precaution 1) |
| 2      | Reserved for Future | N/A                    | N/A     | N/A                                        |
| 3      | Reserved for Future | N/A                    | N/A     | N/A                                        |
| 4      | Reserved for Future | N/A                    | N/A     | N/A                                        |
| 5      | Analog I/O          | All except 8b          | Chassis | < 50 V DC                                  |
| 6      | Digital I/O         | All (See Precaution 2) | Chassis | 2000 V AC for 1 min.                       |
| 8      | CT/VT               | All                    | Chassis | 2000 V AC for 1 min.                       |
| 9      | CPU                 | All except 7b          | Chassis | < 50 VDC                                   |

#### b) TESTING

Filter networks and transient protection clamps are used in module hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI) and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute. For testing of dielectric strength where the test interval may exceed one minute, always observe the following precautions:

#### **Test Precautions:**

- 1. The connection from ground to the Filter Ground (Terminal 8b) and Surge Ground (Terminal 8a) must be removed before testing.
- 2. Some versions of the digital I/O module have a Surge Ground connection on Terminal 8b. On these module types, this connection must be removed before testing.

3.2.3 CONTROL POWER



CONTROL POWER SUPPLIED TO THE RELAY MUST BE CONNECTED TO THE MATCHING POWER SUPPLY RANGE OF THE RELAY. IF THE VOLTAGE IS APPLIED TO THE WRONG TERMINALS, DAMAGE MAY OCCUR!

The power supply module can be ordered with either of two possible voltage ranges. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the Technical Specifications section for details).

Table 3-2: CONTROL POWER VOLTAGE RANGE

| RANGE | NOMINAL VOLTAGE      |
|-------|----------------------|
| LO    | 24 to 48 V (DC only) |
| HI    | 125 to 250 V         |

The power supply module provides power to the relay and supplies power for dry contact input connections.

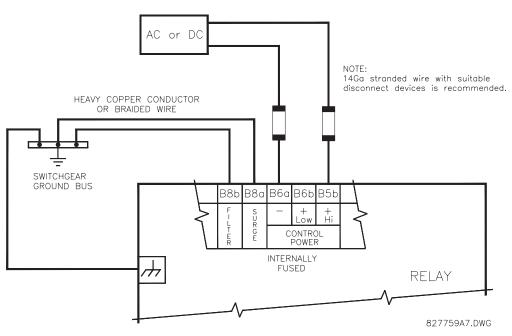



Figure 3-9: CONTROL POWER CONNECTION

The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see TYPI-CAL WIRING DIAGRAM). The critical failure relay is a Form-C that will be energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If any of the on-going self-test features detect a critical failure or control power is lost, the relay will de-energize.

## 3.2.4 CT/VT MODULES

A CT/VT module may have voltage inputs on channels 1 through 4 inclusive, or channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to phase A, and are labeled as such in the relay. Channels 2 and 6 are intended for connection to phase B, and are labeled as such in the relay. Channels 3 and 7 are intended for connection to phase C and are labeled as such in the relay. Channels 4 and 8 are intended for connection to a single phase source. If voltage, this channel is labelled the auxiliary voltage (VX). If current, this channel is intended for connection to a CT between a system neutral and ground, and is labelled the ground current (IG).

### a) AC CURRENT TRANSFORMER INPUTS



VERIFY THAT THE CONNECTION MADE TO THE RELAY NOMINAL CURRENT OF 1 A OR 5 A MATCHES THE SECONDARY RATING OF THE CONNECTED CTs. UNMATCHED CTs MAY RESULT IN EQUIPMENT DAMAGE OR INADEQUATE PROTECTION.

The CT/VT module may be ordered with a standard ground current input that is the same as the phase current inputs (type 8A) or with a sensitive ground input (type 8B) which is 10 times more sensitive (see the Technical Specifications section for more details). Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.

CT connections for both ABC and ACB phase rotations are identical as shown in the TYPICAL WIRING DIAGRAM.

## b) AC VOLTAGE TRANSFORMER INPUTS

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the Synchrocheck and Volts/Hertz features.

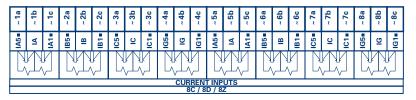




Figure 3-10: CT/VT MODULE WIRING



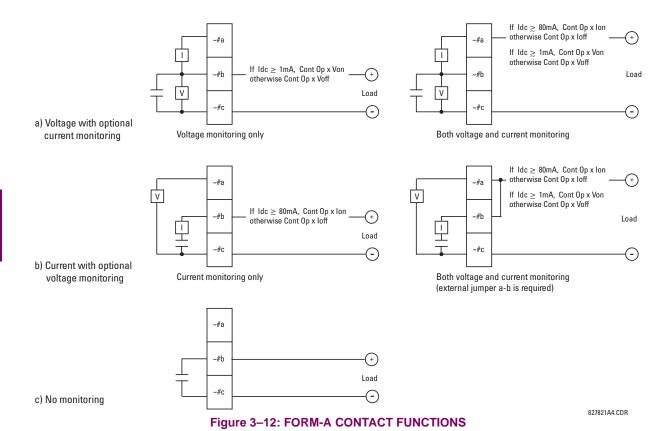
CTMDL8CD.cdr (P/O 827831A1.CDR)

Figure 3-11: CT MODULE WIRING



Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

#### 3.2.5 CONTACT INPUTS/OUTPUTS


Every digital input/output module has 24 terminal connections. They are arranged as 3 terminals per row, with 8 rows in total. A given row of three terminals may be used for the outputs of one relay. For example, for Form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a Form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications. When a digital I/O module is ordered with contact inputs, they are arranged in groups of four and use two rows of three terminals. Ideally, each input would be totally isolated from any other input. However, this would require that every input have two dedicated terminals and limit the available number of contacts based on the available number of terminals. So, although each input is individually optically isolated, each group of four inputs uses a single common as a reasonable compromise. This allows each group of four outputs to be supplied by wet contacts from different voltage sources (if required) or a mix of wet and dry contacts.

The tables and diagrams on the following pages illustrate the module types (6A, etc.) and contact arrangements that may be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

#### **UR RELAY FORM-A OUTPUT CONTACTS**

Some Form-A outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1" when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1" when the current is above about 1 to  $2.5 \, \text{mA}$ , and the current monitor is set to "On = 1" when the current exceeds about 80 to  $100 \, \text{mA}$ . The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow. The block diagrams of the circuits are below above for the Form-A outputs with:

- a) optional voltage monitor
- b) optional current monitor
- c) with no monitoring



The operation of voltage and current monitors is reflected with the corresponding FlexLogic<sup>™</sup> operands (Cont Op # Von, Cont Op # Voff, Cont Op # Ion, and Cont Op # Ioff) which can be used in protection, control and alarm logic. The typical application of the voltage monitor is Breaker Trip Circuit Integrity monitoring; a typical application of the Current monitor is seal-in of the control command. Refer DIGITAL ELEMENTS section for an example of how Form A contacts can be applied for Breaker Trip Circuit Integrity Monitoring.



Relay contacts must be considered unsafe to touch when the unit is energized!! If the relay contacts need to be used for low voltage accessible applications, it is the customer's responsibility to ensure proper insulation levels!



## **USE OF FORM-A OUTPUTS IN HIGH IMPEDANCE CIRCUITS**

For Form-A output contacts internally equipped with a voltage measuring circuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the Form-A contact as being closed after it has closed and subsequently opened, when measured as an impedance.

The solution to this problem is to use the voltage measuring trigger input of the relay test set, and connect the Form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a 500  $\Omega$ , 10 W resistor is appropriate. In this configuration, the voltage across either the Form-A contact or the resistor can be used to monitor the state of the output.



Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module; wherever a number sign "#" appears, substitute the contact number



When current monitoring is used to seal-in the Form-A contact outputs, the FlexLogic<sup>™</sup> Operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

3 HARDWARE 3.2 WIRING

Table 3-3: DIGITAL I/O MODULE ASSIGNMENTS

| ~6A I/O MODULE         |                    |  |
|------------------------|--------------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |
| ~1                     | Form-A             |  |
| ~2                     | Form-A             |  |
| ~3                     | Form-C             |  |
| ~4                     | Form-C             |  |
| ~5a, ~5c               | 2 Inputs           |  |
| ~6a, ~6c               | 2 Inputs           |  |
| ~7a, ~7c               | 2 Inputs           |  |
| ~8a, ~8c               | 2 Inputs           |  |

| ~6B I/O MODULE         |                    |  |
|------------------------|--------------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |
| ~1                     | Form-A             |  |
| ~2                     | Form-A             |  |
| ~3                     | Form-C             |  |
| ~4                     | Form-C             |  |
| ~5                     | Form-C             |  |
| ~6                     | Form-C             |  |
| ~7a, ~7c               | 2 Inputs           |  |
| ~8a, ~8c               | 2 Inputs           |  |

| ~6C I/O MODULE         |        |
|------------------------|--------|
| TERMINAL<br>ASSIGNMENT | OUTPUT |
| ~1                     | Form-C |
| ~2                     | Form-C |
| ~3                     | Form-C |
| ~4                     | Form-C |
| ~5                     | Form-C |
| ~6                     | Form-C |
| ~7                     | Form-C |
| ~8                     | Form-C |

| ~6D I/O MODULE         |          |  |
|------------------------|----------|--|
| TERMINAL<br>ASSIGNMENT | INPUT    |  |
| ~1a, ~1c               | 2 Inputs |  |
| ~2a, ~2c               | 2 Inputs |  |
| ~3a, ~3c               | 2 Inputs |  |
| ~4a, ~4c               | 2 Inputs |  |
| ~5a, ~5c               | 2 Inputs |  |
| ~6a, ~6c               | 2 Inputs |  |
| ~7a, ~7c               | 2 Inputs |  |
| ~8a, ~8c               | 2 Inputs |  |

| ~6E I/O MODULE         |                    |  |
|------------------------|--------------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |
| ~1                     | Form-C             |  |
| ~2                     | Form-C             |  |
| ~3                     | Form-C             |  |
| ~4                     | Form-C             |  |
| ~5a, ~5c               | 2 Inputs           |  |
| ~6a, ~6c               | 2 Inputs           |  |
| ~7a, ~7c               | 2 Inputs           |  |
| ~8a, ~8c               | 2 Inputs           |  |

| ~6F I/O MODULE         |             |  |
|------------------------|-------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT      |  |
| ~1                     | Fast Form-C |  |
| ~2                     | Fast Form-C |  |
| ~3                     | Fast Form-C |  |
| ~4                     | Fast Form-C |  |
| ~5                     | Fast Form-C |  |
| ~6                     | Fast Form-C |  |
| ~7                     | Fast Form-C |  |
| ~8                     | Fast Form-C |  |

| ~6G I/O MODULE         |                    |  |
|------------------------|--------------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |
| ~1                     | Form-A             |  |
| ~2                     | Form-A             |  |
| ~3                     | Form-A             |  |
| ~4                     | Form-A             |  |
| ~5a, ~5c               | 2 Inputs           |  |
| ~6a, ~6c               | 2 Inputs           |  |
| ~7a, ~7c               | 2 Inputs           |  |
| ~8a, ~8c               | 2 Inputs           |  |

| ~6H I/O MODULE         |                    |  |
|------------------------|--------------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |
| ~1                     | Form-A             |  |
| ~2                     | Form-A             |  |
| ~3                     | Form-A             |  |
| ~4                     | Form-A             |  |
| ~5                     | Form-A             |  |
| ~6                     | Form-A             |  |
| ~7a, ~7c               | 2 Inputs           |  |
| ~8a, ~8c               | 2 Inputs           |  |

| ~6K I/O MODULE         |             |  |
|------------------------|-------------|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT      |  |
| ~1                     | Form-C      |  |
| ~2                     | Form-C      |  |
| ~3                     | Form-C      |  |
| ~4                     | Form-C      |  |
| ~5                     | Fast Form-C |  |
| ~6                     | Fast Form-C |  |
| ~7                     | Fast Form-C |  |
| ~8                     | Fast Form-C |  |
|                        |             |  |

| TPUT OR |
|---------|
| NPUT    |
| orm-A   |
| orm-A   |
| orm-C   |
| orm-C   |
| Inputs  |
| Inputs  |
| Inputs  |
| Inputs  |
|         |

| ~6M I/O MODULE         |                    |  |  |  |  |  |
|------------------------|--------------------|--|--|--|--|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |  |  |  |  |
| ~1                     | Form-A             |  |  |  |  |  |
| ~2                     | Form-A             |  |  |  |  |  |
| ~3                     | Form-C             |  |  |  |  |  |
| ~4                     | Form-C             |  |  |  |  |  |
| ~5                     | Form-C             |  |  |  |  |  |
| ~6                     | Form-C             |  |  |  |  |  |
| ~7a, ~7c               | 2 Inputs           |  |  |  |  |  |
| ~8a, ~8c               | 2 Inputs           |  |  |  |  |  |

| ~6N I/O I                              | ~6N I/O MODULE                    |  |  |  |  |  |
|----------------------------------------|-----------------------------------|--|--|--|--|--|
| TERMINAL<br>ASSIGNMENT                 | OUTPUT OR<br>INPUT                |  |  |  |  |  |
| ~1                                     | Form-A                            |  |  |  |  |  |
| ~2                                     | Form-A                            |  |  |  |  |  |
| ~3                                     | Form-A                            |  |  |  |  |  |
| ~4                                     | Form-A                            |  |  |  |  |  |
| ~5a, ~5c                               | 2 Inputs                          |  |  |  |  |  |
| ~6a, ~6c                               | 2 Inputs                          |  |  |  |  |  |
| ~7a, ~7c                               | 2 Inputs                          |  |  |  |  |  |
| ~8a, ~8c                               | 2 Inputs                          |  |  |  |  |  |
| ~4<br>~5a, ~5c<br>~6a, ~6c<br>~7a, ~7c | Form-A 2 Inputs 2 Inputs 2 Inputs |  |  |  |  |  |

| ~6P I/O I              | MODULE             |
|------------------------|--------------------|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |
| ~1                     | Form-A             |
| ~2                     | Form-A             |
| ~3                     | Form-A             |
| ~4                     | Form-A             |
| ~5                     | Form-A             |
| ~6                     | Form-A             |
| ~7a, ~7c               | 2 Inputs           |
| ~8a, ~8c               | 2 Inputs           |

| ~6R I/O I              | MODULE             |
|------------------------|--------------------|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |
| ~1                     | Form-A             |
| ~2                     | Form-A             |
| ~3                     | Form-C             |
| ~4                     | Form-C             |
| ~5a, ~5c               | 2 Inputs           |
| ~6a, ~6c               | 2 Inputs           |
| ~7a, ~7c               | 2 Inputs           |
| ~8a, ~8c               | 2 Inputs           |

| ~6S I/O MODULE         |                    |  |  |  |  |
|------------------------|--------------------|--|--|--|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |  |  |  |
| ~1                     | Form-A             |  |  |  |  |
| ~2                     | Form-A             |  |  |  |  |
| ~3                     | Form-C             |  |  |  |  |
| ~4                     | Form-C             |  |  |  |  |
| ~5                     | Form-C             |  |  |  |  |
| ~6                     | Form-C             |  |  |  |  |
| ~7a, ~7c               | 2 Inputs           |  |  |  |  |
| ~8a, ~8c               | 2 Inputs           |  |  |  |  |

| ST I/O                 | MODULE             |  |  |  |  |
|------------------------|--------------------|--|--|--|--|
| ~61 1/0 1              | WODULE             |  |  |  |  |
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |  |  |  |
| ~1                     | Form-A             |  |  |  |  |
| ~2                     | Form-A             |  |  |  |  |
| ~3                     | Form-A             |  |  |  |  |
| ~4                     | Form-A             |  |  |  |  |
| ~5a, ~5c               | 2 Inputs           |  |  |  |  |
| ~6a, ~6c               | 2 Inputs           |  |  |  |  |
| ~7a, ~7c               | 2 Inputs           |  |  |  |  |
| ~8a, ~8c               | 2 Inputs           |  |  |  |  |

| ~6U I/O MODULE         |                    |  |  |  |  |
|------------------------|--------------------|--|--|--|--|
| TERMINAL<br>ASSIGNMENT | OUTPUT OR<br>INPUT |  |  |  |  |
| ~1                     | Form-A             |  |  |  |  |
| ~2                     | Form-A             |  |  |  |  |
| ~3                     | Form-A             |  |  |  |  |
| ~4                     | Form-A             |  |  |  |  |
| ~5                     | Form-A             |  |  |  |  |
| ~6                     | Form-A             |  |  |  |  |
| ~7a, ~7c               | 2 Inputs           |  |  |  |  |
| ~8a, ~8c               | 2 Inputs           |  |  |  |  |

3 HARDWARE 3.2 WIRING

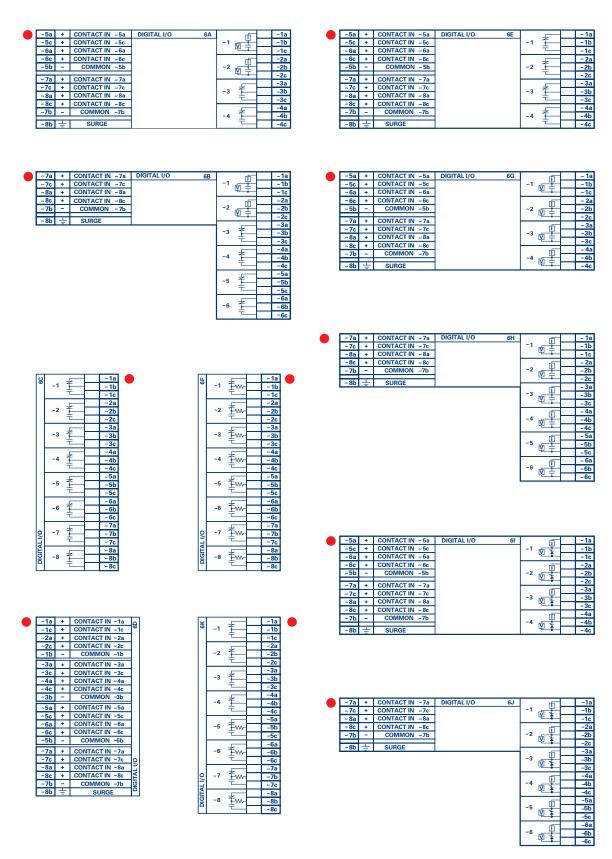



Figure 3-13: DIGITAL I/O MODULE WIRING (SHEET 1 OF 2)

| ~5a | +                                                           | CONTACT IN ~ 5a                                       | DIGITAL I/O 6L                                                                                                                                                                       |                                                                                                                                                                                                              | -V                                                                                                                                                                                                            |                                                                                                                                                                                       | ~ 1a                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ~5c | +                                                           | CONTACT IN ~ 5c                                       |                                                                                                                                                                                      | ~ 1                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                       | ~ 1b                                                                                                                                                                                                      |
| ~6a | +                                                           | CONTACT IN ~ 6a                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              | L <del>‡</del>                                                                                                                                                                                                |                                                                                                                                                                                       | ~ 1c                                                                                                                                                                                                      |
| ~6c | +                                                           | CONTACT IN ~ 6c                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              | _V-                                                                                                                                                                                                           |                                                                                                                                                                                       | ~ 2a                                                                                                                                                                                                      |
| ~5b | -                                                           | COMMON ~ 5b                                           |                                                                                                                                                                                      | ~ 2                                                                                                                                                                                                          | ш—                                                                                                                                                                                                            |                                                                                                                                                                                       | ~ 2b                                                                                                                                                                                                      |
| 7-  | _                                                           | CONTACT IN 7-                                         |                                                                                                                                                                                      |                                                                                                                                                                                                              | LŦ.                                                                                                                                                                                                           |                                                                                                                                                                                       | ~ 2c                                                                                                                                                                                                      |
|     | _                                                           |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                       | ~3a                                                                                                                                                                                                       |
|     | _                                                           |                                                       |                                                                                                                                                                                      | ~ 3                                                                                                                                                                                                          | 7                                                                                                                                                                                                             |                                                                                                                                                                                       | ~3b                                                                                                                                                                                                       |
|     | _                                                           |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              | =                                                                                                                                                                                                             |                                                                                                                                                                                       | ~3c                                                                                                                                                                                                       |
| _   | +                                                           |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                       | ~4a                                                                                                                                                                                                       |
| ~/b | -                                                           | COMMON ~76                                            |                                                                                                                                                                                      | ~ 4                                                                                                                                                                                                          | 7                                                                                                                                                                                                             |                                                                                                                                                                                       | ~4b                                                                                                                                                                                                       |
| ~8b | ÷                                                           | SURGE                                                 |                                                                                                                                                                                      |                                                                                                                                                                                                              | τ                                                                                                                                                                                                             |                                                                                                                                                                                       | ~ 4c                                                                                                                                                                                                      |
|     |                                                             |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                           |
|     |                                                             |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                           |
|     |                                                             |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                           |
|     |                                                             |                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                           |
|     | ~5c<br>~6a<br>~6c<br>~5b<br>~7a<br>~7c<br>~8a<br>~8c<br>~7b | ~5c + ~6a + ~6c + ~5b - ~7a + ~7c + ~8a + ~8c + ~7b - | -5c + CONTACT IN -5c -6a + CONTACT IN -6c -6c + CONTACT IN -6c -5b - COMMON -5b -7a + CONTACT IN -7a -7c + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b | -5c + CONTACT IN -5c<br>-6a + CONTACT IN -6a<br>-6c + CONTACT IN -6c<br>-5b - COMMON -5b<br>-7a + CONTACT IN -7a<br>-7c + CONTACT IN -7c<br>-8a + CONTACT IN -8a<br>-8c + CONTACT IN -8c<br>-7b - COMMON -7b | -5c + CONTACT IN -5c -6a -6a + CONTACT IN -6c -6c + CONTACT IN -6c -5b - COMMON -5b -7a + CONTACT IN -7c -7c + CONTACT IN -7c -8a + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b | -5c + CONTACT IN -5c -6a + CONTACT IN -6c -6c + CONTACT IN -6c -5b - COMMON -5b  -7a + CONTACT IN -7c -7c + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b | -5c + CONTACT IN -5c -6a + CONTACT IN -6a -6c + CONTACT IN -6c -5b - COMMON -5b -7a + CONTACT IN -7a -7c + CONTACT IN -7c -8a + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b |

|   | ~5a  | + | CONTACT IN ~ 5a | DIGITAL I/O | 6R |     |               |   | ~ 1a |
|---|------|---|-----------------|-------------|----|-----|---------------|---|------|
|   | ~5c  | + | CONTACT IN ~ 5c |             |    | ~ 1 |               |   | ~ 1b |
|   | ~6a  | + | CONTACT IN ~ 6a |             |    |     | 工             |   | ~ 1c |
|   | ~ 6c | + | CONTACT IN ~ 6c |             |    |     |               |   | ~ 2a |
|   | ~5b  | ı | COMMON ~ 5b     |             |    | ~ 2 | $\overline{}$ |   | ~ 2b |
|   |      |   |                 |             |    | l   |               |   | ~ 2c |
|   | ~7a  | + | CONTACT IN ~ 7a |             |    |     |               | - |      |
|   | 74   |   |                 |             |    | l   | _             |   | ~3a  |
|   | ~7c  | + | CONTACT IN ~ 7c |             |    | ١.  | <b>±</b>      |   |      |
|   | _    |   | CONTRACT IN C   |             |    | ~ 3 | +             |   | ~3b  |
|   | ~8a  | + | CONTACT IN ~ 8a |             |    | l   | =             | _ | 0.   |
| 1 | ~ 8c |   | CONTACT IN ~ 8c |             |    | l   | _             |   | ~ 3c |
|   | ~ 80 | + | CONTACT IN ~ 8c |             |    |     |               |   | ~ 4a |
|   | ~7b  |   | COMMON ~7b      |             |    | l   | -             |   | ~ 4a |
|   | 710  |   | COMMON 75       |             |    | ~ 4 | 7             |   | ~ 4b |
|   |      | _ |                 |             |    |     | ± .           | - |      |
|   | ~8b  | + | SURGE           |             |    |     |               |   | ~4c  |

| ~7a  | + | CONTACT IN ~7a | DIGITAL I/O 6N | 1  | _V_              | ~1a |
|------|---|----------------|----------------|----|------------------|-----|
| ~7c  | + | CONTACT IN ~7c |                | ~1 | L <sub>E</sub>   | ~1b |
| ~8a  | + | CONTACT IN ~8a |                |    | L‡_              | ~1c |
| ~8c  | + | CONTACT IN ~8c |                |    | _V_              | ~2a |
| ~7b  | - | COMMON ~7b     |                | ~2 | 聖                | ~2b |
| ~8b  | Ŧ | SURGE          |                |    | L <del>‡</del> _ | ~2c |
| ~ 60 | Ξ | SUNGE          |                | _  |                  | ~3a |
|      |   |                |                | ~3 | <u> </u>         | ~3b |
|      |   |                |                |    | т                | ~3c |
|      |   |                |                |    | 7                | ~4a |
|      |   |                |                | ~4 | Ξ-               | ~4b |
|      |   |                |                |    | _                | ~4c |
|      |   |                |                |    | 4                | ~5a |
|      |   |                |                | ~5 | <u> </u>         | ~5b |
|      |   |                |                |    | т                | ~5c |
|      |   |                |                |    |                  | ~6a |
|      |   |                |                | ~6 | <del>1</del>     | ~6b |
|      |   |                |                |    | т                | ~6c |

| ~7a  | + | CONTACT IN | ~7a | DIGITAL I/O | 6S |    |              | ~1a |
|------|---|------------|-----|-------------|----|----|--------------|-----|
| ~7c  | + | CONTACT IN | ~7c |             |    | ~1 | _            | ~1b |
| ~8a  | + | CONTACT IN | ~8a |             |    |    | т            | ~1c |
| ~8c  | + | CONTACT IN | ~8c |             |    |    |              | ~2a |
| ~7b  | - | COMMON     | ~7b |             |    | ~2 | _            | ~2b |
| ~8b  | Ŧ | SURGE      |     |             |    |    | τ            | ~2c |
| ~ 60 | - | JONGE      |     |             |    |    | h            | ~3a |
|      |   |            |     |             |    | ~3 | <u> </u>     | ~3b |
|      |   |            |     |             |    |    | Τ            | ~3c |
|      |   |            |     |             |    |    | ħ            | ~4a |
|      |   |            |     |             |    | ~4 | <u> </u>     | ~4b |
|      |   |            |     |             |    |    | т            | ~4c |
|      |   |            |     |             |    |    | _            | ~5a |
|      |   |            |     |             |    | ~5 | <del>-</del> | ~5b |
|      |   |            |     |             |    |    | Τ            | ~5c |
|      |   |            |     |             |    |    | 1            | ~6a |
|      |   |            |     |             |    | ~6 | <del>-</del> | ~6b |
|      |   |            |     |             |    |    |              | ~6c |

|   | ~5a  | +        | CONTACT IN ~ 5a | DIGITAL I/O 6N |     | _V                  |               | ~ 1a |
|---|------|----------|-----------------|----------------|-----|---------------------|---------------|------|
|   | ~5c  | +        | CONTACT IN ~ 5c |                | ~ 1 |                     |               | ~ 1b |
|   | ~6a  | +        | CONTACT IN ~ 6a |                |     | ᄪ                   |               | ~ 1c |
|   | ~6c  | +        | CONTACT IN ~ 6c |                |     | _V—                 |               | ~ 2a |
|   | ~5b  | -        | COMMON ~ 5b     |                | ~ 2 |                     |               | ~ 2b |
|   |      | _        |                 |                |     | L 幸                 |               | ~ 2c |
|   | ~7a  | +        | CONTACT IN ~ 7a |                | _   | 500                 | _             |      |
| 1 | ~7c  | -        | CONTACT IN ~ 7c |                |     |                     |               | ~ 3a |
|   |      | ı.       |                 |                | ~ 3 |                     | - 1           | ~ 3b |
|   | ~8a  | +        | CONTACT IN ~ 8a |                |     | 128 1               | $\overline{}$ | ~ 3c |
|   | ~ 8c | -        | CONTACT IN ~ 8c |                |     |                     | _             | ~ 3C |
|   |      | <u> </u> |                 |                |     | <b>⊢</b> V <b>⊢</b> | - 1           | ~ 4a |
|   | ~7b  | -        | COMMON ~7b      |                | Ι.  | 1 = 1               | _             | -    |
|   |      |          |                 |                | ~ 4 | ΙΨ-                 |               | ~ 4b |
|   | ~8b  | +        | SURGE           |                | l   | 坤                   |               | ~ 4c |

| -5a + CONTACT IN -5a DIGITAL I/O 6T  -5c + CONTACT IN -5c -6a + CONTACT IN -6a -6c + CONTACT IN -6c -5b - COMMON -5b  -7a + CONTACT IN -7a -7c + CONTACT IN -7a -8a + CONTACT IN -8a -8c + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b  -8b = SURGE |   |      |          |                 |             |    |       |               |   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|----------|-----------------|-------------|----|-------|---------------|---|------|
| -6a + CONTACT IN - 6a -6c + CONTACT IN - 6c -5b - COMMON - 5b  -7a + CONTACT IN - 7a -7c + CONTACT IN - 7a -8a + CONTACT IN - 8a -8c + CONTACT IN - 8c -7b - COMMON - 7b  -44 -44 -44                                                                        |   | ~5a  | +        | CONTACT IN ~ 5a | DIGITAL I/O | 6T |       |               |   | ~ 1a |
| -6c + CONTACT IN -6c -5b - COMMON ~5b  -7a + CONTACT IN ~7a -7c + CONTACT IN ~7c -8a + CONTACT IN ~8a -8c + CONTACT IN ~8c -7b - COMMON ~7b  -2a -2b -2b -2b -2a -3a -3a -3a -3a -3b -3c -3a -3c -3a -3c -4a -4a -44                                         |   | ~5c  | +        | CONTACT IN ~ 5c |             |    | ~ 1   | $\vdash$      |   | ~ 1b |
| -5b - COMMON - 5b  -7a + CONTACT IN - 7a -7c + CONTACT IN - 7c -8a + CONTACT IN - 8a -8c + CONTACT IN - 8c -7b - COMMON - 7b  -2 -2c -2a -3a -3a -3a -3c -3c -4a -4 -44                                                                                      |   | ~6a  | +        | CONTACT IN ~ 6a |             |    |       | $\vdash$      |   | ~ 1c |
| -7a + CONTACT IN -7a -7c + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b -2c -3a -3a -3b -3b -3c -4a -44 -4b                                                                                                                     |   | ~ 6c | +        | CONTACT IN ~ 6c |             |    |       |               |   | ~ 2a |
| -7a + CONTACT IN -7a -7c + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b -4a -44 -4b                                                                                                                                             |   | ~5b  | -        | COMMON ~ 5b     |             |    | ~ 2 . |               |   | ~ 2b |
| -7a + CONTACT IN -7a -7c + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b -4a -44 -4b                                                                                                                                             |   |      |          |                 |             |    |       | $\overline{}$ |   | ~ 20 |
| -7c + CONTACT IN -7c -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b -4a -44 -4b                                                                                                                                                                  |   | ~7a  | +        | CONTACT IN ~ 7a |             |    | _     |               | _ |      |
| -8a + CONTACT IN -8a -8c + CONTACT IN -8c -7b - COMMON -7b -4a -4 -4b                                                                                                                                                                                        | 1 | 7.   |          |                 |             |    |       |               |   | ~ 3a |
| ~8a + CONTACT IN ~8a<br>~8c + CONTACT IN ~8c<br>~7b - COMMON ~7b                                                                                                                                                                                             |   | ~/C  | +        | CONTACT IN ~ /c |             |    |       |               |   | 2h   |
| -8c + CONTACT IN -8c<br>-7b - COMMON -7b                                                                                                                                                                                                                     |   | ~ Ra | +        | CONTACT IN ~ 8a |             |    | ~°    | _             |   |      |
| ~7b - COMMON ~7b ~4a ~4b                                                                                                                                                                                                                                     |   | _    | ÷        |                 |             |    |       |               |   | ~ 3c |
| ~7b - COMMON ~7b                                                                                                                                                                                                                                             |   | ~ 8c | +        | CONTACT IN ~ 8c |             |    |       |               |   | 4.0  |
| ~ 4~4b                                                                                                                                                                                                                                                       | 1 | 7h   |          | COMMON ~7h      |             |    |       |               |   | ~ 4a |
| ~8b ± SURGE                                                                                                                                                                                                                                                  |   | ~/15 | <u> </u> | COMMINION "75   |             |    | ~ 4   | $\Box$        |   | ~4b  |
| on                                                                                                                                                                                                                                                           |   | - 8h | $\pm$    | SURGE           |             |    |       | $\overline{}$ |   | Ac   |
|                                                                                                                                                                                                                                                              |   | ~ ວມ | =        | JONGE           |             |    |       |               |   | ~ 40 |

| ~7a  | + | CONTACT IN ~7a | DIGITAL I/O 6 | Р      |    | _V             | ~1a |
|------|---|----------------|---------------|--------|----|----------------|-----|
| ~7c  | + | CONTACT IN ~7c |               | $\neg$ | ~1 | 聖              | ~1b |
| ~8a  | + | CONTACT IN ~8a |               |        |    | L#_            | ~1c |
| ~8c  | + | CONTACT IN ~8c | 7             | Г      |    | _V_            | ~2a |
| ~7b  | - | COMMON ~7b     | 7             |        | ~2 | Ψ-             | ~2b |
| ~8b  | ㅗ | SURGE          | 7             |        |    | LŦ_            | ~2c |
| ~ 60 | Ξ | SURGE          |               |        |    | _V             | ~3a |
|      |   |                |               | - 1    | ~3 | Ψ-             | ~3b |
|      |   |                |               |        |    | L‡_            | ~3c |
|      |   |                |               | П      |    | _V             | ~4a |
|      |   |                |               | - 1    | ~4 | l m—           | ~4b |
|      |   |                |               |        |    | L\P            | ~4c |
|      |   |                |               | - [    |    | _V             | ~5a |
|      |   |                |               | - 1    | ~5 |                | ~5b |
|      |   |                |               |        |    | L              | ~5c |
|      |   |                |               | - [    |    | _V             | ~6a |
|      |   |                |               |        | ~6 | Ψ-             | ~6b |
|      |   |                |               | L      |    | L <del>‡</del> | ~6c |

| ~7a  | + | CONTACT IN | ~7a | DIGITAL I/O | 6U |    |    | ~1a |
|------|---|------------|-----|-------------|----|----|----|-----|
| ~7c  | + | CONTACT IN | ~7c |             |    | ~1 |    | ~1b |
| ~8a  | + | CONTACT IN | ~8a |             |    |    | τ  | ~1c |
| ~8c  | + | CONTACT IN | ~8c |             |    |    |    | ~2a |
| ~7b  | - | COMMON     | ~7b |             |    | ~2 |    | ~2b |
| O.L. |   | OUDOF      |     |             |    |    | τ_ | ~2c |
| ~8b  | ÷ | SURGE      |     |             |    |    |    | ~3a |
|      |   |            |     |             |    | ~3 |    | ~3b |
|      |   |            |     |             |    |    | τ_ | ~3c |
|      |   |            |     |             |    |    |    | ~4a |
|      |   |            |     |             |    | ~4 |    | ~4b |
|      |   |            |     |             |    |    | τ  | ~4c |
|      |   |            |     |             |    |    |    | ~5a |
|      |   |            |     |             |    | ~5 |    | ~5b |
|      |   |            |     |             |    |    | =  | ~5c |
|      |   |            |     |             |    |    |    | ~6a |
|      |   |            |     |             |    | ~6 |    | ~6b |
|      |   |            |     |             |    |    | ŧ_ | ~6c |
|      |   |            |     |             |    |    |    |     |

827719AR.CDI Sheet 2 of 2

Figure 3–14: DIGITAL I/O MODULE WIRING (SHEET 2 OF 2)



CORRECT POLARITY MUST BE OBSERVED FOR ALL CONTACT INPUT CONNECTIONS OR EQUIPMENT DAMAGE MAY RESULT.

3 HARDWARE 3.2 WIRING

A dry contact has one side connected to terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA will flow through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. In addition, the negative side of the external source must be connected to the relay common (negative) terminal of each contact input group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs will detect a closed contact input is programmable as 16 V DC for 24 V sources, 30 V DC for 48 V sources, 80 V DC for 110 to 125 V sources, and 140 V DC for 250 V sources.

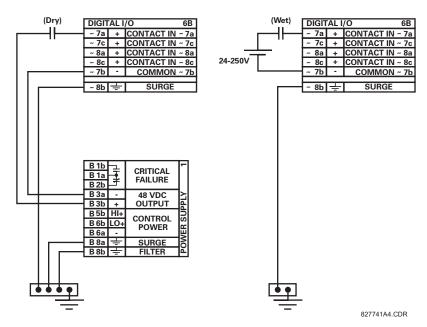



Figure 3-15: DRY AND WET CONTACT INPUT CONNECTIONS

NOTE

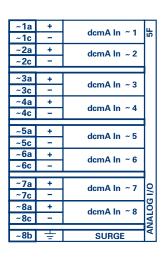
Wherever a tilde " $\sim$ " symbol appears, substitute with the Slot Position of the module.

Contact outputs may be ordered as Form-A or Form-C. The Form A contacts may be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the Form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the Form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

#### 3.2.6 TRANSDUCER INPUTS/OUTPUTS

Transducer input/output modules can receive input signals from external dcmA output transducers (dcmA In) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.

Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row may be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/output channel, the name of the channel is assigned using the module slot position and row number.


Each module also requires that a connection from an external ground bus be made to Terminal 8b. The figure below illustrates the transducer module types (5C, 5E, and 5F) and channel arrangements that may be ordered for the relay.



Wherever a tilde "~" symbol appears, substitute with the Slot Position of the module.

| ~1a | Hot      | RTD ~ 1         | ည္သ          |  |  |  |  |
|-----|----------|-----------------|--------------|--|--|--|--|
| ~1c | Comp     | וייעוא          | <sub>1</sub> |  |  |  |  |
| ~1b | Return   | for RTD ~1 & ~2 |              |  |  |  |  |
| ~2a | Hot      | RTD ~2          | l            |  |  |  |  |
| ~2c | Comp     | KID~2           |              |  |  |  |  |
|     |          |                 |              |  |  |  |  |
| ~3a | Hot      | RTD ~3          | I            |  |  |  |  |
| ~3c | Comp     | NID~3           |              |  |  |  |  |
| ~3b | Return   | for RTD ~3 & ~4 | 1            |  |  |  |  |
| ~4a | Hot      | DTD 4           | 1            |  |  |  |  |
| ~4c | Comp     | RTD ~4          |              |  |  |  |  |
|     |          |                 |              |  |  |  |  |
| E - | Hot      |                 | 1            |  |  |  |  |
| ~5a |          | RTD ~5          |              |  |  |  |  |
| ~5c | Comp     |                 |              |  |  |  |  |
| ~5b | Return   | for RTD ~5 & ~6 |              |  |  |  |  |
| ~6a | Hot      | RTD ~ 6         |              |  |  |  |  |
| ~6c | Comp     | NID~0           |              |  |  |  |  |
|     |          |                 |              |  |  |  |  |
| ~7a | Hot      | RTD ~ 7         | l            |  |  |  |  |
| ~7c | Comp     | ר ~ לוח         |              |  |  |  |  |
| ~7b | Return   | for RTD ~7 & ~8 | ≚            |  |  |  |  |
| ~8a | Hot      | RTD ~8          | g            |  |  |  |  |
| ~8c | Comp     | רוח~ס           | ANALOG I/O   |  |  |  |  |
|     |          |                 | ıžI          |  |  |  |  |
| ~8b | <u>+</u> | SURGE           | ď            |  |  |  |  |

| ~1a | +      | dcmA In ~1      | 닖          |
|-----|--------|-----------------|------------|
| ~1c | _      | acmA in ~1      | 2          |
| ~2a | +      | dcmA In ~2      | 1          |
| ~2c | _      | uomir m         |            |
|     |        |                 | 1          |
| ~3a | +      | dcmA In ~3      | Ι          |
| ~3c | -      | acmA in ~3      | L          |
| ~4a | +      |                 | 1          |
| ~4c | -      | dcmA In ~4      | L          |
|     |        |                 | 1          |
| ~5a | Hot    | RTD ~5          | 1          |
| ~5c | Comp   | כ~ עוא          | L          |
| ~5b | Return | for RTD ~5 & ~6 | ]          |
| ~6a | Hot    | DTD C           | 1          |
| ~6c | Comp   | RTD ~6          |            |
|     |        |                 | 1          |
| ~7a | Hot    | RTD ~7          | 1          |
| ~7c | Comp   | KID ~/          | L          |
| ~7b | Return | for RTD ~7 & ~8 | ]≌         |
| ~8a | Hot    | RTD ~8          | ļg         |
| ~8c | Comp   | NID ~8          | ANALOG I/O |
|     |        | · ·             | ΙŽ         |
| ~8b | ÷      | SURGE           | ₹          |



ANALOGIO.CDR FROM 827831A6.CDR

Figure 3-16: TRANSDUCER I/O MODULE WIRING

3 HARDWARE 3.2 WIRING

## 3.2.7 RS232 FACEPLATE PROGRAM PORT

A 9 pin RS232C serial port is located on the relay's faceplate for programming with a portable (personal) computer. All that is required to use this interface is a personal computer running the URPC software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9 pin and 25 pin connectors.

Note that the baud rate for this port is fixed at 19200 bps.

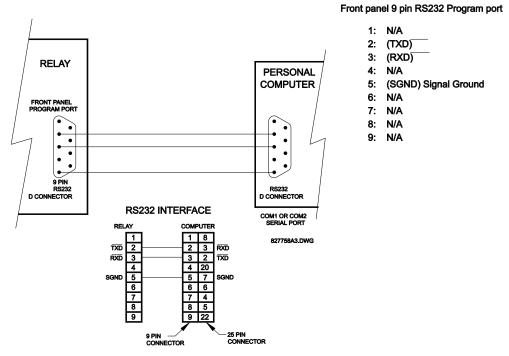



Figure 3-17: RS232 FACEPLATE PORT CONNECTION

## 3.2.8 CPU COMMUNICATION PORTS

In addition to the RS232 port on the faceplate, the relay provides the user with two additional communication port(s) depending on the CPU module installed.

Table 3-4: CPU COMMUNICATION PORT OPTIONS

| CPU TYPE | COM 1              | COM 2 |
|----------|--------------------|-------|
| 9A       | RS485              | RS485 |
| 9C       | 10BASE-F           | RS485 |
| 9D       | Redundant 10BASE-F | RS485 |

| D2a | +   | RS485  |   |
|-----|-----|--------|---|
| D3a | -   | COM 1  | 8 |
| D4a | сом | COWIT  |   |
| D3b | +   | RS485  |   |
| D4b | -   | COM 2  |   |
| D5b | сом | CONIZ  |   |
| D5a | +   | IRIG-B |   |
| D6a | -   | INIG-D | 忌 |
| D7b | +   | SURGE  | ٥ |

| Tx 10BaseF |     |     | NORMAL         | сом | 9C |
|------------|-----|-----|----------------|-----|----|
| ☐ 10BaseT  |     |     | TEST ONLY      | 1   |    |
|            | D3b | +   | RS485<br>COM 2 |     |    |
|            | D4b | -   |                |     |    |
|            | D5b | сом | CON 2          |     |    |
|            | D5a | +   | IRIG-B         |     |    |
|            | D6a | _   | IIIIG-B        |     | Ы  |
| D7b 🛨      |     | +   | SURGE          |     | S  |

| Tx) <sub>Rx1</sub> 1( | BaseF | NORMAL        |       | 9  |  |
|-----------------------|-------|---------------|-------|----|--|
|                       | BaseF | ALTERNATE COM |       | ြိ |  |
| √ 10                  | BaseT | TEST ONLY     |       | Ш  |  |
| D3b                   | +     | B04           |       |    |  |
| D4b                   | -     | RS4           |       | Ш  |  |
| D5b                   | сом   | CON           | COM 2 |    |  |
| D5a                   | +     | IRIG          | 1     |    |  |
| D6a                   | -     | INIG          | 딠     |    |  |
| D7b                   | +     | SURGE GF      | ಠ     |    |  |

COMMOD.CDR P/O 827719C2.CDR

Figure 3-18: CPU MODULE COMMUNICATIONS WIRING

#### a) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of these port(s), continuous monitoring and control from a remote computer, SCADA system or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 "+" terminals connected together, and all RS485 "-" terminals connected together. The COM terminal should be connected to the common wire inside the shield, when provided. To avoid loop currents, the shield should be grounded at one point only. Each relay should also be daisy chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to increase the number of relays on a single channel to more than 32. Star or stub connections should be avoided entirely.

Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Both ends of the RS485 circuit should also be terminated with an impedance as shown below.

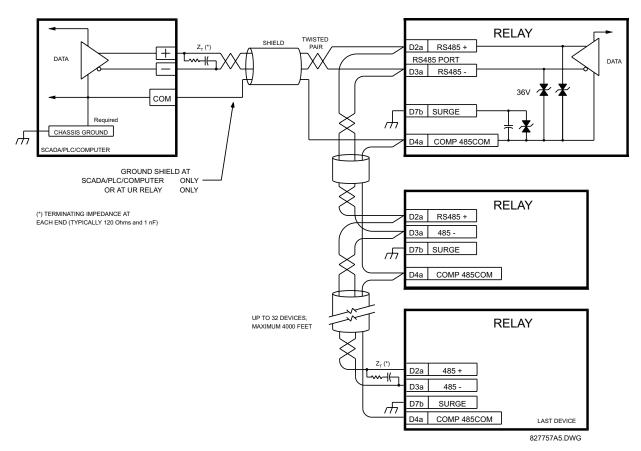



Figure 3-19: RS485 SERIAL CONNECTION

3 HARDWARE 3.2 WIRING

#### b) 10BASE-F FIBER OPTIC PORT



ENSURE THE DUST COVERS ARE INSTALLED WHEN THE FIBER IS NOT IN USE. DIRTY OR SCRATCHED CONNECTORS CAN LEAD TO HIGH LOSSES ON A FIBER LINK.



### OBSERVING ANY FIBER TRANSMITTER OUTPUT MAY CAUSE INJURY TO THE EYE.

The fiber optic communication ports allow for fast and efficient communications between relays at 10 Mbps. Optical fiber may be connected to the relay supporting a wavelength of 820 nanometers in multimode. Optical fiber is only available for CPU types 9C and 9D. The 9D CPU has a 10BaseF transmitter and receiver for optical fiber communications and a second pair of identical optical fiber transmitter and receiver for redundancy.

The optical fiber sizes supported include  $50/125 \, \mu m$ ,  $62.5/125 \, \mu m$  and  $100/140 \, \mu m$ . The fiber optic port is designed such that the response times will not vary for any core that is  $100 \, \mu m$  or less in diameter. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair (the ST type connector contributes for a connector loss of  $0.2 \, dB$ ). When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same. In order to engage or disengage the ST type connector, only a quarter turn of the coupling is required.

3.2.9 IRIG-B

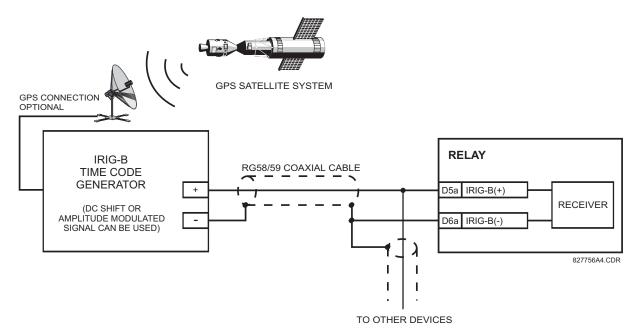



Figure 3-20: IRIG-B CONNECTION

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes which can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment may use a GPS satellite system to obtain the time reference so that devices at different geographic locations can also be synchronized.

#### 4.1.1 GRAPHICAL USER INTERFACE

The URPC software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see FACEPLATE INTERFACE section in this chapter).

URPC provides a single facility to configure, monitor, maintain, and trouble-shoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (i.e. off-line) or connected (i.e. on-line) to a UR device. In off-line mode, settings files can be created for eventual downloading to the device. In on-line mode, you can communicate with the device in real-time.

The URPC software, provided with every D60 relay, can be run from any computer supporting Microsoft Windows<sup>®</sup> 95, 98, or NT. This chapter provides a summary of the basic URPC software interface features. The URPC Help file provides details for getting started and using the URPC software interface.

**4.1.2 CREATING A SITE LIST** 

To start using the URPC program, a Site List must first be created. See the instructions in the URPC Help program under the topic "Creating a Site List".

4.1.3 URPC® SOFTWARE OVERVIEW

### a) ENGAGING A COMMUNICATING DEVICE

The URPC software may be used in on-line mode (relay connected) to directly communicate with a UR relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites may contain any number of relays selected from the UR product series.

## b) USING SETTINGS FILES

The URPC software interface supports three ways of handling changes to relay settings:

- In off-line mode (relay disconnected) to create or edit relay settings files for later download to communicating relays.
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then
  save the settings to the relay.
- You can create/edit settings files and then write them to the relay while the interface is connected to the relay.

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- Device Definition
- Product Setup
- System Setup
- FlexLogic<sup>™</sup>
- Grouped Elements
- Control Elements
- Inputs/Outputs
- Testina

Factory default values are supplied and can be restored after any changes.

## c) CREATING / EDITING FLEXLOGIC™ EQUATIONS

You can create or edit a FlexLogic<sup>™</sup> equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

### d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

#### e) VIEWING TRIGGERED EVENTS

While the interface is in either on-line or off-line mode, you can view and analyze data generated by triggered specified parameters, via:

### Event Recorder facility

The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.

#### Oscillography facility

The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

# f) CREATING INTERACTIVE SINGLE LINE DIAGRAMS

The URPC® software provides an icon-based interface facility for designing and monitoring electrical schematic diagrams of sites employing UR relays.

## g) FILE SUPPORT

#### Execution

Any URPC file which is double clicked or opened will launch the application, or provide focus to the already opened application. If the file was a settings file (\*.urs) which had been removed from the Settings List tree menu, it will be added back to the Settings List tree menu.

## Drag and Drop

The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.

New files which are dropped into the Settings List window are added to the tree which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items which are dropped in the selected device menu in the Site List window will automatically be sent to the on-line communicating device.

#### h) UR FIRMWARE UPGRADES

The firmware of a UR device can be upgraded, locally or remotely, via the URPC<sup>®</sup> software. The corresponding instructions are provided by the URPC<sup>®</sup> Help program under the topic "Upgrading Firmware".



Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (i.e. default values, min/max values, data type, and item size) may change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The "EEPROM DATA ERROR" message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

# 4.1.4 URPC® SOFTWARE MAIN WINDOW

The URPC software main window supports the following primary display components:

- a. Title bar which shows the pathname of the active data view
- b. Main window menu bar
- c. Main window tool bar
- d. Site List control bar window
- e. Settings List control bar window
- f. Device data view window(s), with common tool bar
- g. Settings File data view window(s), with common tool bar
- h. Workspace area with data view tabs
- i. Status bar

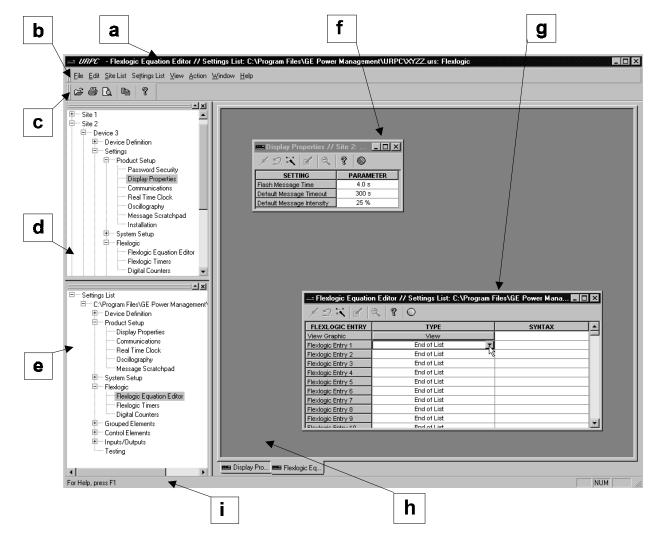



Figure 4-1: URPC SOFTWARE MAIN WINDOW

The keypad/display/LED interface is one of two alternate human interfaces supported. The other alternate human interface is implemented via the URPC software. The UR faceplate interface is available in two configurations: horizontal or vertical. The faceplate interface consists of several functional panels.

The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate which must be removed in order to access the keypad panel. The following two figures show the horizontal and vertical arrangement of faceplate panels.

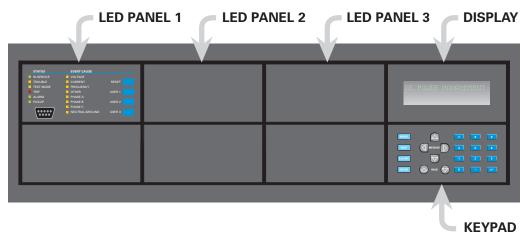



Figure 4-2: UR HORIZONTAL FACEPLATE PANELS

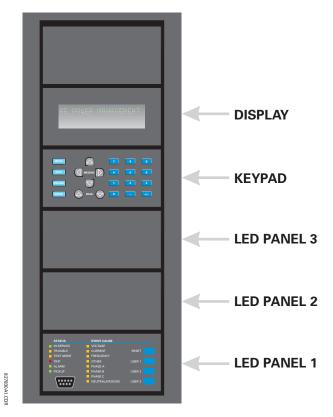



Figure 4-3: UR VERTICAL FACEPLATE PANELS

**4.2.2 LED INDICATORS** 

## a) LED PANEL 1

This panel provides several LED indicators, several keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS  $\Leftrightarrow \emptyset$  INPUT/OUTPUTS  $\Leftrightarrow \emptyset$  RESETTING menu). The USER keys are used by the Breaker Control feature. The RS232 port is intended for connection to a portable PC.

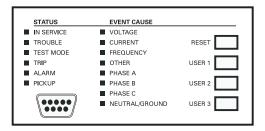
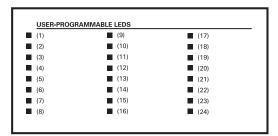



Figure 4-4: LED PANEL 1

## **STATUS INDICATORS:**

- IN SERVICE: Indicates that control power is applied; all monitored I/O and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- **TEST MODE**: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic™ operand serving as a Trip switch has operated. This indicator always latches; the RESET command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic<sup>™</sup> operand serving as an Alarm switch has operated. This indicator is never latched.
- **PICKUP**: Indicates that an element is picked up. This indicator is never latched.

## **EVENT CAUSE INDICATORS:**


These indicate the input type that was involved in a condition detected by an element that is operated or has a latched flag waiting to be reset.

- VOLTAGE: Indicates voltage was involved.
- CURRENT: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- OTHER: Indicates a composite function was involved.
- PHASE A: Indicates Phase A was involved.
- PHASE B: Indicates Phase B was involved.
- PHASE C: Indicates Phase C was involved.
- **NEUTRAL/GROUND**: Indicates neutral or ground was involved.

#### b) LED PANELS 2 & 3

These panels provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the USER-PROGRAMMABLE LEDs section in Chapter 5 for the settings used to program the operation of the LEDs on these panels.



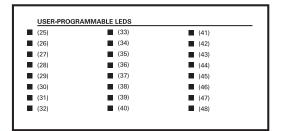



Figure 4-5: LED PANELS 2 AND 3 (INDEX TEMPLATE)

## c) DEFAULT LABELS FOR LED PANEL 2

The default labels are meant to represent:

- GROUP 1...8: The illuminated GROUP is the active settings group.
- BREAKER n OPEN: The breaker is open.
- BREAKER n CLOSED: The breaker is closed.
- BREAKER n TROUBLE: A problem related to the breaker has been detected.
- SYNCHROCHECK NO n IN-SYNCH: Voltages have satisfied the synchrocheck element.
- RECLOSE ENABLED: The recloser is operational.
- **RECLOSE DISABLED**: The recloser is not operational.
- RECLOSE IN PROGRESS: A reclose operation is in progress.
- RECLOSE LOCKED OUT: The recloser is not operational and requires a reset.

The relay is shipped with the default label for the LED panel 2. The LEDs, however, are not pre-programmed. To match the pre-printed label, the LED settings must be entered as shown in the USER-PROGRAMMABLE LEDs section of the SET-TINGS chapter. The LEDs are fully user-programmable. The default labels can be replaced by user-printed labels for both LED panels 2 and 3 as explained in the next section.

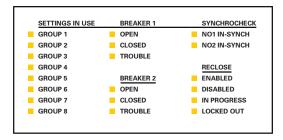
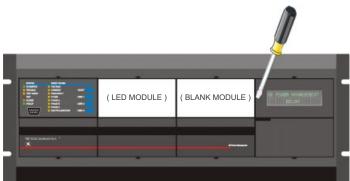



Figure 4-6: LED PANEL 2 (DEFAULT LABELS)

#### 4.2.3 CUSTOM LABELING OF LEDs

## a) INSTALLING CUSTOMIZED DISPLAY MODULE

Custom labeling of an LED-only panel is facilitated by downloading a 'zip' file from


http://www.ge.com/indsys/pm/drawings/ur/custmod.zip.

This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The CorelDRAW panel-templates provide relative LED locations and located example-text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear LEXAN FRONT COVER (P/N: 1501-0014).



Pop out the LED MODULE and/or BLANK MODULE with a screwdriver as shown below. Be careful not to damage the plastic.



- 3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
- 4. Put the clear LEXAN FRONT COVER back into place.

## 4.2.4 CUSTOMIZING THE DISPLAY MODULE

The following items are required to customize the UR display module:

- Black and white or color printer (color preferred)
- CorelDRAW version 5.0 or later software
- 1 each of: 8.5 x 11 white paper, exacto knife, ruler, custom display module (P/N: 1516-0069), custom module cover (P/N: 1502-0015)
- 1. Open the LED panel customization template in CorelDRAW. Add text in places of the Xs on the template(s) with the **Edit > Text** menu command. Delete the X place holders as required. Setup the print copy by selecting the **File > Print** menu command and pressing the "Properties" button.
- 2. On the Page Setup tab, choose Paper Size: "Letter" and Orientation: "Landscape" and press "OK".
- 3. Click the "Options" button and select the Layout tab.
- 4. For **Position and Size** enable the "Center image" and "Maintain aspect ratio" check boxes and press "OK", then "OK" once more to print.
- 5. From the printout, cut-out the BACKGROUND TEMPLATE from the three windows (use the cropmarks as a guide).

6. Put the BACKGROUND TEMPLATE on top of the custom display module (P/N: 1513-0069) and snap the clear cutome module cover (P/N: 1502-0015) over it and the templates.

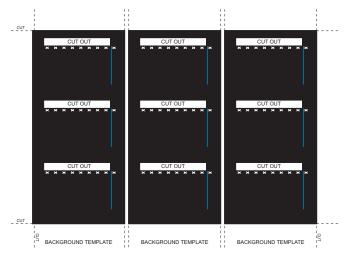



Figure 4-7: LED PANEL CUSTOMIZATION TEMPLATES (EXAMPLE)

4.2.5 DISPLAY

All messages are displayed on a  $2 \times 20$  character vacuum fluorescent display to make them visible under poor lighting conditions. Messages are displayed in English and do not require the aid of an instruction manual for deciphering. While the keypad and display are not actively being used, the display will default to defined messages. Any high priority event driven message will automatically override the default message and appear on the display.

**4.2.6 KEYPAD** 

Display messages are organized into 'pages' under the following headings: Actual Values, Settings, Commands, and Targets. The key navigates through these pages. Each heading page is broken down further into logical subgroups.

The (A) MESSAGE (N) keys navigate through the subgroups. The (A) VALUE (N) keys scroll increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values may also be entered with the numeric keypad.

The key initiates and advance to the next character in text edit mode or enters a decimal point. The key may be pressed at any time for context sensitive help messages. The key stores altered setting values.

4-8

#### **4.2.7 BREAKER CONTROL**

The D60 can interface with associated circuit breakers. In many cases the application monitors the state of the breaker, which can be presented on faceplate LEDs, along with a breaker trouble indication. Breaker operations can be manually initiated from faceplate keypad or automatically initiated from a FlexLogic<sup>™</sup> operand. A setting is provided to assign names to each breaker; this user-assigned name is used for the display of related flash messages. These features are provided for two breakers; the user may use only those portions of the design relevant to a single breaker, which must be breaker No. 1.

For the following discussion it is assumed the SETTINGS  $\Rightarrow \emptyset$  SYSTEM SETUP  $\Rightarrow \emptyset$  BREAKERS  $\Rightarrow$  BREAKER FUNCTION setting is "Enabled" for each breaker.

#### a) CONTROL MODE SELECTION & MONITORING

Installations may require that a breaker is operated in the three-pole only mode (3-Pole), or in the one and three-pole (1-Pole) mode, selected by setting. If the mode is selected as 3-pole, a single input tracks the breaker open or closed position. If the mode is selected as 1-Pole, all three breaker pole states must be input to the relay. These inputs must be in agreement to indicate the position of the breaker.

For the following discussion it is assumed the SETTINGS  $\Rightarrow \emptyset$  SYSTEM SETUP  $\Rightarrow \emptyset$  BREAKER  $n \Rightarrow \emptyset$  BREAKER  $n \Rightarrow \emptyset$  BREAKER PUSH BUTTON CONTROL setting is "Enabled" for each breaker. The D60 has features required for single-pole operation. Inputs that trip individual breaker poles and cause a breaker reclose are passed directly to this element.

## b) FACEPLATE PUSHBUTTON (USER KEY) CONTROL

After the 30 minute interval during which command functions are permitted after a correct command password, the user cannot open or close a breaker via the keypad. The following discussions begin from the not-permitted state.

#### c) CONTROL OF TWO BREAKERS



For the following example setup, the symbol "(Name)" represents the user-programmed variable name.

For this application (setup shown below), the relay is connected and programmed for both breaker No. 1 and breaker No. 2. The USER 1 key performs the selection of which breaker is to be operated by the USER 2 and USER 3 keys. The USER 2 key is used to manually close the breaker and the USER 3 key is used to manually open the breaker.

ENTER COMMAND PASSWORD This message appears when the USER 1, USER 2, or USER 3 key is pressed and a **COMMAND PASSWORD** is required; i.e. if **COMMAND PASSWORD** is enabled and no commands have been issued within the last 30 minutes.

Press USER 1
To Select Breaker

This message appears if the correct password is entered or if none is required. This message will be maintained for 30 seconds or until the USER 1 key is pressed again.

BKR1-(Name) SELECTED USER 2=CLS/USER 3=OP

This message is displayed after the USER 1 key is pressed for the second time. Three possible actions can be performed from this state within 30 seconds as per items (1), (2) and (3) below:

(1)

USER 2 OFF/ON To Close BKR1-(Name) If the USER 2 key is pressed, this message appears for 20 seconds. If the USER 2 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to close breaker No. 1.

(2)

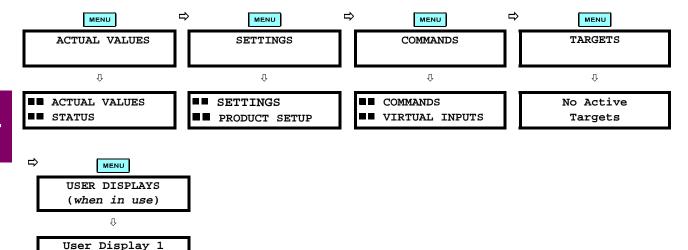
USER 3 OFF/ON To Open BKR1-(Name)

If the USER 3 key is pressed, this message appears for 20 seconds. If the USER 3 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to open breaker No. 1.

(3)

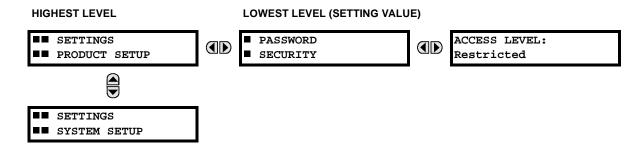
BKR2-(Name) SELECTED USER 2=CLS/USER 3=OP

If the USER 1 key is pressed at this step, this message appears showing that a different breaker is selected. Three possible actions can be performed from this state as per (1), (2) and (3). Repeatedly pressing the USER 1 key alternates between available breakers. Pressing keys other than USER 1, 2 or 3 at any time aborts the breaker control function.


### d) CONTROL OF ONE BREAKER

For this application the relay is connected and programmed for breaker No. 1 only. Operation for this application is identical to that described for two breakers.

**4.2.8 MENUS** 


#### a) NAVIGATION

Press the MENU key to select the desired header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the main heading pages as illustrated below.



## b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters ( $\blacksquare$ ), while sub-header pages are indicated by single scroll bar characters ( $\blacksquare$ ). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE and keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE key from a setting value or actual value display returns to the header display.



## c) EXAMPLE MENU NAVIGATION SCENARIO

| ■■ ACTUAL VALUES ■■ STATUS      | Press the Key until the header for the first Actual Values page appears. This page contains system and relay status information. Repeatedly press the MESSAGE Keys to display the other actual value headers. |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ■■ SETTINGS<br>■■ PRODUCT SETUP | Press the key until the header for the first page of Settings appears. This page contains settings to configure the relay.                                                                                    |
| Û                               |                                                                                                                                                                                                               |
| ■■ SETTINGS<br>■■ SYSTEM SETUP  | Press the MESSAGE                                                                                                                                                                                             |
| Û                               |                                                                                                                                                                                                               |
| ■ PASSWORD<br>■ SECURITY        | From the Settings page one header (Product Setup), press the MESSAGE  key once to display the first sub-header (Password Security).                                                                           |
| Û                               |                                                                                                                                                                                                               |
| ACCESS LEVEL: Restricted        | Press the MESSAGE  key once more and this will display the first setting for Password Security. Pressing the MESSAGE  key repeatedly will display the remaining setting messages for this sub-header.         |
| ■ PASSWORD<br>■ SECURITY        | Press the MESSAGE ( key once to move back to the first sub-header message.                                                                                                                                    |
| UDISPLAY  ■ PROPERTIES          | Pressing the MESSAGE  key will display the second setting sub-header associated with the Product Setup header.                                                                                                |
| FLASH MESSAGE<br>TIME: 1.0 s    | Press the MESSAGE  key once more and this will display the first setting for Display Properties.                                                                                                              |
| DEFAULT MESSAGE INTENSITY: 25%  | To view the remaining settings associated with the Display Properties subheader, repeatedly press the MESSAGE                                                                                                 |

#### 4.2.9 CHANGING SETTINGS

## a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

FLASH MESSAGE
TIME: 1.0 s

WINIMUM: 0.5

MAXIMUM: 10.0

For example, select the SETTINGS PRODUCT SETUP PROPERTIES FLASH MESSAGE TIME setting.

Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message.

Two methods of editing and storing a numerical setting value are available.

- **0 to 9** and (decimal point): The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MESSAGE ( key or pressing the ESCAPE key, returns the original value to the display.
- VALUE : The VALUE key increments the displayed value by the step value, up to the maximum value allowed. While at the maximum value, pressing the VALUE key again will allow the setting selection to continue upward from the minimum value. The VALUE key decrements the displayed value by the step value, down to the

minimum value. While at the minimum value, pressing the VALUE was again will allow the setting selection to continue downward from the maximum value.

As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence "2 . 5". The display message will change as the digits are being entered.

NEW SETTING HAS BEEN STORED Until the ENTER key is pressed, editing changes are not registered by the relay. Therefore, press the ENTER key to store the new value in memory. This flash message will momentarily appear as confirmation of the storing process. Numerical values which contain decimal places will be rounded-off if more decimal place digits are entered than specified by the step value.

## b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL: Restricted For example, the selections available for **ACCESS LEVEL** are "Restricted", "Command", "Setting", and "Factory Service".

Enumeration type values are changed using the ALUE keys. The VALUE key displays the next selection while the VALUE key displays the previous selection.

ACCESS LEVEL: Setting

If the **ACCESS LEVEL** needs to be "Setting", press the AVALUE Reys until the proper selection is displayed. Press the HELP key at any time for the context sensitive help messages.

ΰ

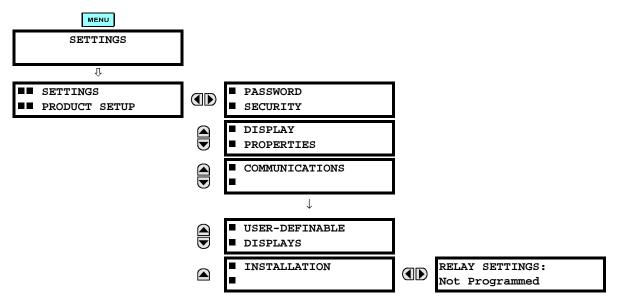
NEW SETTING HAS BEEN STORED Changes are not registered by the relay until the **ENTER** key is pressed. Pressing **ENTER** stores the new value in memory. This flash message momentarily appears as confirmation of the storing process.

## c) ENTERING ALPHANUMERIC TEXT

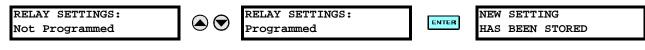
Text settings have data values which are fixed in length, but user-defined in character. They may be comprised of upper case letters, lower case letters, numerals, and a selection of special characters.

In order to allow the relay to be customized for specific applications, there are several places where text messages may be programmed. One example is the MESSAGE SCRATCHPAD. To enter alphanumeric text messages, the following procedure should be followed:

Example: to enter the text, "Breaker #1"


- 1. Press to enter text edit mode.
- 2. Press the VALUE or VALUE key until the character 'B' appears; press to advance the cursor to the next position.
- 3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,#,1.
- 4. Press ENTER to store the text.
- 5. If you have any problem, press the help key to view the context sensitive help. Flash messages will sequentially appear for several seconds each. For the case of a text setting message, the help key displays how to edit and store a new value.

### d) ACTIVATING THE RELAY


RELAY SETTINGS: Not Programmed When the relay is powered up, the TROUBLE indicator will be on, the IN SERVICE indicator off, and this message displayed. This indicates that the relay is in the "Not Programmed" state and is safeguarding (output relays blocked) against the installation of a relay whose settings have not been entered. This message will remain until the relay is explicitly put in the "Programmed" state.

To change the RELAY SETTINGS: "Not Programmed" mode to "Programmed", proceed as follows:

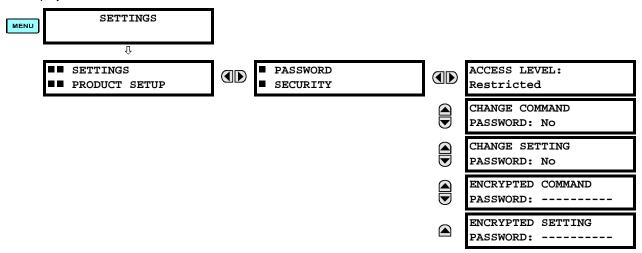
- 1. Press the **MENU** key until the **SETTINGS** header flashes momentarily and the **SETTINGS PRODUCT SETUP** message appears on the display.
- 2. Press the MESSAGE N key until the PASSWORD SECURITY message appears on the display.
- 3. Press the MESSAGE key until the **INSTALLATION** message appears on the display.
- 4. Press the MESSAGE ( ) key until the RELAY SETTINGS: Not Programmed message is displayed.



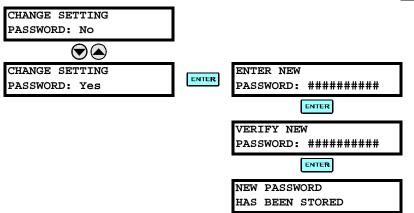
- 5. After the RELAY SETTINGS: Not Programmed message appears on the display, press the VALUE key or the VALUE key to change the selection to "Programmed".
- 6. Press the **ENTER** key.



7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay will be in "Programmed" state and the IN SERVICE indicator will turn on.


#### e) ENTERING INITIAL PASSWORDS

To enter the initial SETTING (or COMMAND) PASSWORD, proceed as follows:


- 1. Press the key until the 'SETTINGS' header flashes momentarily and the 'SETTINGS PRODUCT SETUP' message appears on the display.
- Press the MESSAGE key until the 'ACCESS LEVEL:' message appears on the display.

3. Press the MESSAGE 

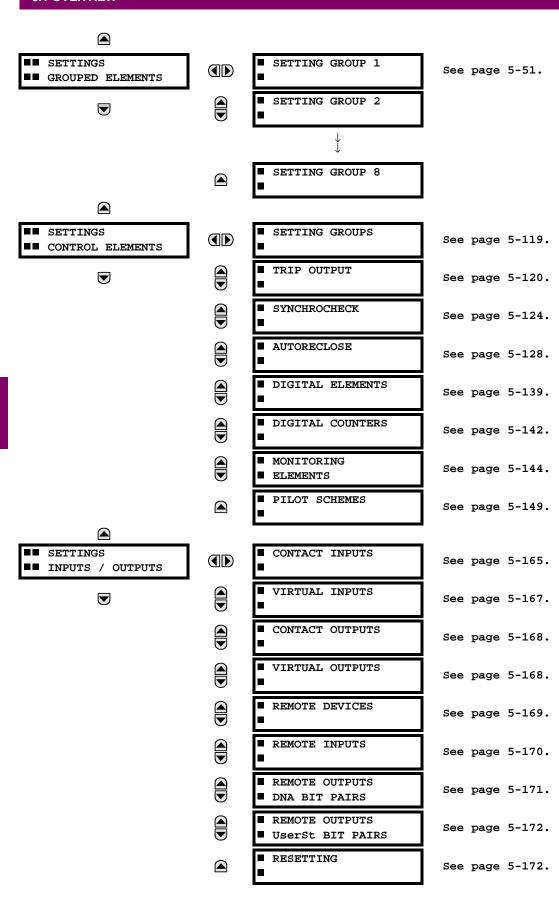
key until the 'CHANGE SETTING (or COMMAND) PASSWORD:' message appears on the display.



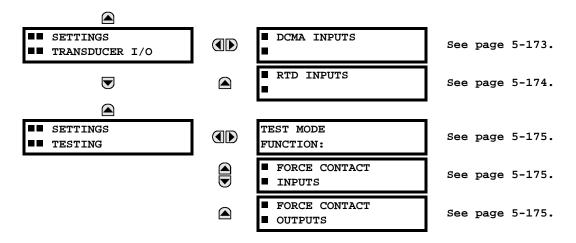
- 4. After the 'CHANGE...PASSWORD' message appears on the display, press the VALUE (a) key or the VALUE (b) key to change the selection to Yes.
- 5. Press the ENTER key and the display will prompt you to 'ENTER NEW PASSWORD'.
- 6. Type in a numerical password (up to 10 characters) and press the key.
- When the 'VERIFY NEW PASSWORD' is displayed, re-type in the same password and press ENTER.



8. When the 'NEW PASSWORD HAS BEEN STORED' message appears, your new SETTING (or COMMAND) PASSWORD will be active.


## f) CHANGING EXISTING PASSWORD

To change an existing password, follow the instructions in the previous section with the following exception. A message will prompt you to type in the existing password (for each security level) before a new password can be entered.


In the event that a password has been lost (forgotten), submit the corresponding Encrypted Password from the PASS-WORD SECURITY menu to the Factory for decoding.

# **5.1.1 SETTINGS MAIN MENU**

| ■■ SETTINGS                    |   | ■ PASSWORD                       | 1              |
|--------------------------------|---|----------------------------------|----------------|
| ■■ PRODUCT SETUP               |   | ■ SECURITY                       | See page 5-7.  |
| ♥                              |   | ■ DISPLAY<br>■ PROPERTIES        | See page 5-8.  |
|                                |   | ■ COMMUNICATIONS                 | See page 5-8.  |
|                                |   | ■ MODBUS USER MAP                | See page 5-15. |
|                                |   | REAL TIME CLOCK                  | See page 5-15. |
|                                |   | FAULT REPORT                     | See page 5-15. |
|                                |   | ■ OSCILLOGRAPHY                  | See page 5-16. |
|                                |   | DATA LOGGER                      | See page 5-18. |
|                                |   | ■ USER-PROGRAMMABLE<br>■ LEDS    | See page 5-19. |
|                                |   | ■ FLEX STATE<br>■ PARAMETERS     | See page 5-20. |
|                                |   | ■ USER-DEFINABLE<br>■ DISPLAYS   | See page 5-20. |
|                                |   | ■ INSTALLATION                   | See page 5-22. |
|                                | • |                                  | -              |
| ■■ SETTINGS<br>■■ SYSTEM SETUP |   | ■ AC INPUTS<br>■                 | See page 5-23. |
| ♥                              |   | ■ POWER SYSTEM                   | See page 5-24. |
|                                |   | ■ SIGNAL SOURCES                 | See page 5-25. |
|                                |   | ■ LINE<br>■                      | See page 5-27. |
|                                |   | ■ BREAKERS                       | See page 5-28. |
|                                |   | ■ FLEXCURVES                     | See page 5-31. |
|                                | _ |                                  | <u>-</u>       |
| ■■ SETTINGS<br>■■ FLEXLOGIC    |   | ■ FLEXLOGIC<br>■ EQUATION EDITOR | See page 5-46. |
| ♥                              |   | ■ FLEXLOGIC<br>■ TIMERS          | See page 5-46. |
| lacktriangledown               |   | ■ FLEXELEMENTS                   | See page 5-47. |



5 SETTINGS 5.1 OVERVIEW



#### **5.1.2 INTRODUCTION TO ELEMENTS**

In the design of UR relays, the term "element" is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as "setting the flag". A single comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a Pickup flag when the current input is above the setting and sets an Operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators, except the Digital Element which uses a logic state as the input, use analog parameter actual values as the input.

Elements are arranged into two classes, GROUPED and CONTROL. Each element classed as a GROUPED element is provided with eight alternate sets of settings, in setting groups numbered 1 through 8. The performance of a GROUPED element is defined by the setting group that is active at a given time. The performance of a CONTROL element is independent of the selected active setting group.

The main characteristics of an element are shown on the element scheme logic diagram. This includes the input(s), settings, fixed logic, and the output operands that are generated (abbreviations used on scheme logic diagrams are defined in Appendix F).

Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:

pu quantity = (actual quantity) / (base quantity)

- For current elements, the 'base quantity' is the nominal secondary or primary current of the CT. Where the current source is the sum of two CTs with different ratios, the 'base quantity' will be the common secondary or primary current to which the sum is scaled (i.e. normalized to the larger of the 2 rated CT inputs). For example, if CT1 = 300 / 5 A and CT2 = 100 / 5 A, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the 'base quantity' will be 5 A secondary or 300 A primary.
- For voltage elements, the 'base quantity' is the nominal secondary or primary voltage of the VT.

Some settings are common to most elements and are discussed below:

## **FUNCTION Setting**

This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the Function becomes active and all options become available.

### **NAME Setting**

This setting is used to uniquely identify the element.

## **SOURCE Setting**

This setting is used to select the parameter or set of parameters to be monitored.

### **PICKUP Setting**

For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.

#### **PICKUP DELAY Setting**

This setting sets a time-delay-on-pickup, or on-delay, for the duration between the Pickup and Operate output states.

#### **RESET DELAY Setting**

This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.

## **BLOCK Setting**

The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.

## **TARGET Setting**

This setting is used to define the operation of an element target message. When set to Disabled, no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to Self-Reset, the target message and LED indication follow the Operate state of the element, and self-resets once the operate element condition clears. When set to Latched, the target message and LED indication will remain visible after the element output returns to logic 0 - until a RESET command is received by the relay.

### **EVENTS Setting**

This setting is used to control whether the Pickup, Dropout or Operate states are recorded by the event recorder. When set to Disabled, element pickup, dropout or operate are not recorded as events.

When set to Enabled, an event is created for:

- (Element) PKP (pickup)
- (Element) DPO (dropout)
- (Element) OP (operate)

The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not '0'.

## **5.1.3 INTRODUCTION TO AC SOURCES**

## a) BACKGROUND

The D60 may be used on systems with breaker-and-a-half or ring bus configurations. In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and 3I\_0 residual currents may be required for the circuit relaying and metering functions. For a three-winding transformer application, it may be required to calculate watts and vars for each of three windings, using voltage from different sets of VTs. All these requirements can be satisfied with a single UR relay, equipped with sufficient CT and VT input channels, by selecting the parameter to be measured. A mechanism is provided to specify the AC parameter (or group of parameters) used as the input to protection/control comparators and some metering elements.

Selection of the parameter(s) to be measured is partially performed by the design of a measuring element or protection/control comparator, by identifying the type of parameter (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.) to be measured. The user completes the selection process by selecting the instrument transformer input channels to be used and some of the parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 3I\_0 and ground current, current from CTs with different ratios are adjusted to a single ratio before the summation.

5 SETTINGS 5.1 OVERVIEW

A mechanism called a "Source" configures the routing of input CT and VT channels to measurement sub-systems. Sources, in the context of the UR family of relays, refer to the logical grouping of current and voltage signals such that one Source contains all of the signals required to measure the load or fault in a particular power apparatus. A given Source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltage from a single VT for checking for synchronism.

To illustrate the concept of Sources, as applied to current inputs only, consider the breaker-and-a-half scheme as illustrated in the following figure. In this application, the current flows as shown by the labeled arrows. Some current flows through the upper bus bar to some other location or power equipment, and some current flows into transformer winding 1. The current into winding 1 of the power transformer is the phasor sum (or difference) of the currents in CT1 and CT2 (whether the sum or difference is used, depends on the relative polarity of the CT connections). The same considerations apply to transformer winding 2. The protection elements need access to the net current for the protection of the transformer, but some elements may need access to the individual currents from CT1 and CT2.

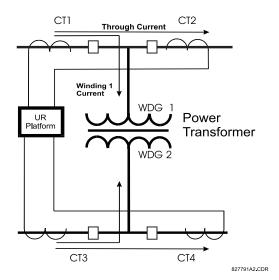



Figure 5-1: BREAKER-AND-A-HALF SCHEME

In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all the CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the UR platform, provisions have been included for all the current signals to be brought to the UR device where grouping, ratio correction and summation are applied internally via configuration settings.

A major advantage of using internal summation is that the individual currents are available to the protection device, as additional information to calculate a restraint current, for example, or to allow the provision of additional protection features that operate on the individual currents such as breaker failure.

Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device.

The internal grouping of current and voltage signals forms an internal Source. This Source can be given a specific name through the settings, and becomes available to protection and metering elements in the UR platform. Individual names can be given to each Source to help identify them more clearly for later use. For example, in the scheme shown in the BREAKER-AND-A-HALF SCHEME above, the user would configure one Source to be the sum of CT1 and CT2 and could name this Source as 'Wdg 1 Current'.

Once the Sources have been configured, the user has them available as selections for the choice of input signal for the protection elements and as metered quantities.

### b) CT/VT MODULE CONFIGURATIONS

CT and VT input channels are contained in CT/VT modules in UR products. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.

A CT/VT module can contain up to eight input channels numbered 1 through 8. The numbering of channels in a CT/VT module corresponds to the module terminal numbering of 1 through 8 and is arranged as follows; channels 1, 2, 3 and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are channels 5, 6, 7 and 8. Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.

Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

| INCREASING SLOT POSITION LETTER> |                |                |  |  |  |
|----------------------------------|----------------|----------------|--|--|--|
| CT/VT MODULE 1                   | CT/VT MODULE 2 | CT/VT MODULE 3 |  |  |  |
| < bank 1 >                       | < bank 3 >     | < bank 5 >     |  |  |  |
| < bank 2 >                       | < bank 4 >     | < bank 6 >     |  |  |  |

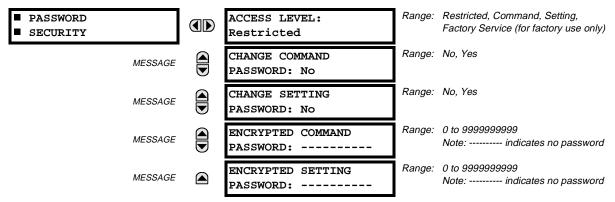
The UR platform allows for a maximum of three sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of Sources is six. A summary of CT/VT module configurations is shown below.

| ITEM                                            | MAXIMUM NUMBER |
|-------------------------------------------------|----------------|
| CT/VT Module                                    | 3              |
| CT Bank (3 phase channels, 1 ground channel)    | 6              |
| VT Bank (3 phase channels, 1 auxiliary channel) | 3              |

### c) CT/VT INPUT CHANNEL CONFIGURATION SETTINGS

Upon startup of the relay, configuration settings for every bank of current or voltage input channels in the relay are automatically generated, as determined from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The 'bank' naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5.

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.


Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as shown below for a maximum configuration:

The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific Source. The Source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a Source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a Source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

### **5.2.1 PASSWORD SECURITY**

### PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ PASSWORD SECURITY



The D60 provides two user levels of password security: Command and Setting. Operations under password supervision are as follows:

### COMMAND:

- · Operating the breakers via faceplate keypad
- Changing the state of virtual inputs
- · Clearing the event records
- · Clearing the oscillography records

## **SETTING:**

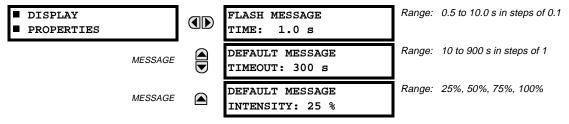
· Changing any setting.

The Command and Setting passwords are defaulted to "Null" when the relay is shipped from the factory. When a password is set to "Null", the password security feature is disabled.

Programming a password code is required to enable each access level. A password consists of 1 to 10 numerical characters. When a **CHANGE** ... **PASSWORD** setting is set to "Yes", the following message sequence is invoked:

- 1. ENTER NEW PASSWORD: \_\_\_\_\_
- 2. VERIFY NEW PASSWORD: \_\_\_\_\_
- 3. NEW PASSWORD HAS BEEN STORED

To gain write access to a "Restricted" setting, set ACCESS LEVEL to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access will be allowed. If no keys are pressed for longer than 30 minutes or control power is cycled, accessibility will automatically revert to the "Restricted" level.


If an entered password is lost (or forgotten), consult the factory service department with the corresponding ENCRYPTED PASSWORD.



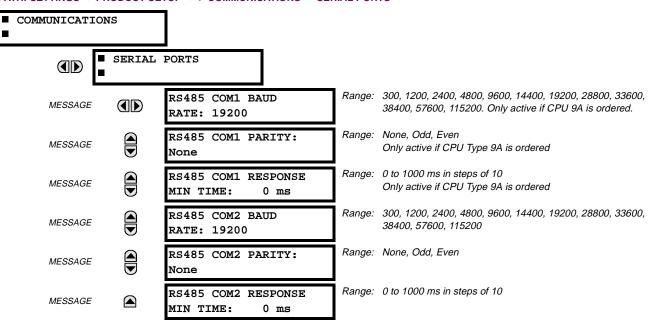
If the SETTING password and COMMAND password are set the same, the one password will allow access to commands and settings.

#### **5.2.2 DISPLAY PROPERTIES**

## PATH: SETTINGS PRODUCT SETUP □ U DISPLAY PROPERTIES



Some relay messaging characteristics can be modified to suit different situations using the display properties settings.


Flash messages are status, warning, error, or information messages displayed for several seconds in response to certain key presses during setting programming. These messages override any normal messages. The time a flash message remains on the display can be changed to accommodate different reading rates. If no keys are pressed for a period of time, the relay automatically displays a default message. This time can be modified to ensure messages remain on the screen long enough during programming or reading of actual values.

To extend the life of the phosphor in the vacuum fluorescent display, the brightness can be attenuated when displaying default messages. When interacting with the display using the keypad, the display always operates at full brightness.

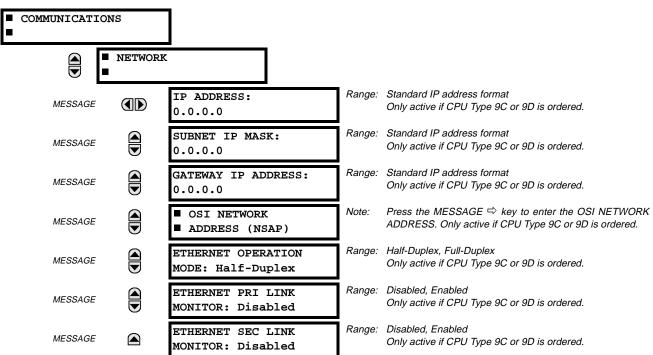
**5.2.3 COMMUNICATIONS** 

### a) SERIAL PORTS

#### PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\partial\$ COMMUNICATIONS ⇒ SERIAL PORTS



The D60 is equipped with up to 3 independent serial communication ports. The faceplate RS232 port is intended for local use and has fixed parameters of 19200 baud and no parity. The rear COM1 port type will depend on the CPU ordered: it may be either an Ethernet or an RS485 port. The rear COM2 port is RS485. The RS485 ports have settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of these ports may be connected to a personal computer running URPC. This software is used for downloading or uploading setting files, viewing measured parameters, and upgrading the relay firmware to the latest version. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC or PC using the RS485 ports.




For each RS485 port, the minimum time before the port will transmit after receiving data from a host can be set. This feature allows operation with hosts which hold the RS485 transmitter active for some time after each transmission.

5 SETTINGS 5.2 PRODUCT SETUP

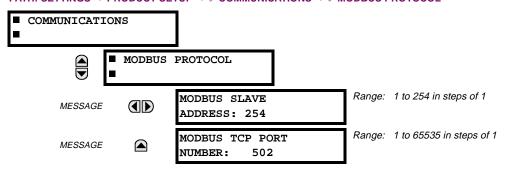
## b) NETWORK

#### PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\mathcal{I}\$ COMMUNICATIONS \$\Rightarrow\$ \$\mathcal{I}\$ NETWORK



The Network setting messages will appear only if the UR is ordered with an Ethernet card. The Ethernet Primary and Secondary Link Monitor settings allow internal self test targets to be triggered when either the Primary or Secondary ethernet fibre link status indicates a connection loss. The IP addresses are used with DNP/Network, Modbus/TCP, MMS/UCA2, IEC 60870-5-104, TFTP, and HTTP (web server) protocols. The NSAP address is used with the MMS/UCA2 protocol over the OSI (CLNP/TP4) stack only. Each network protocol has a setting for the TCP/UDP PORT NUMBER. These settings are used only in advanced network configurations. They should normally be left at their default values, but may be changed if required; for example, to allow access to multiple URs behind a router. By setting a different TCP/UCP Port Number for a given protocol on each UR, the router can map the URs to the same external IP address. The client software (URPC, for example) must be configured to use the correct port number if these settings are used.




Do not set more than one protocol to use the same TCP/UDP Port Number, as this will result in unreliable operation of those protocols.



When the NSAP address, any TCP/UDP Port Number, or any User Map setting (when used with DNP) is changed, it will not become active until power to the relay has been cycled (OFF/ON).

## c) MODBUS PROTOCOL

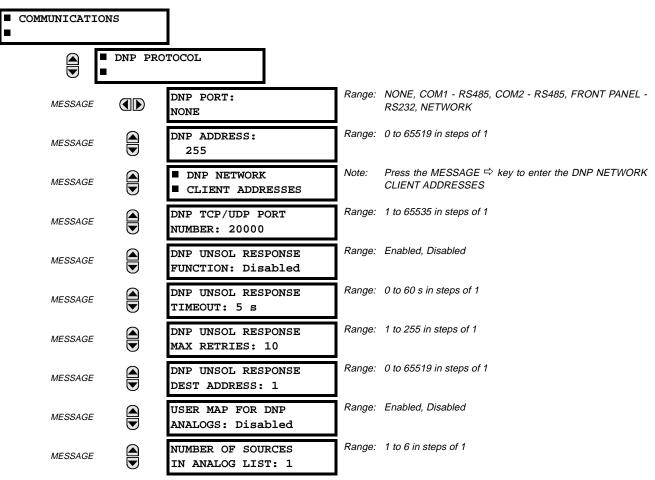
PATH: SETTINGS  $\Rightarrow$  PRODUCT SETUP  $\Rightarrow \emptyset$  COMMUNICATIONS  $\Rightarrow \emptyset$  MODBUS PROTOCOL



The serial communication ports utilize the Modbus protocol, unless configured for DNP operation (see DNP PROTOCOL below). This allows the URPC program to be used. UR relays operate as Modbus slave devices only. When using Modbus protocol on the RS232 port, the D60 will respond regardless of the MODBUS SLAVE ADDRESS programmed. For the RS485 ports each D60 must have a unique address from 1 to 254. Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. Refer to Appendix B for more information on the Modbus protocol.

## d) DNP PROTOCOL

PATH: SETTINGS 


PRODUCT SETUP 

U

COMMUNICATIONS 

U

DNP PROTOCOL



5 SETTINGS 5.2 PRODUCT SETUP

| MESSAGE | DNP CURRENT SCALE FACTOR: 1            | Range: | 0.01. 0.1, 1, 10, 100, 1000   |
|---------|----------------------------------------|--------|-------------------------------|
| MESSAGE | DNP VOLTAGE SCALE<br>FACTOR: 1         | Range: | 0.01. 0.1, 1, 10, 100, 1000   |
| MESSAGE | DNP CURRENT SCALE<br>FACTOR: 1         | Range: | 0.01. 0.1, 1, 10, 100, 1000   |
| MESSAGE | DNP POWER SCALE<br>FACTOR: 1           | Range: | 0.01. 0.1, 1, 10, 100, 1000   |
| MESSAGE | DNP ENERGY SCALE<br>FACTOR: 1          | Range: | 0.01. 0.1, 1, 10, 100, 1000   |
| MESSAGE | DNP OTHER SCALE<br>FACTOR: 1           | Range: | 0.01. 0.1, 1, 10, 100, 1000   |
| MESSAGE | DNP CURRENT DEFAULT<br>DEADBAND: 30000 | Range: | 0 to 65535 in steps of 1      |
| MESSAGE | DNP VOLTAGE DEFAULT<br>DEADBAND: 30000 | Range: | 0 to 65535 in steps of 1      |
| MESSAGE | DNP POWER DEFAULT<br>DEADBAND: 30000   | Range: | 0 to 65535 in steps of 1      |
| MESSAGE | DNP ENERGY DEFAULT<br>DEADBAND: 30000  | Range: | 0 to 65535 in steps of 1      |
| MESSAGE | DNP OTHER DEFAULT<br>DEADBAND: 30000   | Range: | 0 to 65535 in steps of 1      |
| MESSAGE | DNP TIME SYNC IIN<br>PERIOD: 1440 min  | Range: | 1 to 10080 min. in steps of 1 |
| MESSAGE | DNP MESSAGE FRAGMENT<br>SIZE: 240      | Range: | 30 to 2048 in steps of 1      |
| MESSAGE | ■ DNP BINARY INPUTS<br>■ USER MAP      |        |                               |

The D60 supports the Distributed Network Protocol (DNP) version 3.0. The D60 can be used as a DNP slave device connected to a single DNP master (usually either an RTU or a SCADA master station). Since the D60 maintains one set of DNP data change buffers and connection information, only one DNP master should actively communicate with the D60 at one time. The DNP PORT setting is used to select the communications port assigned to the DNP protocol. DNP can be assigned to a single port only. Once DNP is assigned to a serial port, the Modbus protocol is disabled on that port. Note that COM1 can be used only in non-ethernet UR relays. When this setting is set to NETWORK, the DNP protocol can be used over either TCP/IP or UDP/IP. Refer to Appendix E for more information on the DNP protocol.

The **DNP ADDRESS** setting is the DNP slave address. This number identifies the D60 on a DNP communications link. Each DNP slave should be assigned a unique address.

The **DNP NETWORK CLIENT ADDRESS** settings can force the D60 to respond to a maximum of five specific DNP masters.

The **DNP UNSOL RESPONSE FUNCTION** should be set to "Disabled" for RS485 applications since there is no collision avoidance mechanism.

The **DNP UNSOL RESPONSE TIMEOUT** sets the time the D60 waits for a DNP master to confirm an unsolicited response.

The **DNP UNSOL RESPONSE MAX RETRIES** setting determines the number of times the D60 will retransmit an unsolicited response without receiving a confirmation from the master. A value of 255 allows infinite re-tries.

The **DNP UNSOL RESPONSE DEST ADDRESS** setting is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the D60 from either the current DNP TCP connection or the most recent UDP message.

5.2 PRODUCT SETUP 5 SETTINGS

The **USER MAP FOR DNP ANALOGS** setting allows the large pre-defined Analog Inputs points list to be replaced by the much smaller Modbus User Map. This can be useful for users wishing to read only selected Analog Input points from the D60. See Appendix E for more information

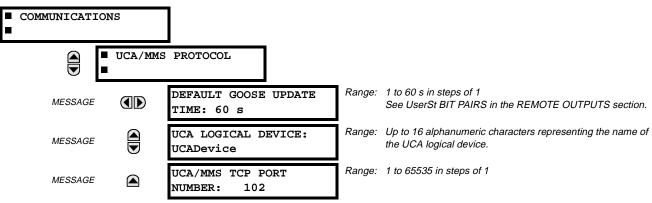
The **NUMBER OF SOURCES IN ANALOG LIST** setting allows the selection of the number of current/voltage source values that are included in the Analog Inputs points list. This allows the list to be customized to contain data for only the sources that are configured. This setting is relevant only when the User Map is not used.

The **DNP SCALE FACTOR** settings are numbers used to scale Analog Input point values. These settings group the D60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the scale factor for all Analog Input points of that type. For example, if the **DNP VOLTAGE SCALE FACTOR** setting is set to a value of 1000, all DNP Analog Input points that are voltages will be returned with values 1000 times smaller (e.g. a value of 72000 V on the D60 will be returned as 72). These settings are useful when Analog Input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (i.e. the value will be 10 times larger).

The **DNP DEFAULT DEADBAND** settings are the values used by the D60 to determine when to trigger unsolicited responses containing Analog Input data. These settings group the D60 Analog Input data into types: current, voltage, power, energy, and other. Each setting represents the default deadband value for all Analog Input points of that type. For example, in order to trigger unsolicited responses from the D60 when any current values change by 15 A, the **DNP CURRENT DEFAULT DEADBAND** setting should be set to 15. Note that these settings are the default values of the deadbands. DNP object 34 points can be used to change deadband values, from the default, for each individual DNP Analog Input point. Whenever power is removed and re-applied to the D60, the default deadbands will be in effect.

The **DNP TIME SYNC IIN PERIOD** setting determines how often the "Need Time" Internal Indication (IIN) bit is set by the D60. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The **DNP MESSAGE FRAGMENT SIZE** setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.


The **DNP BINARY INPUTS USER MAP** setting allows for the creation of a custom DNP Binary Inputs points list. The default DNP Binary Inputs list on the D60 contains 928 points representing various binary states (contact inputs and outputs, virtual inputs and outputs, protection element states, etc.). If not all of these points are required in the DNP master, a custom Binary Inputs points list can be created by selecting up to 58 blocks of 16 points. Each block represents 16 Binary Input points. Block 1 represents Binary Input points 0 to 15, block 2 represents Binary Input points 16 to 31, block 3 represents Binary Input points 32 to 47, etc. The minimum number of Binary Input points that can be selected is 16 (1 block). If all of the **BIN INPUT BLOCK X** settings are set to "Not Used", the standard list of 928 points will be in effect. The D60 will form the Binary Inputs points list from the **BIN INPUT BLOCK X** settings up to the first occurrence of a setting value of "Not Used".

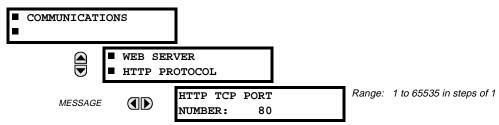


When using either of the User Maps for DNP data points (Analog Inputs and/or Binary Inputs), for UR relays with the ethernet option installed, check the "DNP Points Lists" D60 web page to ensure the desired points lists have been created. This web page can be viewed using Internet Explorer or Netscape Navigator by entering the D60 IP address to access the D60 "Main Menu", then by selecting the "Device Information Menu", and then selecting the "DNP Points Lists".

# e) UCA/MMS PROTCOL

PATH: SETTINGS  $\Rightarrow$  PRODUCT SETUP  $\Rightarrow \emptyset$  COMMUNICATIONS  $\Rightarrow \emptyset$  UCA/MMS PROTOCOL




5 SETTINGS 5.2 PRODUCT SETUP

The D60 supports the Manufacturing Message Specification (MMS) protocol as specified by the Utility Communication Architecture (UCA). UCA/MMS is supported over two protocol stacks: TCP/IP over ethernet and TP4/CLNP (OSI) over ethernet. The D60 operates as a UCA/MMS server. Appendix C describes the UCA/MMS protocol implementation in more detail. The REMOTE INPUTS and REMOTE OUTPUT sections of Chapter 5: SETTINGS describes the peer-to-peer GOOSE message scheme.

The UCA LOGICAL DEVICE setting represents the name of the MMS domain (UCA logical device) in which all UCA objects are located.

## f) WEB SERVER HTTP PROTOCOL

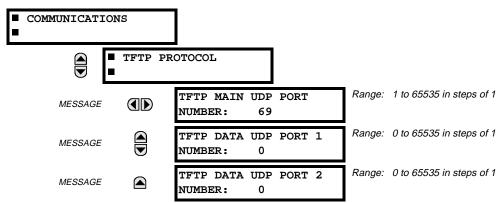
PATH: SETTINGS ⇔ PRODUCT SETUP ⇔ ⊕ COMMUNICATIONS ⇔ ⊕ WEB SERVER HTTP PROTOCOL



The D60 contains an embedded web server. That is, the D60 is capable of transferring web pages to a web browser such as Microsoft Internet Explorer or Netscape Navigator. This feature is available only if the D60 has the ethernet option installed. The web pages are organized as a series of menus that can be accessed starting at the D60 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, Event Records, Fault Reports, etc. The web pages can be accessed by connecting the UR and a computer to an ethernet network. The Main Menu will be displayed in the web browser on the computer simply by entering the IP address of the D60 into the "Address" box on the web browser.

## g) TFTP PROTOCOL

PATH: SETTINGS 

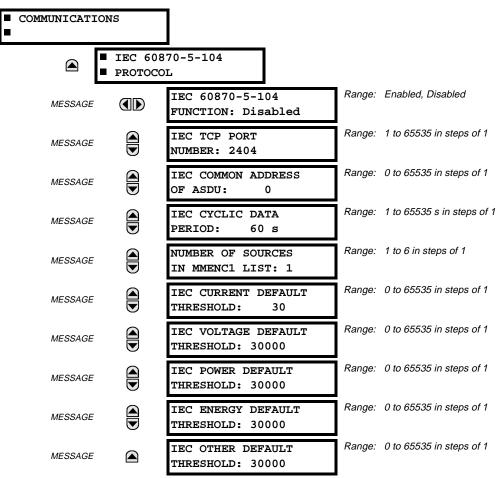

PRODUCT SETUP 

U

COMMUNICATIONS 

U

TFTP PROTOCOL




The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the UR over a network. The D60 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The file "dir.txt" is an ASCII text file that can be transferred from the D60. This file contains a list and description of all the files available from the UR (event records, oscillography, etc.).

5.2 PRODUCT SETUP 5 SETTINGS

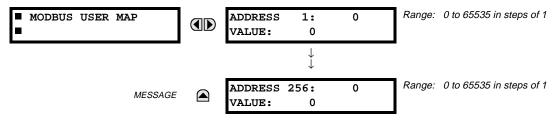
### h) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial \text{ COMMUNICATIONS} ⇒ \$\Partial \text{ IEC 60870-5-104 PROTOCOL}\$



The D60 supports the IEC 60870-5-104 protocol. The D60 can be used as an IEC 60870-5-104 slave device connected to a single master (usually either an RTU or a SCADA master station). Since the D60 maintains one set of IEC 60870-5-104 data change buffers, only one master should actively communicate with the D60 at one time. For situations where a second master is active in a "hot standby" configuration, the UR supports a second IEC 60870-5-104 connection providing the standby master sends only IEC 60870-5-104 Test Frame Activation messages for as long as the primary master is active.

The **NUMBER OF SOURCES IN MMENC1 LIST** setting allows the selection of the number of current/voltage source values that are included in the M\_ME\_NC\_1 (Measured value, short floating point) Analog points list. This allows the list to be customized to contain data for only the sources that are configured.


The IEC ----- DEFAULT THRESHOLD settings are the values used by the UR to determine when to trigger spontaneous responses containing M\_ME\_NC\_1 analog data. These settings group the UR analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M\_ME\_NC\_1 analog points of that type. For example, in order to trigger spontaneous responses from the UR when any current values change by 15 A, the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15. Note that these settings are the default values of the deadbands. P\_ME\_NC\_1 (Parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M\_ME\_NC\_1 analog point. Whenever power is removed and re-applied to the UR, the default thresholds will be in effect.



The IEC 60870-5-104 and DNP protocols can not be used at the same time. When the IEC 60870-5-104 FUNCTION setting is set to Enabled, the DNP protocol will not be operational. When this setting is changed it will not become active until power to the relay has been cycled (OFF/ON).

**5.2 PRODUCT SETUP** 

## PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ MODBUS USER MAP



The Modbus<sup>®</sup> User Map provides up to 256 registers with read only access. To obtain a value for a memory map address, enter the desired location in the **ADDRESS** line (the value must be converted from hex to decimal format). The corresponding value from the is displayed in the **VALUE** line. A value of "0" in subsequent register **ADDRESS** lines automatically return values for the previous **ADDRESS** lines incremented by "1". An address value of "0" in the initial register means "none" and values of "0" will be displayed for all registers.


Different ADDRESS values can be entered as required in any of the register positions.

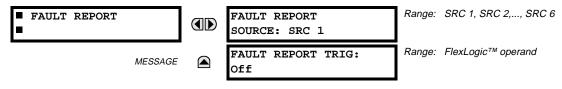


These settings can also be used with the DNP protocol. See the DNP ANALOG INPUT POINTS section in Appendix E for details.

**5.2.5 REAL TIME CLOCK** 

### PATH: SETTINGS PRODUCT SETUP REAL TIME CLOCK




The date and time for the relay clock can be synchronized to other relays using an IRIG-B signal. It has the same accuracy as an electronic watch, approximately ±1 minute per month.

An IRIG-B signal may be connected to the relay to synchronize the clock to a known time base and to other relays. If an IRIG-B signal is used, only the current year needs to be entered.

See also the COMMANDS 4 SET DATE AND TIME menu for manually setting the relay clock.

**5.2.6 FAULT REPORT** 

# PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ □ FAULT REPORT



The fault report stores data, in non-volatile memory, pertinent to an event when triggered. The captured data will include:

- Name of the relay, programmed by the user
- Date and time of trigger
- Name of trigger (specific operand)
- · Active setting group
- Pre-fault current and voltage phasors (one-quarter cycle before the trigger)
- Fault current and voltage phasors (three-quarter cycle after the trigger)
- Target Messages that are set at the time of triggering
- Events (9 before trigger and 7 after trigger)

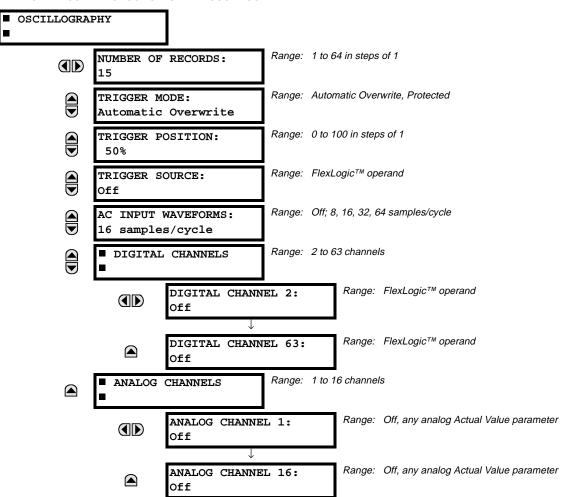
The captured data also includes the fault type and the distance to the fault location, as well as the reclose shot number.

The trigger can be any FlexLogic™ operand, but in most applications it is expected to be the same operand, usually a virtual output, that is used to drive an output relay to trip a breaker. To prevent the over-writing of fault events, the disturbance detector should not be used to trigger a fault report.

If a number of protection elements are ORed to create a fault report trigger, the first operation of any element causing the OR gate output to become high triggers a fault report. However, If other elements operate during the fault and the first operated element has not been reset (the OR gate output is still high), the fault report is not triggered again. Considering the reset time of protection elements, there is very little chance that fault report can be triggered twice in this manner. As the fault report must capture a usable amount of pre and post-fault data, it can not be triggered faster than every 20 ms.

Each fault report is stored as a file; the relay capacity is ten files. An eleventh trigger overwrites the oldest file. The operand selected as the fault report trigger automatically triggers an oscillography record which can also be triggered independently.

URPC is required to view all captured data. The relay faceplate display can be used to view the date and time of trigger, the fault type, the distance location of the fault, and the reclose shot number


The FAULT REPORT SOURCE setting selects the Source for input currents and voltages and disturbance detection. The FAULT REPORT TRIG setting assigns the FlexLogic™ operand representing the protection element/elements requiring operational fault location calculations. The distance to fault calculations are initiated by this signal.

See also SETTINGS ⊕ SYSTEM SETUP ⇔⊕ LINE menu for specifying line characteristics and the ACTUAL VALUES ⊕ RECORDS ⇒ FAULT REPORTS menu.

5.2.7 OSCILLOGRAPHY

**5 SETTINGS** 

# PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ OSCILLOGRAPHY



5 SETTINGS 5.2 PRODUCT SETUP

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic<sup>TM</sup> operand. Multiple oscillography records may be captured simultaneously.

The **NUMBER OF RECORDS** is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational CT/VT modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the **ACTUAL VALUES**  $\Rightarrow \oplus$  **RECORDS**  $\Rightarrow \oplus$  **OSCILLOGRAPHY** menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/record.

Table 5-1: OSCILLOGRAPHY CYCLES/RECORD EXAMPLE

| # RECORDS | # CT/VTS | SAMPLE<br>RATE | # DIGITALS | # ANALOGS | CYCLES/<br>RECORD |
|-----------|----------|----------------|------------|-----------|-------------------|
| 1         | 1        | 8              | 0          | 0         | 1872.0            |
| 1         | 1        | 16             | 16         | 0         | 1685.0            |
| 8         | 1        | 16             | 16         | 0         | 266.0             |
| 8         | 1        | 16             | 16         | 4         | 219.5             |
| 8         | 2        | 16             | 16         | 4         | 93.5              |
| 8         | 2        | 16             | 64         | 16        | 93.5              |
| 8         | 2        | 32             | 64         | 16        | 57.6              |
| 8         | 2        | 64             | 64         | 16        | 32.3              |
| 32        | 2        | 64             | 64         | 16        | 9.5               |

A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".

The **TRIGGER POSITION** is programmable as a percent of the total buffer size (e.g. 10%, 50%, 75%, etc.). A trigger position of 25% consists of 25% pre- and 75% post-trigger data.

The **TRIGGER SOURCE** is always captured in oscillography and may be any FlexLogic<sup>™</sup> parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.

The AC INPUT WAVEFORMS setting determines the sampling rate at which AC input signals (i.e. current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle, i.e. it has no effect on the fundamental calculations of the device.

An ANALOG CHANNEL setting selects the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to 'Off' are ignored. The parameters available in a given relay are dependent on: (a) the type of relay, (b) the type and number of CT/VT hardware modules installed, and (c) the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. Tables of all possible analog metering actual value parameters are presented in Appendix A: FLEXANALOG PARAMETERS. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.

All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:

<slot\_letter><terminal\_number>—<I or V><phase A, B, or C, or 4th input>


The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on terminal 2 of the CT/VT module in slot F. If there are no CT/VT modules and Analog Input modules, no analog traces will appear in the file; only the digital traces will appear.



When the NUMBER OF RECORDS setting is altered, all oscillography records will be CLEARED.

## **5.2.8 DATA LOGGER**

### 



The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to the URPC software and displayed with 'parameters' on the vertical axis and 'time' on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.

For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use.

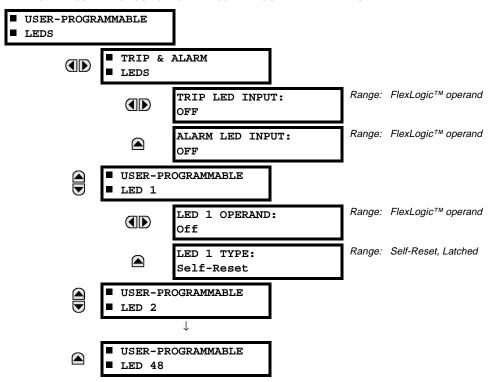


Changing any setting affecting Data Logger operation will clear any data that is currently in the log.

## **DATA LOGGER RATE:**

This setting selects the time interval at which the actual value data will be recorded.

# **DATA LOGGER CHNL 1 (to 16):**


This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. Tables of all possible analog metering actual value parameters are presented in Appendix A: FLEXANALOG PARAMETERS. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display – entering this number via the relay keypad will cause the corresponding parameter to be displayed.

# **DATA LOGGER CONFIG:**

This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without overwriting old data.

## 5.2.9 USER-PROGRAMMABLE LEDS

### PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE LEDS

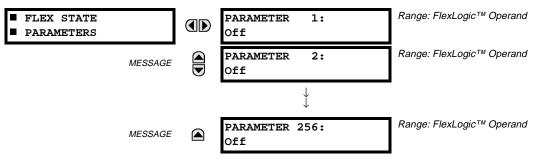


The TRIP and ALARM LEDs are on LED panel 1. Each indicator can be programmed to become illuminated when the selected FlexLogic<sup>™</sup> operand is in the logic 1 state. There are 48 amber LEDs across the relay faceplate LED panels. Each of these indicators can be programmed to illuminate when the selected FlexLogic<sup>™</sup> operand is in the logic 1 state.

• LEDs 1 through 24 inclusive are on LED panel 2; LEDs 25 through 48 inclusive are on LED panel 3.

Refer to the LED INDICATORS section in the HUMAN INTERFACES chapter for the locations of these indexed LEDs. This menu selects the operands to control these LEDs. Support for applying user-customized labels to these LEDs is provided. If the LED x TYPE setting is "Self-Reset" (default setting), the LED illumination will track the state of the selected LED operand. If the LED x TYPE setting is 'Latched', the LED, once lit, remains so until reset by the faceplate RESET button, from a remote device via a communications channel, or from any programmed operand, even if the LED operand state de-asserts.

Table 5-3: RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS)

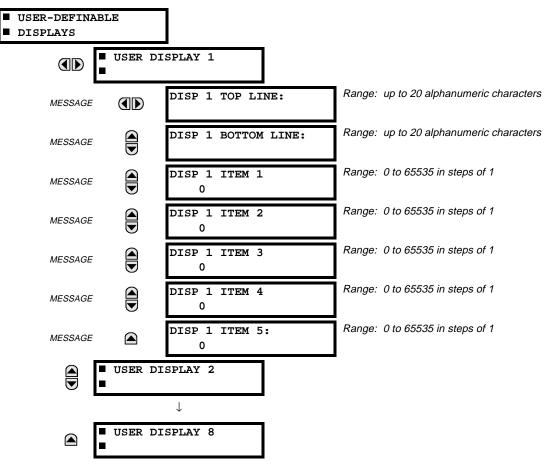

| SETTING        | PARAMETER           |
|----------------|---------------------|
| LED 1 Operand  | SETTING GROUP ACT 1 |
| LED 2 Operand  | SETTING GROUP ACT 2 |
| LED 3 Operand  | SETTING GROUP ACT 3 |
| LED 4 Operand  | SETTING GROUP ACT 4 |
| LED 5 Operand  | SETTING GROUP ACT 5 |
| LED 6 Operand  | SETTING GROUP ACT 6 |
| LED 7 Operand  | SETTING GROUP ACT 7 |
| LED 8 Operand  | SETTING GROUP ACT 8 |
| LED 9 Operand  | BREAKER 1 OPEN      |
| LED 10 Operand | BREAKER 1 CLOSED    |
| LED 11 Operand | BREAKER 1 TROUBLE   |
| LED 12 Operand | Off                 |

| LED 13 Operand         Off           LED 14 Operand         BREAKER 2 OPEN           LED 15 Operand         BREAKER 2 CLOSED |
|------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                            |
| LED 15 Operand BREAKER 2 CLOSED                                                                                              |
| LED 15 Operation BREAKER 2 GLOSED                                                                                            |
| LED 16 Operand BREAKER 2 TROUBLE                                                                                             |
| LED 17 Operand SYNC 1 SYNC OP                                                                                                |
| LED 18 Operand SYNC 2 SYNC OP                                                                                                |
| LED 19 Operand Off                                                                                                           |
| LED 20 Operand Off                                                                                                           |
| LED 21 Operand AR ENABLED                                                                                                    |
| LED 22 Operand AR DISABLED                                                                                                   |
| LED 23 Operand AR RIP                                                                                                        |
| LED 24 Operand AR LO                                                                                                         |

Refer to the CONTROL OF SETTINGS GROUPS example in the CONTROL ELEMENTS section for group activation.

## **5.2.10 FLEX STATE PARAMETERS**

### PATH: SETTINGS PRODUCT SETUP FLEX STATE PARAMETERS




This feature provides a mechanism where any of 256 selected FlexLogic<sup>™</sup> operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic<sup>™</sup> operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.

The state bits may be read out in the "Flex States" register array beginning at Modbus address 900 hex. 16 states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are 16 registers in total to accommodate the 256 state bits.

# **5.2.11 USER-DEFINABLE DISPLAYS**

# PATH: SETTINGS PRODUCT SETUP USER-DEFINABLE DISPLAYS



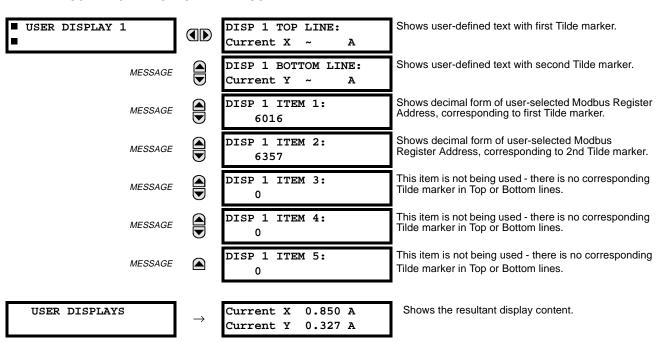
5 SETTINGS 5.2 PRODUCT SETUP

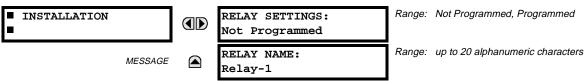
This menu provides a mechanism for manually creating up to 8 user-defined information displays in a convenient viewing sequence in the USER DISPLAYS menu (between the TARGETS and ACTUAL VALUES top-level menus). The sub-menus facilitate text entry and Modbus Register data pointer options for defining the User Display content.

Also, any existing system display can be automatically copied into an available User Display by selecting the existing display and pressing the ENTER key. The display will then prompt "ADD TO USER DISPLAY LIST?". After selecting 'Yes', a message will indicate that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content - this content may subsequently be edited.

This menu is used **to enter** user-defined text and/or user-selected Modbus-registered data fields into the particular User Display. Each User Display consists of two 20-character lines (TOP & BOTTOM). The Tilde (~) character is used to mark the start of a data field - the length of the data field needs to be accounted for. Up to 5 separate data fields (ITEM 1...5) can be entered in a User Display - the nth Tilde (~) refers to the nth ITEM.

A User Display may be entered from the faceplate keypad or the URPC interface (preferred for convenience).


To enter text characters in the TOP LINE and BOTTOM LINE from the faceplate keypad:


- 1. Select the line to be edited.
- 2. Press the key to enter text edit mode.
- 3. Use either VALUE key to scroll through the characters. A space is selected like a character.
- 4. Press the key to advance the cursor to the next position.
- 5. Repeat step 3 and continue entering characters until the desired text is displayed.
- 6. The key may be pressed at any time for context sensitive help information.
- 7. Press the key to store the new settings.

To enter a numerical value for any of the 5 ITEMs (the *decimal form* of the selected Modbus Register Address) from the faceplate keypad, use the number keypad. Use the value of '0' for any ITEMs not being used. Use the resulting key at any selected system display (Setting, Actual Value, or Command) which has a Modbus address, to view the *hexadecimal form* of the Modbus Register Address, then manually convert it to decimal form before entering it (URPC usage would conveniently facilitate this conversion).

Use the MENU key to go to the USER DISPLAYS menu **to view** the user-defined content. The current user displays will show in sequence, changing every 4 seconds. While viewing a User Display, press the ENTER key and then select the 'Yes" option **to remove** the display from the user display list. Use the MENU key again **to exit** the USER DISPLAYS menu.

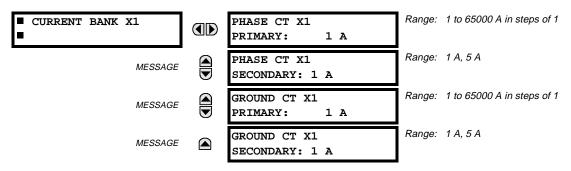
# **EXAMPLE USER DISPLAY SETUP AND RESULT:**





To safeguard against the installation of a relay whose settings have not been entered, the unit will not allow signaling of any output relay until **RELAY SETTINGS** is set to "Programmed". This setting is defaulted to "Not Programmed" when the relay leaves the factory. The UNIT NOT PROGRAMMED self-test error message is displayed automatically until the relay is put into the Programmed state.

The **RELAY NAME** setting allows the user to uniquely identify a relay. This name will appear on generated reports. This name is also used to identify specific devices which are engaged in automatically sending/receiving data over the Ethernet communications channel using the UCA2/MMS protocol.


5

5 SETTINGS 5.3 SYSTEM SETUP

**5.3.1 AC INPUTS** 

# a) CURRENT BANKS

PATH: SETTINGS ⇒ \$\Partial SYSTEM SETUP ⇒ AC INPUTS ⇒ CURRENT BANK X1



 $\mathbf{'X'} = \mathbf{F}, \mathbf{M}, \mathbf{or} \mathbf{U}. \mathbf{'F'}, \mathbf{'M'}, \mathbf{and} \mathbf{'U'}$  are module slot position letters. See also the section INTRODUCTION TO AC SOURCES.

Up to 6 banks of phase/ground CTs can be set.

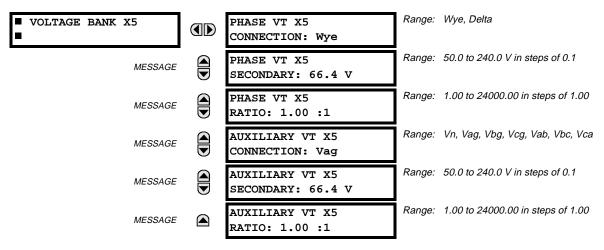
These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in Wye (star), the calculated phasor sum of the three phase currents (IA + IB + IC = Neutral Current = 3Io) is used as the input for the neutral overcurrent elements. In addition, a zero sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. For more details on CT connections, refer to the HARD-WARE chapter.

Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

If CT inputs (banks of current) are to be summed as one source current, the following rule applies:

# **EXAMPLE:**

SRC1 = F1 + F5 + U1


Where F1, F5, and U1 are banks of CTs with ratios of 500:1, 1000:1 and 800:1 respectively.

1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 and 800:1 ratio CTs will be adjusted to that which would be created by a 1000:1 CT before summation. If a protection element is set up to act on SRC1 currents, then PKP level of 1 pu will operate on 1000 A primary.

The same rule will apply for sums of currents from CTs with different secondary taps (5 A and 1 A).

# b) VOLTAGE BANKS

PATH: SETTINGS ⇒ \$\Partial SYSTEM SETUP ⇒ AC INPUTS ⇒ \$\Partial VOLTAGE BANK X1

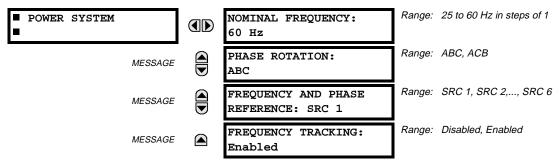


'X' = F, M, or U. 'F', 'M', and 'U' are module slot position letters. See also the INTRODUCTION TO AC SOURCES section.

Up to 3 banks of phase/auxiliary VTs can be set.

With VTs installed, the relay can be used to perform voltage measurements as well as power calculations. Enter the **PHASE VT xx CONNECTION** made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta". See the typical wiring diagram in the HARDWARE chapter for details.




The nominal Phase VT Secondary Voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.

For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 Volt VT in a Delta connection, the secondary voltage would be 115, i.e.  $(13800 / 14400) \times 120$ . For a Wye connection, the voltage value entered must be the phase to neutral voltage which would be  $115 / \sqrt{3} = 66.4$ .

On a 14.4 kV system with a Delta connection and a VT primary to secondary turns ratio of 14400:120, the voltage value entered would be 120, i.e. 14400 / 120.

**5.3.2 POWER SYSTEM** 

### PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SETUP ⇒ \$\Pi\$ POWER SYSTEM



The power system **NOMINAL FREQUENCY** value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The **PHASE ROTATION** setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either ABC or ACB. CT and VT inputs on the relay, labeled as A, B, and C, must be connected to system phases A, B, and C for correct operation.

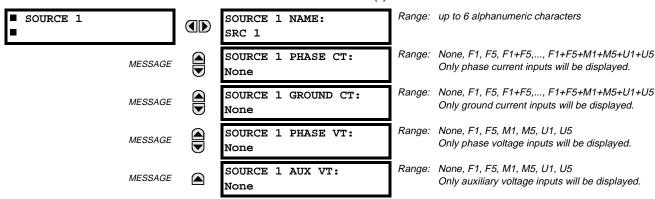
5 SETTINGS 5.3 SYSTEM SETUP

The FREQUENCY AND PHASE REFERENCE setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.

For three phase selection, phase A is used for angle referencing ( $V_{\text{ANGLE REF}} = V_A$ ), while Clarke transformation of the phase signals is used for frequency metering and tracking ( $V_{\text{FREQUENCY}} = (2 V_A - V_B - V_C)/3$ ) for better performance during fault, open pole, and VT and CT fail conditions.

The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.

Phase angle of the reference signal will always display zero degrees and all other phase angles will be relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.


The phase angle referencing is done via a phase locked loop, which can synchronize independent UR relays if they have the same AC signal reference. These results in very precise correlation of time tagging in the event recorder between different UR relays provided the relays have an IRIG-B connection.



**FREQUENCY TRACKING** should only be set to "Disabled" in very unusual circumstances; consult the factory for special variable-frequency applications.

**5.3.3 SIGNAL SOURCES** 

## PATH: SETTINGS ⇔ \$\Partial \text{ SYSTEM SETUP \$\Partial \Partial SIGNAL SOURCES \$\Partial \text{ SOURCE 1(6)}}



There are up to 6 identical Source setting menus available, numbered from 1 to 6.

"SRC 1" can be replaced by whatever name is defined by the user for the associated source.

'F', 'U', and 'M' are module slot position letters. The number following the letter represents either the first bank of four channels (1, 2, 3, 4) called '1' or the second bank of four channels (5, 6, 7, 8) called '5' in a particular CT/VT module. Refer to the INTRODUCTION TO AC SOURCES section at the beginning of this chapter for additional details.

It is possible to select the sum of any combination of CTs. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

The approach used to configure the AC Sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each Source is entered, including specifying which CTs will be summed together.

# **USER SELECTION OF AC PARAMETERS FOR COMPARATOR ELEMENTS:**

CT/VT modules automatically calculate all current and voltage parameters that can be calculated from the inputs available. Users will have to select the specific input parameters that are to be measured by every element, as selected in the element settings. The internal design of the element specifies which type of parameter to use and provides a setting for selection of the Source. In some elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the Source, the second selects between fundamental phasor and RMS.

## **AC INPUT ACTUAL VALUES:**

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage input sections of Actual Values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured Source are displayed in the Sources section of Actual Values.

# **DISTURBANCE DETECTORS (Internal):**

The 50DD element is a sensitive current disturbance detector that is used to detect any disturbance on the protected system. 50DD is intended for use in conjunction with measuring elements, blocking of current based elements (to prevent maloperation as a result of the wrong settings), and starting oscillography data capture. A disturbance detector is provided for every Source.

The 50DD function responds to the changes in magnitude of the sequence currents.

The disturbance detector scheme logic is as follows:

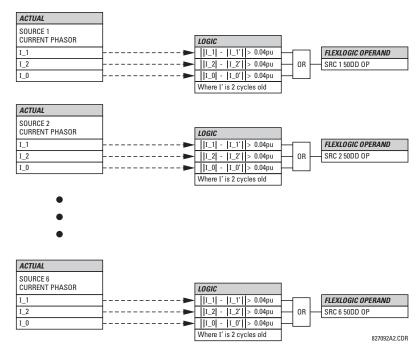



Figure 5-2: DISTURBANCE DETECTOR LOGIC DIAGRAM

# **EXAMPLE USE OF SOURCES:**

An example of the use of Sources, with a relay with three CT/VT modules, is shown in the diagram below. A relay could have the following hardware configuration:

| INCREASING SLOT POSITION LETTER> |                |                |  |  |
|----------------------------------|----------------|----------------|--|--|
| CT/VT MODULE 1                   | CT/VT MODULE 2 | CT/VT MODULE 3 |  |  |
| CTs                              | CTs            | VTs            |  |  |
| CTs                              | VTs            |                |  |  |

5 SETTINGS 5.3 SYSTEM SETUP

This configuration could be used on a two winding transformer, with one winding connected into a breaker-and-a-half system. The following figure shows the arrangement of Sources used to provide the functions required in this application, and the CT/VT inputs that are used to provide the data.

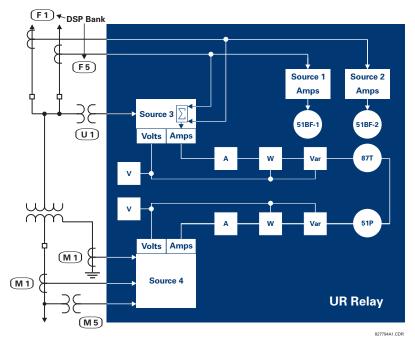
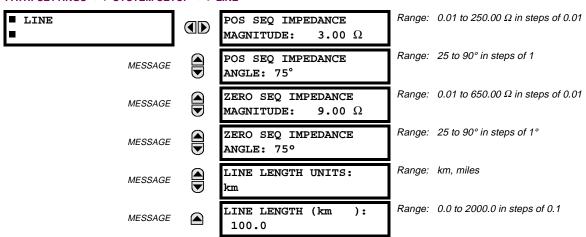




Figure 5-3: EXAMPLE USE OF SOURCES

5.3.4 LINE

# PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SETUP ⇒ \$\Pi\$ LINE



These settings specify the characteristics of the line. The line impedance value should be entered as secondary ohms.

This data is used for fault location calculations. See the **SETTINGS**  $\Rightarrow$  **PRODUCT SETUP**  $\Rightarrow \emptyset$  **FAULT REPORT** menu for assigning the Source and Trigger for fault calculations.

# PATH: SETTINGS ⇔ \$\Pi\$ SYSTEM SETUP \$\Pi\$ BREAKERS \$\Rightarrow\$ BREAKER 1(2)



A description of the operation of the breaker control and status monitoring features is provided in the HUMAN INTER-FACES chapter. Only information concerning programming of the associated settings is covered here. These features are provided for two breakers; a user may use only those portions of the design relevant to a single breaker, which must be breaker No. 1.

# **BREAKER 1 FUNCTION:**

Set to "Enable" to allow the operation of any breaker control feature.

# **BREAKER1 PUSH BUTTON CONTROL:**

Set to "Enable" to allow faceplate push button operations.

5 SETTINGS 5.3 SYSTEM SETUP

### **BREAKER 1 NAME:**

Assign a user-defined name (up to 6 characters) to the breaker. This name will be used in flash messages related to Breaker No. 1.

## **BREAKER 1 MODE:**

Selects "3-pole" mode, where all breaker poles are operated simultaneously, or "1-pole" mode where all breaker poles are operated either independently or simultaneously.

## **BREAKER 1 OPEN:**

Selects an operand that creates a programmable signal to operate an output relay to open Breaker No. 1.

## **BREAKER 1 CLOSE:**

Selects an operand that creates a programmable signal to operate an output relay to close Breaker No. 1.

## BREAKER 1 ΦA/3-POLE:

Selects an operand, usually a contact input connected to a breaker auxiliary position tracking mechanism. This input can be either a 52/a or 52/b contact, or a combination the 52/a and 52/b contacts, that must be programmed to create a logic 0 when the breaker is open. If **BREAKER 1 MODE** is selected as "3-Pole", this setting selects a single input as the operand used to track the breaker open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and settings **BREAKER 1 DB** and **BREAKER 1 DC** select operands to track phases B and C, respectively.

#### BREAKER 1 ΦB:

If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase B as above for phase A.

### BREAKER 1 $\Phi$ C:

If the mode is selected as 3-pole, this setting has no function. If the mode is selected as 1-pole, this input is used to track phase C as above for phase A.

### **BREAKER 1 EXT ALARM:**

Selects an operand, usually an external contact input, connected to a breaker alarm reporting contact.

# **BREAKER 1 ALARM DELAY:**

Sets the delay interval during which a disagreement of status among the three pole position tracking operands will not declare a pole disagreement, to allow for non-simultaneous operation of the poles. If single-pole tripping and reclosing is used, the breaker may trip unsymmetrically for faults. In this case, the minimum alarm delay setting must exceed the maximum time required for fault clearing and reclosing by a suitable margin.

### **BREAKER 1 OUT OF SV:**

Selects an operand indicating that Breaker No. 1 is out-of-service.

# **MANUAL CLOSE RECAL1 TIME:**

Sets the interval required to maintain setting changes in effect after an operator has initiated a manual close command to operate a circuit breaker.

# **UCA SBO TIMEOUT:**

The Select-Before-Operate timer specifies an interval from the receipt of the Breaker Control Select signal (pushbutton USER 1 on the relay faceplate) until the automatic de-selection of the breaker, so that the breaker does not remain selected indefinitely. This setting is active only if **BREAKER PUSHBUTTON CONTROL** is "Enabled".

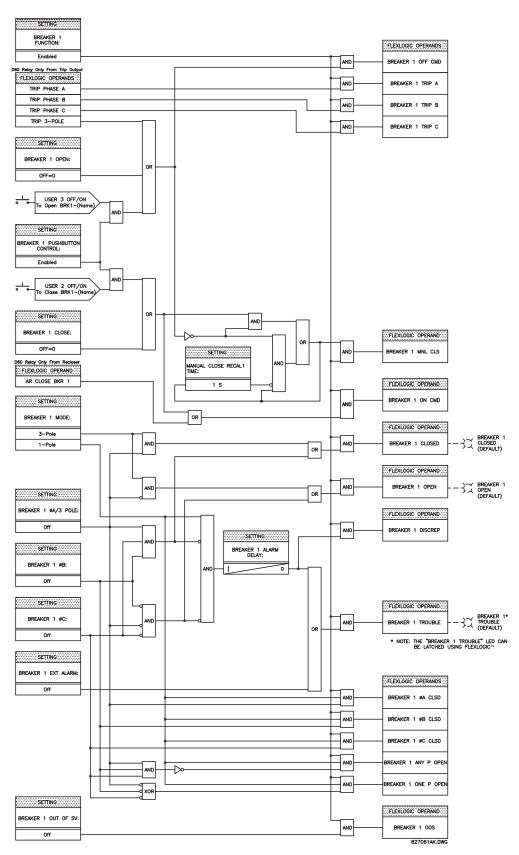



Figure 5-4: DUAL BREAKER CONTROL SCHEME LOGIC

5.3.6 FLEXCURVES™

### PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SETUP ⇒ \$\Pi\$ FLEXCURVES ⇒ FLEXCURVE A

■ FLEXCURVE A ■

FLEXCURVE A TIME AT 0.00 xPKP: 0 ms

Range: 0 to 65535 ms in steps of 1

FlexCurves<sup>™</sup> A and B have settings for entering times to Reset/Operate at the following pickup levels: 0.00 to 0.98 / 1.03 to 20.00. This data is converted into 2 continuous curves by linear interpolation between data points. To enter a custom FlexCurve<sup>™</sup>, enter the Reset/Operate time (using the WALUE keys) for each selected pickup point (using the MESSAGE keys) for the desired protection curve (A or B).

Table 5-9: FLEXCURVE™ TABLE

| RESET | TIME<br>MS | RESET | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS |
|-------|------------|-------|------------|---------|------------|---------|------------|---------|------------|---------|------------|
| 0.00  |            | 0.68  |            | 1.03    |            | 2.9     |            | 4.9     |            | 10.5    |            |
| 0.05  |            | 0.70  |            | 1.05    |            | 3.0     |            | 5.0     |            | 11.0    |            |
| 0.10  |            | 0.72  |            | 1.1     |            | 3.1     |            | 5.1     |            | 11.5    |            |
| 0.15  |            | 0.74  |            | 1.2     |            | 3.2     |            | 5.2     |            | 12.0    |            |
| 0.20  |            | 0.76  |            | 1.3     |            | 3.3     |            | 5.3     |            | 12.5    |            |
| 0.25  |            | 0.78  |            | 1.4     |            | 3.4     |            | 5.4     |            | 13.0    |            |
| 0.30  |            | 0.80  |            | 1.5     |            | 3.5     |            | 5.5     |            | 13.5    |            |
| 0.35  |            | 0.82  |            | 1.6     |            | 3.6     |            | 5.6     |            | 14.0    |            |
| 0.40  |            | 0.84  |            | 1.7     |            | 3.7     |            | 5.7     |            | 14.5    |            |
| 0.45  |            | 0.86  |            | 1.8     |            | 3.8     |            | 5.8     |            | 15.0    |            |
| 0.48  |            | 0.88  |            | 1.9     |            | 3.9     |            | 5.9     |            | 15.5    |            |
| 0.50  |            | 0.90  |            | 2.0     |            | 4.0     |            | 6.0     |            | 16.0    |            |
| 0.52  |            | 0.91  |            | 2.1     |            | 4.1     |            | 6.5     |            | 16.5    |            |
| 0.54  |            | 0.92  |            | 2.2     |            | 4.2     |            | 7.0     |            | 17.0    |            |
| 0.56  |            | 0.93  |            | 2.3     |            | 4.3     |            | 7.5     |            | 17.5    |            |
| 0.58  |            | 0.94  |            | 2.4     | _          | 4.4     | _          | 8.0     | _          | 18.0    |            |
| 0.60  |            | 0.95  |            | 2.5     |            | 4.5     |            | 8.5     |            | 18.5    |            |
| 0.62  |            | 0.96  |            | 2.6     | _          | 4.6     |            | 9.0     | _          | 19.0    |            |
| 0.64  |            | 0.97  |            | 2.7     |            | 4.7     |            | 9.5     |            | 19.5    |            |
| 0.66  |            | 0.98  |            | 2.8     |            | 4.8     |            | 10.0    |            | 20.0    |            |



The relay using a given FlexCurve<sup>™</sup> applies linear approximation for times between the user-entered points. Special care must be applied when setting the two points that are close to the multiple of pickup of 1, i.e. 0.98 pu and 1.03 pu. It is recommended to set the two times to a similar value; otherwise, the linear approximation may result in undesired behavior for the operating quantity the is close to 1.00 pu.

### 5.4.1 INTRODUCTION TO FLEXLOGIC™

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic<sup>™</sup>. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR relay involved in this process are shown below.

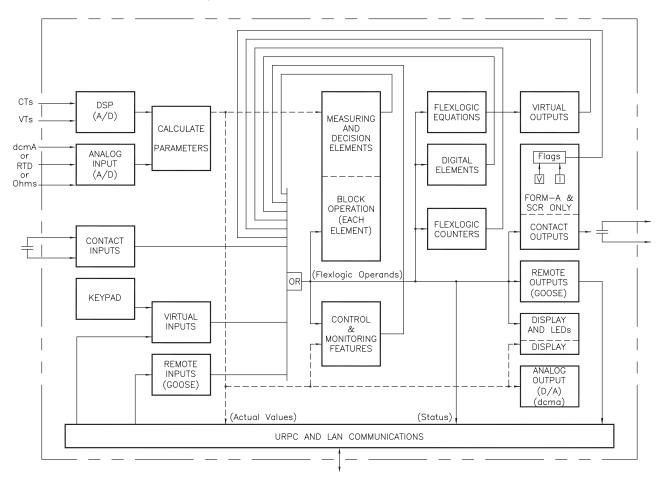



Figure 5-5: UR ARCHITECTURE OVERVIEW

The states of all digital signals used in the UR are represented by flags (or FlexLogic<sup>™</sup> operands, which are described later in this section). A digital "1" is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic<sup>™</sup> equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.

If more complex logic than presented above is required, it is implemented via FlexLogic<sup>™</sup>. For example, if it is desired to have the closed state of contact input H7a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic<sup>™</sup> equation. This equation ANDs the two control inputs to produce a "virtual output" which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic<sup>™</sup> equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic™ minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

5 SETTINGS 5.4 FLEXLOGIC™

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic<sup>™</sup>).

FlexLogic™ allows users to customize the relay through a series of equations that consist of <u>operators</u> and <u>operands</u>. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a <u>virtual output</u>. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.

A FlexLogic<sup>™</sup> equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a VIRTUAL OUTPUT flag. Evaluation of an equation results in either a 1 (= ON, i.e. flag set) or 0 (= OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.

Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table: FLEXLOGIC™ OPERAND TYPES.

Table 5-10: UR FLEXLOGIC™ OPERAND TYPES

| OPERAND TYPE               | STATE       | EXAMPLE FORMAT    | CHARACTERISTICS<br>[INPUT IS '1' (= ON) IF]                                                                                                                                                          |
|----------------------------|-------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact Input              | On          | Cont Ip On        | Voltage is presently applied to the input (external contact closed).                                                                                                                                 |
|                            | Off         | Cont Ip Off       | Voltage is presently not applied to the input (external contact open).                                                                                                                               |
| Contact Output             | Voltage On  | Cont Op 1 VOn     | Voltage exists across the contact.                                                                                                                                                                   |
| (type Form-A contact only) | Voltage Off | Cont Op 1 VOff    | Voltage does not exists across the contact.                                                                                                                                                          |
| • ,                        | Current On  | Cont Op 1 IOn     | Current is flowing through the contact.                                                                                                                                                              |
|                            | Current Off | Cont Op 1 IOff    | Current is not flowing through the contact.                                                                                                                                                          |
| Element<br>(Analog)        | Pickup      | PHASE TOC1 PKP    | The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values.                 |
|                            | Dropout     | PHASE TOC1 DPO    | This operand is the logical inverse of the above PKP operand.                                                                                                                                        |
|                            | Operate     | PHASE TOC1 OP     | The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing. |
|                            | Block       | PH DIR1 BLK       | The output of the comparator is set to the block function.                                                                                                                                           |
| Element                    | Pickup      | Dig Element 1 PKP | The input operand is at logic 1.                                                                                                                                                                     |
| (Digital)                  | Dropout     | Dig Element 1 DPO | This operand is the logical inverse of the above PKP operand.                                                                                                                                        |
|                            | Operate     | Dig Element 1 OP  | The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.                |
| Element                    | Higher than | Counter 1 HI      | The number of pulses counted is above the set number.                                                                                                                                                |
| (Digital Counter)          | Equal to    | Counter 1 EQL     | The number of pulses counted is equal to the set number.                                                                                                                                             |
|                            | Lower than  | Counter 1 LO      | The number of pulses counted is below the set number.                                                                                                                                                |
| Fixed                      | On          | On                | Logic 1                                                                                                                                                                                              |
|                            | Off         | Off               | Logic 0                                                                                                                                                                                              |
| Remote Input               | On          | REMOTE INPUT 1 On | The remote input is presently in the ON state.                                                                                                                                                       |
| Virtual Input              | On          | Virt Ip 1 On      | The virtual input is presently in the ON state.                                                                                                                                                      |
| Virtual Output             | On          | Virt Op 1 On      | The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").                                                              |

The operands available for this relay are listed alphabetically by types in the following table.

Table 5–11: D60 FLEXLOGIC™ OPERANDS (Sheet 1 of 6)

| OPERAND TYPE                       | OPERAND SYNTAX                                                                                                                                                                                                                                                                            | OPERAND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT:<br>Autoreclose<br>(1P/3P) | AR ENABLED AR DISABLED AR RIP AR 1-P RIP AR 3-P/1 RIP AR 3-P/2 RIP AR LO AR BKR1 BLK AR BKR2 BLK AR CLOSE BKR1 AR CLOSE BKR2 AR FORCE 3-P TRIP AR SHOT CNT > 0 AR ZONE 1 EXTENT AR INCOMPLETE SEQ AR RESET                                                                                | Autoreclosure is enabled and ready to perform Autoreclosure is disabled Autoreclosure is in "Reclose in Progress" state A single-pole reclosure is in progress A three-pole reclosure is in progress, via DEAD TIME 1 A three-pole reclosure is in progress, via DEAD TIME 2 Autoreclosure is in lockout state Reclosure of Breaker 1 is blocked Reclosure of Breaker 2 is blocked Reclosure of Breaker 2 signal Reclose Breaker 1 signal Reclose Breaker 2 signal Force any trip to a three-phase trip The first "CLOSE BKR X" signal has been issued The Zone 1 Distance function must be set to the extended overreach value The incomplete sequence timer timed out AR has been reset either manually or by the reset timer |
| ELEMENT:<br>Auxiliary OV           | AUX OV1 PKP<br>AUX OV1 DPO<br>AUX OV1 OP                                                                                                                                                                                                                                                  | Auxiliary Overvoltage element has picked up<br>Auxiliary Overvoltage element has dropped out<br>Auxiliary Overvoltage element has operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ELEMENT:<br>Auxiliary UV           | AUX UV1 PKP<br>AUX UV1 DPO<br>AUX UV1 OP                                                                                                                                                                                                                                                  | Auxiliary Undervoltage element has picked up<br>Auxiliary Undervoltage element has dropped out<br>Auxiliary Undervoltage element has operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ELEMENT:<br>Blocking Scheme        | DIR BLOCK TX INIT DIR BLOCK TX1 STOP DIR BLOCK TX2 STOP DIR BLOCK TX3 STOP DIR BLOCK TX4 STOP DIR BLOCK TRIP A DIR BLOCK TRIP B DIR BLOCK TRIP C DIR BLOCK TRIP 3P DIR BLOCK OP                                                                                                           | Directional blocking signal is initiated Directional blocking scheme de-asserts transmit bit no. 1 Directional blocking scheme de-asserts transmit bit no. 2 Directional blocking scheme de-asserts transmit bit no. 3 Directional blocking scheme de-asserts transmit bit no. 4 Directional blocking scheme has operated to trip phase A Directional blocking scheme has operated to trip phase B Directional blocking scheme has operated to trip phase C Directional blocking scheme has tripped all 3 phases Directional blocking scheme has operated                                                                                                                                                                       |
| ELEMENT:<br>Breaker Arcing         | BKR ARC 1 OP<br>BKR ARC 2 OP                                                                                                                                                                                                                                                              | Breaker Arcing 1 is operated<br>Breaker Arcing 2 is operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ELEMENT<br>(Breaker Failure)       | BKR FAIL 1 RETRIPA<br>BKR FAIL 1 RETRIPB<br>BKR FAIL 1 RETRIPC<br>BKR FAIL 1 RETRIP<br>BKR FAIL 1 T1 OP<br>BKR FAIL 1 T2 OP<br>BKR FAIL 1 T3 OP<br>BKR FAIL 1 TRIP OP                                                                                                                     | Breaker Failure 1 re-trip phase A (only for 1-pole schemes) Breaker Failure 1 re-trip phase B (only for 1-pole schemes) Breaker Failure 1 re-trip phase C (only for 1-pole schemes) Breaker Failure 1 re-trip 3-phase Breaker Failure 1 Timer 1 is operated Breaker Failure 1 Timer 2 is operated Breaker Failure 1 Timer 3 is operated Breaker Failure 1 Timer 3 is operated                                                                                                                                                                                                                                                                                                                                                   |
|                                    | BKR FAIL 2                                                                                                                                                                                                                                                                                | Same set of operands as shown for BKR FAIL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ELEMENT:<br>Breaker Control        | BREAKER 1 OFF CMD BREAKER 1 ON CMD BREAKER 1 OA CLSD BREAKER 1 OB CLSD BREAKER 1 OC CLSD BREAKER 1 CLOSED BREAKER 1 OPEN BREAKER 1 DISCREP BREAKER 1 TROUBLE BREAKER 1 TROUBLE BREAKER 1 TRIP A BREAKER 1 TRIP A BREAKER 1 TRIP C BREAKER 1 ANY P OPEN BREAKER 1 ONE P OPEN BREAKER 1 OOS | Breaker 1 OFF command Breaker 1 DN command Breaker 1 phase A is closed Breaker 1 phase B is closed Breaker 1 phase C is closed Breaker 1 is open Breaker 1 is open Breaker 1 trouble alarm Breaker 1 trouble alarm Breaker 1 manual close Breaker 1 trip phase A command Breaker 1 trip phase B command Breaker 1 trip phase B command At least one pole of Breaker 1 is open Only one pole of Breaker 1 is open Breaker 1 is out of service                                                                                                                                                                                                                                                                                    |
| ELEMENT:                           |                                                                                                                                                                                                                                                                                           | Same set of operands as shown for BREAKER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ELEMENT:<br>Digital Counter        | Counter 1 HI Counter 1 EQL Counter 1 LO  Counter 8 HI Counter 8 EQL Counter 8 LO                                                                                                                                                                                                          | Digital Counter 1 output is 'more than' comparison value Digital Counter 1 output is 'equal to' comparison value Digital Counter 1 output is 'less than' comparison value  Digital Counter 8 output is 'more than' comparison value Digital Counter 8 output is 'equal to' comparison value Digital Counter 8 output is 'less than' comparison value                                                                                                                                                                                                                                                                                                                                                                            |

Table 5–11: D60 FLEXLOGIC™ OPERANDS (Sheet 2 of 6)

| OPERAND TYPE                                    | OPERAND SYNTAX                                                                                                                                                                                                                                           | OPERAND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT:<br>Digital Element                     | Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO                                                                                                                                                                                                     | Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 | Dig Element 16 PKP<br>Dig Element 16 OP<br>Dig Element 16 DPO                                                                                                                                                                                            | Digital Element 16 is picked up<br>Digital Element 16 is operated<br>Digital Element 16 is dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ELEMENT:<br>Disturbance<br>Detector             | SRCx 50DD OP                                                                                                                                                                                                                                             | Source x Disturbance Detector is operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ELEMENT:<br>DUTT                                | DUTT TX1 DUTT TX2 DUTT TX3 DUTT TX4 DUTT TRIP A DUTT TRIP B DUTT TRIP C DUTT TRIP 3P DUTT OP                                                                                                                                                             | Direct under-reaching transfer trip asserts transmit bit no. 1 Direct under-reaching transfer trip asserts transmit bit no. 2 Direct under-reaching transfer trip asserts transmit bit no. 3 Direct under-reaching transfer trip asserts transmit bit no. 4 Direct under-reaching transfer trip has operated to trip phase A Direct under-reaching transfer trip has operated to trip phase B Direct under-reaching transfer trip has operated to trip phase C Direct under-reaching transfer trip has operated to trip all three phases Direct under-reaching transfer trip has operated                                                                              |
| ELEMENT:<br>FlexElements™                       | FLEXELEMENT 1 PKP<br>FLEXELEMENT 1 OP<br>FLEXELEMENT 1 DPO<br>FLEXELEMENT 8 PKP                                                                                                                                                                          | FlexElement 1 has picked up FlexElement 1 has operated FlexElement 1 has dropped out FlexElement 8 has picked up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 | FLEXELEMENT 8 OP<br>FLEXELEMENT 8 DPO                                                                                                                                                                                                                    | FlexElement 8 has operated FlexElement 8 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ELEMENT:<br>Ground Distance                     | GND DIST ZX PKP GND DIST ZX OP GND DIST ZX OP A GND DIST ZX OP B GND DIST ZX OP C GND DIST ZX PKP A GND DIST ZX PKP B GND DIST ZX PKP B GND DIST ZX PKP C GND DIST ZX SUPN IN GND DIST ZX DIR SUPN GND DIST ZX DPO A GND DIST ZX DPO B GND DIST ZX DPO C | Ground Distance Zone x has picked up Ground Distance Zone x has operated Ground Distance Zone x phase A has operated Ground Distance Zone x phase B has operated Ground Distance Zone x phase C has operated Ground Distance Zone x phase C has picked up Ground Distance Zone x phase B has picked up Ground Distance Zone x phase C has picked up Ground Distance Zone x neutral is supervising Ground Distance Zone x Directional is supervising Ground Distance Zone x phase A has dropped out Ground Distance Zone x phase B has dropped out Ground Distance Zone x phase C has dropped out Ground Distance Zone x phase C has dropped out                        |
|                                                 | GND DIST Z2                                                                                                                                                                                                                                              | Same set of operands as shown for GND DIST Z1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ELEMENT:<br>Ground IOC                          | GROUND IOC1 PKP<br>GROUND IOC1 OP<br>GROUND IOC1 DPO                                                                                                                                                                                                     | Ground Instantaneous Overcurrent 1 has picked up<br>Ground Instantaneous Overcurrent 1 has operated<br>Ground Instantaneous Overcurrent 1 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                 | GROUND IOC2                                                                                                                                                                                                                                              | Same set of operands as shown for GROUND IOC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ELEMENT:<br>Ground TOC                          | GROUND TOC1 PKP<br>GROUND TOC1 OP<br>GROUND TOC1 DPO                                                                                                                                                                                                     | Ground Time Overcurrent 1 has picked up Ground Time Overcurrent 1 has operated Ground Time Overcurrent 1 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | GROUND TOC2                                                                                                                                                                                                                                              | Same set of operands as shown for GROUND TOC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ELEMENT:<br>Hybrid POTT                         | HYBRID POTT TX1 HYBRID POTT TX2 HYBRID POTT TX3 HYBRID POTT TX4 HYBRID POTT TRIP A HYBRID POTT TRIP B HYBRID POTT TRIP C HYBRID POTT TRIP 3P HYBRID POTT OP                                                                                              | Hybrid permissive over-reaching transfer trip asserts transmit bit no. 1 Hybrid permissive over-reaching transfer trip asserts transmit bit no. 2 Hybrid permissive over-reaching transfer trip asserts transmit bit no. 3 Hybrid permissive over-reaching transfer trip asserts transmit bit no. 4 Hybrid permissive over-reaching transfer trip has operated to trip phase A Hybrid permissive over-reaching transfer trip has operated to trip phase B Hybrid permissive over-reaching transfer trip has operated to trip phase C Hybrid permissive over-reaching transfer trip has tripped all 3 phases Hybrid permissive over-reaching transfer trip has operated |
| ELEMENT:<br>Line Pickup                         | LINE PICKUP OP<br>LINE PICKUP PKP<br>LINE PICKUP DPO<br>LINE PICKUP UV PKP<br>LINE PICKUP LEO PKP                                                                                                                                                        | Line Pickup has operated Line Pickup has picked up Line Pickup has dropped out Line Pickup Undervoltage has picked up Line Pickup Line End Open has picked up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ELEMENT:<br>Load Encroachment                   | LOAD ENCRMNT PKP<br>LOAD ENCRMNT OP<br>LOAD ENCRMNT DPO                                                                                                                                                                                                  | Load Encroachment has picked up<br>Load Encroachment has operated<br>Load Encroachment has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ELEMENT:<br>Negative Sequence<br>Directional OC | NEG SEQ DIR OC1 FWD<br>NEG SEQ DIR OC1 REV<br>NEG SEQ DIR OC2 FWD<br>NEG SEQ DIR OC2 REV                                                                                                                                                                 | Negative Sequence Directional OC1 Forward has operated Negative Sequence Directional OC1 Reverse has operated Negative Sequence Directional OC2 Forward has operated Negative Sequence Directional OC2 Reverse has operated                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 5–11: D60 FLEXLOGIC™ OPERANDS (Sheet 3 of 6)

| OPERAND TYPE                         | OPERAND SYNTAX                                                                                                                                                                                                                        | OPERAND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT:<br>Negative Sequence<br>IOC | NEG SEQ IOC1 PKP<br>NEG SEQ IOC1 OP<br>NEG SEQ IOC1 DPO                                                                                                                                                                               | Negative Sequence Instantaneous Overcurrent 1 has picked up<br>Negative Sequence Instantaneous Overcurrent 1 has operated<br>Negative Sequence Instantaneous Overcurrent 1 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | NEG SEQ IOC2                                                                                                                                                                                                                          | Same set of operands as shown for NEG SEQ IOC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELEMENT:<br>Negative Sequence<br>OV  | NEG SEQ OV PKP<br>NEG SEQ OV DPO<br>NEG SEQ OV OP                                                                                                                                                                                     | Negative Sequence Overvoltage element has picked up<br>Negative Sequence Overvoltage element has dropped out<br>Negative Sequence Overvoltage element has operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ELEMENT:<br>Negative Sequence<br>TOC | NEG SEQ TOC1 PKP<br>NEG SEQ TOC1 OP<br>NEG SEQ TOC1 DPO                                                                                                                                                                               | Negative Sequence Time Overcurrent 1 has picked up<br>Negative Sequence Time Overcurrent 1 has operated<br>Negative Sequence Time Overcurrent 1 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | NEG SEQ TOC2                                                                                                                                                                                                                          | Same set of operands as shown for NEG SEQ TOC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELEMENT:<br>Neutral IOC              | NEUTRAL IOC1 PKP<br>NEUTRAL IOC1 OP<br>NEUTRAL IOC1 DPO                                                                                                                                                                               | Neutral Instantaneous Overcurrent 1 has picked up<br>Neutral Instantaneous Overcurrent 1 has operated<br>Neutral Instantaneous Overcurrent 1 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | NEUTRAL IOC2                                                                                                                                                                                                                          | Same set of operands as shown for NEUTRAL IOC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELEMENT:<br>Neutral OV               | NEUTRAL OV1 PKP<br>NEUTRAL OV1 DPO<br>NEUTRAL OV1 OP                                                                                                                                                                                  | Neutral Overvoltage element has picked up<br>Neutral Overvoltage element has dropped out<br>Neutral Overvoltage element has operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ELEMENT:<br>Neutral TOC              | NEUTRAL TOC1 PKP<br>NEUTRAL TOC1 OP<br>NEUTRAL TOC1 DPO                                                                                                                                                                               | Neutral Time Overcurrent 1 has picked up<br>Neutral Time Overcurrent 1 has operated<br>Neutral Time Overcurrent 1 has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | NEUTRAL TOC2                                                                                                                                                                                                                          | Same set of operands as shown for NEUTRAL TOC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELEMENT:<br>Neutral Directional      | NTRL DIR OC1 FWD<br>NTRL DIR OC1 REV                                                                                                                                                                                                  | Neutral Directional OC1 Forward has operated<br>Neutral Directional OC1 Reverse has operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | NTRL DIR OC2                                                                                                                                                                                                                          | Same set of operands as shown for NTRL DIR OC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELEMENT:<br>Open Pole Detector       | OPEN POLE OP ΦA OPEN POLE OP ΦB OPEN POLE OP ΦC OPEN POLE BKR ΦA OP                                                                                                                                                                   | Open pole condition is detected in phase A Open pole condition is detected in phase B Open pole condition is detected in phase C Based on the breaker(s) auxiliary contacts, an open pole condition is detected on phase A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | OPEN POLE BKR ΦB OP OPEN POLE BKR ΦC OP                                                                                                                                                                                               | Based on the breaker(s) auxiliary contacts, an open pole condition is detected on phase B Based on the breaker(s) auxiliary contacts, an open pole condition is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | OPEN POLE BLK N                                                                                                                                                                                                                       | detected on phase C Blocking signal for neutral, ground, and negative-sequence overcurrent element is established                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | OPEN POLE BLK AB<br>OPEN POLE BLK BC<br>OPEN POLE BLK CA<br>OPEN POLE OP                                                                                                                                                              | Blocking signal for the AB phase distance elements is established Blocking signal for the BC phase distance elements is established Blocking signal for the CA phase distance elements is established Open pole detector is operated                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ELEMENT:<br>Phase Directional        | PH DIR1 BLK A PH DIR1 BLK B PH DIR1 BLK C PH DIR1 BLK                                                                                                                                                                                 | Phase A Directional 1 Block Phase B Directional 1 Block Phase C Directional 1 Block Phase Directional 1 Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      | PH DIR2                                                                                                                                                                                                                               | Same set of operands as shown for PH DIR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ELEMENT:<br>Phase Distance           | PH DIST Zx PKP PH DIST Zx OP PH DIST Zx OP AB PH DIST Zx OP BC PH DIST Zx OP CA PH DIST Zx PKP AB PH DIST Zx PKP BC PH DIST Zx PKP BC PH DIST Zx SUPN IAB PH DIST Zx SUPN IBC PH DIST Zx SUPN ICA PH DIST Zx DPO AB PH DIST Zx DPO CA | Phase Distance Zone x has picked up Phase Distance Zone x phase AB has operated Phase Distance Zone x phase BC has operated Phase Distance Zone x phase BC has operated Phase Distance Zone x phase CA has operated Phase Distance Zone x phase AB has picked up Phase Distance Zone x phase BC has picked up Phase Distance Zone x phase CA has picked up Phase Distance Zone x phase CA has picked up Phase Distance Zone x phase BC IOC is supervising Phase Distance Zone x phase BC IOC is supervising Phase Distance Zone x phase CA IOC is supervising Phase Distance Zone x phase AB has dropped out Phase Distance Zone x phase BC has dropped out Phase Distance Zone x phase CA has dropped out |
|                                      | PH DIST Z2 to Z4                                                                                                                                                                                                                      | Same set of operands as shown for PH DIST Z1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Table 5–11: D60 FLEXLOGIC™ OPERANDS (Sheet 4 of 6)

| OPERAND TYPE              | OPERAND SYNTAX                                                                                                                                                                                                                               | OPERAND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT:<br>Phase IOC     | PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP A PHASE IOC1 OP C PHASE IOC1 DP C PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO B PHASE IOC1 DPO C           | At least one phase of PHASE IOC1 has picked up At least one phase of PHASE IOC1 has operated At least one phase of PHASE IOC1 has dropped out Phase A of PHASE IOC1 has picked up Phase B of PHASE IOC1 has picked up Phase C of PHASE IOC1 has picked up Phase A of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase B of PHASE IOC1 has operated Phase C of PHASE IOC1 has operated Phase A of PHASE IOC1 has dropped out Phase B of PHASE IOC1 has dropped out Phase C of PHASE IOC1 has dropped out                                          |
|                           | PHASE IOC2                                                                                                                                                                                                                                   | Same set of operands as shown for PHASE IOC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ELEMENT:<br>Phase OV      | PHASE OV1 PKP PHASE OV1 OP PHASE OV1 DPO PHASE OV1 PKP A PHASE OV1 PKP B PHASE OV1 PKP C PHASE OV1 OP A PHASE OV1 OP C PHASE OV1 OP C PHASE OV1 DPO A PHASE OV1 DPO B PHASE OV1 DPO B PHASE OV1 DPO C                                        | At least one phase of OV1 has picked up At least one phase of OV1 has operated At least one phase of OV1 has operated Phase A of OV1 has picked up Phase B of OV1 has picked up Phase C of OV1 has picked up Phase A of OV1 has operated Phase B of OV1 has operated Phase C of OV1 has operated Phase C of OV1 has operated Phase A of OV1 has dropped out Phase B of OV1 has dropped out Phase C of OV1 has dropped out                                                                                                                                        |
| ELEMENT<br>(Phase Select) | PHASE SELECT AG PHASE SELECT BG PHASE SELECT CG PHASE SELECT SLG PHASE SELECT AB PHASE SELECT BC PHASE SELECT ABG PHASE SELECT ABG PHASE SELECT AGG PHASE SELECT CAG PHASE SELECT CAG PHASE SELECT SP PHASE SELECT MULTI-P PHASE SELECT VOID | Phase A to Ground fault is detected. Phase B to Ground fault is detected. Phase C to Ground fault is detected. Single Line to Ground fault is detected. Phase A to B fault is detected. Phase B to C fault is detected. Phase C to A fault is detected. Phase A to B to Ground fault is detected. Phase B to C to Ground fault is detected. Phase C to A to Ground fault is detected. Phase C to A to Ground fault is detected. Three-phase symmetrical fault is detected. Multi-phase fault is detected Fault type cannot be detected                           |
| ELEMENT:<br>Phase TOC     | PHASE TOC1 PKP PHASE TOC1 OP PHASE TOC1 DPO PHASE TOC1 PKP A PHASE TOC1 PKP B PHASE TOC1 PKP C PHASE TOC1 OP A PHASE TOC1 OP B PHASE TOC1 OP C PHASE TOC1 DPO A PHASE TOC1 DPO B PHASE TOC1 DPO B PHASE TOC1 DPO C PHASE TOC1 DPO C          | At least one phase of PHASE TOC1 has picked up At least one phase of PHASE TOC1 has operated At least one phase of PHASE TOC1 has dropped out Phase A of PHASE TOC1 has picked up Phase B of PHASE TOC1 has picked up Phase C of PHASE TOC1 has picked up Phase A of PHASE TOC1 has operated Phase B of PHASE TOC1 has operated Phase B of PHASE TOC1 has operated Phase C of PHASE TOC1 has dropped out Phase A of PHASE TOC1 has dropped out Phase B of PHASE TOC1 has dropped out Phase C of PHASE TOC1 has dropped out Phase C of PHASE TOC1 has dropped out |
| ELEMENT:                  | PHASE TOCZ PHASE UV1 PKP                                                                                                                                                                                                                     | Same set of operands as shown for PHASE TOC1  At least one phase of UV1 has picked up                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Phase UV                  | PHASE UV1 OP PHASE UV1 DPO PHASE UV1 PKP A PHASE UV1 PKP B PHASE UV1 PKP C PHASE UV1 OP A PHASE UV1 OP B PHASE UV1 OP C PHASE UV1 DPO A PHASE UV1 DPO A PHASE UV1 DPO C PHASE UV1 DPO C                                                      | At least one phase of UV1 has operated At least one phase of UV1 has dropped out Phase A of UV1 has picked up Phase B of UV1 has picked up Phase C of UV1 has picked up Phase A of UV1 has operated Phase B of UV1 has operated Phase C of UV1 has operated Phase C of UV1 has operated Phase A of UV1 has dropped out Phase B of UV1 has dropped out Phase C of UV1 has dropped out Phase C of UV1 has dropped out Phase C of UV1 has dropped out Phase C of UV1 has dropped out                                                                                |

Table 5–11: D60 FLEXLOGIC™ OPERANDS (Sheet 5 of 6)

| OPERAND TYPE                                   | OPERAND SYNTAX                                                                                                 | OPERAND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT:<br>POTT                               | POTT OP POTT TX1 POTT TX2 POTT TX3 POTT TX4 POTT TRIP A POTT TRIP B POTT TRIP C POTT TRIP 3P                   | Permissive over-reaching transfer trip has operated Permissive over-reaching transfer trip asserts transit bit number 1 Permissive over-reaching transfer trip asserts transit bit number 2 Permissive over-reaching transfer trip asserts transit bit number 3 Permissive over-reaching transfer trip asserts transit bit number 4 Permissive over-reaching transfer trip has operated to trip Phase A Permissive over-reaching transfer trip has operated to trip Phase B Permissive over-reaching transfer trip has operated to trip Phase C Permissive over-reaching transfer trip has operated to trip all three phases          |
| ELEMENT:<br>Power Swing Detect                 | POWER SWING OUTER POWER SWING MIDDLE POWER SWING INNER POWER SWING BLOCK POWER SWING TMRX PKP POWER SWING TRIP | Positive Sequence impedance in outer characteristic Positive Sequence impedance in middle characteristic Positive Sequence impedance in inner characteristic Power Swing Blocking element operated Power Swing Timer X picked up Out-of-step Tripping operated                                                                                                                                                                                                                                                                                                                                                                        |
| ELEMENT:<br>PUTT                               | PUTT OP PUTT TX1 PUTT TX2 PUTT TX3 PUTT TX4 PUTT TRIP A PUTT TRIP B PUTT TRIP C PUTT TRIP 3P                   | Permissive under-reaching transfer trip has operated Permissive under-reaching transfer trip asserts transit bit number 1 Permissive under-reaching transfer trip asserts transit bit number 2 Permissive under-reaching transfer trip asserts transit bit number 3 Permissive under-reaching transfer trip asserts transit bit number 4 Permissive under-reaching transfer trip has operated to trip Phase A Permissive under-reaching transfer trip has operated to trip Phase B Permissive under-reaching transfer trip has operated to trip Phase C Permissive under-reaching transfer trip has operated to trip all three phases |
| ELEMENT:<br>Setting Group                      | SETTING GROUP ACT 1                                                                                            | Setting group 1 is active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| County Croup                                   | SETTING GROUP ACT 8                                                                                            | Setting group 8 is active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ELEMENT:<br>Synchrocheck                       | SYNC 1 DEAD S OP<br>SYNC 1 DEAD S DPO<br>SYNC 1 SYNC OP<br>SYNC 1 SYNC DPO<br>SYNC 1 CLS OP<br>SYNC 1 CLS DPO  | Synchrocheck 1 dead source has operated Synchrocheck 1 dead source has dropped out Synchrocheck 1 in synchronization has operated Synchrocheck 1 in synchronization has dropped out Synchrocheck 1 close has operated Synchrocheck 1 close has dropped out                                                                                                                                                                                                                                                                                                                                                                            |
|                                                | SYNC 2                                                                                                         | Same set of operands as shown for SYNC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ELEMENT<br>(Trip Output)                       | TRIP 3-POLE TRIP 1-POLE TRIP PHASE A TRIP PHASE B TRIP PHASE C TRIP AR INIT 3-POLE TRIP FORCE 3-POLE           | Trip all three breaker poles A single-pole trip-and-reclose operation is initiated Trip breaker pole A, initiate phase A breaker fail and reclose Trip breaker pole B, initiate phase B breaker fail and reclose Trip breaker pole C, initiate phase C breaker fail and reclose Initiate a three-pole reclose Three-pole trip must be initiated                                                                                                                                                                                                                                                                                       |
| ELEMENT:<br>VTFF                               | SRCx VT FUSE F OP<br>SRCx VT FUSE F DPO                                                                        | Source x VT Fuse Failure detector has operated Source x VT Fuse Failure detector has dropped out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIXED OPERANDS                                 | Off                                                                                                            | Logic = 0. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                | On                                                                                                             | Logic = 1. Can be used as a test setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INPUTS/OUTPUTS:<br>Contact Inputs              | Cont lp 1 On<br>Cont lp 2 On                                                                                   | (will not appear unless ordered) (will not appear unless ordered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                | Cont lp 1 Off<br>Cont lp 2 Off                                                                                 | (will not appear unless ordered) (will not appear unless ordered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| INPUTS/OUTPUTS:<br>Contact Outputs,<br>Current | Cont Op 1 IOn<br>Cont Op 2 IOn                                                                                 | (will not appear unless ordered) (will not appear unless ordered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (from detector on Form-A output only)          | Cont Op 1 IOff<br>Cont Op 2 IOff                                                                               | (will not appear unless ordered) (will not appear unless ordered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| INPUTS/OUTPUTS:<br>Contact Outputs,<br>Voltage | Cont Op 1 VOn<br>Cont Op 2 VOn                                                                                 | (will not appear unless ordered) (will not appear unless ordered)  ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (from detector on Form-A output only)          | Cont Op 1 VOff<br>Cont Op 2 VOff                                                                               | (will not appear unless ordered) (will not appear unless ordered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

5 SETTINGS 5.4 FLEXLOGIC™

Table 5-11: D60 FLEXLOGIC™ OPERANDS (Sheet 6 of 6)

| OPERAND TYPE                       | OPERAND SYNTAX                                                                                                                                                                                                                                                                                                                                  | OPERAND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| INPUTS/OUTPUTS:                    | Direct I/P 1-1 On                                                                                                                                                                                                                                                                                                                               | (appears only when L90 Comm card is used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Direct Input                       | Direct I/P 1-8 On                                                                                                                                                                                                                                                                                                                               | (appears only when L90 Comm card is used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                    | Direct I/P 2-1 On                                                                                                                                                                                                                                                                                                                               | (appears only when L90 Comm card is used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                    | Direct I/P 2-8 On                                                                                                                                                                                                                                                                                                                               | (appears only when L90 Comm card is used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| INPUTS/OUTPUTS:<br>Remote Inputs   | REMOTE INPUT 1 On                                                                                                                                                                                                                                                                                                                               | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                    | REMOTE INPUT 32 On                                                                                                                                                                                                                                                                                                                              | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| INPUTS/OUTPUTS:<br>Virtual Inputs  | Virt Ip 1 On                                                                                                                                                                                                                                                                                                                                    | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                    | Virt Ip 32 On                                                                                                                                                                                                                                                                                                                                   | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| INPUTS/OUTPUTS:<br>Virtual Outputs | Virt Op 1 On                                                                                                                                                                                                                                                                                                                                    | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                    | Virt Op 64 On                                                                                                                                                                                                                                                                                                                                   | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| REMOTE DEVICES                     | REMOTE DEVICE 1 On                                                                                                                                                                                                                                                                                                                              | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                    | REMOTE DEVICE 16 On                                                                                                                                                                                                                                                                                                                             | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                    | REMOTE DEVICE 1 Off                                                                                                                                                                                                                                                                                                                             | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                    | REMOTE DEVICE 16 Off                                                                                                                                                                                                                                                                                                                            | Flag is set, logic=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| RESETTING                          | RESET OP<br>RESET OP (COMMS)<br>RESET OP (OPERAND)<br>RESET OP (PUSHBUTTON)                                                                                                                                                                                                                                                                     | Reset command is operated (set by all 3 operands below) Communications source of the reset command Operand source of the reset command Reset key (pushbutton) source of the reset command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| SELF-<br>DIAGNOSTICS               | ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TEST LOW ON MEMORY WATCHDOG ERROR PROGRAM ERROR EEPROM DATA ERROR PRI ETHERNET FAIL SEC ETHERNET FAIL BATTERY FAIL SYSTEM EXCEPTION UNIT NOT PROGRAMMED EQUIPMENT MISMATCH FLEXLGC ERROR TOKEN PROTOTYPE FIRMWARE UNIT NOT CALIBRATED NO DSP INTERRUPTS DSP ERROR IRIG-B FAILURE REMOTE DEVICE OFFLINE | Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. See description in the COMMANDS chapter. |  |

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name/ ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FLEXLOGIC<sup>TM</sup> OPERANDS table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic™ are listed in the FLEX-LOGIC™ OPERATORS table.

Table 5-12: FLEXLOGIC™ GATE CHARACTERISTICS

| GATES | NUMBER OF INPUTS | OUTPUT IS '1' (= ON) IF |
|-------|------------------|-------------------------|
| NOT   | 1                | input is '0'            |
| OR    | 2 to 16          | any input is '1'        |
| AND   | 2 to 16          | all inputs are '1'      |
| NOR   | 2 to 16          | all inputs are '0'      |
| NAND  | 2 to 16          | any input is '0'        |
| XOR   | 2                | only one input is '1'   |

Table 5-13: FLEXLOGIC™ OPERATORS

| OPERATOR<br>TYPE         | OPERATOR<br>SYNTAX          | DESCRIPTION                                                                                                               | NOTES                                                                                                                                                                                                              |  |
|--------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Editor                   | INSERT                      | Insert a parameter in an equation list.                                                                                   |                                                                                                                                                                                                                    |  |
|                          | DELETE                      | Delete a parameter from an equation list.                                                                                 |                                                                                                                                                                                                                    |  |
| End                      | END                         | The first END encountered signifies the last entry in the list of FlexLogic <sup>™</sup> parameters that is processed.    |                                                                                                                                                                                                                    |  |
| One Shot                 | POSITIVE ONE<br>SHOT        | One shot that responds to a positive going edge.                                                                          | A 'one shot' refers to a single input gate that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic™ equation. There is |  |
|                          | NEGATIVE ONE<br>SHOT        | One shot that responds to a negative going edge.                                                                          |                                                                                                                                                                                                                    |  |
|                          | DUAL ONE<br>SHOT            | One shot that responds to both the positive and negative going edges.                                                     | a maximum of 32 'ŏne shots'.                                                                                                                                                                                       |  |
| Logic Gate               | NOT                         | Logical Not                                                                                                               | Operates on the previous parameter.                                                                                                                                                                                |  |
|                          | OR(2)                       | 2 input OR gate                                                                                                           | Operates on the 2 previous parameters.                                                                                                                                                                             |  |
|                          | OR(16)                      | 16 input OR gate                                                                                                          | Operates on the 16 previous parameters.                                                                                                                                                                            |  |
|                          | AND(2)                      | 2 input AND gate                                                                                                          | Operates on the 2 previous parameters.                                                                                                                                                                             |  |
|                          | AND(16)                     | 16 input AND gate                                                                                                         | Operates on the 16 previous parameters.                                                                                                                                                                            |  |
|                          | NOR(2)                      | 2 input NOR gate                                                                                                          | Operates on the 2 previous parameters.                                                                                                                                                                             |  |
|                          | NOR(16)                     | 16 input NOR gate                                                                                                         | Operates on the 16 previous parameters.                                                                                                                                                                            |  |
|                          | NAND(2)                     | 2 input NAND gate                                                                                                         | Operates on the 2 previous parameters.                                                                                                                                                                             |  |
|                          | NAND(16)                    | 16 input NAND gate                                                                                                        | Operates on the 16 previous parameters.                                                                                                                                                                            |  |
|                          | XOR(2)                      | 2 input Exclusive OR gate                                                                                                 | Operates on the 2 previous parameters.                                                                                                                                                                             |  |
|                          | LATCH (S,R)                 | Latch (Set, Reset) - reset-dominant                                                                                       | The parameter preceding LATCH(S,R) is the Reset input. The parameter preceding the Reset input is the Set input.                                                                                                   |  |
| Timer                    | TIMER 1<br>TIMER 32         | Timer as configured with FlexLogic™ Timer 1 settings.  ↓ Timer as configured with FlexLogic™ Timer 32 settings.           | The timer is started by the preceding parameter. The output of the timer is TIMER #.                                                                                                                               |  |
| Assign<br>Virtual Output | = Virt Op 1<br>= Virt Op 64 | Assigns previous FlexLogic™ parameter to Virtual Output 1.  ↓ Assigns previous FlexLogic™ parameter to Virtual Output 64. | The virtual output is set by the preceding parameter                                                                                                                                                               |  |

**5.4.2 FLEXLOGIC™ RULES** 

When forming a FlexLogic™ equation, the sequence in the linear array of parameters must follow these general rules:

- 1. Operands must precede the operator which uses the operands as inputs.
- 2. Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
- 3. Assigning the output of an operator to a Virtual Output terminates the equation.
- 4. A timer operator (e.g. "TIMER 1") or virtual output assignment (e.g. " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.

**5.4.3 FLEXLOGIC™ EVALUATION** 

Each equation is evaluated in the order in which the parameters have been entered.



FLEXLOGIC™ PROVIDES LATCHES WHICH BY DEFINITION HAVE A MEMORY ACTION, REMAINING IN THE SET STATE AFTER THE SET INPUT HAS BEEN ASSERTED. HOWEVER, THEY ARE VOLATILE; I.E. THEY RESET ON THE RE-APPLICATION OF CONTROL POWER.

WHEN MAKING CHANGES TO PROGRAMMING, ALL FLEXLOGIC™ EQUATIONS ARE RE-COMPILED WHEN ANY NEW SETTING IS ENTERED, SO ALL LATCHES ARE AUTOMATICALLY RESET. IF IT IS REQUIRED TO RE-INITIALIZE FLEXLOGIC™ DURING TESTING, FOR EXAMPLE, IT IS SUGGESTED TO POWER THE UNIT DOWN AND THEN BACK UP.

# 5.4.4 FLEXLOGIC™ PROCEDURE EXAMPLE

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.

In the example below, it is assumed that logic has already been programmed to produce Virtual Outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic<sup>TM</sup>, it is important to make a note of each Virtual Output used – a Virtual Output designation (1 to 64) can only be properly assigned once.

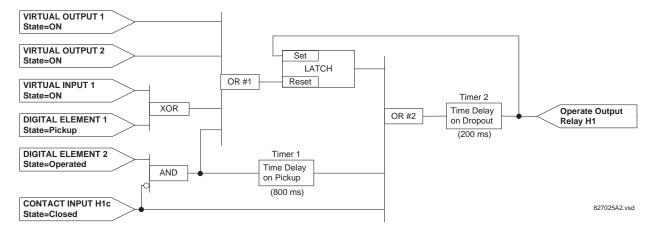



Figure 5-6: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic™ operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic™ limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect inputs 1 through 16 to one AND(16), 17 through 25 to another AND(9), and the outputs from these two gates to a third AND(2).

Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a Virtual Output.

For the example shown above, the output of the AND gate is used as an input to both OR#1 and Timer 1, and must therefore be made a Virtual Output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a Virtual Output as Virtual Output 4, which will be programmed in the contact output section to operate relay H1 (i.e. Output Contact H1).

5.4 FLEXLOGIC™ 5 SETTINGS

Therefore, the required logic can be implemented with two FlexLogic<sup>™</sup> equations with outputs of Virtual Output 3 and Virtual Output 4 as shown below.

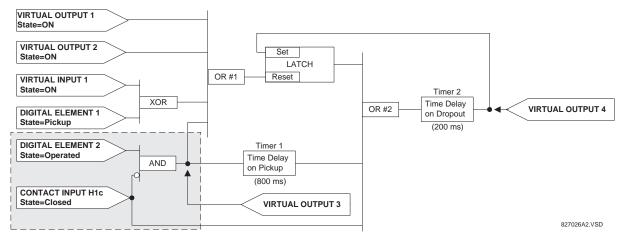



Figure 5-7: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS

2. Prepare a logic diagram for the equation to produce Virtual Output 3, as this output will be used as an operand in the Virtual Output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific Virtual Output). The logic for Virtual Output 3 is shown below with the final output assigned.

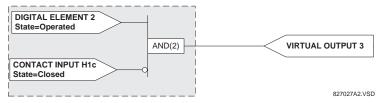



Figure 5-8: LOGIC FOR VIRTUAL OUTPUT 3

3. Prepare a logic diagram for Virtual Output 4, replacing the logic ahead of Virtual Output 3 with a symbol identified as Virtual Output 3, as shown below.

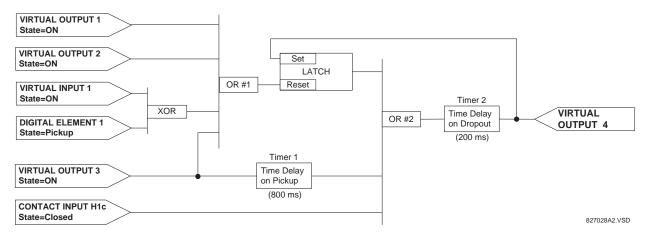



Figure 5-9: LOGIC FOR VIRTUAL OUTPUT 4

4. Program the FlexLogic™ equation for Virtual Output 3 by translating the logic into available FlexLogic™ parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99, and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic™, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

<u>5 SETTINGS</u> 5.4 FLEXLOGIC™

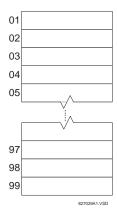



Figure 5-10: FLEXLOGIC™ WORKSHEET

- 5. Following the procedure outlined, start with parameter 99, as follows:
  - 99: The final output of the equation is Virtual Output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."
  - 98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2-input AND so the parameter is "AND(2)". Note that FlexLogic™ rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.
  - 97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
  - 96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".
  - 95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for VIRTUAL OUTPUT 3:

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to figure: LOGIC FOR VIRTUAL OUTPUT 3 as a check.



Figure 5-11: FLEXLOGIC™ EQUATION & LOGIC FOR VIRTUAL OUTPUT 3

6. Repeating the process described for VIRTUAL OUTPUT 3, select the FlexLogic™ parameters for Virtual Output 4.

- 99: The final output of the equation is VIRTUAL OUTPUT 4 which is parameter "= Virt Op 4".
- 98: The operator preceding the output is Timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.
- 97: The operator preceding Timer 2 is OR #2, a 3-input OR, which is parameter "OR(3)".
- 96: The lowest input to OR #2 is operand "Cont Ip H1c On".
- 95: The center input to OR #2 is operand "TIMER 1".
- 94: The input to Timer 1 is operand "Virt Op 3 On".
- 93: The upper input to OR #2 is operand "LATCH (S,R)".
- 92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR #1, a 4-input OR, which is parameter "OR(4)".
- 91: The lowest input to OR #1 is operand "Virt Op 3 On".
- 90: The input just above the lowest input to OR #1 is operand "XOR(2)".
- 89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
- 88: The upper input to the XOR is operand "Virt Ip 1 On".
- 87: The input just below the upper input to OR #1 is operand "Virt Op 2 On".
- 86: The upper input to OR #1 is operand "Virt Op 1 On".
- 85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".

# The equation for VIRTUAL OUTPUT 4 is:

```
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] Virt Op 3 On
[92] OR(4)
[93] LATCH (S,R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4
```

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to figure: LOGIC FOR VIRTUAL OUTPUT 4, as a check.

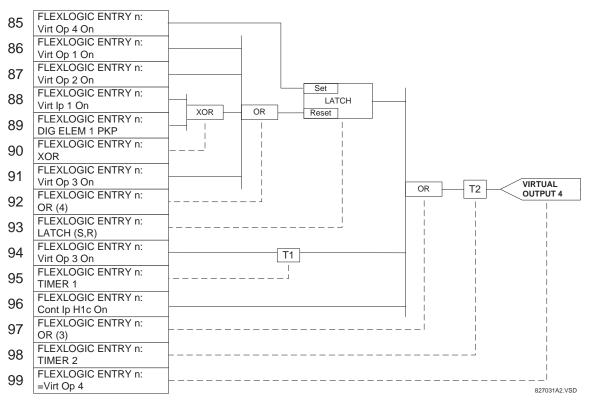



Figure 5-12: FLEXLOGIC™ EQUATION & LOGIC FOR VIRTUAL OUTPUT 4

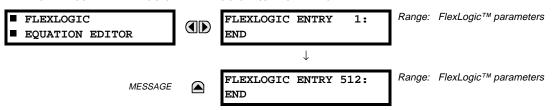
7. Now write the complete FlexLogic™ expression required to implement the required logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform considerable logic, this may be difficult to achieve, but in most cases will not cause problems because all of the logic is calculated at least 4 times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of Flex-Logic™ before it is placed in service.

In the following equation, Virtual Output 3 is used as an input to both Latch 1 and Timer 1 as arranged in the order shown below:

```
DIG ELEM 2 OP
Cont Ip H1c On
NOT
AND(2)
= Virt Op 3
Virt Op 4 On
Virt Op 1 On
Virt Op 2 On
Virt Ip 1 On
DIG ELEM 1 PKP
XOR(2)
Virt Op 3 On
OR (4)
LATCH (S,R)
Virt Op 3 On
TIMER 1
Cont Ip H1c On
OR(3)
```

```
TIMER 2 = Virt Op 4
```

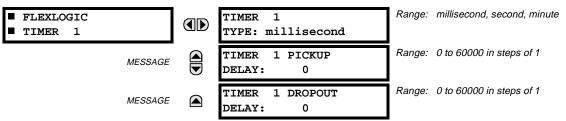
5.4 FLEXLOGIC™


In the expression above, the Virtual Output 4 input to the 4-input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.

8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic™ equations. The equations will then only be evaluated up to the first "END" operator.

The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.

### 5.4.5 FLEXLOGIC™ EQUATION EDITOR






There are 512 FlexLogic™ entries available, numbered from 1 to 512, with default 'END' entry settings. If a "Disabled" Element is selected as a FlexLogic™ entry, the associated state flag will never be set to '1'. The '+/–' key may be used when editing FlexLogic™ equations from the keypad to quickly scan through the major parameter types.

5.4.6 FLEXLOGIC™ TIMERS

## PATH: SETTINGS ➡ \$\Partial \text{FLEXLOGIC \rightarrow PLEXLOGIC TIMERS \rightarrow FLEXLOGIC TIMER 1(32)



There are 32 identical FlexLogic<sup>™</sup> timers available, numbered from 1 to 32. These timers can be used as operators for FlexLogic<sup>™</sup> equations.

## TIMER 1 TYPE:

This setting is used to select the time measuring unit.

## **TIMER 1 PICKUP DELAY:**

This setting is used to set the time delay to pickup. If a pickup delay is not required, set this function to "0".

## TIMER 1 DROPOUT DELAY:

This setting is used to set the time delay to dropout. If a dropout delay is not required, set this function to "0".

## **5.4.7 FLEXELEMENTS™**

# PATH: SETTING ⇔ ♥ FLEXLOGIC ⇔ ♥ FLEXELEMENT 1(8)

|                 | <br>(0)                                |        |                                        |
|-----------------|----------------------------------------|--------|----------------------------------------|
| ■ FLEXELEMENT 1 | FLEXELEMENT 1<br>FUNCTION: Disabled    | Range: | Disabled, Enabled                      |
| MESSAGE         | FLEXELEMENT 1 NAME:<br>FxE1            | Range: | up to 6 alphanumeric characters        |
| MESSAGE         | FLEXELEMENT 1 +IN<br>Off               | Range: | Off, any analog actual value parameter |
| MESSAGE         | FLEXELEMENT 1 -IN                      | Range: | Off, any analog actual value parameter |
| MESSAGE         | FLEXELEMENT 1 INPUT<br>MODE: Signed    | Range: | Signed, Absolute                       |
| MESSAGE         | FLEXELEMENT 1 COMP<br>MODE: Level      | Range: | Level, Delta                           |
| MESSAGE         | FLEXELEMENT 1 DIRECTION: Over          | Range: | Over, Under                            |
| MESSAGE         | FLEXELEMENT 1<br>PICKUP: 1.000 pu      | Range: | –90.000 to 90.000 pu in steps of 0.001 |
| MESSAGE         | FLEXELEMENT 1 HYSTERESIS: 3.0%         | Range: | 0.1 to 50.0% in steps of 0.1           |
| MESSAGE         | FLEXELEMENT 1 dt<br>UNIT: milliseconds | Range: | milliseconds, seconds, minutes         |
| MESSAGE         | FLEXELEMENT 1 dt:<br>20                | Range: | 20 to 86400 in steps of 1              |
| MESSAGE         | FLEXELEMENT 1 PKP<br>DELAY: 0.000 s    | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESSAGE         | FLEXELEMENT 1 RST<br>DELAY: 0.000 s    | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESSAGE         | FLEXELEMENT 1<br>BLOCK: Off            | Range: | FlexLogic™ operand                     |
| MESSAGE         | FLEXELEMENT 1<br>TARGET: Self-reset    | Range: | Self-reset, Latched, Disabled          |
| MESSAGE         | FLEXELEMENT 1<br>EVENTS: Disabled      | Range: | Disabled, Enabled                      |

A FlexElement<sup>TM</sup> is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.

The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

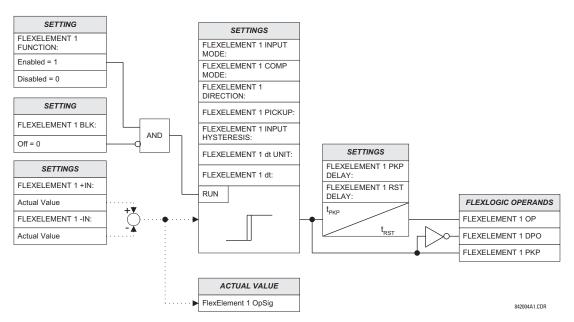



Figure 5-13: FLEXELEMENT™ SCHEME LOGIC

The FLEXELEMENT 1 +IN setting specifies the first (non-inverted) input to the FlexElement™. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.

This **FLEXELEMENT 1** –**IN** setting specifies the second (inverted) input to the FlexElement<sup>™</sup>. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.

The element responds directly to the differential signal if the **FLEXELEMENT 1 INPUT MODE** setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal – as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 -IN and FLEX-ELEMENT 1 INPUT MODE settings – if the FLEXELEMENT 1 COMP MODE setting is set to "Threshold". The element responds to the rate of change of its operating signal if the FLEXELEMENT 1 COMP MODE setting is set to "Delta". In this case the FLEXELE-MENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.

The **FLEXELEMENT 1 DIRECTION** setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the **FLEXELEMENT 1 DIRECTION**, **FLEXELEMENT 1 PICKUP** and **FLEXELEMENT 1 HYSTERSIS** settings.

5 SETTINGS 5.4 FLEXLOGIC™

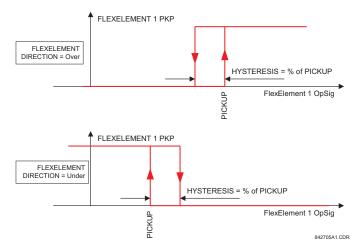



Figure 5–14: FLEXELEMENT™ DIRECTION, PICKUP, AND HYSTERESIS

In conjunction with the **FLEXELEMENT 1 INPUT MODE** setting the element could be programmed to provide two extra characteristics as shown in the figure below.

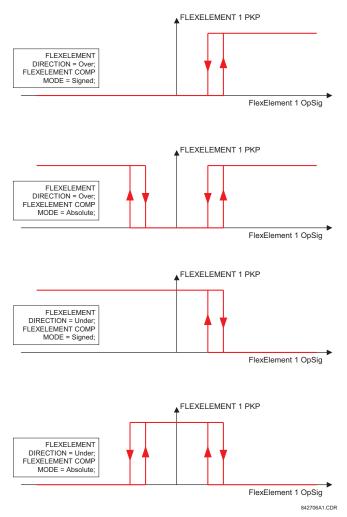



Figure 5–15: FLEXELEMENT™ INPUT MODE SETTING

The FLEXELEMENT 1 PICKUP setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the FLEXELEMENT 1 PICKUP value. If set to "Under", the element picks up when the operating signal falls below the FLEXELEMENT 1 PICKUP value.

The **FLEXELEMENT 1 HYSTERESIS** setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement™ can be programmed to work with all analog actual values measured by the relay. The **FLEXELEMENT 1 PICKUP** setting is entered in pu values using the following definitions of the base units:

Table 5-14: FLEXELEMENT™ BASE UNITS

| BREAKER ARCING AMPS<br>(Brk X Arc Amp A, B, and C) | $BASE = 2000 \text{ kA}^2 \times \text{cycle}$                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| dcmA                                               | BASE = maximum value of the <b>DCMA INPUT MAX</b> setting for the two transducers configured under the +IN and -IN inputs. |
| FREQUENCY                                          | f <sub>BASE</sub> = 1 Hz                                                                                                   |
| PHASE ANGLE                                        | φ <sub>BASE</sub> = 360 degrees (see the UR angle referencing convention)                                                  |
| POWER FACTOR                                       | PF <sub>BASE</sub> = 1.00                                                                                                  |
| RTDs                                               | BASE = 100°C                                                                                                               |
| SOURCE CURRENT                                     | I <sub>BASE</sub> = maximum nominal primary RMS value of the +IN and -IN inputs                                            |
| SOURCE POWER                                       | $P_{BASE}$ = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and -IN inputs                                        |
| SOURCE VOLTAGE                                     | V <sub>BASE</sub> = maximum nominal primary RMS value of the +IN and -IN inputs                                            |
| SYNCHROCHECK<br>(Max Delta Volts)                  | V <sub>BASE</sub> = maximum primary RMS value of all the sources related to the +IN and -IN inputs                         |

The **FLEXELEMENT 1 HYSTERESIS** setting defines the pickup-dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the FLEXELEMENT DIRECTION, PICKUP, AND HYSTERESIS diagram.

The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".


This **FLEXELEMENT 1 PKP DELAY** setting specifies the pickup delay of the element. The **FLEXELEMENT 1 RST DELAY** setting specifies the reset delay of the element.

5.5.1 OVERVIEW

Each protection element can be assigned up to 8 different sets of settings according to SETTING GROUP designations 1 to 8. The performance of these elements is defined by the active SETTING GROUP at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (e.g. altered power system configuration, season of the year). The active setting group can be preset or selected via the SETTING GROUPS menu (see the CONTROL ELEMENTS section). See also the INTRODUCTION TO ELEMENTS section at the front of this chapter.

**5.5.2 SETTING GROUP** 

## PATH: SETTINGS □ □ GROUPED ELEMENTS □ SETTING GROUP 1(8)



Each of the 8 SETTING GROUP menus is identical. SETTING GROUP 1 (the default active group) automatically becomes active if no other group is active (see the CONTROL ELEMENTS section for additional details).

#### 5.5.3 LINE PICKUP

### PATH: SETTINGS ♥ GROUPED ELEMENTS ♥ SETTING GROUP 1(8) ♥ LINE PICKUP



The line pickup feature uses a combination of undercurrent and undervoltage to identify a line that has been de-energized (line end open). Three instantaneous overcurrent elements are used to identify a previously de-energized line that has been closed onto a fault which could be due to maintenance grounds that have not been removed. Faults other than close-in faults can be identified satisfactorily by the distance elements which initially will be self or faulted phase polarized and then become memory polarized when a satisfactory memory signal is available.

Co-ordination features are included to ensure satisfactory operation when high speed 'automatic reclosure (AR)' is employed. The AR CO-ORD DELAY setting allows the overcurrent setting to be below the expected load current seen after reclose. Co-ordination is achieved by the POS SEQ OV element picking up and blocking the trip path, before the AR CO-ORD DELAY times out. The AR CO-ORD BYPASS setting is normally enabled. It is disabled if high speed AR is implemented.

The positive sequence undervoltage pickup setting is based on phase to neutral quantities. If Delta VTs are used, then this per unit pickup is based on the (VT SECONDARY setting) /  $\sqrt{3}$ .

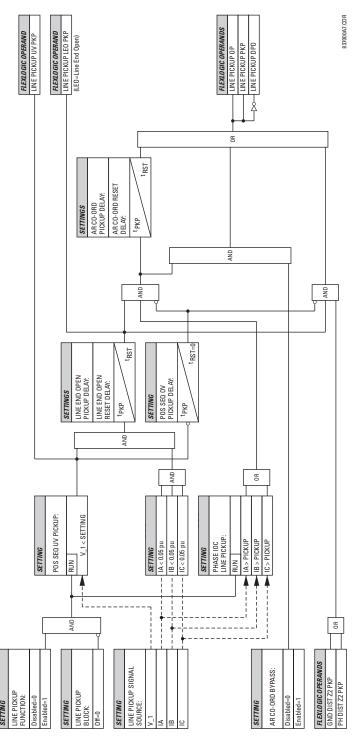
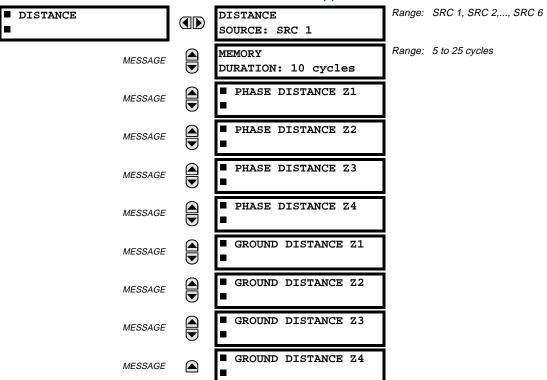




Figure 5–16: LINE PICKUP LOGIC

PATH: SETTINGS ♥ U GROUPED ELEMENTS ♥ SETTING GROUP 1(8) ♥ U DISTANCE



Two common settings (**DISTANCE SOURCE** and **MEMORY DURATION**) and eight menus for four zones of phase and ground distance protection are available. The **DISTANCE SOURCE** identifies the Signal Source for all distance functions.

The MHO distance functions use a dynamic characteristic: the positive-sequence voltage – either memorized or actual – is used as a polarizing signal. The memory voltage is also used by the built-in directional supervising functions applied for both the MHO and QUAD characteristics.

The **MEMORY DURATION** setting specifies the length of time a memorized positive-sequence voltage should be used in the distance calculations. After this interval expires, the relay checks the magnitude of the actual positive-sequence voltage. If it is higher than 10% of the nominal, the actual voltage is used, if lower – the memory voltage continues to be used.

The memory is established when the positive-sequence voltage stays above 80% of its nominal value for five power system cycles. For this reason it is important to ensure that the nominal secondary voltage of the VT is entered correctly under the SETTINGS \$ SYSTEM SETUP  $\Rightarrow$  AC INPUTS  $\Rightarrow \$$  VOLTAGE BANK menu.

Set **MEMORY DURATION** long enough to ensure stability on close-in reverse three-phase faults. For this purpose, the maximum fault clearing time (breaker fail time) in the substation should be considered. On the other hand, the **MEMORY DURATION** cannot be too long as the power system may experience power swing conditions rotating the voltage and current phasors slowly while the memory voltage is static, as frozen at the beginning of the fault. Keeping the memory in effect for too long may eventually cause maloperation of the distance functions.

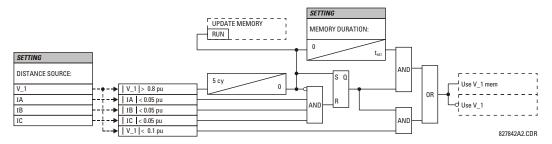



Figure 5-17: MEMORY VOLTAGE LOGIC

## a) PHASE DISTANCE Z1 to Z4

### PATH: SETTINGS ⇔∜ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔∜ DISTANCE ⇔∜ PHASE DISTANCE Z1

| PATH: SETTINGS ⇒ ⊕ GROUPED EI  PHASE DISTANCE Z1  ■ | DUC DICT 71                              |        | Disabled, Enabled                        |
|-----------------------------------------------------|------------------------------------------|--------|------------------------------------------|
| MESSAGE                                             | PHS DIST Z1<br>DIRECTION: Forward        | Range: | Forward, Reverse                         |
| MESSAGE                                             | PHS DIST Z1<br>SHAPE: Mho                | Range: | Mho, Quad                                |
| MESSAGE                                             | PHS DIST Z1 REACH: 2.00 $\Omega$         | Range: | 0.02 to 250.00 $\Omega$ in steps of 0.01 |
| MESSAGE                                             | PHS DIST Z1<br>RCA: 85°                  | Range: | 30 to 90° in steps of 1                  |
| MESSAGE                                             | PHS DIST Z1<br>COMP LIMIT: 90°           | Range: | 30 to 90° in steps of 1                  |
| MESSAGE                                             | PHS DIST Z1<br>DIR RCA: 85°              | Range: | 30 to 90° in steps of 1                  |
| MESSAGE                                             | PHS DIST Z1<br>DIR COMP LIMIT: 90°       | Range: | 30 to 90° in steps of 1                  |
| MESSAGE                                             | PHS DIST Z1 QUAD RGT BLD: 10.00 $\Omega$ | Range: | 0.02 to 500.00 $\Omega$ in steps of 0.01 |
| MESSAGE                                             | PHS DIST Z1 QUAD<br>RGT BLD RCA: 85°     | Range: | 60 to 90° in steps of 1                  |
| MESSAGE                                             | PHS DIST Z1 QUAD LFT BLD: 10.00 $\Omega$ | Range: | 0.02 to 500.00 $\Omega$ in steps of 0.01 |
| MESSAGE                                             | PHS DIST Z1 QUAD<br>LFT BLD RCA: 85°     | Range: | 60 to 90° in steps of 1                  |
| MESSAGE                                             | PHS DIST Z1<br>SUPV: 0.200 pu            | Range: | 0.050 to 30.000 pu in steps of 0.001     |
| MESSAGE                                             | PHS DIST Z1 VOLT<br>LEVEL: 0.000 pu      | Range: | 0.000 to 5.000 pu in steps of 0.001      |
| MESSAGE                                             | PHS DIST Z1<br>DELAY: 0.000 s            | Range: | 0.000 to 65.535 s in steps of 0.001      |
| MESSAGE                                             | PHS DIST Z1 BLK:<br>Off                  | Range: | FlexLogic™ operand                       |
| MESSAGE                                             | PHS DIST Z1<br>TARGET: Self-reset        | Range: | Self-reset, Latched, Disabled            |
| MESSAGE                                             | PHS DIST Z1<br>EVENTS: Disabled          | Range: | Disabled, Enabled                        |

The phase MHO distance function uses a dynamic 100% memory-polarized mho characteristic with additional reactance, directional, and overcurrent supervising characteristics. The phase quad distance function is comprised of a reactance characteristic, right and left blinders, and 100% memory-polarized directional and current supervising characteristics. Additional details may be found in the THEORY OF OPERATION chapter.

Four zones of phase distance protection are provided. Each zone is configured individually through its own setting menu. All of the settings can be independently modified for each of the zones except:

• Signal Source (common for both phase and ground elements of all four zones as entered under SETTINGS 

GROUPED ELEMENTS 

SETTING GROUP 1(8) 

Unitable.

5

The COMMON DISTANCE SETTINGS described earlier must be properly chosen for correct operation of the phase distance elements.

Even though all four zones can be used as either instantaneous elements (pickup [PKP] and dropout [DPO] FlexLogic™ signals) or time-delayed elements (operate [OP] FlexLogic™ signals), only Zone 1 is intended for the instantaneous underreaching tripping mode.



Ensure that the PHASE VT SECONDARY VOLTAGE setting (see the SETTINGS  $\Rightarrow \emptyset$  SYSTEM SETUP  $\Rightarrow$  AC INPUTS  $\Rightarrow \emptyset$  VOLTAGE BANK menu) is set correctly to prevent improper operation of associated memory action.

## PHS DIST Z1 DIRECTION:

All four zones are reversible. The forward direction by the PHS DIST Z1 RCA setting, whereas the reverse direction is shifted 180° from that angle.

## PHS DIST Z1 SHAPE:

This setting selects the shape of the phase distance function between the mho and quad characteristics. The selection is available on a per-zone basis. The two characteristics and their possible variations are shown in the following figures.

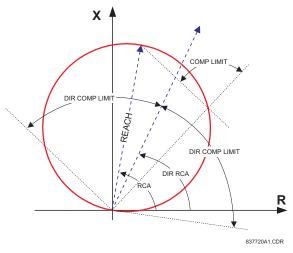



Figure 5-18: MHO DISTANCE CHARACTERISTIC

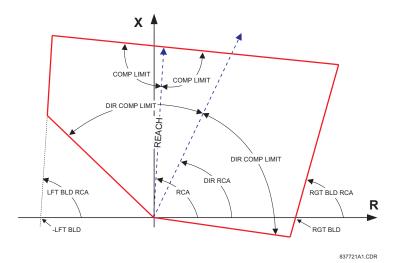



Figure 5-19: QUAD DISTANCE CHARACTERISTIC

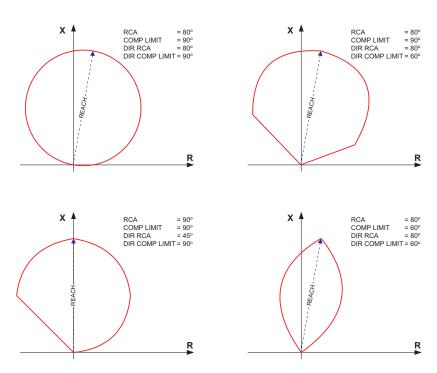



Figure 5-20: MHO DISTANCE CHARACTERISTIC SAMPLE SHAPES

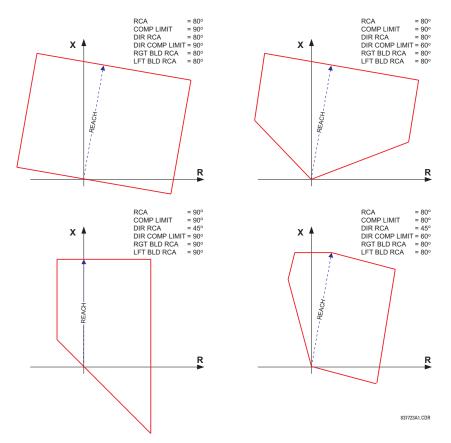



Figure 5-21: QUAD DISTANCE CHARACTERISTIC SAMPLE SHAPES

#### PHS DIST Z1 REACH:

This setting defines the zone reach. The reach impedance is entered in secondary ohms. The reach impedance angle is entered as the PHS DIST Z1 RCA setting.

Zone 1 is characterized by transient overreach of less than 5% under Source Impedance Ratios of up to 30. When setting an under-reaching Zone 1 for direct dripping and under-reaching pilot schemes (DUTT, PUTT) other factors should be also considered as per rules of distance relaying.

#### PHS DIST Z1 RCA:

This setting specifies the characteristic angle (similar to the "maximum torque angle" in previous technologies) of the phase distance characteristic. The setting is an angle of reach impedance as shown in MHO DISTANCE CHARACTERISTIC and QUAD DISTANCE CHARACTERISTIC figures.

This setting is independent from PHS DIST Z1 DIR RCA, the characteristic angle of an extra directional supervising function.

### PHS DIST Z1 COMP LIMIT:

This setting shapes the operating characteristic. In particular, it produces the lens-type characteristic of the MHO function and a tent-shaped characteristic of the reactance boundary of the quad function.

If the mho shape is selected, the same limit angle applies to both the mho and supervising reactance comparators. In conjunction with the mho shape selection, the setting improves loadability of the protected line. In conjunction with the quad characteristic, this setting improves security for faults close to the reach point by adjusting the reactance boundary into a tent-shape.

#### PHS DIST Z1 DIR RCA:

This setting select the characteristic angle (or "maximum torque angle") of the directional supervising function. If the mho shape is applied, the directional function is an extra supervising function as the dynamic mho characteristic itself is a directional one. In conjunction with the quad shape selection, this setting defines the only directional function built into the phase distance element. The directional function uses the memory voltage for polarization.

This setting typically equals the distance characteristic angle PHS DIST Z1 RCA.

## PHS DIST Z1 DIR COMP LIMIT:

This setting selects the comparator limit angle for the directional supervising function.

### PHS DIST Z1 QUAD RGT BLD:

This setting defines the right blinder position of the quad characteristic along the resistive axis of the impedance plane (see the QUAD DISTANCE CHARACTERISTIC figure). The angular position of the blinder is adjustable with the use of the PHS DIST Z1 QUAD RGT BLD RCA setting.

This setting applies only to the quad characteristic and should be set giving consideration to the maximum load current and required resistive coverage.

### PHS DIST Z1 QUAD RGT BLD RCA:

This setting defines the angular position of the right blinder of the quad characteristic (see the QUAD DISTANCE CHARACTERISTIC figure). This setting applies only to the quad characteristic.

### PHS DIST Z1 QUAD LFT BLD:

This setting defines the left blinder position of the quad characteristic along the resistive axis of the impedance plane (see the QUAD DISTANCE CHARACTERISTIC figure). The angular position of the blinder is adjustable with the use of the PHS DIST Z1 QUAD LFT BLD RCA setting. This setting applies only to the quad characteristic and should be set with consideration to the maximum load current.

### PHS DIST Z1 QUAD LFT BLD RCA:

This setting defines the angular position of the left blinder of the quad characteristic (see the QUAD DISTANCE CHARACTERISTIC figure). This setting applies only to the quad characteristic.

#### PHS DIST Z1 SUPV:

The phase distance elements are supervised by the magnitude of the line-to-line current (fault loop current used for the distance calculations). For convenience,  $\sqrt{3}$  is accommodated by the pickup (i.e., before being used, the entered value of the threshold setting is multiplied by  $\sqrt{3}$ ).

If the minimum fault current level is sufficient, the current supervision pickup should be set above maximum full load current preventing maloperation under VT fuse fail conditions. This requirement may be difficult to meet for remote faults at the end of Zones 2 through 4. If this is the case, the current supervision pickup would be set below the full load current, but this may result in maloperation during fuse fail conditions.

Zone 1 is sealed-in with the current supervision.

#### PHS DIST Z1 VOLT LEVEL:

This setting is relevant for applications on series-compensated lines, or in general, if series capacitors are located between the relaying point and a point for which the zone shall not overreach. For plain (non-compensated) lines, this setting shall be set to zero. Otherwise, the setting is entered in per unit of the phase VT bank configured under the **DISTANCE SOURCE**. See the THEORY OF OPERATION chapter for more details, and the APPLICATION OF SETTINGS chapter for information on how to calculate this setting for applications on series compensated lines.

### PHS DIST Z1 DELAY:

This setting enables the user to delay operation of the distance elements and implement a stepped distance protection. The distance element timers for Zones 2 through 4 apply a short dropout delay to cope with faults located close to the zone boundary when small oscillations in the voltages and/or currents could inadvertently reset the timer. Zone 1 does not need any drop out delay because it is sealed-in by the presence of current.

### PHS DIST Z1 BLK:

This setting enables the user to select a FlexLogic<sup>™</sup> operand to block a given distance element. VT fuse fail detection is one of the applications for this setting.

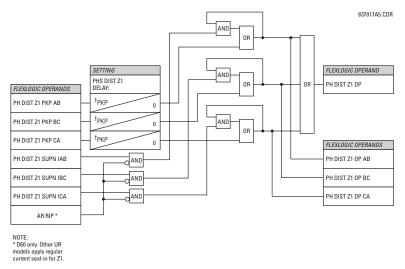



Figure 5-22: PHASE DISTANCE Z1 OP SCHEME

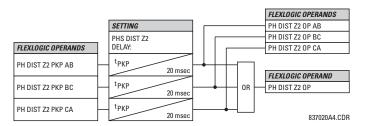



Figure 5-23: PHASE DISTANCE Z2 TO Z4 OP SCHEME

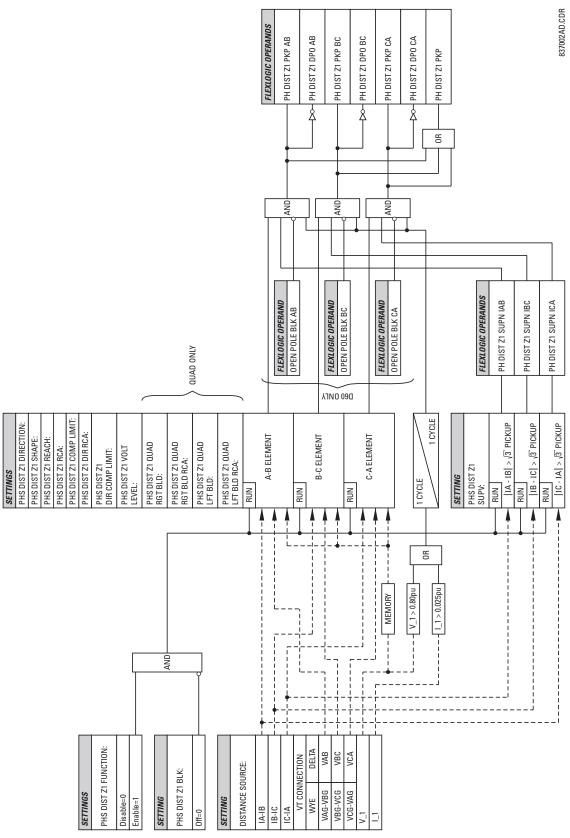



Figure 5-24: PHASE DISTANCE Z1 TO Z4 SCHEME LOGIC

# b) GROUND DISTANCE Z1 to Z4

# PATH: SETTINGS $\Rightarrow \oplus$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(8) $\Rightarrow \oplus$ DISTANCE $\Rightarrow \oplus$ GROUND DISTANCE Z1

| ■ GROUND DISTANCE Z1 | GND DIST Z1 FUNCTION: Disabled           | -       | Disabled, Enabled                                                        |
|----------------------|------------------------------------------|---------|--------------------------------------------------------------------------|
| MESSAGE              | GND DIST Z1<br>DIRECTION: Forward        | Range:  | Forward, Reverse                                                         |
| MESSAGE              | GND DIST Z1<br>SHAPE: Mho                | Range:  | Mho, Quad                                                                |
| MESSAGE              | GND DIST Z1<br>Z0/Z1 MAG: 2.70           | Range:  | 0.50 to 7.00 in steps of 0.01                                            |
| MESSAGE              | GND DIST Z1<br>Z0/Z1 ANG: 0°             | Range:  | –90 to 90° in steps of 1                                                 |
| MESSAGE              | GND DIST Z1<br>ZOM/Z1 MAG: 0.00          | Range:  | 0.00 to 7.00 in steps of 0.01                                            |
| MESSAGE              | GND DIST Z1<br>ZOM/Z1 ANG: 0°            | Range:  | –90 to 90° in steps of 1                                                 |
| MESSAGE              | GND DIST Z1 REACH: 2.00 $\Omega$         | Range:  | $0.02$ to $250.00~\Omega$ in steps of $0.01$                             |
| MESSAGE              | GND DIST Z1<br>RCA: 85°                  |         | 30 to 90° in steps of 1                                                  |
| MESSAGE              | GND DIST Z1<br>COMP LIMIT: 90°           |         | 30 to 90° in steps of 1                                                  |
| MESSAGE              | GND DIST Z1<br>DIR RCA: 85°              |         | 30 to 90° in steps of 1                                                  |
| MESSAGE              | GND DIST Z1<br>DIR COMP LIMIT: 90°       |         | 30 to 90° in steps of 1                                                  |
| MESSAGE              | GND DIST Z1 QUAD RGT BLD: 10.00 $\Omega$ |         | $0.02$ to $500.00~\Omega$ in steps of $0.01$                             |
| MESSAGE              | GND DIST Z1 QUAD<br>RGT BLD RCA: 85°     |         | 60 to 90° in steps of 1                                                  |
| MESSAGE              | GND DIST Z1 QUAD LFT BLD: 10.00 $\Omega$ |         | $0.02$ to $500.00~\Omega$ in steps of $0.01$                             |
| MESSAGE              | GND DIST Z1 QUAD<br>LFT BLD RCA: 85°     |         | 60 to 90° in steps of 1                                                  |
| MESSAGE              | GND DIST Z1<br>SUPV: 0.200 pu            |         | 0.050 to 30.000 pu in steps of 0.001 0.000 to 5.000 pu in steps of 0.001 |
| MESSAGE              | GND DIST Z1 VOLT<br>LEVEL: 0.000 pu      |         | 0.000 to 65.535 s in steps of 0.001                                      |
| MESSAGE              | GND DIST Z1 DELAY:0.000 s                |         | FlexLogic™ operand                                                       |
| MESSAGE              | GND DIST Z1 BLK: Off                     | Ĭ       | Self-Rest, Latched, Disabled                                             |
| MESSAGE              | GND DIST Z1<br>TARGET: Self-Reset        | rtange. | Con Nest, Laterieu, Disableu                                             |

MESSAGE



GND DIST Z1
EVENTS: Disabled

Range: Disabled, Enabled

The ground MHO distance function uses a dynamic 100% memory-polarized mho characteristic with additional reactance, directional, current, and phase selection supervising characteristics. The ground quadrilateral distance function is composed of a reactance characteristic, right and left blinders, and 100% memory-polarized directional, overcurrent, and phase selection supervising characteristics.

The reactance supervision uses zero-sequence current as a polarizing quantity making the characteristic adaptable to the pre-fault power flow. The directional supervision uses memory voltage as polarizing quantity and both zero- and negative-sequence currents as operating quantities.

The phase selection supervision restrains the ground elements during double-line-to-ground faults as they – by principles of distance relaying – may be inaccurate in such conditions. Ground distance Zones 2 through 4 apply additional zero-sequence directional supervision. See the THEORY OF OPERATION chapter for additional details.

Four zones of ground distance protection are provided. Each zone is configured individually through its own setting menu. All of the settings can be independently modified for each of the zones except:

- Signal Source (common for both phase and ground elements for all four zones as entered under the SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(8) ⇒ ⊕ DISTANCE menu).

The common distance settings noted at the start of the DISTANCE section must be properly chosen for correct operation of the ground distance elements.

Although all four zones can be used as either instantaneous elements (pickup [PKP] and dropout [DPO] FlexLogic™ signals) or time-delayed elements (operate [OP] FlexLogic™ signals), only Zone 1 is intended for the instantaneous underreaching tripping mode.



Ensure that the PHASE VT SECONDARY VOLTAGE (see the SETTINGS ⇒ ♣ SYSTEM SETUP ⇒ AC INPUTS ⇒ ♣ VOLTAGE BANK menu) is set correctly to prevent improper operation of associated memory action.

## **GND DIST Z1 DIRECTION:**

All four zones are reversible. The forward direction is defined by the **GND DIST Z1 RCA** setting and the reverse direction is shifted by 180° from that angle.

## **GND DIST Z1 SHAPE:**

This setting selects the shape of the ground distance characteristic between the mho and quad characteristics. The selection is available on a per-zone basis.

## **GND DIST Z1 Z0/Z1 MAG:**

This setting specifies the ratio between the zero-sequence and positive-sequence impedance required for zero-sequence compensation of the ground distance elements. This setting is available on a per-zone basis, enabling precise settings for tapped, non-homogeneous, and series compensated lines.

## **GND DIST Z1 Z0/Z1 ANG:**

This setting specifies the angle difference between the zero-sequence and positive-sequence impedance required for zero-sequence compensation of the ground distance elements. The entered value is the zero-sequence impedance angle minus the positive-sequence impedance angle.

This setting is available on a per-zone basis, enabling precise values for tapped, non-homologous, and series-compensated lines.

## **GND DIST Z1 ZOM/Z1 MAG:**

The ground distance elements can be programmed to apply compensation for the zero-sequence mutual coupling between parallel lines. If the compensation is required, the ground current from the parallel line (3I\_0) measured in the direction of zone being compensated must be connected to the ground input CT of the CT bank configured under the **DISTANCE SOURCE**. This setting specifies the ratio between the magnitudes of the mutual zero-sequence impedance between the lines and the positive-sequence impedance of the protected line. It is imperative to set this setting to zero if the compensation is not to be performed.

#### **GND DIST Z1 ZOM/Z1 ANG:**

This setting specifies the angle difference between the mutual zero-sequence impedance between the lines and the positive-sequence impedance of the protected line.

#### **GND DIST Z1 REACH:**

This setting defines the reach of the zone. The angle of the reach impedance is entered as the **GND DIST Z1 RCA** setting. The reach impedance is entered in secondary ohms.

### **GND DIST Z1 RCA:**

The characteristic angle (similar to the "maximum torque angle" in previous technologies) of the ground distance characteristic is specified by this setting. It is set as an angle of reach impedance as shown in the MHO DISTANCE CHARACTERISTIC and QUAD DISTANCE CHARACTERISTIC figures. This setting is independent from the **GND DIST Z1 DIR RCA** setting (the characteristic angle of an extra directional supervising function).

### **GND DIST Z1 COMP LIMIT:**

This setting shapes the operating characteristic. In particular, it enables a lens-shaped characteristic of the mho function and a tent-shaped characteristic of the reactance boundary of the quad function.

If the mho shape is selected, the same limit angle applies to mho and supervising reactance comparators. In conjunction with the mho shape selection, this setting improves loadability of the protected line. In conjunction with the quad characteristic, this setting improves security for faults close to the reach point by adjusting the reactance boundary into a tent-shape.

### **GND DIST Z1 DIR RCA:**

The characteristic angle (or "maximum torque angle") of the directional supervising function is selected by this setting. If the MHO shape is applied, the directional function is an extra supervising function, as the dynamic mho characteristic itself is a directional one. In conjunction with the quad shape selection, this setting defines the only directional function built into the ground distance element. The directional function uses memory voltage for polarization.

#### **GND DIST Z1 DIR COMP LIMIT:**

This setting selects the comparator limit angle for the directional supervising function.

#### **GND DIST Z1 QUAD RGT BLD:**

This setting defines the right blinder position of the quad characteristic along the resistive axis of the impedance plane (see the QUAD DISTANCE CHARACTERISTIC figure). The angular position of the blinder is adjustable with the use of the **GND DIST Z1 QUAD RGT BLD RCA** setting.

This setting applies only to the quad characteristic and should be set giving consideration to the maximum load current and required resistive coverage.

## **GND DIST Z1 QUAD RGT BLD RCA:**

This setting defines the angular position of the right blinder of the quad characteristic (see the QUAD DISTANCE CHARACTERISTIC figure). This setting applies only to the quad characteristic.

## **GND DIST Z1 QUAD LFT BLD:**

This setting defines the left blinder position of the quad characteristic along the resistive axis of the impedance plane (see the QUAD DISTANCE CHARACTERISTIC figure). The angular position of the blinder is adjustable with the use of the **GND DIST Z1 QUAD LFT BLD RCA** setting. This setting applies only to the quad characteristic and should be set with consideration to the maximum load current.

## **GND DIST Z1 QUAD LFT BLD RCA:**

This setting defines the angular position of the left blinder of the quad characteristic (see the QUAD DISTANCE CHARACTERISTIC figure). This setting applies only to the quad characteristic.

### **GND DIST Z1 SUPV:**

The ground distance elements are supervised by the magnitude of the neutral (3I\_0) current. The current supervision pickup should be set above the maximum unbalance current under maximum load conditions preventing maloperation due to VT fuse failure.

Zone 1 is sealed in with the current supervision.

### **GND DIST Z1 VOLT LEVEL:**

This setting is relevant for applications on series-compensated lines, or in general, if series capacitors are located between the relaying point and a point for which the zone shall not overreach. For plain (non-compensated) lines, this setting shall be set to zero. Otherwise, the setting is entered in per unit of the VT bank configured under the **DISTANCE SOURCE**. See the THEORY OF OPERATION chapter for more details, and the APPLICATION OF SETTINGS chapter for information on how to calculate this setting for applications on series compensated lines.

#### **GND DIST Z1 DELAY:**

This setting enables the user to delay operation of the distance elements and implement a stepped distance backup protection. The distance element timer applies a short drop out delay to cope with faults located close to the boundary of the zone when small oscillations in the voltages and/or currents could inadvertently reset the timer.

### **GND DIST Z1 BLK:**

This setting enables the user to select a FlexLogic<sup>™</sup> operand to block the given distance element. VT fuse fail detection is one of the applications for this setting.

5

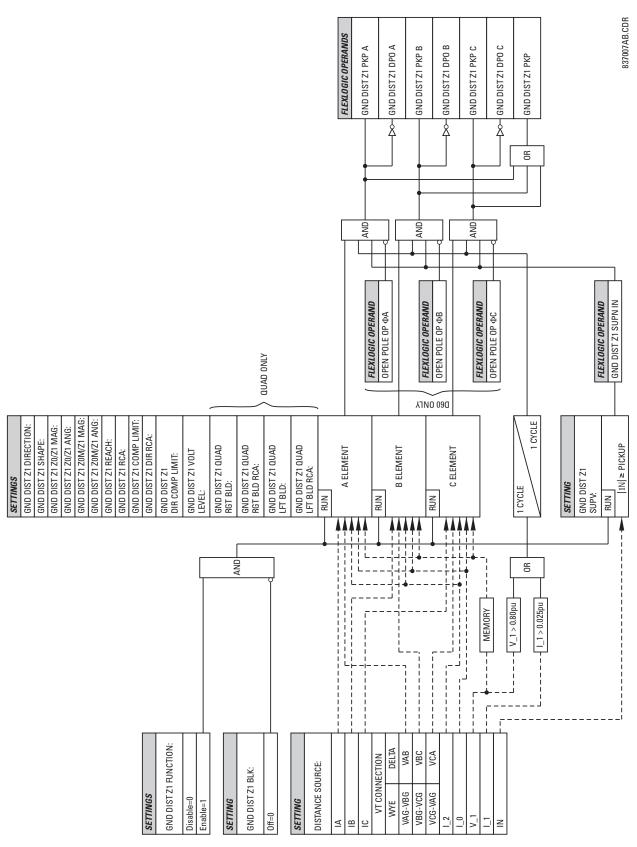



Figure 5-25: GROUND DISTANCE Z1 SCHEME LOGIC

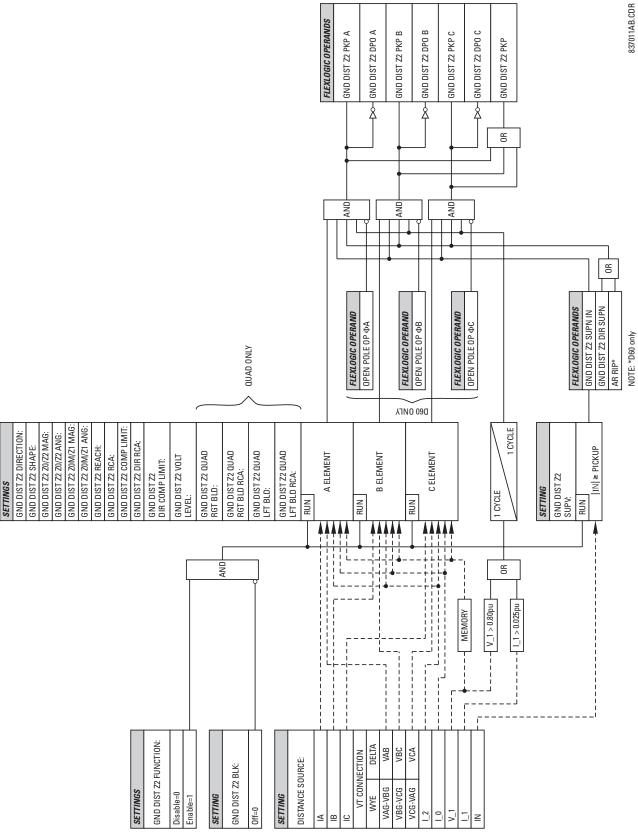



Figure 5-26: GROUND DISTANCE Z2 TO Z4 SCHEME LOGIC

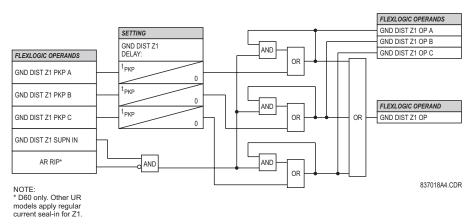
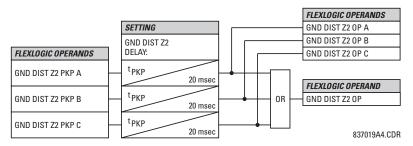
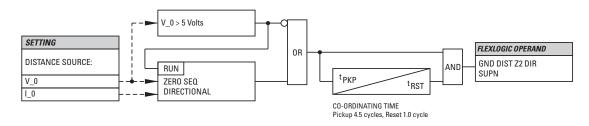



Figure 5-27: GROUND DISTANCE Z1 OP SCHEME





Figure 5-28: GROUND DISTANCE Z2 TO Z4 OP SCHEME

## **GROUND DIRECTIONAL SUPERVISION:**

A dual (zero- and negative-sequence) memory-polarized directional supervision applied to the ground distance protection elements has been shown to give good directional integrity. However, a reverse double-line-to-ground fault can lead to a maloperation of the ground element in a sound phase if the zone reach setting is increased to cover high resistance faults.

Ground distance Zones 2 through 4 use an additional ground directional supervision to enhance directional integrity. The element's directional characteristic angle is used as a "maximum torque angle" together with a 90° limit angle.

The supervision is biased toward operation in order to avoid compromising the sensitivity of ground distance elements at low signal levels. Otherwise, the reverse fault condition that generates concern will have high polarizing levels so that a correct reverse fault decision can be reliably made. The supervision for Zones 2 and 3 is removed during single-pole reclosure.



837009A5.CDR

Figure 5-29: GROUND DIRECTIONAL SUPERVISION SCHEME LOGIC - Z2, Z3, Z4

# **5.5.5 POWER SWING DETECT**

# PATH: SETTINGS ⇔ ♥ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ♥ POWER SWING DETECT

| ■ DETECT | POWER SWING<br>FUNCTION: Disabled       | Kange. | Disabled, Enabled                    |
|----------|-----------------------------------------|--------|--------------------------------------|
| MESSAGE  | POWER SWING<br>SOURCE: SRC 1            | Range: | SRC 1,, SRC 6                        |
| MESSAGE  | POWER SWING<br>MODE: Two Step           | Range: | Two Step, Three Step                 |
| MESSAGE  | POWER SWING<br>SUPV: 0.600 pu           | Range: | 0.050 to 30.000 pu in steps of 0.001 |
| MESSAGE  | POWER SWING FWD<br>REACH: 50.00 ohms    | Range: | 0.10 to 500.00 ohms in steps of 0.01 |
| MESSAGE  | POWER SWING FWD<br>RCA: 75°             | Range: | 40 to 90° in steps of 1              |
| MESSAGE  | POWER SWING REV<br>REACH: 50.00 ohms    | Range: | 0.10 to 500.00 ohms in steps of 0.01 |
| MESSAGE  | POWER SWING REV<br>RCA: 75°             | Range: | 40 to 90° in steps of 1              |
| MESSAGE  | POWER SWING OUTER<br>LIMIT ANGLE: 120°  | Range: | 40 to 140° in steps of 1             |
| MESSAGE  | POWER SWING MIDDLE<br>LIMIT ANGLE: 90°  | Range: | 40 to 140° in steps of 1             |
| MESSAGE  | POWER SWING INNER<br>LIMIT ANGLE: 60°   | Range: | 40 to 140° in steps of 1             |
| MESSAGE  | POWER SWING PICKUP<br>DELAY 1: 0.030 s  | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE  | POWER SWING RESET<br>DELAY 1: 0.050 s   | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE  | POWER SWING PICKUP<br>DELAY 2: 0.017 s  | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE  | POWER SWING PICKUP<br>DELAY 3: 0.009 s  | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE  | POWER SWING PICKUP<br>DELAY 4: 0.017 s  | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE  | POWER SWING SEAL-IN<br>DELAY 1: 0.400 s | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE  | POWER SWING TRIP<br>MODE: Delayed       | Range: | Early, Delayed                       |
| MESSAGE  | POWER SWING BLK:<br>Off                 | Range: | Flexlogic™ operand                   |
| MESSAGE  | POWER SWING<br>TARGET: Self-Reset       | Range: | Self-Reset, Latched, Disabled        |
| MESSAGE  | POWER SWING<br>EVENTS: Disabled         | Range: | Disabled, Enabled                    |

The Power Swing Detect element provides both power swing blocking and out-of-step tripping functions. The element measures the positive-sequence apparent impedance and traces its locus with respect to either two or three user-selectable operating characteristic boundaries as per user choice. Upon detecting appropriate timing relations, the blocking and/or tripping indication is given through FlexLogic™ operands. The POWER SWING OPERATING CHARACTERISTICS and POWER SWING LOGIC figures should be viewed along with the following discussion to develop an understanding of the operation of the element.

## a) POWER SWING BLOCKING

## Three-step operation:

The power swing blocking sequence essentially times the passage of the locus of the positive-sequence impedance between the outer and the middle characteristic boundaries. If the locus enters the outer characteristic (as indicated by setting of the POWER SWING OUTER FlexLogic™ operand) but stays outside the middle characteristic (as indicated by setting of the POWER SWING MIDDLE FlexLogic™ operand) for an interval longer than **POWER SWING PICKUP DELAY 1** the power swing blocking signal (POWER SWING BLOCK FlexLogic™ operand) is established and sealed-in. The blocking signal resets when the locus leaves the outer characteristic, but not sooner than after **POWER SWING RESET DELAY 1** time.

## Two-step operation:

If the 2-step mode is selected, the sequence is identical, but it is the outer and inner characteristics that are used to time the power swing locus.

## b) OUT-OF-STEP TRIPPING

## Three-step operation:

The out-of-step trip sequence identifies unstable power swings by determining if the impedance locus spends a finite time between the outer and middle characteristics and then a finite time between the middle and inner characteristics.

The first step is similar to the power swing blocking sequence. After timer **POWER SWING PICKUP DELAY 1** times out, Latch 1 is set as long as the impedance stays within the outer characteristic.

If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the middle characteristic but stays outside the inner characteristic for a period of time defined as **POWER SWING PICKUP DELAY 2**, Latch 2 is set as long as the impedance stays inside the outer characteristic.

If afterwards, at any time (given the impedance stays within the outer characteristic), the locus enters the inner characteristic and stays there for a period of time defined as **POWER SWING PICKUP DELAY 3**, Latch 2 is set as long as the impedance stays inside the outer characteristic - the element is now ready to trip.

If the "Early" trip mode is selected, operand POWER SWING TRIP is set immediately and is sealed-in for the interval established by setting **POWER SWING SEAL-IN DELAY**.

If the "Delayed" trip mode is selected, the element waits until the impedance locus leaves the inner characteristic, then times out the **POWER SWING PICKUP DELAY 2** delay, and sets Latch 4 - the element is now ready to trip. The trip operand will be set later, when the impedance locus leaves the outer characteristic.

## Two-step operation:

The 2-step mode of operation is similar to the 3-step mode with two exceptions. First, the initial stage monitors the time spent by the impedance locus between the outer and inner characteristics. Second, the stage involving timer POWER SWING PICKUP DELAY 2 is bypassed.

It is up to the user to integrate the blocking (POWER SWING BLOCK) and tripping (POWER SWING TRIP) FlexLogic™ operands with other protection functions and output contacts in order to make this element fully operational.

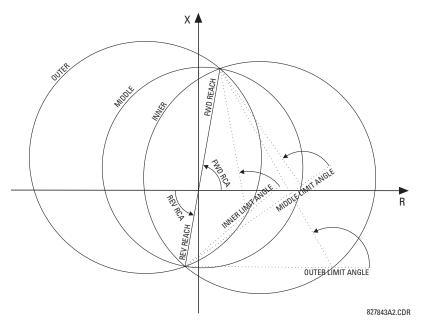



Figure 5-30: POWER SWING DETECT ELEMENT OPERATING CHARACTERISTICS

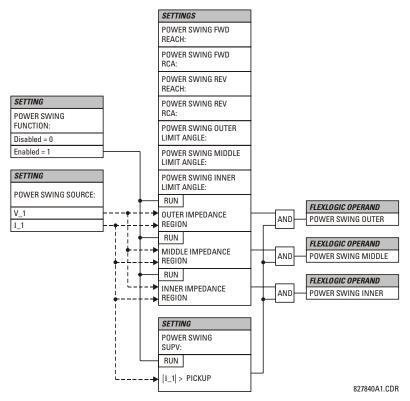



Figure 5-31: POWER SWING DETECT LOGIC (1 of 2)

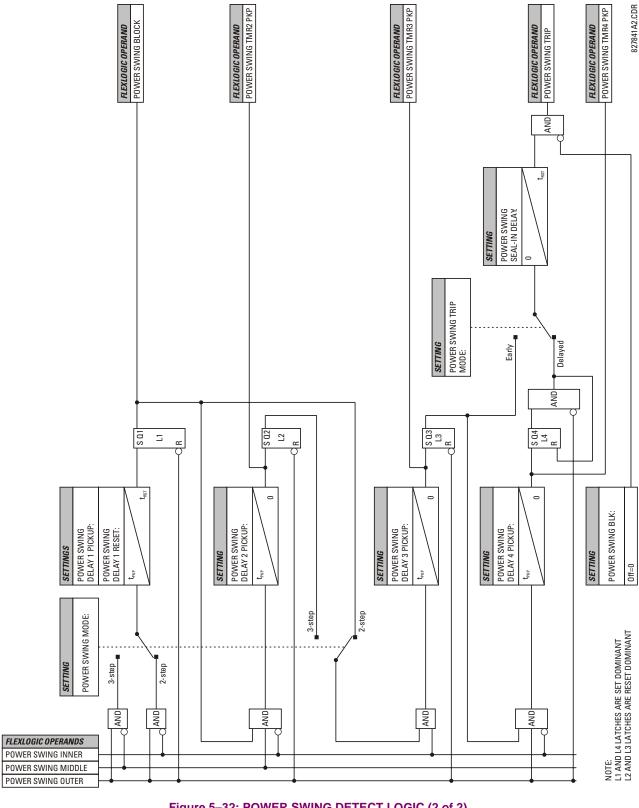



Figure 5-32: POWER SWING DETECT LOGIC (2 of 2)

## c) SETTINGS

### **POWER SWING FUNCTION:**

This setting enables/disables the entire POWER SWING DETECT protection element. The setting applies to both power swing blocking and out-of-step tripping functions.

### **POWER SWING SOURCE:**

The source setting identifies the Signal Source for both blocking and tripping functions.

### **POWER SWING MODE:**

This setting selects between the 2-step and 3-step operating modes and applies to both power swing blocking and out-ofstep tripping functions.

The 3-step mode applies if there is enough space between the maximum load impedances and distance characteristics of the relay that all three (outer, middle, and inner) characteristics can be placed between the load and the distance characteristics. Whether the spans between the outer and middle as well as the middle and inner characteristics are sufficient should be determined by analysis of the fastest power swings expected in correlation with settings of the power swing timers.

The 2-step mode uses only the outer and inner characteristics for both blocking and tripping functions. This leaves more space in heavily loaded systems to place two power swing characteristics between the distance characteristics and the maximum load, but allows for only one determination of the impedance trajectory.

#### **POWER SWING SUPV:**

A common overcurrent pickup level supervises all three power swing characteristics. The supervision responds to the positive sequence current.

## POWER SWING FWD REACH:

This setting specifies the forward reach of all three characteristics. For a simple system consisting of a line and two equivalent sources, this reach should be higher than the sum of the line and remote source positive-sequence impedances. Detailed transient stability studies may be needed for complex systems in order to determine this setting.

## **POWER SWING FWD RCA:**

This setting specifies the angle of the forward reach impedance. The angle is measured as shown in the POWER SWING DETECT ELEMENT OPERATING CHARACTERISTICS diagram.

## **POWER SWING REV REACH:**

This setting specifies the reverse reach of all three power detect characteristics. For a simple system consisting of a line and two equivalent sources, this reach should be higher than the positive-sequence impedance of the local source. Detailed transient stability studies may be needed for complex systems in order to determine this setting.

### **POWER SWING REV RCA:**

This setting specifies the angle of the reverse reach impedance. The angle is measured as shown in the POWER SWING DETECT ELEMENT OPERATING CHARACTERISTICS diagram.

## **POWER SWING OUTER LIMIT ANGLE:**

This setting defines the outer power swing detect characteristic. The convention depicted in the POWER SWING DETECT ELEMENT OPERATING CHARACTERISTICS diagram should be observed: values greater than 90° result in an "apple" shaped characteristic, values lower than 90° result in a lens shaped characteristic. This angle must be selected in consideration of to the maximum expected load. If the "maximum load angle" is known, the outer limit angle should be coordinated with some 20° security margin. Detailed studies may be needed for complex systems in order to determine this setting.

## POWER SWING MIDDLE LIMIT ANGLE:

This setting defines the middle power swing detect characteristic. This setting is relevant only if the 3-step mode is selected. A typical value would be close to the average of the outer and inner limit angles.

## POWER SWING INNER LIMIT ANGLE:

This setting defines the inner power swing detect characteristic.

The inner characteristic is used by the out-of-step tripping function: beyond the inner characteristic out-of-step trip action is definite (the actual trip may be delayed as per the **TRIP MODE** setting). Therefore, this angle must be selected in consideration to the power swing angle beyond which the system becomes unstable and cannot recover.

The inner characteristic is also used by the power swing blocking function in the 2-step mode. Therefore, this angle must be set large enough so that the characteristics of the distance elements are safely enclosed by the inner characteristic.

## **POWER SWING PICKUP DELAY 1:**

All the coordinating timers are related to each other and should be set to detect the fastest expected power swing and produce out-of-step tripping in a secure manner. The timers should be set in consideration to the power swing detect characteristics, mode of power swing detect operation and mode of out-of-step tripping.

This timer defines the interval that the impedance locus must spend between the outer and inner characteristics (2-step operating mode), or between the outer and middle characteristics (3-step operating mode) before the power swing blocking signal is established. This time delay must be set shorter than the time required for the impedance locus to travel between the two selected characteristics during the fastest expected power swing.

This setting is relevant for both power swing blocking and out-of-step tripping.

## **POWER SWING RESET DELAY 1:**

This setting defines the dropout delay for the power swing blocking signal. Detection of a condition requiring a Block output sets Latch 1 after PICKUP DELAY 1 time. When the impedance locus leaves the outer characteristic, timer POWER SWING RESET DELAY 1 is started. When the timer times-out the latch is reset.

This setting should be selected to give extra security for the power swing blocking action.

## **POWER SWING PICKUP DELAY 2:**

This setting controls the out-of-step tripping function in the 3-step mode only. This timer defines the interval the impedance locus must spend between the middle and inner characteristics before the second step of the out-of-step tripping sequence is completed. This time delay must be set shorter than the time required for the impedance locus to travel between the two characteristics during the fastest expected power swing.

### **POWER SWING PICKUP DELAY 3:**

This setting controls the out-of-step tripping function only. This timer defines the interval the impedance locus must spend within the inner characteristic before the last step of the out-of-step tripping sequence is completed and the element is armed to trip. The actual moment of tripping is controlled by the **TRIP MODE** setting.

This time delay is provided for extra security before the out-of-step trip action is executed.

## **POWER SWING PICKUP DELAY 4:**

This setting controls the out-of-step tripping function in the Delayed trip mode only. This timer defines the interval the impedance locus must spend outside the inner characteristic but within the outer characteristic before the element gets armed for the Delayed trip. The delayed trip will take place when the impedance leaves the outer characteristic.

This time delay is provided for extra security and should be set considering the fastest expected power swing.

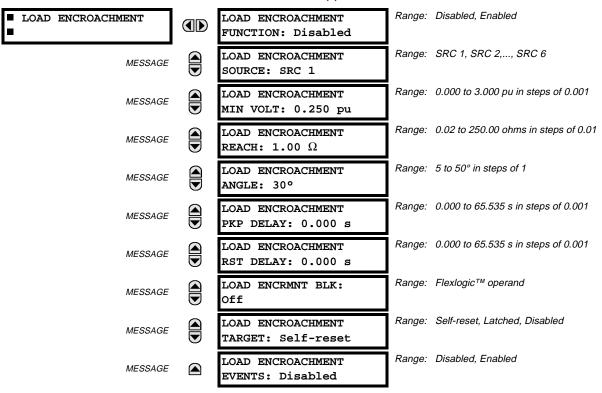
### **POWER SWING SEAL-IN DELAY:**

The out-of-step trip FlexLogic<sup>™</sup> operand (POWER SWING TRIP) is sealed-in for the specified period of time. The sealing-in is crucial in the delayed trip mode, as the original trip signal is a very short pulse occurring when the impedance locus leaves the outer characteristic after the out-of-step sequence is completed.

# **POWER SWING TRIP MODE:**

Selection of the "Early" trip mode results in an instantaneous trip after the last step in the out-of-step tripping sequence is completed. The Early trip mode will stress the circuit breakers as the currents at that moment are high (the electromotive forces of the two equivalent systems are approximately 180° apart).

Selection of the "Delayed" trip mode results in a trip at the moment when the impedance locus leaves the outer characteristic. Delayed trip mode will relax the operating conditions for the breakers as the currents at that moment are low.


The selection should be made considering the capability of the breakers in the system.

### **POWER SWING BLK:**

This setting specifies the FlexLogic<sup>™</sup> operand used for blocking the out-of-step function only. The power swing blocking function is operational all the time as long as the element is enabled.

The blocking signal resets the output POWER SWING TRIP operand but does not stop the out-of-step tripping sequence.

### PATH: SETTINGS ♥ GROUPED ELEMENTS ♥ SETTING GROUP 1(8) ♥ LOAD ENCROACHMENT



The Load Encroachment element responds to the positive-sequence impedance and applies a characteristic shown in the figure below.

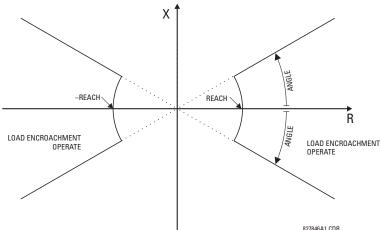



Figure 5-33: LOAD ENCROACHMENT CHARACTERISTIC

The element operates if the positive-sequence voltage is above a settable level and asserts its output signal that can be used to block selected protection elements such as distance or phase overcurrent. The following figure shows an effect of the Load Encroachment characteristics used to block the QUAD distance element.

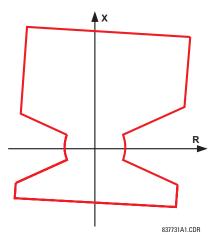



Figure 5-34: LOAD ENCROACHMENT APPLIED TO DISTANCE ELEMENT

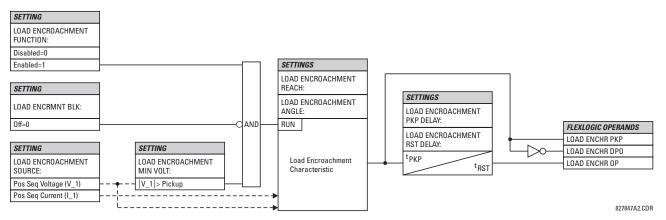
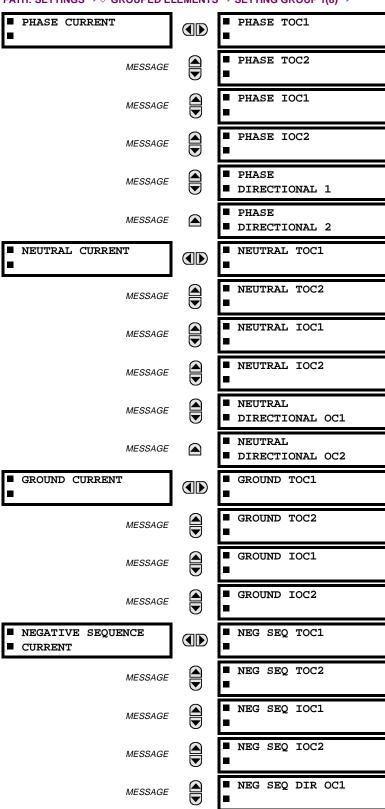



Figure 5-35: LOAD ENCROACHMENT SCHEME LOGIC

## LOAD ENCROACHMENT MIN VOLT:

This setting specifies the minimum positive-sequence voltage required for operation of the element. If the voltage is below this threshold a blocking signal will not be asserted by the element. When selecting this setting one must remember that the UR measures the phase-to-ground sequence voltages regardless of the VT connection.

The nominal VT secondary voltage as specified under PATH: SYSTEM SETUP ⇒ ♣ AC INPUTS ⇒ VOLTAGE BANK X1 ⇒ ♣ PHASE VT SECONDARY is the p.u. base for this setting.


## LOAD ENCROACHMENT REACH:

This setting specifies the resistive reach of the element as shown in the LOAD ENCROACHMENT CHARACTERISTIC diagram. This setting applies to the positive sequence impedance and should be entered in secondary ohms and should be calculated as the positive-sequence resistance seen by the relay under maximum load conditions and unity power factor.

#### LOAD ENCROACHMENT ANGLE:

This setting specifies the size of the blocking region as shown on the LOAD ENCROACHMENT CHARACTERISTIC and applies to the positive sequence impedance.

# PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(8) $\Rightarrow$







■ NEG SEQ DIR OC2

The relay current elements menu consists of time overcurrent (TOC), instantaneous overcurrent (IOC), and directional current elements. These elements can be used for tripping, alarming, or other functions.

### 5.5.8 INVERSE TOC CURVE CHARACTERISTICS

The inverse time overcurrent curves used by the TOC (time overcurrent) Current Elements are the IEEE, IEC, GE Type IAC, and  $I^2$ t standard curve shapes. This allows for simplified coordination with downstream devices. If however, none of these curve shapes is adequate, the FlexCurve<sup>TM</sup> may be used to customize the inverse time curve characteristics. The Definite Time curve is also an option that may be appropriate if only simple protection is required.

Table 5-15: OVERCURRENT CURVE TYPES

| IEEE                 | IEC                                 | GE TYPE IAC        | OTHER            |  |
|----------------------|-------------------------------------|--------------------|------------------|--|
| IEEE Extremely Inv.  | IEC Curve A (BS142)                 | IAC Extremely Inv. | l <sup>2</sup> t |  |
| IEEE Very Inverse    | IEC Curve B (BS142)                 | IAC Very Inverse   | FlexCurve A      |  |
| IEEE Moderately Inv. | Moderately Inv. IEC Curve C (BS142) |                    | FlexCurve B      |  |
|                      | IEC Short Inverse                   | IAC Short Inverse  | Definite Time    |  |

A time dial multiplier setting allows selection of a multiple of the base curve shape (where the time dial multiplier = 1) with the curve shape (curve) setting. Unlike the electromechanical time dial equivalent, operate times are directly proportional to the time multiplier (TD MULTIPLIER) setting value. For example, all times for a multiplier of 10 are 10 times the multiplier 1 or base curve values. Setting the multiplier to zero results in an instantaneous response to all current levels above pickup.

Time overcurrent time calculations are made with an internal "energy capacity" memory variable. When this variable indicates that the energy capacity has reached 100%, a time overcurrent element will operate. If less than 100% energy capacity is accumulated in this variable and the current falls below the dropout threshold of 97 to 98% of the pickup value, the variable must be reduced. Two methods of this resetting operation are available: "Instantaneous" and "Timed". The Instantaneous selection is intended for applications with other relays, such as most static relays, which set the energy capacity directly to zero when the current falls below the reset threshold. The Timed selection can be used where the relay must coordinate with electromechanical relays. With this setting, the energy capacity variable is decremented according to the equation provided.



Graphs of standard time-current curves on  $11" \times 17"$  log-log graph paper are available upon request from the GE Power Management literature department. The original files are also available in PDF format on the UR Software Installation CD and the GE Power Management Web Page.

### **IEEE CURVES:**

The IEEE time overcurrent curve shapes conform to industry standards and the IEEE C37.112-1996 curve classifications for extremely, very, and moderately inverse. The IEEE curves are derived from the formulae:

$$T = TDM \times \left[ \frac{A}{\left( \frac{I}{I_{pickup}} \right)^{p} - 1} + B \right] \qquad T_{RESET} = TDM \times \left[ \frac{t_{r}}{\left( \frac{I}{I_{pickup}} \right)^{2} - 1} \right]$$

where: T = Operate Time (sec.)

TDM = Multiplier Setting

*I* = Input Current

 $I_{pickup}$  = Pickup Current Setting A, B, p = Constants

 $T_{RESET}$  = reset time in sec. (assuming energy capacity is 100% and RESET: Timed)

 $t_r$  = characteristic constant

## Table 5-16: IEEE INVERSE TIME CURVE CONSTANTS

| IEEE CURVE SHAPE        | Α      | В      | Р       | T <sub>R</sub> |
|-------------------------|--------|--------|---------|----------------|
| IEEE EXTREMELY INVERSE  | 28.2   | 0.1217 | 2.0000  | 29.1           |
| IEEE VERY INVERSE       | 19.61  | 0.491  | 2.0000  | 21.6           |
| IEEE MODERATELY INVERSE | 0.0515 | 0.1140 | 0.02000 | 4.85           |

## Table 5-17: IEEE CURVE TRIP TIMES (IN SECONDS)

| MULTIPLIER             | CURRENT ( // I <sub>pickup</sub> ) |        |        |        |        |        |        |        |        |        |  |
|------------------------|------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| (TDM)                  | 1.5                                | 2.0    | 3.0    | 4.0    | 5.0    | 6.0    | 7.0    | 8.0    | 9.0    | 10.0   |  |
| IEEE EXTREMELY INVERSE |                                    |        |        |        |        |        |        |        |        |        |  |
| 0.5                    | 11.341                             | 4.761  | 1.823  | 1.001  | 0.648  | 0.464  | 0.355  | 0.285  | 0.237  | 0.203  |  |
| 1.0                    | 22.682                             | 9.522  | 3.647  | 2.002  | 1.297  | 0.927  | 0.709  | 0.569  | 0.474  | 0.407  |  |
| 2.0                    | 45.363                             | 19.043 | 7.293  | 4.003  | 2.593  | 1.855  | 1.418  | 1.139  | 0.948  | 0.813  |  |
| 4.0                    | 90.727                             | 38.087 | 14.587 | 8.007  | 5.187  | 3.710  | 2.837  | 2.277  | 1.897  | 1.626  |  |
| 6.0                    | 136.090                            | 57.130 | 21.880 | 12.010 | 7.780  | 5.564  | 4.255  | 3.416  | 2.845  | 2.439  |  |
| 8.0                    | 181.454                            | 76.174 | 29.174 | 16.014 | 10.374 | 7.419  | 5.674  | 4.555  | 3.794  | 3.252  |  |
| 10.0                   | 226.817                            | 95.217 | 36.467 | 20.017 | 12.967 | 9.274  | 7.092  | 5.693  | 4.742  | 4.065  |  |
| IEEE VERY I            | NVERSE                             |        | •      | •      | •      |        |        | •      |        | •      |  |
| 0.5                    | 8.090                              | 3.514  | 1.471  | 0.899  | 0.654  | 0.526  | 0.450  | 0.401  | 0.368  | 0.345  |  |
| 1.0                    | 16.179                             | 7.028  | 2.942  | 1.798  | 1.308  | 1.051  | 0.900  | 0.802  | 0.736  | 0.689  |  |
| 2.0                    | 32.358                             | 14.055 | 5.885  | 3.597  | 2.616  | 2.103  | 1.799  | 1.605  | 1.472  | 1.378  |  |
| 4.0                    | 64.716                             | 28.111 | 11.769 | 7.193  | 5.232  | 4.205  | 3.598  | 3.209  | 2.945  | 2.756  |  |
| 6.0                    | 97.074                             | 42.166 | 17.654 | 10.790 | 7.849  | 6.308  | 5.397  | 4.814  | 4.417  | 4.134  |  |
| 8.0                    | 129.432                            | 56.221 | 23.538 | 14.387 | 10.465 | 8.410  | 7.196  | 6.418  | 5.889  | 5.513  |  |
| 10.0                   | 161.790                            | 70.277 | 29.423 | 17.983 | 13.081 | 10.513 | 8.995  | 8.023  | 7.361  | 6.891  |  |
| IEEE MODER             | RATELY INV                         | ERSE   |        |        |        |        |        |        |        |        |  |
| 0.5                    | 3.220                              | 1.902  | 1.216  | 0.973  | 0.844  | 0.763  | 0.706  | 0.663  | 0.630  | 0.603  |  |
| 1.0                    | 6.439                              | 3.803  | 2.432  | 1.946  | 1.688  | 1.526  | 1.412  | 1.327  | 1.260  | 1.207  |  |
| 2.0                    | 12.878                             | 7.606  | 4.864  | 3.892  | 3.377  | 3.051  | 2.823  | 2.653  | 2.521  | 2.414  |  |
| 4.0                    | 25.756                             | 15.213 | 9.729  | 7.783  | 6.753  | 6.102  | 5.647  | 5.307  | 5.041  | 4.827  |  |
| 6.0                    | 38.634                             | 22.819 | 14.593 | 11.675 | 10.130 | 9.153  | 8.470  | 7.960  | 7.562  | 7.241  |  |
| 8.0                    | 51.512                             | 30.426 | 19.458 | 15.567 | 13.507 | 12.204 | 11.294 | 10.614 | 10.083 | 9.654  |  |
| 10.0                   | 64.390                             | 38.032 | 24.322 | 19.458 | 16.883 | 15.255 | 14.117 | 13.267 | 12.604 | 12.068 |  |

#### **IEC CURVES**

For European applications, the relay offers three standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, and IEC Curve C. The formulae for these curves are:

$$T = TDM \times \left[ \frac{K}{\left( \frac{I}{I_{pickup}} \right)^{E} - 1} \right] \qquad T_{RESET} = TDM \times \left[ \frac{t_{r}}{\left( \frac{I}{I_{pickup}} \right)^{2} - 1} \right]$$

where: T = Operate Time (sec.) TDM = Multiplier Setting I = Input Current  $I_{pickup} = \text{Pickup Current Setting}$  K, E = Constants  $t_r = \text{Characteristic Constant}$ 

 $T_{RESET}$  = Reset Time in sec. (assuming energy capacity is 100% and RESET: Timed)

# Table 5–18: IEC (BS) INVERSE TIME CURVE CONSTANTS

| IEC (BS) CURVE SHAPE | K      | E     | T <sub>R</sub> |
|----------------------|--------|-------|----------------|
| IEC CURVE A (BS142)  | 0.140  | 0.020 | 9.7            |
| IEC CURVE B (BS142)  | 13.500 | 1.000 | 43.2           |
| IEC CURVE C (BS142)  | 80.000 | 2.000 | 58.2           |
| IEC SHORT INVERSE    | 0.050  | 0.040 | 0.500          |

Table 5–19: IEC CURVE TRIP TIMES (IN SECONDS)

| MULTIPLIER |        |        |        |       | CURRENT | ( I / I <sub>pickup</sub> ) |       |       |       |       |
|------------|--------|--------|--------|-------|---------|-----------------------------|-------|-------|-------|-------|
| (TDM)      | 1.5    | 2.0    | 3.0    | 4.0   | 5.0     | 6.0                         | 7.0   | 8.0   | 9.0   | 10.0  |
| IEC CURVE  | A      |        |        |       |         |                             |       |       |       |       |
| 0.05       | 0.860  | 0.501  | 0.315  | 0.249 | 0.214   | 0.192                       | 0.176 | 0.165 | 0.156 | 0.149 |
| 0.10       | 1.719  | 1.003  | 0.630  | 0.498 | 0.428   | 0.384                       | 0.353 | 0.330 | 0.312 | 0.297 |
| 0.20       | 3.439  | 2.006  | 1.260  | 0.996 | 0.856   | 0.767                       | 0.706 | 0.659 | 0.623 | 0.594 |
| 0.40       | 6.878  | 4.012  | 2.521  | 1.992 | 1.712   | 1.535                       | 1.411 | 1.319 | 1.247 | 1.188 |
| 0.60       | 10.317 | 6.017  | 3.781  | 2.988 | 2.568   | 2.302                       | 2.117 | 1.978 | 1.870 | 1.782 |
| 0.80       | 13.755 | 8.023  | 5.042  | 3.984 | 3.424   | 3.070                       | 2.822 | 2.637 | 2.493 | 2.376 |
| 1.00       | 17.194 | 10.029 | 6.302  | 4.980 | 4.280   | 3.837                       | 3.528 | 3.297 | 3.116 | 2.971 |
| IEC CURVE  | В      | •      |        | •     | •       | •                           |       | •     |       | •     |
| 0.05       | 1.350  | 0.675  | 0.338  | 0.225 | 0.169   | 0.135                       | 0.113 | 0.096 | 0.084 | 0.075 |
| 0.10       | 2.700  | 1.350  | 0.675  | 0.450 | 0.338   | 0.270                       | 0.225 | 0.193 | 0.169 | 0.150 |
| 0.20       | 5.400  | 2.700  | 1.350  | 0.900 | 0.675   | 0.540                       | 0.450 | 0.386 | 0.338 | 0.300 |
| 0.40       | 10.800 | 5.400  | 2.700  | 1.800 | 1.350   | 1.080                       | 0.900 | 0.771 | 0.675 | 0.600 |
| 0.60       | 16.200 | 8.100  | 4.050  | 2.700 | 2.025   | 1.620                       | 1.350 | 1.157 | 1.013 | 0.900 |
| 0.80       | 21.600 | 10.800 | 5.400  | 3.600 | 2.700   | 2.160                       | 1.800 | 1.543 | 1.350 | 1.200 |
| 1.00       | 27.000 | 13.500 | 6.750  | 4.500 | 3.375   | 2.700                       | 2.250 | 1.929 | 1.688 | 1.500 |
| IEC CURVE  | С      | •      |        | •     | •       | •                           |       | •     |       | •     |
| 0.05       | 3.200  | 1.333  | 0.500  | 0.267 | 0.167   | 0.114                       | 0.083 | 0.063 | 0.050 | 0.040 |
| 0.10       | 6.400  | 2.667  | 1.000  | 0.533 | 0.333   | 0.229                       | 0.167 | 0.127 | 0.100 | 0.081 |
| 0.20       | 12.800 | 5.333  | 2.000  | 1.067 | 0.667   | 0.457                       | 0.333 | 0.254 | 0.200 | 0.162 |
| 0.40       | 25.600 | 10.667 | 4.000  | 2.133 | 1.333   | 0.914                       | 0.667 | 0.508 | 0.400 | 0.323 |
| 0.60       | 38.400 | 16.000 | 6.000  | 3.200 | 2.000   | 1.371                       | 1.000 | 0.762 | 0.600 | 0.485 |
| 0.80       | 51.200 | 21.333 | 8.000  | 4.267 | 2.667   | 1.829                       | 1.333 | 1.016 | 0.800 | 0.646 |
| 1.00       | 64.000 | 26.667 | 10.000 | 5.333 | 3.333   | 2.286                       | 1.667 | 1.270 | 1.000 | 0.808 |
| IEC SHORT  | TIME   |        |        |       |         |                             |       |       |       |       |
| 0.05       | 0.153  | 0.089  | 0.056  | 0.044 | 0.038   | 0.034                       | 0.031 | 0.029 | 0.027 | 0.026 |
| 0.10       | 0.306  | 0.178  | 0.111  | 0.088 | 0.075   | 0.067                       | 0.062 | 0.058 | 0.054 | 0.052 |
| 0.20       | 0.612  | 0.356  | 0.223  | 0.175 | 0.150   | 0.135                       | 0.124 | 0.115 | 0.109 | 0.104 |
| 0.40       | 1.223  | 0.711  | 0.445  | 0.351 | 0.301   | 0.269                       | 0.247 | 0.231 | 0.218 | 0.207 |
| 0.60       | 1.835  | 1.067  | 0.668  | 0.526 | 0.451   | 0.404                       | 0.371 | 0.346 | 0.327 | 0.311 |
| 0.80       | 2.446  | 1.423  | 0.890  | 0.702 | 0.602   | 0.538                       | 0.494 | 0.461 | 0.435 | 0.415 |
| 1.00       | 3.058  | 1.778  | 1.113  | 0.877 | 0.752   | 0.673                       | 0.618 | 0.576 | 0.544 | 0.518 |

### **IAC CURVES:**

The curves for the General Electric type IAC relay family are derived from the formulae:

$$T = \text{TDM} \times \left[ A + \frac{B}{\left( \frac{I}{I_{pickup}} - C \right)} + \frac{D}{\left( \frac{I}{I_{pickup}} - C \right)^2} + \frac{E}{\left( \frac{I}{I_{pickup}} - C \right)^3} \right]$$

$$T_{RESET} = TDM \times \left[ \frac{t_r}{\left( \frac{I}{I_{pickup}} \right)^2 - 1} \right]$$

where: T = Operate Time (sec.) TDM = Multiplier Setting  $I_{\underline{\textit{pickup}}} = \text{Pickup Current Setting}$  A to E = Constants

I = Input Current

 $t_r$  = Characteristic Constant

 $T_{RESET}$  = Reset Time in sec. (assuming energy capacity is 100% and RESET: Timed)

# Table 5-20: GE TYPE IAC INVERSE TIME CURVE CONSTANTS

| IAC CURVE SHAPE     | Α      | В      | C      | D       | Ш      | $T_R$ |
|---------------------|--------|--------|--------|---------|--------|-------|
| IAC EXTREME INVERSE | 0.0040 | 0.6379 | 0.6200 | 1.7872  | 0.2461 | 6.008 |
| IAC VERY INVERSE    | 0.0900 | 0.7955 | 0.1000 | -1.2885 | 7.9586 | 4.678 |
| IAC INVERSE         | 0.2078 | 0.8630 | 0.8000 | -0.4180 | 0.1947 | 0.990 |
| IAC SHORT INVERSE   | 0.0428 | 0.0609 | 0.6200 | -0.0010 | 0.0221 | 0.222 |

## Table 5-21: IAC CURVE TRIP TIMES

| MULTIPLIER  |           |        |       |       | CURRENT | ( I / I <sub>pickup</sub> ) |       |       |       |       |
|-------------|-----------|--------|-------|-------|---------|-----------------------------|-------|-------|-------|-------|
| (TDM)       | 1.5       | 2.0    | 3.0   | 4.0   | 5.0     | 6.0                         | 7.0   | 8.0   | 9.0   | 10.0  |
| IAC EXTREM  | IELY INVE | RSE    |       |       | •       |                             |       |       | •     |       |
| 0.5         | 1.699     | 0.749  | 0.303 | 0.178 | 0.123   | 0.093                       | 0.074 | 0.062 | 0.053 | 0.046 |
| 1.0         | 3.398     | 1.498  | 0.606 | 0.356 | 0.246   | 0.186                       | 0.149 | 0.124 | 0.106 | 0.093 |
| 2.0         | 6.796     | 2.997  | 1.212 | 0.711 | 0.491   | 0.372                       | 0.298 | 0.248 | 0.212 | 0.185 |
| 4.0         | 13.591    | 5.993  | 2.423 | 1.422 | 0.983   | 0.744                       | 0.595 | 0.495 | 0.424 | 0.370 |
| 6.0         | 20.387    | 8.990  | 3.635 | 2.133 | 1.474   | 1.115                       | 0.893 | 0.743 | 0.636 | 0.556 |
| 8.0         | 27.183    | 11.987 | 4.846 | 2.844 | 1.966   | 1.487                       | 1.191 | 0.991 | 0.848 | 0.741 |
| 10.0        | 33.979    | 14.983 | 6.058 | 3.555 | 2.457   | 1.859                       | 1.488 | 1.239 | 1.060 | 0.926 |
| IAC VERY IN | IVERSE    |        |       |       |         |                             |       |       |       |       |
| 0.5         | 1.451     | 0.656  | 0.269 | 0.172 | 0.133   | 0.113                       | 0.101 | 0.093 | 0.087 | 0.083 |
| 1.0         | 2.901     | 1.312  | 0.537 | 0.343 | 0.266   | 0.227                       | 0.202 | 0.186 | 0.174 | 0.165 |
| 2.0         | 5.802     | 2.624  | 1.075 | 0.687 | 0.533   | 0.453                       | 0.405 | 0.372 | 0.349 | 0.331 |
| 4.0         | 11.605    | 5.248  | 2.150 | 1.374 | 1.065   | 0.906                       | 0.810 | 0.745 | 0.698 | 0.662 |
| 6.0         | 17.407    | 7.872  | 3.225 | 2.061 | 1.598   | 1.359                       | 1.215 | 1.117 | 1.046 | 0.992 |
| 8.0         | 23.209    | 10.497 | 4.299 | 2.747 | 2.131   | 1.813                       | 1.620 | 1.490 | 1.395 | 1.323 |
| 10.0        | 29.012    | 13.121 | 5.374 | 3.434 | 2.663   | 2.266                       | 2.025 | 1.862 | 1.744 | 1.654 |
| IAC INVERS  | E         | •      |       |       | •       |                             |       |       | •     | •     |
| 0.5         | 0.578     | 0.375  | 0.266 | 0.221 | 0.196   | 0.180                       | 0.168 | 0.160 | 0.154 | 0.148 |
| 1.0         | 1.155     | 0.749  | 0.532 | 0.443 | 0.392   | 0.360                       | 0.337 | 0.320 | 0.307 | 0.297 |
| 2.0         | 2.310     | 1.499  | 1.064 | 0.885 | 0.784   | 0.719                       | 0.674 | 0.640 | 0.614 | 0.594 |
| 4.0         | 4.621     | 2.997  | 2.128 | 1.770 | 1.569   | 1.439                       | 1.348 | 1.280 | 1.229 | 1.188 |
| 6.0         | 6.931     | 4.496  | 3.192 | 2.656 | 2.353   | 2.158                       | 2.022 | 1.921 | 1.843 | 1.781 |
| 8.0         | 9.242     | 5.995  | 4.256 | 3.541 | 3.138   | 2.878                       | 2.695 | 2.561 | 2.457 | 2.375 |
| 10.0        | 11.552    | 7.494  | 5.320 | 4.426 | 3.922   | 3.597                       | 3.369 | 3.201 | 3.072 | 2.969 |
| IAC SHORT   | INVERSE   |        |       |       |         |                             |       |       |       |       |
| 0.5         | 0.072     | 0.047  | 0.035 | 0.031 | 0.028   | 0.027                       | 0.026 | 0.026 | 0.025 | 0.025 |
| 1.0         | 0.143     | 0.095  | 0.070 | 0.061 | 0.057   | 0.054                       | 0.052 | 0.051 | 0.050 | 0.049 |
| 2.0         | 0.286     | 0.190  | 0.140 | 0.123 | 0.114   | 0.108                       | 0.105 | 0.102 | 0.100 | 0.099 |
| 4.0         | 0.573     | 0.379  | 0.279 | 0.245 | 0.228   | 0.217                       | 0.210 | 0.204 | 0.200 | 0.197 |
| 6.0         | 0.859     | 0.569  | 0.419 | 0.368 | 0.341   | 0.325                       | 0.314 | 0.307 | 0.301 | 0.296 |
| 8.0         | 1.145     | 0.759  | 0.559 | 0.490 | 0.455   | 0.434                       | 0.419 | 0.409 | 0.401 | 0.394 |
| 10.0        | 1.431     | 0.948  | 0.699 | 0.613 | 0.569   | 0.542                       | 0.524 | 0.511 | 0.501 | 0.493 |

#### 12t CURVES:

The curves for the I<sup>2</sup>t are derived from the formulae:

$$T = \text{TDM} \times \left[ \frac{100}{\left( \frac{I}{I_{pickup}} \right)^2} \right]$$
 $T_{RESET} = \text{TDM} \times \left[ \frac{100}{\left( \frac{I}{I_{pickup}} \right)^{-2}} \right]$ 

where: T = Operate Time (sec.)

TDM = Multiplier Setting

I = Input Current

Ipickup = Pickup Current Setting

 $T_{RESET}$  = Reset Time in sec. (assuming energy capacity is 100% and RESET: Timed)

Table 5-22: I2t CURVE TRIP TIMES

| MULTIPLIER<br>(TDM) |         |         |        |        | CURRENT | RRENT ( // I <sub>pickup</sub> ) |        |        |        |        |  |  |  |  |
|---------------------|---------|---------|--------|--------|---------|----------------------------------|--------|--------|--------|--------|--|--|--|--|
|                     | 1.5     | 2.0     | 3.0    | 4.0    | 5.0     | 6.0                              | 7.0    | 8.0    | 9.0    | 10.0   |  |  |  |  |
| 0.01                | 0.44    | 0.25    | 0.11   | 0.06   | 0.04    | 0.03                             | 0.02   | 0.02   | 0.01   | 0.01   |  |  |  |  |
| 0.10                | 4.44    | 2.50    | 1.11   | 0.63   | 0.40    | 0.28                             | 0.20   | 0.16   | 0.12   | 0.10   |  |  |  |  |
| 1.00                | 44.44   | 25.00   | 11.11  | 6.25   | 4.00    | 2.78                             | 2.04   | 1.56   | 1.23   | 1.00   |  |  |  |  |
| 10.00               | 444.44  | 250.00  | 111.11 | 62.50  | 40.00   | 27.78                            | 20.41  | 15.63  | 12.35  | 10.00  |  |  |  |  |
| 100.00              | 4444.4  | 2500.0  | 1111.1 | 625.00 | 400.00  | 277.78                           | 204.08 | 156.25 | 123.46 | 100.00 |  |  |  |  |
| 600.00              | 26666.7 | 15000.0 | 6666.7 | 3750.0 | 2400.0  | 1666.7                           | 1224.5 | 937.50 | 740.74 | 600.00 |  |  |  |  |

### FLEXCURVE™:

The custom FlexCurve™ is described in detail in the FLEXCURVE™ section of this chapter. The curve shapes for the Flex-Curves™ are derived from the formulae:

$$T = \mathsf{TDM} \times \left[\mathsf{FlexcurveTime} \, @ \left( \frac{I}{I_{pickup}} \right) \right] \qquad \qquad \mathsf{When} \, \left( \frac{I}{I_{pickup}} \right) \geq 1.00$$
 
$$T_{RESET} = \mathsf{TDM} \times \left[\mathsf{FlexcurveTime} \, @ \left( \frac{I}{I_{pickup}} \right) \right] \qquad \qquad \mathsf{When} \, \left( \frac{I}{I_{pickup}} \right) \leq 0.98$$

where: T = Operate Time (sec.)

TDM = Multiplier Setting

*I* = Input Current

 $I_{pickup}$  = Pickup Current Setting

 $T_{RESET}$  = Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

#### **DEFINITE TIME CURVE:**

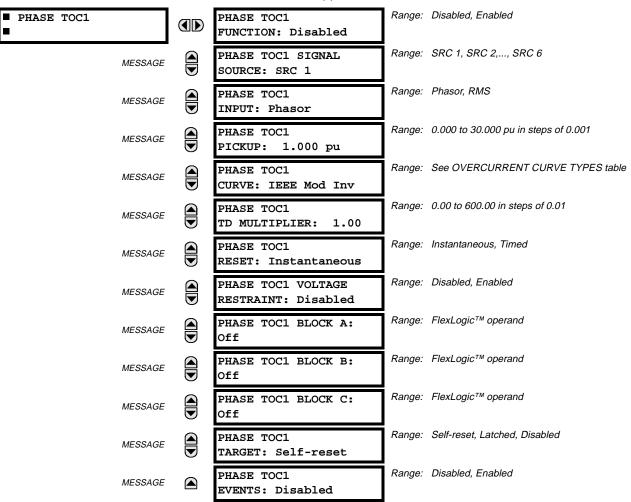
The Definite Time curve shape operates as soon as the pickup level is exceeded for a specified period of time. The base definite time curve delay is in seconds. The curve multiplier of 0.00 to 600.00 makes this delay adjustable from instantaneous to 600.00 seconds in steps of 10 ms.

T = TDM in seconds, when  $I > I_{pickup}$ 

 $T_{RESET} = -TDM$  in seconds

where: T = Operate Time (sec.)

TDM = Multiplier Setting


I = Input Current

Ipickup = Pickup Current Setting

 $T_{RESET}$  = Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

# a) PHASE TOC1 / TOC2 (PHASE TIME OVERCURRENT: ANSI 51P)

PATH: SETTINGS ⇔ \$\Partial\$ GROUPED ELEMENTS \$\Rightarrow\$ SETTING GROUP 1(8) \$\Rightarrow\$ PHASE CURRENT \$\Rightarrow\$ PHASE TOC1



The phase time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The phase current input quantities may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the INVERSE TOC CURVE CHAR-ACTERISTICS section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

The PHASE TOC1 PICKUP setting can be dynamically reduced by a voltage restraint feature (when enabled). This is accomplished via the multipliers (Mvr) corresponding to the phase-phase voltages of the voltage restraint characteristic curve (see the figure below); the pickup level is calculated as 'Mvr' times the PICKUP setting. If the voltage restraint feature is disabled, the pickup level always remains at the setting value.

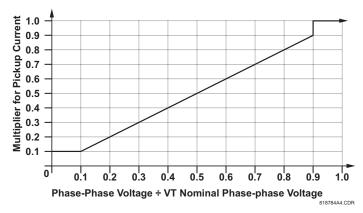



Figure 5-36: VOLTAGE RESTRAINT CHARACTERISTIC FOR PHASE TOC

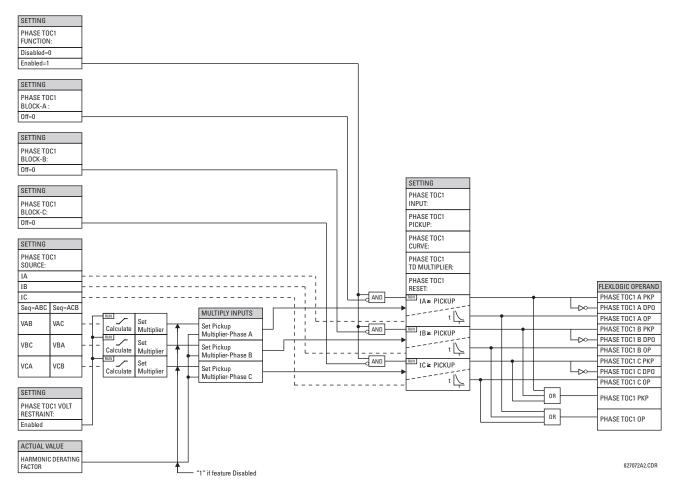
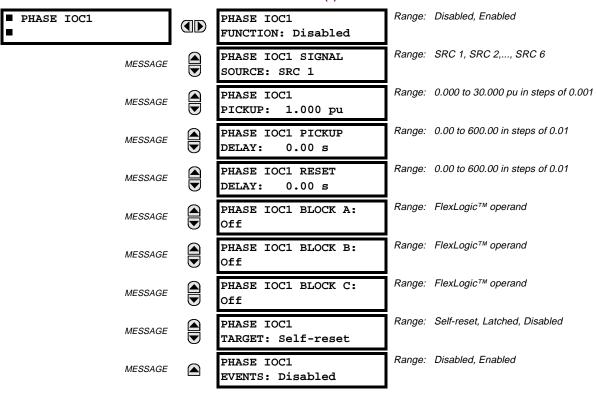




Figure 5-37: PHASE TOC1 SCHEME LOGIC

## b) PHASE IOC1 / IOC2 (PHASE INSTANTANEOUS OVERCURRENT: ANSI 50P)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ PHASE CURRENT ⇔ PHASE IOC 1



The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The input current is the fundamental phasor magnitude.

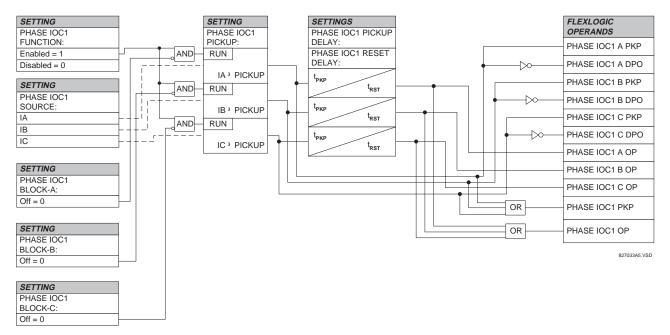
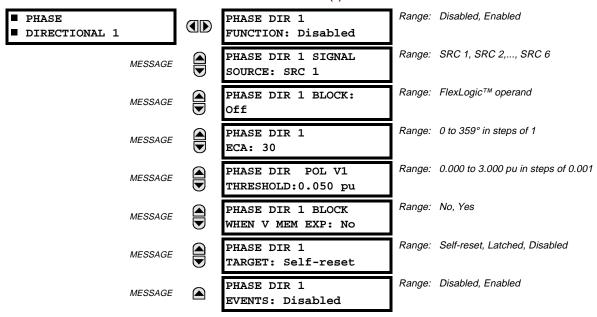




Figure 5-38: PHASE IOC1 SCHEME LOGIC

### c) PHASE DIRECTIONAL 1(2) (PHASE DIRECTIONAL OVERCURRENT: ANSI 67P)

PATH: SETTINGS  $\Rightarrow \emptyset$  GROUPED ELEMENTS  $\Rightarrow$  SETTING GROUP 1(8)  $\Rightarrow$  PHASE CURRENT  $\Rightarrow$  PHASE DIRECTIONAL 1



The phase directional elements (one for each of phases A, B, and C) determine the phase current flow direction for steady state and fault conditions and can be used to control the operation of the phase overcurrent elements via the BLOCK inputs of these elements.

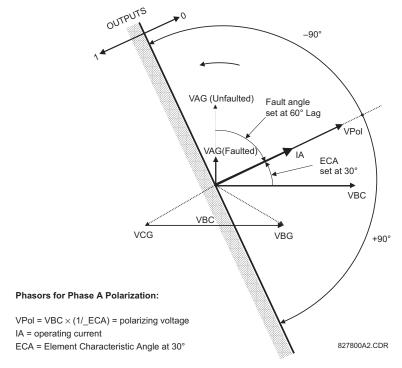



Figure 5-39: PHASE A DIRECTIONAL POLARIZATION

This element is intended to apply a block signal to an overcurrent element to prevent an operation when current is flowing in a particular direction. The direction of current flow is determined by measuring the phase angle between the current from the phase CTs and the line-line voltage from the VTs, based on the 90° or "quadrature" connection. If there is a requirement to supervise overcurrent elements for flows in opposite directions, such as can happen through a bus-tie breaker, two phase directional elements should be programmed with opposite ECA settings.

To increase security for three phase faults very close to the location of the VTs used to measure the polarizing voltage, a 'voltage memory' feature is incorporated. This feature remembers the measurement of the polarizing voltage the moment before the voltage collapses, and uses it to determine direction. The voltage memory remains valid for one second after the voltage has collapsed.

The main component of the phase directional element is the phase angle comparator with two inputs: the operating signal (phase current) and the polarizing signal (the line voltage, shifted in the leading direction by the characteristic angle, ECA).

The following table shows the operating and polarizing signals used for phase directional control:

| PHASE | OPERATING   | POLARIZING :           | POLARIZING SIGNAL VPOL |  |  |  |  |
|-------|-------------|------------------------|------------------------|--|--|--|--|
|       | SIGNAL      | ABC PHASE SEQUENCE     | ACB PHASE SEQUENCE     |  |  |  |  |
| Α     | Angle of IA | Angle of VBC × (1∠ECA) | Angle of VCB × (1∠ECA) |  |  |  |  |
| В     | Angle of IB | Angle of VCA × (1∠ECA) | Angle of VAC × 1∠ECA)  |  |  |  |  |
| С     | Angle of IC | Angle of VAB × (1∠ECA) | Angle of VBA × (1∠ECA) |  |  |  |  |

### **MODE OF OPERATION:**

- When the Phase Directional function is "Disabled", or the operating current is below 5% x CT Nominal, the element output is "0".
- When the Phase Directional function is "Enabled", the operating current is above 5% × CT Nominal and the polarizing
  voltage is above the set threshold, the element output depends on the phase angle between the operating and polarizing signals as follows:
  - The element output is logic "0" when the operating current is within polarizing voltage ±90°.
  - For all other angles, the element output is logic "1".
- Once the voltage memory has expired, the phase overcurrent elements under directional control can be set to block or trip on overcurrent as follows:
  - When BLOCK WHEN V MEM EXP is set to "Yes", the directional element will block the operation of any phase overcurrent element under directional control when voltage memory expires. When set to "No", the directional element allows tripping of phase overcurrent elements under directional control when voltage memory expires.

In all cases, directional blocking will be permitted to resume when the polarizing voltage becomes greater than the "polarizing voltage threshold".

#### **SETTINGS:**

#### PHASE DIR 1 SIGNAL SOURCE:

This setting is used to select the source for the operating and polarizing signals.

The operating current for the phase directional element is the phase current for the selected current source. The polarizing voltage is the line voltage from the phase VTs, based on the 90° or "quadrature" connection and shifted in the leading direction by the Element Characteristic Angle (ECA).

## PHASE DIR 1 ECA:

This setting is used to select the Element Characteristic Angle, i.e. the angle by which the polarizing voltage is shifted in the leading direction to achieve dependable operation. In the design of UR elements, a block is applied to an element by asserting logic 1 at the blocking input. This element should be programmed via the ECA setting so that the output is **logic 1** for current in the non-tripping direction.

### PHASE DIR 1 POL V THRESHOLD:

This setting is used to establish the minimum level of voltage for which the phase angle measurement is reliable. The setting is based on VT accuracy. The default value is 0.05 pu.

# PHASE DIR 1 BLOCK WHEN V MEM EXP:

This setting is used to select the required operation upon expiration of voltage memory. When set to "Yes", the directional element blocks the operation of any phase overcurrent element under directional control, when voltage memory expires; when set to "No", the directional element allows tripping of phase overcurrent elements under directional control.

**5.5 GROUPED ELEMENTS** 



The Phase Directional element would respond to the forward load current. In the case of a following reverse fault, the element needs some time – in the order of 8 msec – to establish a blocking signal. Some protection elements such as instantaneous overcurrent may respond to reverse faults before the blocking signal is established. Therefore, a coordination time of at least 10 msec must be added to all the instantaneous protection elements under the supervision of the Phase Directional element. If current reversal is of a concern, a longer delay – in the order of 20 msec – may be needed.

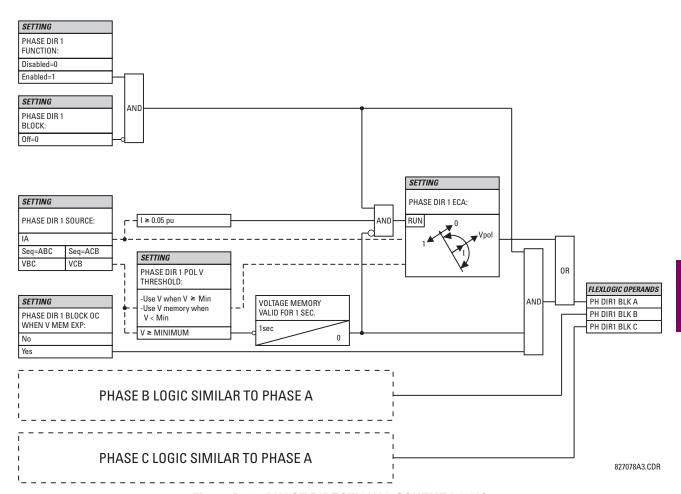
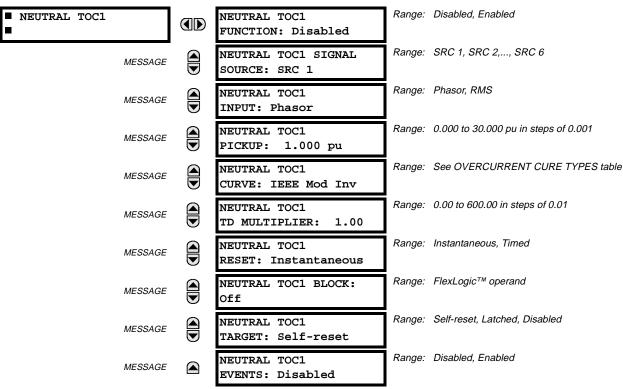




Figure 5-40: PHASE DIRECTIONAL SCHEME LOGIC

# a) NEUTRAL TOC1 / TOC2 (NEUTRAL TIME OVERCURRENT: ANSI 51N)

PATH: SETTINGS  $\Rightarrow \emptyset$  GROUPED ELEMENTS  $\Rightarrow$  SETTING GROUP 1(8)  $\Rightarrow \emptyset$  NEUTRAL CURRENT  $\Rightarrow$  NEUTRAL TOC1



The neutral time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The neutral current input value is a quantity calculated as 3lo from the phase currents and may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (refer to the INVERSE TOC CURVE CHAR-ACTERISTICS section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

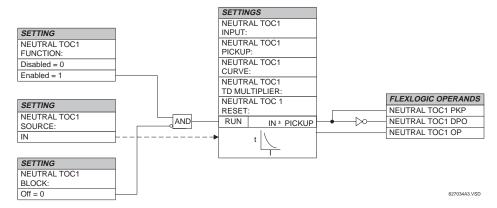



Figure 5-41: NEUTRAL TOC1 SCHEME LOGIC



Once picked up, the NEUTRAL TOCx PKP output operand remains picked up until the thermal memory of the element resets completely. The PKP operand will not reset immediately after the operating current drops below the pickup threshold unless NEUTRL TOCx RESET is set to "Instantaneous".

### b) NEUTRAL IOC1 / IOC2 (NEUTRAL INSTANTANEOUS OVERCURRENT: ANSI 50N)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ⊕ NEUTRAL CURRENT ⇔ ⊕ NEUTRAL IOC1



The Neutral Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element essentially responds to the magnitude of a neutral current fundamental frequency phasor calculated from the phase currents. A "positive-sequence restraint" is applied for better performance. A small portion (6.25%) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity of the element as follows:

$$I_{op} = 3 \times (|I_0| - K \cdot |I_1|)$$
, where  $K = 1/16$ .

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- system unbalances under heavy load conditions
- · transformation errors of current transformers (CTs) during double-line and three-phase faults
- switch-off transients during double-line and three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on how test currents are injected into the relay (single-phase injection:  $I_{op} = 0.9375 \cdot I_{injected}$ ; three-phase pure zero-sequence injection:  $I_{op} = 3 \times I_{injected}$ ).

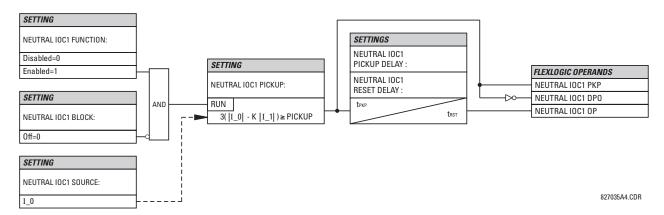



Figure 5-42: NEUTRAL IOC1 SCHEME LOGIC

## c) NEUTRAL DIRECTIONAL OC1 / OC2 (NEUTRAL DIRECTIONAL OVERCURRENT: ANSI 67N)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ NEUTRAL CURRENT ⇔ ⊕ NEUTRAL DIRECTIONAL OC1

| ■ NEUTRAL<br>■ DIRECTIONAL OC1 | NEUTRAL DIR OC1<br>FUNCTION: Disabled      | Range: | Disabled, Enabled                            |
|--------------------------------|--------------------------------------------|--------|----------------------------------------------|
| MESSAGE                        | NEUTRAL DIR OC1<br>SOURCE: SRC 1           | Range: | SRC 1, SRC 2,, SRC 6                         |
| MESSAGE                        | NEUTRAL DIR OC1<br>POLARIZING: Voltage     | Range: | Voltage, Current, Dual                       |
| MESSAGE                        | NEUTRAL DIR OC1 POL<br>VOLT: Calculated V0 | Range: | Calculated V0, Measured VX                   |
| MESSAGE                        | NEUTRAL DIR OC1 OP<br>CURR: Calculated 310 | Range: | Calculated 310, Measured IG                  |
| MESSAGE                        | NEUTRAL DIR OC1<br>OFFSET: 0.00 $\Omega$   | Range: | $0.00$ to $250.00~\Omega$ in steps of $0.01$ |
| MESSAGE                        | NEUTRAL DIR OC1 FWD<br>ECA: 75° Lag        | Range: | −90 to 90° in steps of 1                     |
| MESSAGE                        | NEUTRAL DIR OC1 FWD<br>LIMIT ANGLE: 90°    | Range: | 40 to 90° in steps of 1                      |
| MESSAGE                        | NEUTRAL DIR OC1 FWD<br>PICKUP: 0.050 pu    | Range: | 0.002 to 30.000 pu in steps of 0.001         |
| MESSAGE                        | NEUTRAL DIR OC1 REV<br>LIMIT ANGLE: 90°    | Range: | 40 to 90° in steps of 1                      |
| MESSAGE                        | NEUTRAL DIR OC1 REV<br>PICKUP: 0.050 pu    | Range: | 0.002 to 30.000 pu in steps of 0.001         |
| MESSAGE                        | NEUTRAL DIR OC1 BLK:<br>Off                | Range: | FlexLogic™ operand                           |
| MESSAGE                        | NEUTRAL DIR OC1<br>TARGET: Self-reset      | Range: | Self-reset, Latched, Disabled                |
| MESSAGE                        | NEUTRAL DIR OC1<br>EVENTS: Disabled        | Range: | Disabled, Enabled                            |

There are two Neutral Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications the NEUTRAL DIR OC1 FWD and NEUTRAL DIR OC1 REV operands, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as "forward or "reverse", respectively (directional unit).

The **overcurrent unit** responds to the magnitude of a fundamental frequency phasor of the either the neutral current calculated from the phase currents or the ground current. There are two separate pickup settings for the forward- and reverse-looking functions, respectively. If set to use the calculated 3I\_0, the element applies a "positive-sequence restraint" for better performance: a small portion (6.25%) of the positive–sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity.

$$I_{op} = 3 \times (|I_0| - K \times |I_1|)$$
, where K is 1/16.

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of Current Transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection:  $I_{op} = 0.9375 \times I_{injected}$ ; three-phase pure zero-sequence injection:  $I_{op} = 3 \times I_{injected}$ ).

The **directional unit** uses the zero-sequence current (I\_0) or ground current (IG) for fault direction discrimination and may be programmed to use either zero-sequence voltage ("Calculated V0" or "Measured VX"), ground current (IG), or both for polarizing. The following tables define the Neutral Directional Overcurrent element.

Table 5-23: QUANTITIES FOR "CALCULATED 310" CONFIGURATION

|                 | DIRECTIONAL UNIT |                              |                  |                                              |  |  |  |
|-----------------|------------------|------------------------------|------------------|----------------------------------------------|--|--|--|
| POLARIZING MODE | DIRECTION        | COMPARED                     | COMPARED PHASORS |                                              |  |  |  |
| Voltage         | Forward          | $-V_0 + Z_offset \times I_0$ | I_0 × 1∠ECA      |                                              |  |  |  |
| voltage         | Reverse          | -V_0 + Z_offset × I_0        | -I_0 × 1∠ECA     |                                              |  |  |  |
| Current         | Forward          | IG                           | I_0              |                                              |  |  |  |
| Current         | Reverse          | IG                           | -l_0             |                                              |  |  |  |
|                 |                  | -V_0 + Z_offset × I_0        | I_0 × 1∠ECA      | $I_{op} = 3 \times ( I_0  - K \times  I_1 )$ |  |  |  |
|                 | Forward          | C                            | or               |                                              |  |  |  |
| Dual            |                  | IG                           | I_0              |                                              |  |  |  |
| Duai            |                  | -V_0 + Z_offset × I_0        | -I_0 × 1∠ECA     |                                              |  |  |  |
|                 | Reverse          | C                            | or               |                                              |  |  |  |
|                 |                  | IG                           | -l_0             |                                              |  |  |  |

Table 5-24: QUANTITIES FOR "MEASURED IG" CONFIGURATION

|                 | OVERCURRENT UNIT |                        |                  |                        |
|-----------------|------------------|------------------------|------------------|------------------------|
| POLARIZING MODE | DIRECTION        | COMPARE                | OVERCORRENT ONLY |                        |
| Voltage         | Forward          | -V_0 + Z_offset × IG/3 | IG×1∠ECA         | I <sub>op</sub> =  IG  |
| voltage         | Reverse          | -V_0 + Z_offset × IG/3 | –IG × 1∠ECA      | 1 <sub>0p</sub> = 1101 |

where:

$$V_0 = \frac{1}{3}(VAG + VBG + VCG) = zero sequence voltage$$

$$I\_0 = \frac{1}{3}IN = \frac{1}{3}(IA + IB + IC) = \text{zero sequence current}$$

ECA = element characteristic angle

IG = ground current

When **NEUTRAL DIR OC1 POL VOLT** is set to "Measured VX", one-third of this voltage is used in place of V\_0.

The following figure explains the usage of the voltage polarized directional unit of the element.

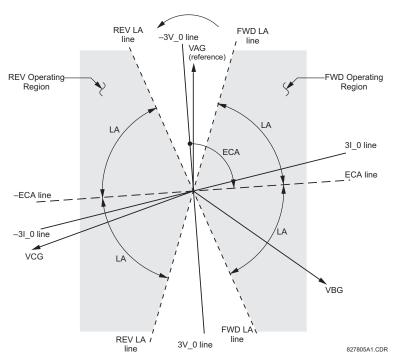



Figure 5-43: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS

The above figure shows the voltage-polarized phase angle comparator characteristics for a phase-A to ground fault, with:

ECA = 90° (Element Characteristic Angle = centerline of operating characteristic)
FWD LA = 80° (Forward Limit Angle = the ± angular limit with the ECA for operation)
REV LA = 80° (Reverse Limit Angle = the ± angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-looking function and should be used for the blocking direction. This allows for better protection coordination.

The above bias should be taken into account when using the Neutral Directional Overcurrent element to 'directionalize' other protection elements.

#### **NEUTRAL DIR OC1 POLARIZING:**

This setting selects the polarizing mode for the directional unit.

- If "Voltage" polarizing is selected, the element uses the zero-sequence voltage angle for polarization. The user can use either the zero-sequence voltage V\_0 calculated from the phase voltages, or the zero-sequence voltage supplied externally as the auxiliary voltage Vx, both from the **NEUTRAL DIR OC1 SOURCE**.
  - The calculated V\_0 can be used as polarizing voltage only if the voltage transformers are connected in Wye. The auxiliary voltage can be used as the polarizing voltage provided SYSTEM SETUP  $\Rightarrow$  AC INPUTS  $\Rightarrow$   $\circlearrowleft$  VOLTAGE BANK  $\Rightarrow$   $\circlearrowleft$  AUXILIARY VT CONNECTION is set to "Vn" and the auxiliary voltage is connected to a zero-sequence voltage source (such as open delta connected secondary of VTs).
  - The zero-sequence voltage (V\_0) or auxiliary voltage (Vx), accordingly, must be higher than 1 V secondary to be validated for use as a polarizing signal. If the polarizing signal is not valid, neither forward nor reverse indication is given.
- If "Current" polarizing is selected, the element uses the ground current angle connected externally and configured
  under NEUTRAL OC1 SOURCE for polarization. The ground current transformer must be connected between the ground
  and neutral point of an adequate local source of ground current. The ground current must be higher than 0.05 pu to be

validated for use as a polarizing signal. If the polarizing signal is not valid neither forward nor reverse indication is given.

For a choice of current polarizing, it is recommended that the polarizing signal be analyzed to ensure that a known direction is maintained irrespective of the fault location. For example, if using an autotransformer neutral current as a polarizing source, it should be ensured that a reversal of the ground current does not occur for a high-side fault. The low-side system impedance should be assumed minimal when checking for this condition. A similar situation arises for a WYE/DELTA/WYE transformer, where current in one transformer winding neutral may reverse when faults on both sides of the transformer are considered.

• If "Dual" polarizing is selected, the element performs both directional comparisons as described above. A given direction is confirmed if either voltage or current comparators indicate so. If a conflicting (simultaneous forward and reverse) indication occurs, the forward direction overrides the reverse direction.

#### **NEUTRAL DIR OC1 POL VOLT:**

Selects the polarizing voltage used by the directional unit when "Voltage" or "Dual" polarizing mode is set. The polarizing voltage can be programmed to be either the zero-sequence voltage calculated from the phase voltages ("Calculated V0") or supplied externally as an auxiliary voltage ("Measured VX").

### **NEUTRAL DIR OC1 OP CURR:**

This setting indicates whether the 3I\_0 current calculated from the phase currents, or the ground current shall be used by this protection. This setting acts as a switch between the neutral and ground modes of operation (67N and 67G). If set to "Calculated 3I0" the element uses the phase currents and applies the positive-sequence restraint; if set to "Measured IG" the element uses ground current supplied to the ground CT of the CT bank configured as **NEUTRAL DIR OC1 SOURCE**. Naturally, it is not possible to use the ground current as an operating and polarizing signal simultaneously. Therefore, "Voltage" is the only applicable selection for the polarizing mode under the "Measured IG" selection of this setting.

### **NEUTRAL DIR OC1 OFFSET:**

This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. See the APPLICATION OF SETTINGS chapter for information on how to calculate this setting.

In regular applications, the offset impedance ensures proper operation even if the zero-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the zero-sequence impedance of the protected circuit. Practically, it shall be several times smaller. See the THEORY OF OPERATION chapter for more details. The offset impedance shall be entered in secondary ohms.

## **NEUTRAL DIR OC1 FWD ECA:**

This setting defines the characteristic angle (ECA) for the forward direction in the "Voltage" polarizing mode. The "Current" polarizing mode uses a fixed ECA of 0°.

The ECA in the reverse direction is the angle set for the forward direction shifted by 180°.

### **NEUTRAL DIR OC1 FWD LIMIT ANGLE:**

This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.

# **NEUTRAL DIR OC1 FWD PICKUP:**

This setting defines the pickup level for the overcurrent unit of the element in the forward direction. When selecting this setting it must be kept in mind that the design uses a "positive-sequence restraint" technique for the "Calculated 310" mode of operation.

# **NEUTRAL DIR OC1 REV LIMIT ANGLE:**

This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.

#### **NEUTRAL DIR OC1 REV PICKUP:**

This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. When selecting this setting it must be kept in mind that the design uses a "positive-sequence restraint" technique for the "Calculated 310" mode of operation.

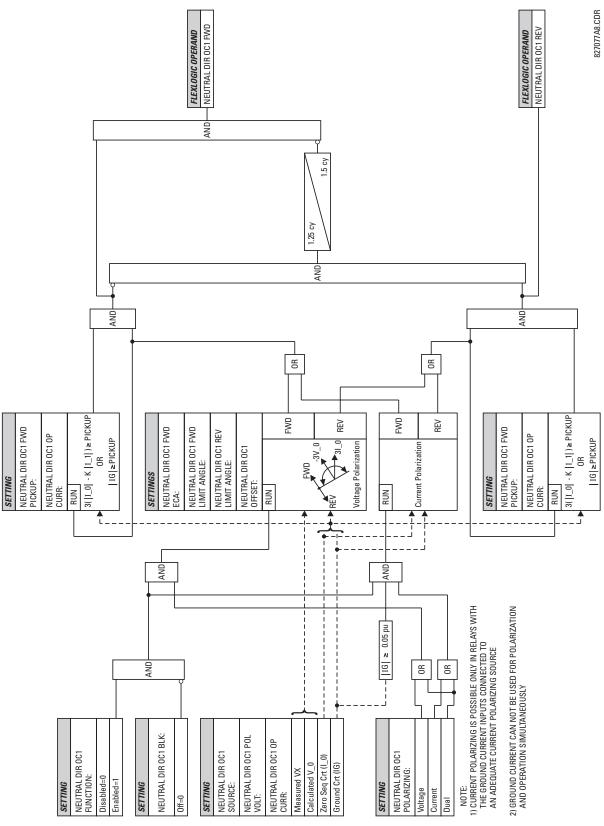
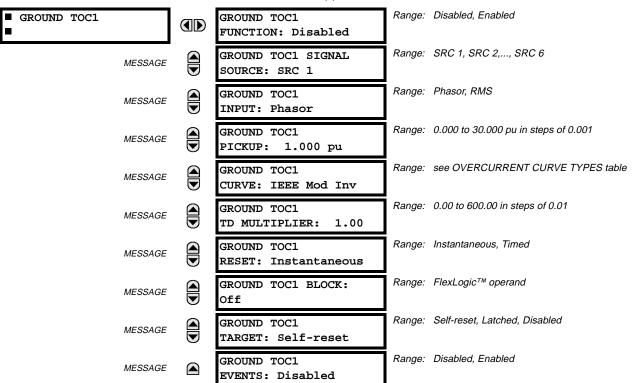




Figure 5-44: NEUTRAL DIRECTIONAL OC1 SCHEME LOGIC

#### **5.5.11 GROUND CURRENT**

# a) GROUND TOC1 / TOC2 (GROUND TIME OVERCURRENT: ANSI 51G)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ⊕ GROUND CURRENT ⇔ GROUND TOC1



This element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple Definite Time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor or RMS magnitude. Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the INVERSE TIME OVERCURRENT CURVE CHARACTERISTICS section for details). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

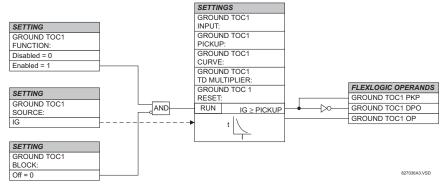
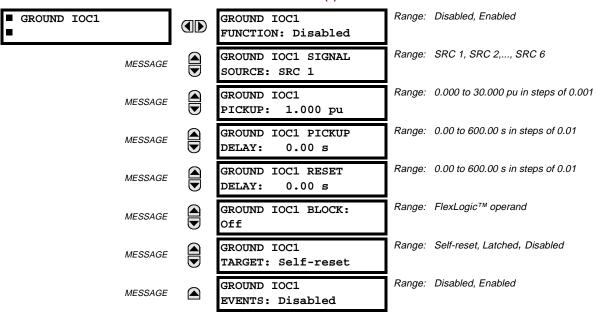



Figure 5-45: GROUND TOC1 SCHEME LOGIC




These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.



Once picked up, the GROUND TOCx PKP output operand remains picked up until the thermal memory of the element resets completely. The PKP operand will not reset immediately after the operating current drops below the pickup threshold unless GROUND TOCx RESET is set to "Instantaneous".

## b) GROUND IOC1 / IOC2 (GROUND INSTANTANEOUS OVERCURRENT: ANSI 50G)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇒ ⊕ GROUND CURRENT ⇔ ⊕ GROUND IOC1



The ground instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a Definite Time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor magnitude.

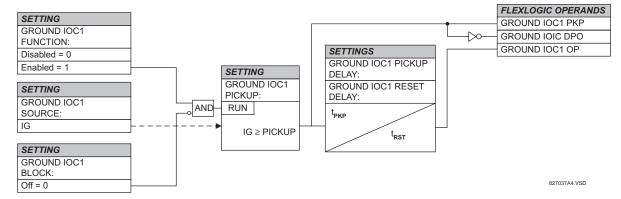
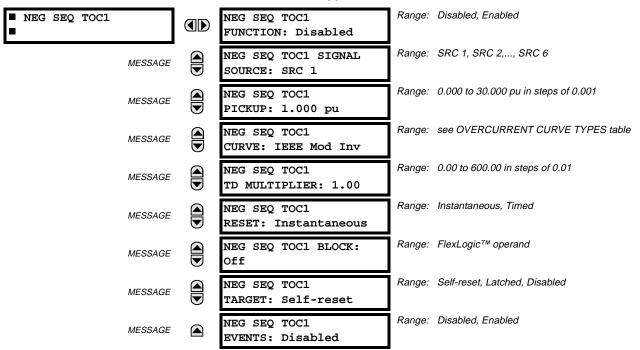



Figure 5-46: GROUND IOC1 SCHEME LOGIC




These elements measure the current that is connected to the ground channel of a CT/VT module. This channel may be equipped with a standard or sensitive input. The conversion range of a standard channel is from 0.02 to 46 times the CT rating. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.

5-97

#### 5.5.12 NEGATIVE SEQUENCE CURRENT

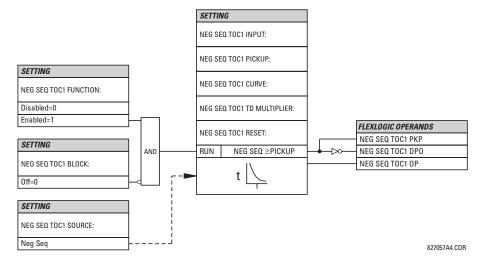
# a) NEGATIVE SEQUENCE TOC1 / TOC2 (NEGATIVE SEQUENCE TIME OVERCURRENT: ANSI 51\_2)

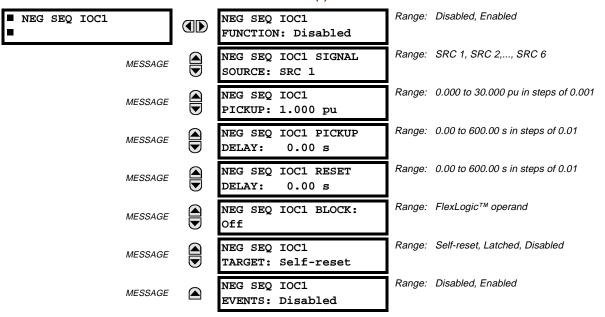
PATH: SETTINGS ⇩ GROUPED ELEMENTS ⇨⇩ SETTING GROUP 1(8) ⇨⇩ NEGATIVE SEQUENCE CURRENT ⇨ NEG SEQ TOC1



The negative sequence time overcurrent element may be used to determine and clear unbalance in the system. The input for calculating negative sequence current is the fundamental phasor value.

Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the INVERSE TIME OVERCUR-RENT CURVE CHARACTERISTICS section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.





Figure 5-47: NEGATIVE SEQUENCE TOC1 SCHEME LOGIC



Once picked up, the NEG SEQ TOCx PKP output operand remains picked up until the thermal memory of the element resets completely. The PKP operand will not reset immediately after the operating current drops below the pickup threshold unless NEG SEQ TOCx RESET is set to "Instantaneous".

## b) NEGATIVE SEQUENCE IOC1 / IOC2 (NEGATIVE SEQUENCE INSTANTANEOUS O/C: ANSI 50\_2)

PATH: SETTINGS ⇩ GROUPED ELEMENTS ➡ SETTING GROUP 1(8) ➡ ⇩ NEGATIVE SEQUENCE CURRENT ➡ ⇩ NEG SEQ OC1



The Negative Sequence Instantaneous Overcurrent element may be used as an instantaneous function with no intentional delay or as a Definite Time function. The element responds to the negative-sequence current fundamental frequency phasor magnitude (calculated from the phase currents) and applies a "positive-sequence" restraint for better performance: a small portion (12.5%) of the positive-sequence current magnitude is subtracted from the negative-sequence current magnitude when forming the operating quantity:

$$I_{op} = |I_2| - K \cdot |I_1|$$
, where  $K = 1/8$ .

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during three-phase faults
- · fault inception and switch-off transients during three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single phase injection:  $I_{op} = 0.2917 \cdot I_{injected}$ ; three phase injection, opposite rotation:  $I_{op} = I_{injected}$ ).

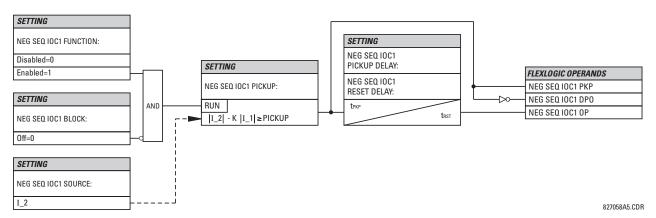



Figure 5–48: NEGATIVE SEQUENCE IOC1 SCHEME LOGIC

### c) NEGATIVE SEQUENCE DIRECTIONAL OC1 / OC2 (NEGATIVE SEQUENCE DIRECTIONAL O/C: ANSI 67\_2)

PATH: SETTINGS  $\Rightarrow \emptyset$  GROUPED ELEMENTS  $\Rightarrow$  SETTING GROUP 1(8)  $\Rightarrow \emptyset$  NEGATIVE SEQUENCE CURRENT  $\Rightarrow \emptyset$  NEG SEQ DIR OC1

| ■ NEG SEQ DIR OC1 | NEG SEQ DIR OC1<br>FUNCTION: Disabled    | Range: | Disabled, Enabled                        |
|-------------------|------------------------------------------|--------|------------------------------------------|
| MESSAGE           | NEG SEQ DIR OC1<br>SOURCE: SRC 1         | Range: | SRC 1, SRC 2,, SRC 6                     |
| MESSAGE           | NEG SEQ DIR OC1<br>OFFSET: 0.00 $\Omega$ | Range: | 0.00 to 250.00 $\Omega$ in steps of 0.01 |
| MESSAGE           | NEG SEQ DIR OC1<br>TYPE: Neg Sequence    | Range: | Neg Sequence, Zero Sequence              |
| MESSAGE           | NEG SEQ DIR OC1 FWD<br>ECA: 75° Lag      | Range: | 0 to 90° Lag in steps of 1               |
| MESSAGE           | NEG SEQ DIR OC1 FWD<br>LIMIT ANGLE: 90°  | Range: | 40 to 90° in steps of 1                  |
| MESSAGE           | NEG SEQ DIR OC1 FWD<br>PICKUP: 0.05 pu   | Range: | 0.05 to 30.00 pu in steps of 0.01        |
| MESSAGE           | NEG SEQ DIR OC1 REV<br>LIMIT ANGLE: 90°  | Range: | 40 to 90° in steps of 1                  |
| MESSAGE           | NEG SEQ DIR OC1 REV<br>PICKUP: 0.05 pu   | Range: | 0.05 to 30.00 pu in steps of 0.01        |
| MESSAGE           | NEG SEQ DIR OC1 BLK:<br>Off              | Range: | FlexLogic™ operand                       |
| MESSAGE           | NEG SEQ DIR OC1<br>TARGET: Self-reset    | Range: | Self-reset, Latched, Disabled            |
| MESSAGE           | NEG SEQ DIR OC1<br>EVENTS: Disabled      | Range: | Disabled, Enabled                        |

There are two Negative Sequence Directional Overcurrent protection elements available. The element provides both forward and reverse fault direction indications through its output operands NEG SEQ DIR OC1 FWD and NEG SEQ DIR OC1 REV, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as "forward or "reverse", respectively (directional unit).

The **overcurrent unit** of the element essentially responds to the magnitude of a fundamental frequency phasor of either the negative-sequence or zero-sequence current as per user selection. The zero-sequence current should not be mistaken with the neutral current (factor 3 difference).

A "positive-sequence restraint" is applied for better performance: a small portion (12.5% for negative-sequence and 6.25% for zero-sequence) of the positive-sequence current magnitude is subtracted from the negative- or zero-sequence current magnitude, respectively, when forming the element operating quantity.

$$I_{op} = |I\_2| - K \times |I\_1|$$
, where K is 1/8, **or**  $I_{op} = |I\_0| - K \times |I\_1|$ , where K is 1/16.

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative- and zero-sequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of Current Transformers (CTs).
- Fault inception and switch-off transients.

The positive-sequence restraint must be considered when testing for pick-up accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay:

· single-phase injection:

 $I_{op} = 0.2917 \times I_{injected}$  (negative-sequence mode);  $I_{op} = 0.3125 \times I_{injected}$  (zero-sequence mode);

- three-phase pure zero- or negative-sequence injection, respectively:  $I_{op} = I_{injected}$
- The directional unit uses the negative-sequence current and voltage for fault direction discrimination.

The following table defines the Negative Sequence Directional Overcurrent element.

| OVERC             | URRENT UNIT                       | DIRECTIONAL UNIT           |                              |                |  |  |
|-------------------|-----------------------------------|----------------------------|------------------------------|----------------|--|--|
| MODE              | OPERATING CURRENT                 | DIRECTION COMPARED PHASORS |                              |                |  |  |
| Negative-Sequence | $I_{op} =  I_2  - K \times  I_1 $ | Forward                    | $-V_2 + Z_offset \times I_2$ | I_2×1∠ECA      |  |  |
|                   |                                   | Reverse                    | $-V_2 + Z_offset \times I_2$ | –(I_2 × 1∠ECA) |  |  |
| Zero-Sequence     | $I_{op} =  I_0  - K \times  I_1 $ | Forward                    | $-V_2 + Z_offset \times I_2$ | I_2×1∠ECA      |  |  |
|                   | -                                 | Reverse                    | $-V_2 + Z_offset \times I_2$ | –(I_2 × 1∠ECA) |  |  |

The negative-sequence voltage must be higher than 1 V secondary in order to be validated for use as a polarizing signal. If the polarizing signal is not validated neither forward nor reverse indication is given.

The following figure explains the usage of the voltage polarized directional unit of the element.

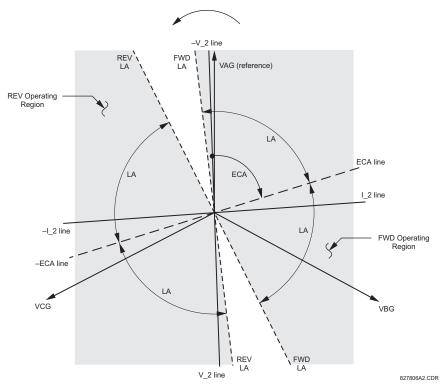



Figure 5-49: NEG SEQ DIRECTIONAL CHARACTERISTICS

The above figure shows the phase angle comparator characteristics for a phase-A to ground fault, with settings of:

ECA =  $75^{\circ}$  (Element Characteristic Angle = centerline of operating characteristic) FWD LA =  $80^{\circ}$  (Forward Limit Angle =  $\pm$  the angular limit with the ECA for operation) REV LA =  $80^{\circ}$  (Reverse Limit Angle =  $\pm$  the angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle.

The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-looking function and should be used for the blocking direction. This allows for better protection coordination.

The above bias should be taken into account when using the Negative Sequence Directional Overcurrent element to "directionalize" other protection elements.

#### **NEG SEQ DIR OC1 OFFSET:**

This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. See the APPLICATION OF SETTINGS chapter for information on how to calculate this setting.

In regular applications, the offset impedance ensures proper operation even if the negative-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the negative-sequence sequence impedance of the protected circuit. Practically, it shall be several times smaller. See the THEORY OF OPERATION chapter for more details. The offset impedance shall be entered in secondary ohms.

### **NEG SEQ DIR OC1 TYPE:**

This setting selects the operating mode for the overcurrent unit of the element. The choices are "Neg Sequence" and "Zero Sequence". In some applications it is advantageous to use a directional negative-sequence overcurrent function instead of a directional zero-sequence overcurrent function as inter-circuit mutual effects are minimized.\

#### **NEG SEQ DIR OC1 FWD ECA:**

This setting select the element characteristic angle (ECA) for the forward direction. The element characteristic angle in the reverse direction is the angle set for the forward direction shifted by 180°.

#### **NEG SEQ DIR OC1 FWD LIMIT ANGLE:**

This setting defines a symmetrical (in both directions from the ECA) limit angle for the forward direction.

#### **NEG SEQ DIR OC1 FWD PICKUP:**

This setting defines the pickup level for the overcurrent unit of the element in the forward direction. Upon **NEG SEQ DIR OC1 TYPE** selection, this pickup threshold applies to zero- or negative-sequence current.

When selecting this setting it must be kept in mind that the design uses a "positive-sequence restraint" technique.

#### **NEG SEQ DIR OC1 REV LIMIT ANGLE:**

This setting defines a symmetrical (in both directions from the ECA) limit angle for the reverse direction.

## **NEG SEQ DIR OC1 REV PICKUP:**

This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. Upon **NEG SEQ DIR OC1 TYPE** selection, this pickup threshold applies to zero- or negative-sequence current.

When selecting this setting it must be kept in mind that the design uses a "positive-sequence restraint" technique.

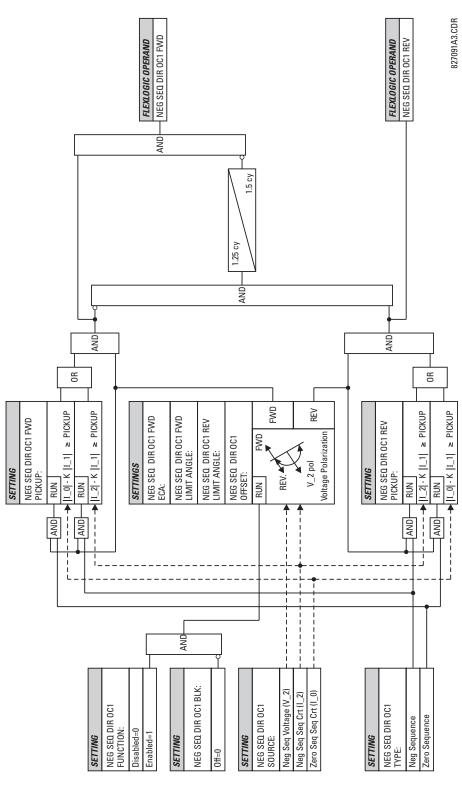
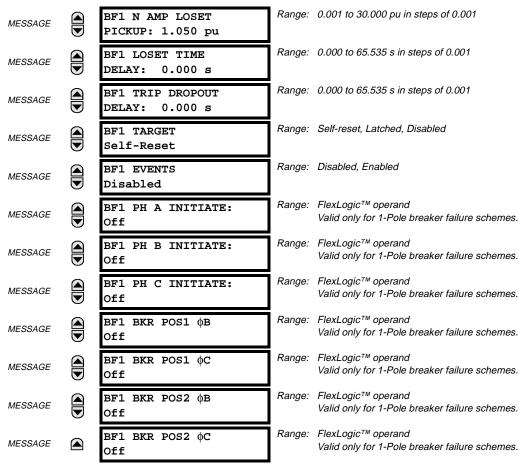




Figure 5-50: NEG SEQ DIRECTIONAL OC1 SCHEME LOGIC

# **5.5.13 BREAKER FAILURE**

# PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS $\Rightarrow$ SETTING GROUP 1(8) $\Rightarrow \emptyset$ BREAKER FAILURE $\Rightarrow$ BREAKER FAILURE 1

| ■ BREAKER FAILURE 1 | BF1 FUNCTION:<br>Disabled            | Range: | Disabled, Enabled                    |
|---------------------|--------------------------------------|--------|--------------------------------------|
| MESSAGE             | BF1 MODE:<br>3-Pole                  | Range: | 3-Pole, 1-Pole                       |
| MESSAGE             | BF1 SOURCE:<br>SRC 1                 | Range: | SRC 1, SRC 2,, SRC 6                 |
| MESSAGE             | BF1 USE AMP SUPV:<br>Yes             | Range: | Yes, No                              |
| MESSAGE             | BF1 USE SEAL-IN:<br>Yes              | Range: | Yes, No                              |
| MESSAGE             | BF1 3-POLE INITIATE:<br>Off          | Range: | FlexLogic™ operand                   |
| MESSAGE             | BF1 BLOCK:<br>Off                    | Range: | FlexLogic™ operand                   |
| MESSAGE             | BF1 PH AMP SUPV<br>PICKUP: 1.050 pu  | Range: | 0.001 to 30.000 pu in steps of 0.001 |
| MESSAGE             | BF1 N AMP SUPV<br>PICKUP: 1.050 pu   | Range: | 0.001 to 30.000 pu in steps of 0.001 |
| MESSAGE             | BF1 USE TIMER 1:<br>Yes              | Range: | Yes, No                              |
| MESSAGE             | BF1 TIMER 1 PICKUP<br>DELAY: 0.000 s | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE             | BF1 USE TIMER 2:<br>Yes              | Range: | Yes, No                              |
| MESSAGE             | BF1 TIMER 2 PICKUP<br>DELAY: 0.000 s | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE             | BF1 USE TIMER 3:<br>Yes              | Range: | Yes, No                              |
| MESSAGE             | BF1 TIMER 3 PICKUP<br>DELAY: 0.000 s | Range: | 0.000 to 65.535 s in steps of 0.001  |
| MESSAGE             | BF1 BKR POS1 фA/3P:<br>Off           | Range: | FlexLogic™ operand                   |
| MESSAGE             | BF1 BKR POS2 фA/3P:<br>Off           | Range: | FlexLogic™ operand                   |
| MESSAGE             | BF1 BREAKER TEST ON:<br>Off          | Range: | FlexLogic™ operand                   |
| MESSAGE             | BF1 PH AMP HISET<br>PICKUP: 1.050 pu |        | 0.001 to 30.000 pu in steps of 0.001 |
| MESSAGE             | BF1 N AMP HISET<br>PICKUP: 1.050 pu  |        | 0.001 to 30.000 pu in steps of 0.001 |
| MESSAGE             | BF1 PH AMP LOSET<br>PICKUP: 1.050 pu | Range: | 0.001 to 30.000 pu in steps of 0.001 |



There are 2 identical Breaker Failure menus available, numbered 1 and 2.

In general, a breaker failure scheme determines that a breaker signaled to trip has not cleared a fault within a definite time, so further tripping action must be performed. Tripping from the breaker failure scheme should trip all breakers, both local and remote, that can supply current to the faulted zone. Usually operation of a breaker failure element will cause clearing of a larger section of the power system than the initial trip. Because breaker failure can result in tripping a large number of breakers and this affects system safety and stability, a very high level of security is required.

Two schemes are provided: one for three-pole tripping only (identified by the name "3BF") and one for three pole plus single-pole operation (identified by the name "1BF"). The philosophy used in these schemes is identical. The operation of a breaker failure element includes three stages: initiation, determination of a breaker failure condition, and output.

#### **INITIATION STAGE:**

A FlexLogic<sup>TM</sup> operand representing the protection trip signal initially sent to the breaker must be selected to initiate the scheme, except for the D60 relay were this is already programmed as a Trip Output (the protection trip signal does not include other breaker commands that are not indicative of a fault in the protected zone). The initiating signal should be sealed-in if primary fault detection can reset before the breaker failure timers have finished timing. The seal-in is supervised by current level, so it is reset when the fault is cleared. If desired, an incomplete sequence seal-in reset can be implemented by using the initiating operand to also initiate a FlexLogic<sup>TM</sup> timer, set longer than any breaker failure timer, whose output operand is selected to block the breaker failure scheme.

Schemes can be initiated either directly or with current level supervision. It is particularly important in any application to decide if a current-supervised initiate is to be used. The use of a current-supervised initiate results in the breaker failure element not being initiated for a breaker that has very little or no current flowing through it, which may be the case for transformer faults. For those situations where it is required to maintain breaker fail coverage for fault levels below the **BF1 PH AMP SUPV PICKUP** or the **BF1 N AMP SUPV PICKUP** setting, a current supervised initiate should *not* be used. This feature should be utilized for those situations where coordinating margins may be reduced when high speed reclosing is used. Thus, if this choice is made, fault levels must always be above the supervision pickup levels for dependable operation of

the breaker fail scheme. This can also occur in breaker-and-a-half or ring bus configurations where the first breaker closes into a fault; the protection trips and attempts to initiate breaker failure for the second breaker, which is in the process of closing, but does not yet have current flowing through it.

When the scheme is initiated, it immediately sends a trip signal to the breaker initially signaled to trip (this feature is usually described as Re-Trip). This reduces the possibility of widespread tripping that results from a declaration of a failed breaker.

#### **DETERMINATION OF A BREAKER FAILURE CONDITION:**

The schemes determine a breaker failure condition via three 'paths'. Each of these paths is equipped with a time delay, after which a failed breaker is declared and trip signals are sent to all breakers required to clear the zone. The delayed paths are associated with Breaker Failure Timers 1, 2 and 3, which are intended to have delays increasing with increasing timer numbers. These delayed paths are individually enabled to allow for maximum flexibility.

Timer 1 logic (Early Path) is supervised by a fast-operating breaker auxiliary contact. If the breaker is still closed (as indicated by the auxiliary contact) and fault current is detected after the delay interval, an output is issued. Operation of the breaker auxiliary switch indicates that the breaker has mechanically operated. The continued presence of current indicates that the breaker has failed to interrupt the circuit.

Timer 2 logic (Main Path) is not supervised by a breaker auxiliary contact. If fault current is detected after the delay interval, an output is issued. This path is intended to detect a breaker that opens mechanically but fails to interrupt fault current; the logic therefore does not use a breaker auxiliary contact.

The Timer 1 and 2 paths provide two levels of current supervision, Hiset and Loset, so that the supervision level can be changed from a current which flows before a breaker inserts an opening resistor into the faulted circuit to a lower level after resistor insertion. The Hiset detector is enabled after timeout of Timer 1 or 2, along with a timer that will enable the Loset detector after its delay interval. The delay interval between Hiset and Loset is the expected breaker opening time. Both current detectors provide a fast operating time for currents at small multiples of the pickup value. The O/C detectors are required to operate after the breaker failure delay interval to eliminate the need for very fast resetting O/C detectors.

Timer 3 logic (Slow Path) is supervised by a breaker auxiliary contact and a control switch contact used to indicate that the breaker is in/out of service, disabling this path when the breaker is out of service for maintenance. There is no current level check in this logic as it is intended to detect low magnitude faults and it is therefore the slowest to operate.

### 9. OUTPUT:

The outputs from the schemes are:

- FlexLogic<sup>™</sup> operands that report on the operation of portions of the scheme
- FlexLogic<sup>™</sup> operand used to re-trip the protected breaker
- FlexLogic<sup>™</sup> operands that initiate tripping required to clear the faulted zone. The trip output can be sealed-in for an adjustable period.
- Target message indicating a failed breaker has been declared
- Illumination of the faceplate TRIP LED (and the PHASE A, B or C LED, if applicable)

#### **MAIN PATH SEQUENCE:**

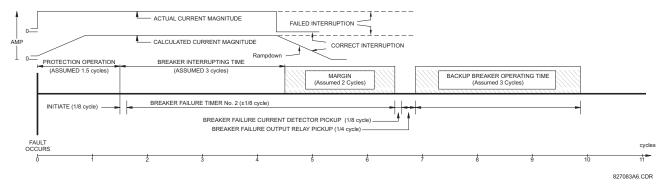



Figure 5-51: BREAKER FAILURE MAIN PATH SEQUENCE

#### **BF1 MODE:**

This setting is used to select the breaker failure operating mode: single or three pole.

#### **BF1 USE AMP SUPV:**

If set to Yes, the element will only be initiated if current flowing through the breaker is above the supervision pickup level.

#### **BF1 USE SEAL-IN:**

If set to Yes, the element will only be sealed-in if current flowing through the breaker is above the supervision pickup level.

#### **BF1 3-POLE INITIATE:**

This setting is used to select the FlexLogic™ operand that will initiate 3-pole tripping of the breaker.

### **BF1 PH AMP SUPV PICKUP:**

This setting is used to set the phase current initiation and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. It can be set as low as necessary (lower than breaker resistor current or lower than load current) - Hiset and Loset current supervision will guarantee correct operation.

### BF1 N AMP SUPV PICKUP (valid only for 3-pole breaker failure schemes):

This setting is used to set the neutral current initiate and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. Neutral current supervision is used only in the three phase scheme to provide increased sensitivity.

#### **BF1 USE TIMER 1:**

If set to Yes, the Early Path is operational.

#### **BF1 TIMER 1 PICKUP DELAY:**

Timer 1 is set to the shortest time required for breaker auxiliary contact Status-1 to open, from the time the initial trip signal is applied to the breaker trip circuit, plus a safety margin.

#### **BF1 USE TIMER 2:**

If set to Yes, the Main Path is operational.

#### **BF1 TIMER 2 PICKUP DELAY:**

Timer 2 is set to the expected opening time of the breaker, plus a safety margin. This safety margin was historically intended to allow for measuring and timing errors in the breaker failure scheme equipment. In microprocessor relays this time is not significant. In UR relays, which use a Fourier transform, the calculated current magnitude will ramp-down to zero one power frequency cycle after the current is interrupted, and this lag should be included in the overall margin duration, as it occurs after current interruption. The BREAKER FAILURE MAIN PATH SEQUENCE diagram shows a margin of two cycles; this interval is considered the minimum appropriate for most applications.

Note that in bulk oil circuit breakers, the interrupting time for currents less than 25% of the interrupting rating can be significantly longer than the normal interrupting time.

### **BF1 USE TIMER 3:**

If set to Yes, the Slow Path is operational.

## **BF1 TIMER 3 PICKUP DELAY:**

Timer 3 is set to the same interval as Timer 2, plus an increased safety margin. Because this path is intended to operate only for low level faults, the delay can be in the order of 300 to 500 ms.

### BF1 BKR POS1 $\Phi$ A/3P:

This setting selects the FlexLogic<sup>™</sup> operand that represents the protected breaker early-type auxiliary switch contact (52/a). When using 1-Pole breaker failure scheme, this operand represents the protected breaker early-type auxiliary switch contact on pole A. This is normally a non-multiplied Form-A contact. The contact may even be adjusted to have the shortest possible operating time.

# BF1 BKR POS2 $\Phi$ A/3P:

This setting selects the FlexLogic<sup>™</sup> operand that represents the breaker normal-type auxiliary switch contact (52/a). When using 1-Pole breaker failure scheme, this operand represents the protected breaker auxiliary switch contact on pole A. This may be a multiplied contact.

#### **BF1 BREAKER TEST ON:**

This setting is used to select the FlexLogic<sup>™</sup> operand that represents the breaker In-Service/Out-of-Service switch set to the Out-of-Service position.

#### **BF1 PH AMP HISET PICKUP:**

This setting is used to set the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted.

### BF1 N AMP HISET PICKUP (valid only for 3-pole breaker failure schemes):

This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted. Neutral current supervision is used only in the three pole scheme to provide increased sensitivity.

#### **BF1 PH AMP LOSET PICKUP:**

This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current).

### BF1 N AMP LOSET PICKUP (valid only for 3-pole breaker failure schemes):

This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current).

#### **BF1 LOSET TIME DELAY:**

This setting is used to set the pickup delay for current detection after opening resistor insertion.

#### **BF1 TRIP DROPOUT DELAY:**

This setting is used to set the period of time for which the trip output is sealed-in. This timer must be coordinated with the automatic reclosing scheme of the failed breaker, to which the breaker failure element sends a cancel reclosure signal. Reclosure of a remote breaker can also be prevented by holding a Transfer Trip signal on longer than the "reclaim" time.

## BF1 PH A INITIATE / BF1 PH B INITIATE / BF 1 PH C INITIATE: (only valid for 1-pole breaker failure schemes)

These settings select the FlexLogic™ operand to initiate phase A, B, or C single-pole tripping of the breaker and the phase A, B, or C portion of the scheme, accordingly.

## BF1 BKR POS1 $\Phi$ B / BF1 BKR POS 1 $\Phi$ C (valid only for 1-pole breaker failure schemes):

These settings select the FlexLogic<sup>™</sup> operand to represents the protected breaker early-type auxiliary switch contact on poles B or C, accordingly. This contact is normally a non-multiplied Form-A contact. The contact may even be adjusted to have the shortest possible operating time.

## BF1 BKR POS2 $\phi$ B (valid only for 1-pole breaker failure schemes):

Selects the FlexLogic<sup>TM</sup> operand that represents the protected breaker normal-type auxiliary switch contact on pole B (52/a). This may be a multiplied contact.

# BF1 BKR POS2 $\phi$ C (valid only for 1-pole breaker failure schemes):

This setting selects the FlexLogic<sup>™</sup> operand that represents the protected breaker normal-type auxiliary switch contact on pole C (52/a). This may be a multiplied contact. For single-pole operation, the scheme has the same overall general concept except that it provides re-tripping of each single pole of the protected breaker. The approach shown in the following single pole tripping diagram uses the initiating information to determine which pole is supposed to trip. The logic is segregated on a per-pole basis. The overcurrent detectors have ganged settings.

Upon operation of the breaker failure element for a single pole trip command, a 3-pole trip command should be given via output operand "BF1 TRIP OP".

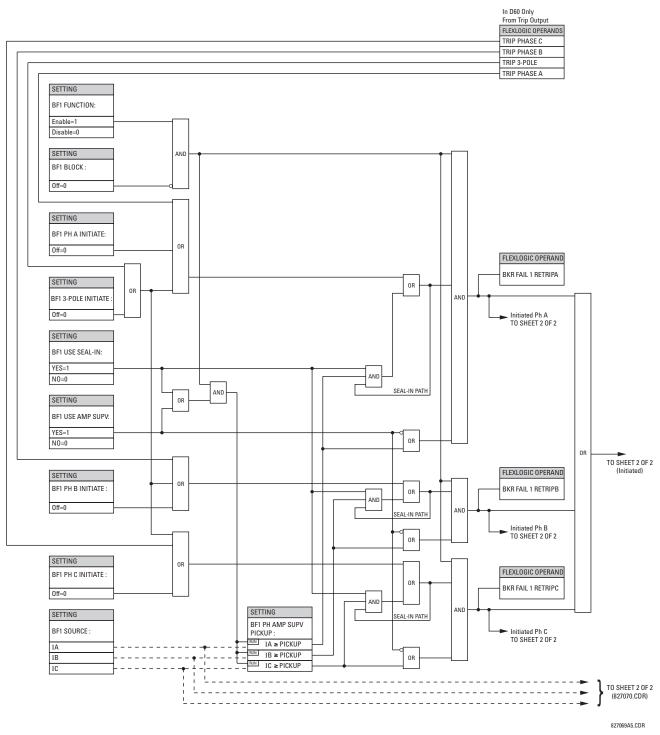



Figure 5–52: BREAKER FAILURE 1-POLE [INITIATE] (Sheet 1 of 2)

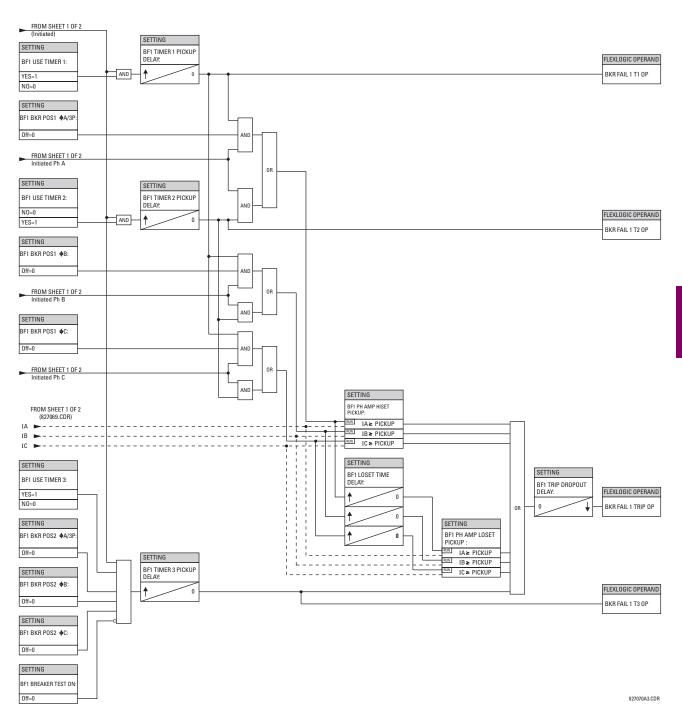



Figure 5-53: BREAKER FAILURE 1-POLE (TIMERS) [Sheet 2 of 2]

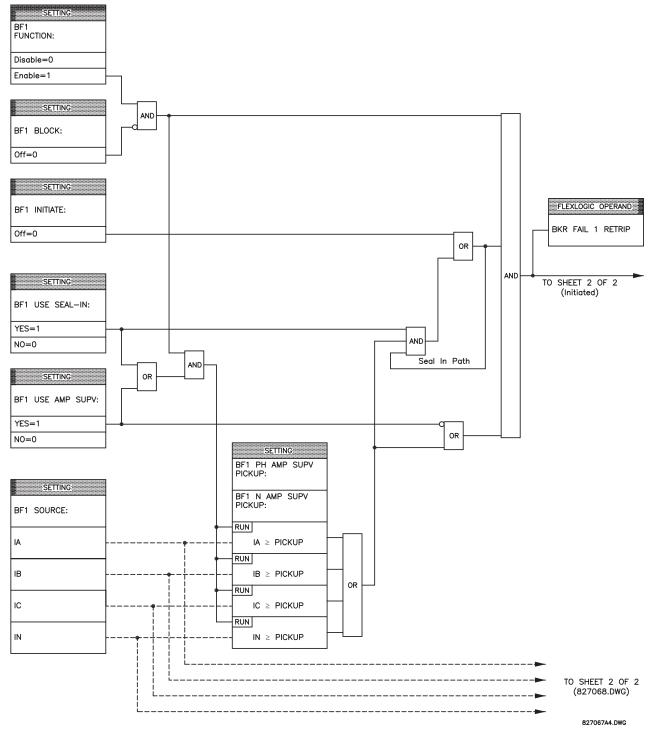



Figure 5–54: BREAKER FAILURE 3-POLE [INITIATE] (Sheet 1 of 2)

827068A6.DWG

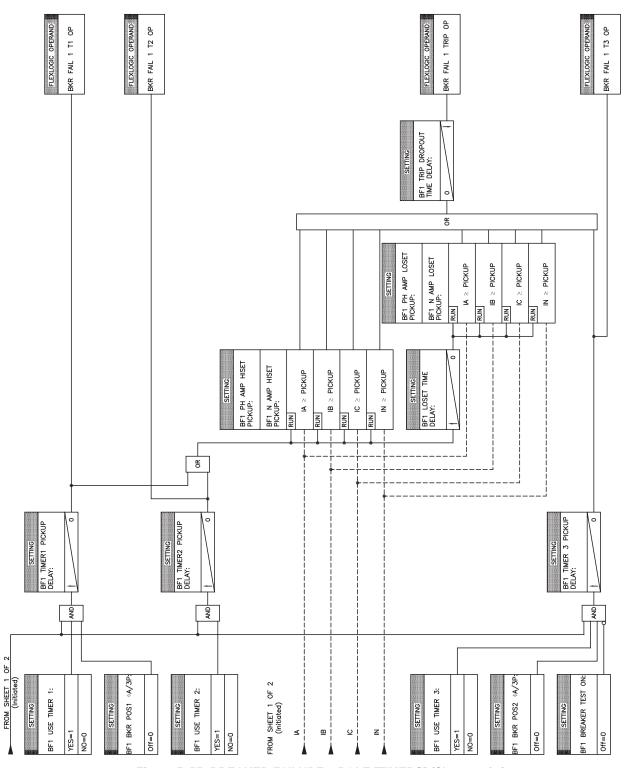
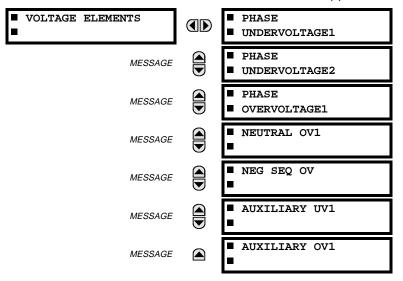




Figure 5-55: BREAKER FAILURE 3-POLE [TIMERS] (Sheet 2 of 2)

PATH: SETTINGS ➡ GROUPED ELEMENTS ➡ SETTING GROUP 1(8) ➡ UVOLTAGE ELEMENTS



These protection elements can be used for a variety of applications such as:

Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time delay.

Permissive Functions: The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.

Source Transfer Schemes: In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.

The undervoltage elements can be programmed to have a Definite Time delay characteristic. The Definite Time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 10 ms. The undervoltage elements can also be programmed to have an inverse time delay characteristic. The undervoltage delay setting defines the family of curves shown below.

$$T = \frac{D}{\left(1 - \frac{V}{V_{pickup}}\right)}$$

where: T =Operating Time

D = Undervoltage Delay Setting

(D = 0.00 operates instantaneously)

V = Secondary Voltage applied to the relay

 $V_{pickup}$  = Pickup Level

NOTE

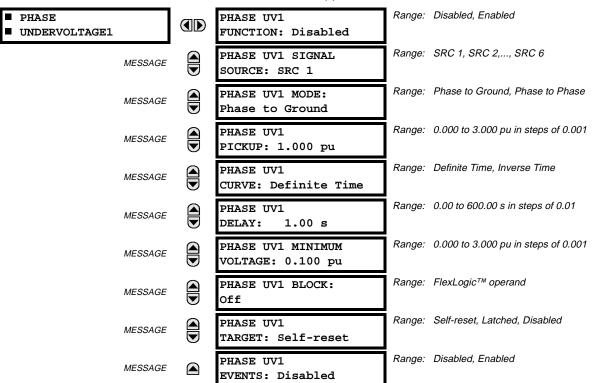

At 0% of pickup, the operating time equals the UNDERVOLTAGE DELAY setting.



Figure 5-56: INVERSE TIME UNDERVOLTAGE CURVES

# a) PHASE UV1 / UV2 (PHASE UNDERVOLTAGE: ANSI 27P)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ⊕ VOLTAGE ELEMENTS ⇔ PHASE UNDERVOLTAGE1



The phase undervoltage element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase to ground or phase to phase for Wye VT connection, or phase to phase only for Delta VT connection) or as a simple Definite Time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage element. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of '0' will allow a dead source to be considered a fault condition).

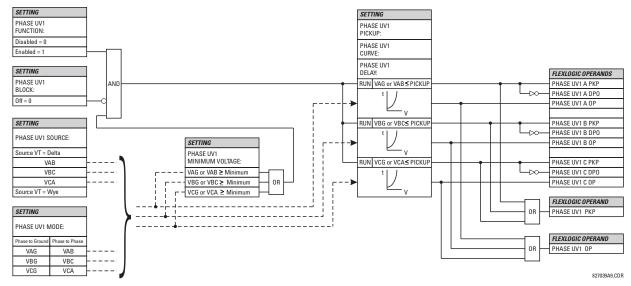
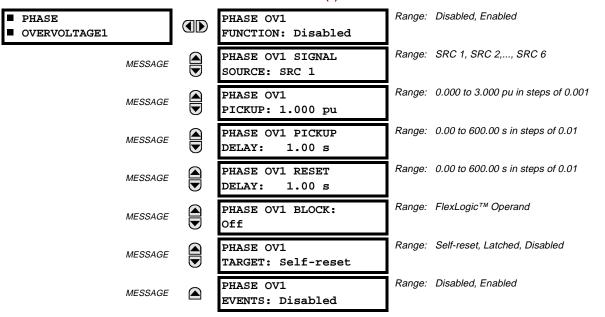



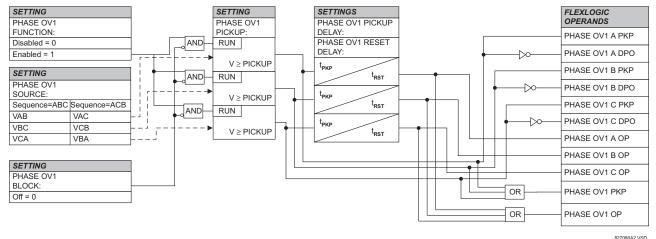

Figure 5-57: PHASE UV1 SCHEME LOGIC

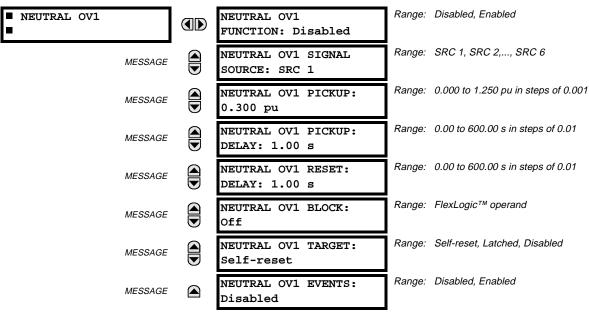
### b) PHASE OV1 (PHASE OVERVOLTAGE: ANSI 59P)

### PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ⊕ VOLTAGE ELEMENTS ⇔ ⊕ PHASE OVERVOLTAGE1



The phase overvoltage element may be used as an instantaneous element with no intentional time delay or as a Definite Time element. The input voltage is the phase-to-phase voltage, either measured directly from Delta-connected VTs or as calculated from phase-to-ground (Wye) connected VTs. The specific voltages to be used for each phase are shown on the logic diagram.





Figure 5-58: PHASE OV1 SCHEME LOGIC

827066A2.VSL

### **5.5.16 NEUTRAL VOLTAGE**

# a) NEUTRAL OV1 (NEUTRAL OVERVOLTAGE: ANSI 59N)

PATH: SETTINGS ⇨⇩ GROUPED ELEMENTS ⇨ SETTING GROUP 1(8) ⇨⇩ VOLTAGE ELEMENTS ⇨⇩ NEUTRAL OV1



The Neutral Overvoltage element can be used to detect asymmetrical system voltage condition due to a ground fault or to the loss of one or two phases of the source.

The element responds to the system neutral voltage (3V\_0), calculated from the phase voltages. The nominal secondary voltage of the phase voltage channels entered under SETTINGS  $\Leftrightarrow \Downarrow$  SYSTEM SETUP  $\Leftrightarrow$  AC INPUTS  $\Leftrightarrow \Downarrow$  VOLTAGE BANK  $\Leftrightarrow$  PHASE VT SECONDARY is the p.u. base used when setting the pickup level.

VT errors and normal voltage unbalance must be considered when setting this element. This function requires the VTs to be Wye connected.

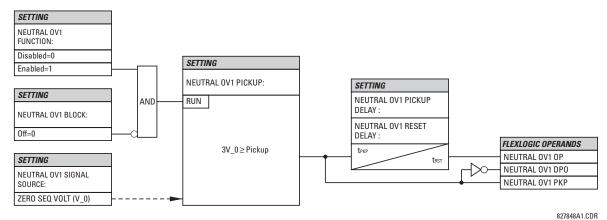
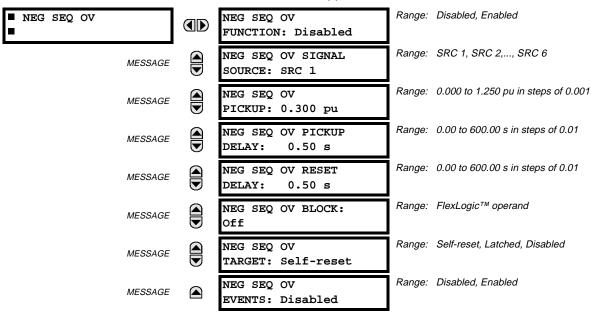




Figure 5-59: NEUTRAL OVERVOLTAGE SCHEME LOGIC

# E

# a) NEG SEQ OV (NEGATIVE SEQUENCE OVERVOLTAGE: ANSI 59\_2)

PATH: SETTINGS  $\Rightarrow \oplus$  GROUPED ELEMENTS  $\Rightarrow$  SETTING GROUP 1(8)  $\Rightarrow \oplus$  VOLTAGE ELEMENTS  $\Rightarrow \oplus$  NEG SEQ OV



The negative sequence overvoltage element may be used to detect loss of one or two phases of the source, a reversed phase sequence of voltage, or a non-symmetrical system voltage condition.

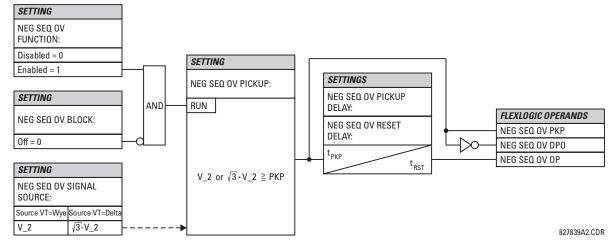
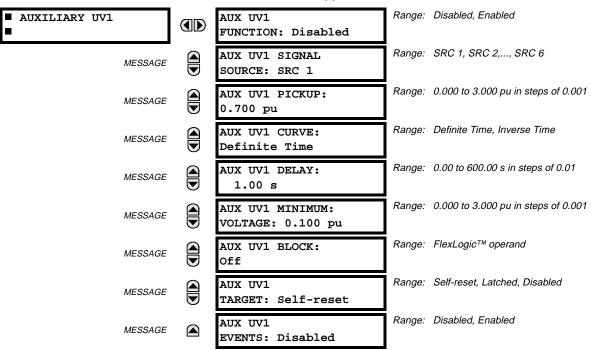




Figure 5-60: NEG SEQ OV SCHEME LOGIC

### **5.5.18 AUXILIARY VOLTAGE**

# a) AUXILIARY UV1 (AUXILIARY UNDERVOLTAGE: ANSI 27X)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ⊕ VOLTAGE ELEMENTS ⇔ ⊕ AUXILIARY UV1



This element is intended for monitoring undervoltage conditions of the auxiliary voltage. The **PICKUP** selects the voltage level at which the time undervoltage element starts timing. The nominal secondary voltage of the auxiliary voltage channel entered under SETTINGS \$\Pi\$ SYSTEM SETUP \$\Rightarrow\$ AC INPUTS \$\Pi\$ VOLTAGE BANK X5 / AUXILIARY VT X5 SECONDARY is the p.u. base used when setting the pickup level.

The **DELAY** setting selects the minimum operating time of the phase undervoltage element. Both **PICKUP** and **DELAY** settings establish the operating curve of the undervoltage element. The auxiliary undervoltage element can be programmed to use either Definite Time Delay or Inverse Time Delay characteristics. The operating characteristics and equations for both Definite and Inverse Time Delay are as for the Phase Undervoltage Element.

The element resets instantaneously. The minimum voltage setting selects the operating voltage below which the element is blocked.

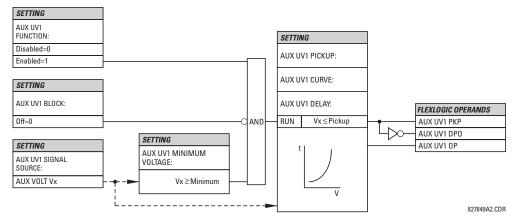
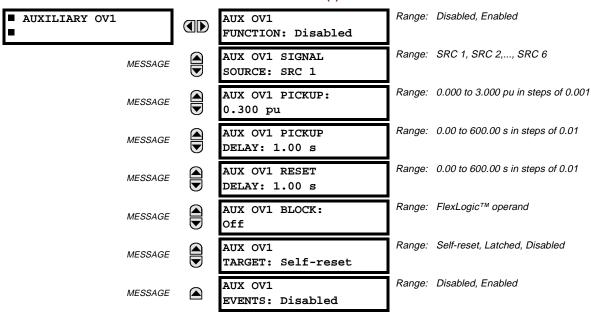



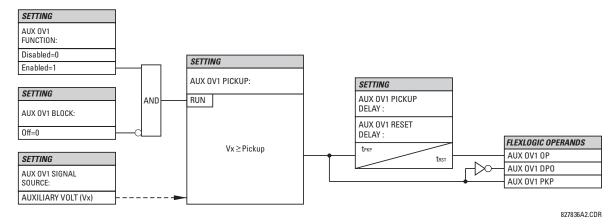

Figure 5-61: AUXILIARY UNDERVOLTAGE SCHEME LOGIC

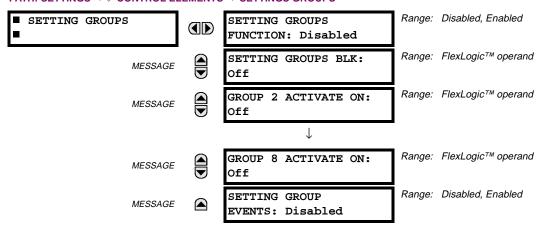
# b) AUXILIARY OV1 (AUXILIARY OVERVOLTAGE: ANSI 59X)

PATH: SETTINGS ⇔ ⊕ GROUPED ELEMENTS ⇔ SETTING GROUP 1(8) ⇔ ⊕ VOLTAGE ELEMENTS ⇔ ⊕ AUXILIARY OV1



This element is intended for monitoring overvoltage conditions of the auxiliary voltage. A typical application for this element is monitoring the zero-sequence voltage (3V\_0) supplied from an open-corner-delta VT connection. The nominal secondary voltage of the auxiliary voltage channel entered under SETTINGS  $\Rightarrow \$$  SYSTEM SETUP  $\Rightarrow$  AC INPUTS  $\$ \Rightarrow \texttt{VOLTAGE BANK X5}$   $\$ \Rightarrow \texttt{AUXILIARY VT X5 SECONDARY}$  is the p.u. base used when setting the pickup level.





Figure 5-62: AUXILIARY OVERVOLTAGE SCHEME LOGIC

**5.6.1 OVERVIEW** 

CONTROL elements are generally used for control rather than protection. See the INTRODUCTION TO ELEMENTS section at the front of this chapter for further information.

**5.6.2 SETTING GROUPS** 

#### 



The Setting Groups menu controls the activation/deactivation of up to eight possible groups of settings in the **GROUPED ELE- MENTS** settings menu. The faceplate 'SETTINGS IN USE' LEDs indicate which active group (with a non-flashing energized LED) is in service.

The **setting groups blk** setting prevents the active setting group from changing when the FlexLogic<sup>™</sup> parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.

Each **GROUP** ~ **ACTIVATE ON** setting selects a FlexLogic<sup>™</sup> operand which, when set, will make the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time – the highest-numbered group which is activated by its ACTIVATE ON parameter takes priority over the lower-numbered groups. There is no "activate on" setting for group 1 (the default active group), because group 1 automatically becomes active if no other group is active.

The relay can be set up via a FlexLogic<sup>™</sup> equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic<sup>™</sup> equation (see the figure below) illustrates requests via remote communications (e.g. VIRTUAL INPUT 1) or from a local contact input (e.g. H7a) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the ON state of a particular settings group.

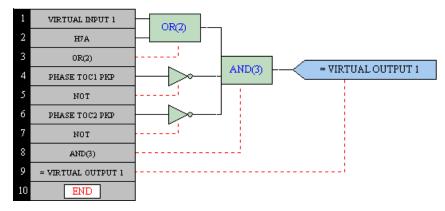
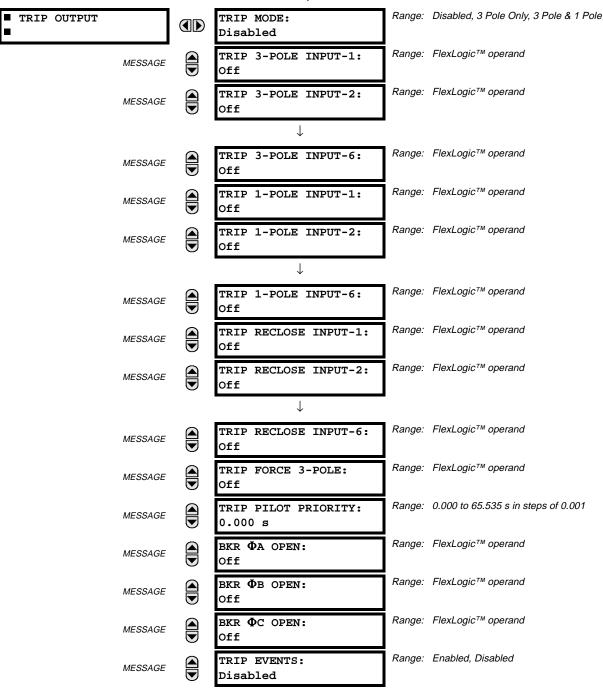




Figure 5-63: EXAMPLE FLEXLOGIC™ CONTROL OF A SETTINGS GROUP

### 



This element is primarily used to collect trip requests from protection elements and other inputs to generate output operands to initiate trip operations. Three pole trips will only initiate reclosure if programmed to do so, whereas single pole trips will always automatically initiate reclosure. The TRIP 3-POLE and TRIP 1-POLE output operands can also be used as inputs to a FlexLogic OR gate to operate the faceplate TRIP indicator LED.

### a) THREE POLE OPERATION

In applications where single pole tripping is not required this element provides a convenient method of collecting inputs to initiate tripping of circuit breakers, the reclose element and breaker failure elements.

# b) SINGLE POLE OPERATION



This element must be used in single pole operation applications.

In these applications this element is used to:

- · determine if a single pole operation should be performed
- collect inputs to initiate three pole tripping, the recloser and breaker failure elements
- · collect inputs to initiate single pole tripping, the recloser and breaker failure elements
- assign a higher priority to pilot aided scheme outputs than to exclusively local inputs.

This element works in association with other elements in the relay (see the THEORY OF OPERATION chapter for a complete description of single pole operations) that must be fully programmed and in service for successful operation. The other necessary elements are: Recloser, Breaker Control, Open Pole Detector, and Phase Selector. The recloser must also be in the "Reset" state before a single pole trip can be issued. Outputs from this element are also directly connected as initiate signals to the breaker failure elements.

At least one internal protection element or digital input representing detection of a fault must be available as an input to this element. In pilot-aided scheme applications (DUTT, PUTT, POTT, Hybrid POTT, and Directional Blocking) a timer can be used to delay the output decision until data from a remote terminal is received from communications facilities, to prevent a three pole operation where a single pole operation is permitted.

# c) SETTINGS

### TRIP MODE:

This setting is used to select the required mode of operation. If selected to "3 Pole Only" outputs for all three phases are always set simultaneously. If selected to "3 Pole & 1 Pole" outputs for all three phases are set simultaneously unless the phase selector or a pilot aided scheme determines the fault is single-phase-to-ground. If the fault is identified as being AG, BG or CG only the operands for the faulted phase will be asserted.

# TRIP 3-POLE INPUT-1 (through 6):

This setting is used to select an operand representing a fault condition that is not desired to initiate a single pole operation, e.g. phase undervoltage. Use a FlexLogic OR-gate if more than six inputs are required.

# TRIP 1-POLE INPUT-1 (through 6):

This setting is used to select an operand representing a fault condition that is desired to initiate a single pole trip-and-reclose if the fault is single phase to ground, e.g. distance Zone 1. Use a FlexLogic<sup>™</sup> OR-gate if more than six inputs are required. The inputs do not have to be phase-specific as the phase selector determines the fault type.

8 msec after the single-pole reclosing is initiated, the AR FORCE 3-P TRIP operand is asserted by the autorecloser. This operand calls for three-pole trip if any protection element configured under **TRIP 1-POLE INPUT** is still picked-up. The Open Pole Detector provides blocking inputs to distance elements, and therefore the latter will reset immediately after the TRIP 1-POLE operand is asserted. For other protection elements used in single-pole tripping, the user must ensure they will reset immediately after tripping, otherwise the fact that they are still picked up will be detected as an evolving fault and the relay will trip three-poles. For example, if high-set phase IOC is used (**TRIP 1-POLE INPUT X**: "PHASE IOC1 OP"), then OPEN POLE OP ΦA shall be used for blocking phase A of the IOC element. In this way, after tripping phase A, the phase A IOC is forced to reset. Phases B and C are still operational and can detect an evolving fault as soon as 8 msec after tripping phase A. Neutral and negative-sequence IOCs shall be blocked from the OPEN POLE BLK N operand unless the pickup setting is high enough to prevent pickup during single-pole reclosing.

# TRIP RECLOSE INPUT-1 (through 6):

This setting is used to select an operand representing a fault condition that is desired to initiate three pole reclosing, e.g. phase distance Zone 1. Use a FlexLogic™ OR-gate if more than six inputs are required.

This setting is used to select an operand that will force an input that is selected for single pole operation to produce a three pole operation, e.g. a Virtual Input that is asserted by an operator in some operating situations.

# TRIP PILOT PRIORITY:

This setting is used to set an interval equal to the inter-relay channel communications time, plus an appropriate margin, during which outputs are not asserted. This delay permits fault identification information from a remote terminal to be used instead of local data only.

# BKR $\Phi$ A OPEN through BKR $\Phi$ C OPEN:

These settings specify FlexLogic™ operands that indicate open poles of the breaker(s). The trip signal produced by the feature is sealed-in as long as the breaker(s) remain closed and resets when the breaker(s) opens as conveyed by the breaker pole status. These settings shall be left "Off" if the D60 Open Pole feature is used. The latter passes the OPEN POLE BKR ΦA OP through OPEN POLE BKR ΦA OP operands that bear the breaker(s) position.

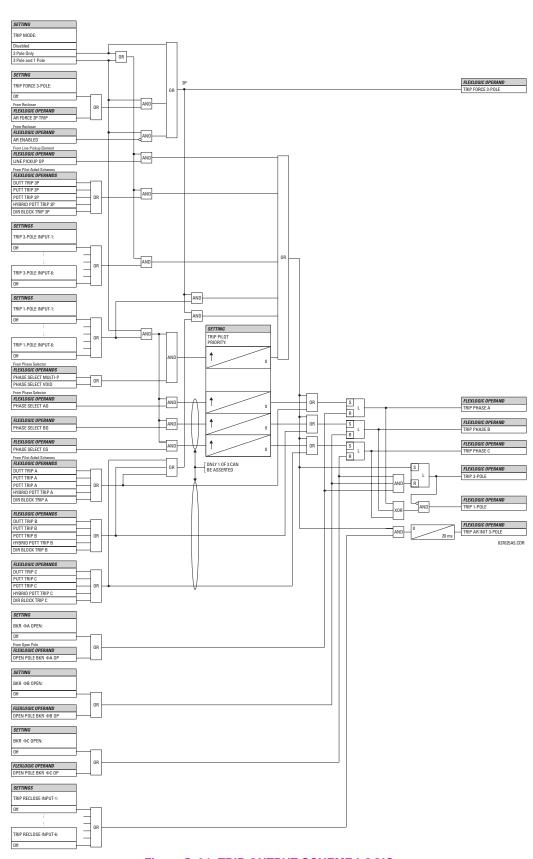
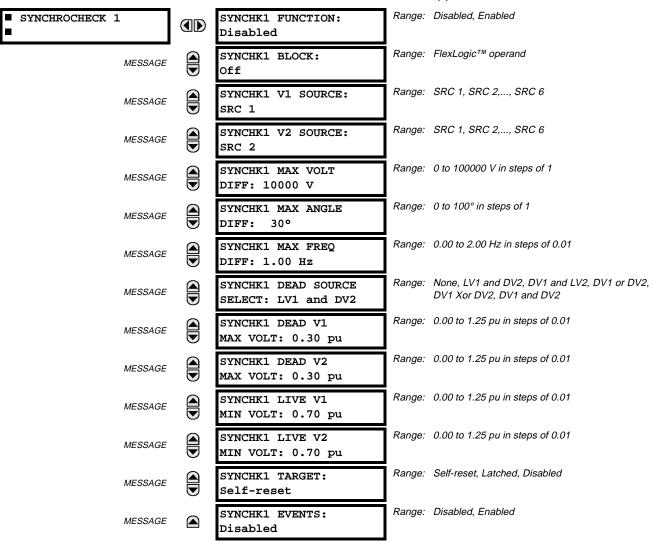




Figure 5-64: TRIP OUTPUT SCHEME LOGIC

# PATH: SETTINGS ➡ CONTROL ELEMENTS ➡ SYNCHROCHECK ➡ SYNCHROCHECK 1(2)



# **SYNCHK1 V1 SOURCE:**

This setting selects the source for voltage V1 (see **NOTES** below).

### **SYNCHK1 V2 SOURCE:**

This setting selects the source for voltage V2, which must not be the same as used for the V1 (see NOTES below).

### SYNCHK1 MAX VOLT DIFF:

This setting selects the maximum voltage difference in 'kV' between the two sources. A voltage magnitude difference between the two input voltages below this value is within the permissible limit for synchronism.

#### SYNCHK1 MAX ANGLE DIFF:

This setting selects the maximum angular difference in degrees between the two sources. An angular difference between the two input voltage phasors below this value is within the permissible limit for synchronism.

# **SYNCHK1 MAX FREQ DIFF:**

This setting selects the maximum frequency difference in 'Hz' between the two sources. A frequency difference between the two input voltage systems below this value is within the permissible limit for synchronism.

#### SYNCHK1 DEAD SOURCE SELECT:

This setting selects the combination of dead and live sources that will by-pass synchronism check function and permit the breaker to be closed when one or both of the two voltages (V1 or/and V2) are below the maximum voltage threshold. A dead or live source is declared by monitoring the voltage level.

Six options are available:

None: Dead Source function is disabled

LV1 and DV2: Live V1 and Dead V2
DV1 and LV2: Dead V1 and Live V2
DV1 or DV2: Dead V1 or Dead V2

DV1 Xor DV2: Dead V1 exclusive-or Dead V2 (one source is Dead and the other is Live)

DV1 and DV2: Dead V1 and Dead V2

# SYNCHK1 DEAD V1 MAX VOLT:

This setting establishes a maximum voltage magnitude for V1 in 'pu'. Below this magnitude, the V1 voltage input used for synchrocheck will be considered "Dead" or de-energized.

# SYNCHK1 DEAD V2 MAX VOLT:

This setting establishes a maximum voltage magnitude for V2 in 'pu'. Below this magnitude, the V2 voltage input used for synchrocheck will be considered "Dead" or de-energized.

### **SYNCHK1 LIVE V1 MIN VOLT:**

This setting establishes a minimum voltage magnitude for V1 in 'pu'. Above this magnitude, the V1 voltage input used for synchrocheck will be considered "Live" or energized.

#### SYNCHK1 LIVE V2 MIN VOLT:

This setting establishes a minimum voltage magnitude for V2 in 'pu'. Above this magnitude, the V2 voltage input used for synchrocheck will be considered "Live" or energized.

#### NOTES:

The selected Sources for synchrocheck inputs V1 and V2 (which must not be the same Source) may include both a
three-phase and an auxiliary voltage. The relay will automatically select the specific voltages to be used by the synchrocheck element in accordance with the following table.

| NO. | V1 OR V2<br>(SOURCE Y)        | V2 OR V1<br>(SOURCE Z)        | AUTO-SELECTED<br>COMBINATION |           | AUTO-SELECTED VOLTAGE                     |
|-----|-------------------------------|-------------------------------|------------------------------|-----------|-------------------------------------------|
|     |                               |                               | SOURCE Y                     | SOURCE Z  |                                           |
| 1   | Phase VTs and<br>Auxiliary VT | Phase VTs and<br>Auxiliary VT | Phase                        | Phase     | VAB                                       |
| 2   | Phase VTs and<br>Auxiliary VT | Phase VT                      | Phase                        | Phase     | VAB                                       |
| 3   | Phase VT                      | Phase VT                      | Phase                        | Phase     | VAB                                       |
| 4   | Phase VT and<br>Auxiliary VT  | Auxiliary VT                  | Phase                        | Auxiliary | V auxiliary<br>(as set for Source z)      |
| 5   | Auxiliary VT                  | Auxiliary VT                  | Auxiliary                    | Auxiliary | V auxiliary (as set for selected sources) |

The voltages V1 and V2 will be matched automatically so that the corresponding voltages from the two Sources will be used to measure conditions. A phase to phase voltage will be used if available in both sources; if one or both of the Sources have only an auxiliary voltage, this voltage will be used. For example, if an auxiliary voltage is programmed to VAG, the synchrocheck element will automatically select VAG from the other Source. If the comparison is required on a specific voltage, the user can externally connect that specific voltage to auxiliary voltage terminals and then use this "Auxiliary Voltage" to check the synchronism conditions.

If using a single CT/VT module with both phase voltages and an auxiliary voltage, ensure that <u>only</u> the auxiliary voltage is programmed in one of the Sources to be used for synchrocheck.

Exception: Synchronism cannot be checked between Delta connected phase VTs and a Wye connected auxiliary voltage.

2. The relay measures frequency and Volts/Hz from an input on a given Source with priorities as established by the configuration of input channels to the Source. The relay will use the phase channel of a three-phase set of voltages if programmed as part of that Source. The relay will use the auxiliary voltage channel only if that channel is programmed as part of the Source and a three-phase set is not.

The are two identical synchrocheck elements available, numbered 1 and 2.

The synchronism check function is intended for supervising the paralleling of two parts of a system which are to be joined by the closure of a circuit breaker. The synchrocheck elements are typically used at locations where the two parts of the system are interconnected through at least one other point in the system.

Synchrocheck verifies that the voltages (V1 and V2) on the two sides of the supervised circuit breaker are within set limits of magnitude, angle and frequency differences.

The time while the two voltages remain within the admissible angle difference is determined by the setting of the phase angle difference  $\Delta\Phi$  and the frequency difference  $\Delta F$  (slip frequency). It can be defined as the time it would take the voltage phasor V1 or V2 to traverse an angle equal to  $2 \times \Delta\Phi$  at a frequency equal to the frequency difference  $\Delta F$ . This time can be calculated by:

$$T = \frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F}$$

where:  $\Delta\Phi$  = phase angle difference in degrees;  $\Delta F$  = frequency difference in Hz.

As an example; for the default values ( $\Delta\Phi$  = 30°,  $\Delta$ F = 0.1 Hz), the time while the angle between the two voltages will be less than the set value is:

$$T = \frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F} = \frac{1}{\frac{360^{\circ}}{2 \times 30^{\circ}} \times 0.1 \text{ Hz}} = 1.66 \text{ sec.}$$

If one or both sources are de-energized, the synchrocheck programming can allow for closing of the circuit breaker using undervoltage control to by-pass the synchrocheck measurements (Dead Source function).

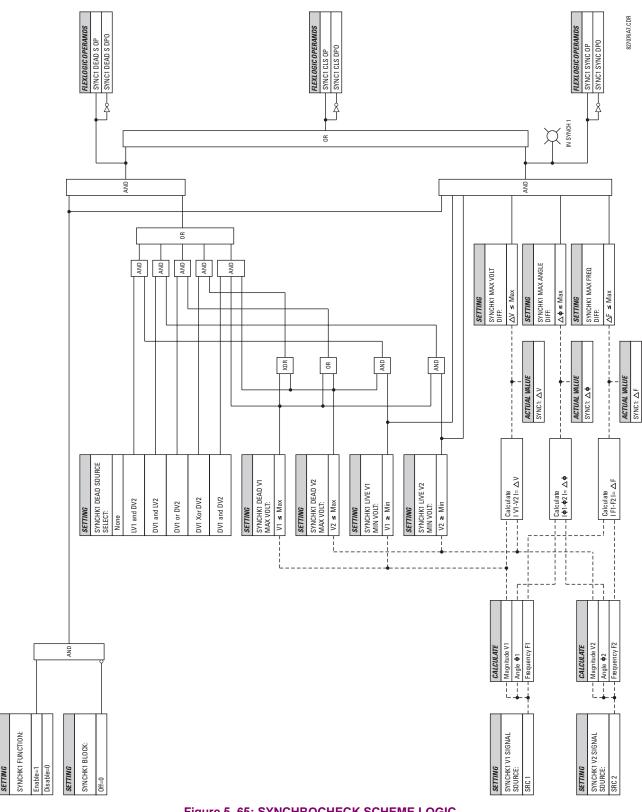



Figure 5-65: SYNCHROCHECK SCHEME LOGIC

# PATH: SETTINGS $\Rightarrow \emptyset$ CONTROL ELEMENTS $\Rightarrow \emptyset$ AUTORECLOSE $\Rightarrow$ AUTORECLOSE

| ■ AUTORECLOSE |   | AR FUNCTION:                         |        | Disabled, Enabled                      |
|---------------|---|--------------------------------------|--------|----------------------------------------|
| MEGGAG        | J | Disabled AR MODE:                    | Range: | 1 & 3 Pole, 1 Pole, 3 Pole-A, 3 Pole-B |
| MESSAGE       | • | 1 & 3 Pole  AR MAX NUMBER OF         | Range: | 1, 2                                   |
| MESSAGE       |   | SHOTS: 2                             |        |                                        |
| MESSAGE       |   | AR BLOCK BKR1:<br>Off                | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR CLOSE TIME BKR 1:<br>0.10 s       | Range: | 0.00 to 655.35 s in steps of 0.01      |
| MESSAGE       |   | AR BKR MAN CLOSE:<br>Off             | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR BLK TIME UPON MAN<br>CLS: 10.00 s | Range: | 0.00 to 655.35 s in steps of 0.01      |
| MESSAGE       |   | AR 1P INIT:<br>Off                   | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR 3P INIT:<br>Off                   | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR 3P TD INIT:<br>Off                | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR MULTI-P FAULT:<br>Off             | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | BKR ONE POLE OPEN:<br>Off            | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | BKR 3 POLE OPEN:<br>Off              | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR 3-P DEAD TIME 1:<br>0.50 s        | Range: | 0.00 to 655.35 s in steps of 0.01      |
| MESSAGE       |   | AR 3-P DEAD TIME 2:<br>1.20 s        | Range: | 0.00 to 655.35 s in steps of 0.01      |
| MESSAGE       |   | AR EXTEND DEAD T 1:                  | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR DEAD TIME 1<br>EXTENSION: 0.50 s  | Range: | 0.00 to 655.35 s in steps of 0.01      |
| MESSAGE       |   | AR RESET:<br>Off                     | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR RESET TIME:<br>60.00 s            | Range: | 0 to 655.35 s in steps of 0.01         |
| MESSAGE       |   | AR BKR CLOSED:<br>Off                | Range: | FlexLogic™ operand                     |
| MESSAGE       |   | AR BLOCK:<br>Off                     | Range: | FlexLogic™ operand                     |

| MESSAGE | <b>▲</b> | AR PAUSE:<br>Off                  | Range: | FlexLogic™ operand             |
|---------|----------|-----------------------------------|--------|--------------------------------|
| MESSAGE | <b>▲</b> | AR INCOMPLETE SEQ<br>TIME: 5.00 s | Range: | 0 to 655.35 s in steps of 0.01 |
| MESSAGE |          | AR BLOCK BKR2:<br>Off             | Range: | FlexLogic™ operand             |
| MESSAGE |          | AR CLOSE TIME BKR2:<br>Off        | Range: | FlexLogic™ operand             |
| MESSAGE |          | AR TRANSFER 1 TO 2:               | Range: | Yes, No                        |
| MESSAGE |          | AR TRANSFER 2 TO 1:               | Range: | Yes, No                        |
| MESSAGE |          | AR BKR1 FAIL OPTION:<br>Continue  | Range: | Continue, Lockout              |
| MESSAGE |          | AR BKR2 FAIL OPTION:<br>Continue  | Range: | Continue, Lockout              |
| MESSAGE |          | AR 1-P DEAD TIME:<br>1.00 s       | Range: | 0 to 655.35 s in steps of 0.01 |
| MESSAGE |          | AR BKR SEQUENCE:<br>1-2           | Range: | 1, 2, 1&2, 1–2, 2–1            |
| MESSAGE |          | AR TRANSFER TIME:<br>4.00 s       | Range: | 0 to 655.35 s in steps of 0.01 |
| MESSAGE |          | AR EVENT:<br>Disabled             | Range: | Enabled, Disabled              |

# a) **DESCRIPTION**

The autoreclose scheme is intended for use on transmission lines with circuit breakers operated in both the single pole and three pole modes, in one or two breaker arrangements. The autoreclose scheme provides four programs with different operating cycles, depending on the fault type. Each of the four programs can be set to trigger up to two reclosing attempts. The second attempt always performs three pole reclosing and has an independent dead time delay.

When used in two breaker applications, the reclosing sequence is selectable. The reclose signal can be sent to one selected breaker only, to both breakers simultaneously or to both breakers in sequence (one breaker first and then, after a delay to check that the reclose was successful, to the second breaker). When reclosing in sequence, the first breaker should trip and reclose single pole or three pole, according to the fault type and reclose mode; the second breaker should always trip and reclose 3-Pole. When reclosing simultaneously, for the first shot both breakers should trip and reclose either single pole or three pole, according to the fault type and the reclose mode.

The signal used to initiate the autoreclose scheme is the trip output from protection. This signal can be single pole tripping for single phase faults and three phase tripping for multiphase faults.

### **OPERATION:**

The autoreclose scheme has five operating states, defined below.

Table 5-25: AUTORECLOSE OPERATION

| STATE               | CHARACTERISTICS                                                                     |
|---------------------|-------------------------------------------------------------------------------------|
| Enabled             | Scheme is permitted to operate                                                      |
| Disabled            | Scheme is not permitted to operate                                                  |
| Reset               | Scheme is permitted to operate and shot count is reset to 0                         |
| Reclose In Progress | Scheme has been initiated but the reclose cycle is not finished (successful or not) |
| Lockout             | Scheme is not permitted to operate until reset received                             |

#### AR PROGRAMS:

The autorecloser provides four programs that can cause one or two reclose attempts (shots). The second reclose will always be three pole. If the maximum number of shots selected is "1" (only one reclose attempt) and the fault is persistent, after the first reclose the scheme will go to Lockout upon another Initiate signal.

For the 3-pole reclose programs (modes 3 and 4), an "AR FORCE 3-P" FlexLogic™ operand is set. This operand can be used in connection with the tripping logic to cause a three-pole trip for single-phase faults.

Table 5-26: AR PROGRAMS

| MODE | AR MODE    | FIRST                 | SHOT                 | SECOND SHOT           |                      |  |
|------|------------|-----------------------|----------------------|-----------------------|----------------------|--|
| NO.  |            | SINGLE-PHASE<br>FAULT | MULTI-PHASE<br>FAULT | SINGLE-PHASE<br>FAULT | MULTI-PHASE<br>FAULT |  |
| 1    | 1 & 3 POLE | 1 POLE                | 3 POLE               | 3 POLE or LO          | 3 POLE or LO         |  |
| 2    | 1 POLE     | 1 POLE                | LO                   | 3 POLE or LO          | 3 POLE or LO         |  |
| 3    | 3 POLE-A   | 3 POLE                | LO                   | 3 POLE or LO          | LO                   |  |
| 4    | 3 POLE-B   | 3 POLE                | 3 POLE               | 3 POLE or LO          | 3 POLE or LO         |  |

Note: LO = Lockout

- MODE 1, 1 & 3 POLE: When in this mode the autorecloser starts the AR 1-P DEAD TIME timer for the first shot if the autoreclose is single-phase initiated, the AR 3-P DEAD TIME 1 timer if the autoreclose is three-phase initiated, and the AR 3-P DEAD TIME 2 timer if the autoreclose is three-phase time delay initiated. If two shots are enabled, the second shot is always three-phase and the AR 3-P DEAD TIME 2 timer is started.
- MODE 2, 1 POLE: When in this mode the autorecloser starts the AR 1-P DEAD TIME for the first shot if the fault is single
  phase. If the fault is three-phase the scheme goes to lockout without reclosing. If two shots are enabled, the second
  shot is always three-phase and starts AR 3-P DEAD TIME 2.
- MODE 3, 3 POLE-A: When in this mode the autorecloser is initiated only for single phase faults, although the trip is
  three pole. The autorecloser uses the "AR 3-P DEAD TIME 1" for the first shot if the fault is single phase. If the fault is
  multi phase the scheme will go to Lockout without reclosing. If two shots are enabled, the second shot is always threephase and starts "AR 3-P DEAD TIME 2".
- MODE 4, 3 POLE-B: When in this mode the autorecloser is initiated for any type of fault and starts the AR 3-P DEAD TIME 1 for the first shot. If the initiating signal is AR 3P TD INIT the scheme starts AR 3-P DEAD TIME 2 for the first shot. If two shots are enabled, the second shot is always three-phase and starts AR 3-P DEAD TIME 2.

# **BASIC RECLOSING OPERATION:**

Reclosing operation is determined primarily by the **AR MODE** and **AR BKR SEQUENCE** settings. The reclosing sequences are started by the initiate inputs. A reclose initiate signal will send the scheme into the Reclose In Progress (RIP) state, asserting the "AR RIP" operand. The scheme is latched into the RIP state and resets only when an "AR CLS BKR 1" (autoreclose breaker 1) or "AR CLS BKR 2" (autoreclose breaker 2) operand is generated or the scheme goes to the Lockout state.

The dead time for the initial reclose operation will be determined by either the AR 1-P DEAD TIME, AR 3-P DEAD TIME 1, or AR 3-P DEAD TIME 2 setting, depending on the fault type and the mode selected. After the dead time interval the scheme will assert the "AR CLOSE BKR 1" or "AR CLOSE BKR 2" operands, as determined by the sequence selected. These operands are latched until the breaker closes or the scheme goes to Reset or Lockout.

There are three initiate programs: single pole initiate, three pole initiate and three pole, time delay initiate. Any of these reclose initiate signals will start the reclose cycle and set the "Reclose in progress" (AR RIP) operand. The reclose in progress operand is sealed-in until the Lockout or Reset signal appears.

The three-pole initiate and three-pole time delay initiate signals are latched until the "Close Bkr1 or Bkr2" or Lockout or Reset signal appears.

# AR PAUSE:

The pause input offers the possibility of freezing the autoreclose cycle until the pause signal disappears. This may be done when a trip occurs and simultaneously or previously, some conditions are detected such as out-of step or loss of guard frequency, or a remote transfer trip signal is received. The pause signal blocks all three dead timers. When the "pause" signal disappears the autoreclose cycle is resumed by initiating the AR 3-P DEAD TIME 2.

This feature can be also used when a transformer is tapped from the protected line and a reclose is not desirable until the transformer is disconnected from the line. In this situation the reclose scheme will be "paused" until the transformer is disconnected.

The AR PAUSE input will force a three-pole trip through the 3-P DEADTIME 2 path.

#### **EVOLVING FAULTS:**

8 ms after the single pole dead time has been initiated, the "AR FORCE 3P TRIP" operand is set and it will be reset only when the scheme is reset or goes to Lockout. This will ensure that when a fault on one phase evolves to include another phase during the single pole dead time of the auto-recloser the scheme will force a 3 pole trip and reclose.

# RECLOSING SCHEME OPERATION FOR ONE BREAKER:

• **Permanent Fault**: Consider mode No.1 which calls for 1-Pole or 3-Pole time delay No. 1 for the first reclosure and 3-Pole time delay No. 2 for the second reclosure, and assume a permanent fault on the line. Also assume the scheme is in the Reset state. For the first single-phase fault the AR 1-P DEAD TIME timer will be started, while for the first multiphase fault the AR 3-P DEAD TIME 1 timer will be started. If the AR 3-P DINIT signal is high, the AR 3-P DEAD TIME 2 will be started for the first shot.

If AR MAX NO OF SHOTS is set to "1", upon the first reclose the shot counter is set to 1. Upon reclosing, the fault is again detected by protection and reclose is initiated. The breaker is tripped three-pole through the "AR SHOT COUNT >0" that will set the "AR FORCE 3P" operand. Because the shot counter has reached the maximum number of shots permitted the scheme is sent to the Lockout state.

If AR MAX NO OF SHOTS is set to "2", upon the first reclose the shot counter is set to 1. Upon reclosing, the fault is again detected by protection and reclose is initiated. The breaker is tripped three-pole through the "AR SHOT COUNT >0" that will set the "AR FORCE 3P" operand. After the second reclose the shot counter is set to 2. Upon reclosing, the fault is again detected by protection, the breaker is tripped three-pole, and reclose is initiated again. Because the shot counter has reached the maximum number of shots permitted the scheme is sent to the lockout state.

• Transient Fault: When a reclose output signal is sent to close the breaker the reset timer is started. If the reclosure sequence is successful (there is no initiating signal and the breaker is closed) the reset timer will time out returning the scheme to the reset state with the shot counter set to "0" making it ready for a new reclose cycle.

### **RECLOSING SCHEME OPERATION FOR TWO BREAKERS:**

- **Permanent Fault**: The general method of operation is the same as that outlined for the one breaker applications except for the following description, which assumes **AR BKR SEQUENCE** is set to "1-2" (reclose breaker 1 before breaker 2.) The signal output from the dead time timers passes through the breaker selection logic to initiate reclosing of Breaker 1. The close breaker 1 signal will initiate the Transfer Timer. After the reclose of the first breaker the fault is again detected by the protection, the breaker is tripped three pole and the autoreclose scheme is initiated. The Initiate signal will stop the transfer timer. After the 3-P dead time times out the close breaker 1 signal will close first breaker again and will start the transfer timer. Since the fault is permanent the protection will trip again initiating the autoreclose scheme that will be sent to Lockout by the "Shot Count = Max" signal.
- Transient Fault: When the first reclose output signal is sent to close breaker 1, the reset timer is started. The close breaker 1 signal initiates the transfer timer that times out and sends the close signal to the second breaker. If the reclosure sequence is successful (both breakers are closed and there is no initiating signal) the reset timer will time out, returning the scheme to the reset state with the shot counter set to 0. The scheme will be ready for a new reclose cycle.

# AR BKR1(2) RECLS FAIL:

If the selected sequence is "1–2" or "2–1" and after the first or second reclose attempt the breaker fails to close, there are two options. If the AR BKR 1(2) FAIL OPTION is set to "Lockout", the scheme will go to lockout state. If the AR BKR 1(2) FAIL OPTION is set to "Continue", the reclose process will continue with Breaker No. 2. At the same time the shot counter will be decreased (since the closing process was not completed).

# **SCHEME RESET AFTER RECLOSURE:**

When a reclose output signal is sent to close either breaker 1 or 2 the reset timer is started. If the reclosure sequence is successful (there is no initiating signal and the breakers are closed) the reset timer will time out, returning the scheme to the reset state, with the shot counter set to 0, making it ready for a new reclose cycle.

In two breaker schemes, if one breaker is in the OUT OF SERVICE state and the other is closed at the end of the reset time, the scheme will also reset. If at the end of the reset time at least one breaker, which is not in the OUT OF SERVICE state, is open the scheme will be sent to Lockout.

The reset timer will be stopped if the reclosure sequence is not successful: an initiating signal is present or the scheme is in the Lockout state. The reset timer will also be stopped if the breaker is manually closed or the scheme is otherwise reset from lockout.

#### LOCKOUT:

When a reclose sequence is started by an initiate signal the scheme moves into the Reclose In Progress state and starts the Incomplete Sequence Timer. The setting of this timer determines the maximum time interval allowed for a single reclose shot. If a close breaker 1 or 2 signal is not present before this time expires, the scheme goes to "Lockout".

There are four other conditions that can take the scheme to the Lockout state, as shown below:

- Receipt of "Block" input while in the Reclose in Progress state
- The reclosing program logic: when a 3P Initiate is present and the autoreclose mode is either 1 Pole or 3Pole-A (3 pole autoreclose for single pole faults only)
- Initiation of the scheme when the count is at the maximum allowed
- If at the end of the reset time at least one breaker, which is not in the OUT OF SERVICE state, is open the scheme will be sent to Lockout. The scheme will be also sent to Lockout if one breaker fails to reclose and the setting AR BKR FAIL OPTION is set to "Lockout".

Once the Lockout state is set it will be latched in until the scheme is intentionally reset from Lockout or a breaker is manually closed.

#### **BREAKER OPEN BEFORE FAULT:**

A logic circuit is provided that inhibits the close breaker 1(2) output if a reclose initiate (RIP) indicator is not present within 30 ms of the "Breaker any phase open" input. This feature is intended to prevent reclosing if one of the breakers was open in advance of a reclose initiate input to the recloser. This logic circuit resets when the breaker is closed.

# TRANSFER RECLOSE WHEN BREAKER IS BLOCKED:

- When the reclosing sequence 1-2 is selected and breaker No. 1 is blocked (AR BKR1 BLK operand is set) the reclose signal can be transferred direct to the breaker No. 2 if AR TRANSFER 1 TO 2 is set to "Yes". If set to "No", the scheme will be sent to LOCKOUT by the incomplete sequence timer.
- When the reclosing sequence 2-1 is selected and breaker No. 2 is blocked (AR BKR2 BLK operand is set) the reclose signal can be transferred direct to the breaker No.1 if AR TRANSFER 2 TO 1 is set to "YES". If set to "NO" the scheme will be sent to LOCKOUT by the incomplete sequence timer.

# **FORCE 3-POLE TRIPPING:**

The reclosing scheme contains logic that is used to signal trip logic that three-pole tripping is required for certain conditions. This signal is activated by any of the following:

- Autoreclose scheme is Disabled.
- · Autoreclose scheme is in the Lockout state.
- Autoreclose mode is programmed for three-pole operation
- The shot counter is not at 0, i.e. the scheme is not in the Reset state. This ensures a second trip will be three-pole when reclosing onto a permanent single phase fault.
- 8 ms after the single-pole reclose is initiated by the AR 1P INIT signal.

### **ZONE 1 EXTENT:**

"Extended Zone 1" is 0 when the AR is in LO or Disabled and 1 when the AR is in Reset.

- 1. When "Extended Zone 1" is 0, the distance functions shall be set to normal underreach Zone 1 setting.
- 2. When "Extended Zone 1" is 1, the distance functions may be set to Extended Zone 1 Reach, which is an overreaching setting.
- During a reclose cycle, "Extended Zone 1" goes to 0 as soon as the first CLOSE BREAKER signal is issued (AR SHOT COUNT > 0) and remains 0 until the recloser goes back to Reset.

### b) USE OF SETTINGS

**AR MODE**: This setting selects the AR operating mode, which functions in conjunction with signals received at the initiation inputs as described previously.

**AR MAX NUMBER OF SHOTS**: This setting specifies the number of reclosures that can be attempted before reclosure goes to Lockout when the fault is permanent.

AR BLOCK BKR1: This input selects an operand that will block the reclose command for breaker No.1. This condition can be for example: breaker low air pressure, reclose in progress on another line (for the central breaker in a breaker and a half arrangement), or a sum of conditions combined in FlexLogic<sup>™</sup>.

AR CLOSE TIME BKR1:This setting represents the closing time for the breaker No. 1 from the moment the "Close" command is sent to the moment the contacts are closed.

AR BKR MAN CLOSE: This setting selects a FlexLogic<sup>™</sup> operand that represents manual close command to a breaker associated with the autoreclose scheme

AR BLK TIME UPON MAN CLS: The autoreclose scheme can be disabled for a programmable time delay after an associated circuit breaker is manually commanded to close, preventing reclosing onto an existing fault such as grounds on the line. This delay must be longer than the slowest expected trip from any protection not blocked after manual closing. If the autoreclose scheme is not initiated after a manual close and this time expires the autoreclose scheme is set to the Reset state.

AR 1P INIT: This setting selects a FlexLogic™ operand that is intended to initiate single Pole autoreclosure.

**AR 3P INIT**: This setting selects a FlexLogic<sup>™</sup> operand that is intended to initiate three Pole autoreclosure, first timer (AR 3P DEAD TIME 1) that can be used for a high-speed autoreclosure.

AR 3P TD INIT: This setting selects a FlexLogic<sup>™</sup> operand that is intended to initiate three Pole autoreclosure, second timer (AR 3P DEAD TIME 2) that can be used for a time-delay autoreclosure.

AR MULTI-P FAULT: This setting selects a FlexLogic<sup>™</sup> operand that indicates a multi-phase fault. The operand value should be zero for single-phase to ground faults.

**BKR ONE POLE OPEN:** This setting selects a FlexLogic<sup>™</sup> operand which indicates that the breaker(s) has opened correctly following a single phase to ground fault and the autoreclose scheme can start timing the single pole dead time (for 1-2 reclose sequence for example, breaker No. 1 should trip single pole and breaker No. 2 should trip 3 pole).

The scheme has a pre-wired input that indicates breaker(s) status.

**BKR 3 POLE OPEN:** This setting selects a FlexLogic<sup>™</sup> operand which indicates that the breaker(s) has opened three pole and the autoreclose scheme can start timing the three pole dead time.

The scheme has a pre-wired input that indicates breaker(s) status.

**AR 3-P DEAD TIME 1**: This is the dead time following the first three pole trip. This intentional delay can be used for a high-speed three-pole autoreclose. However, it should be set longer than the estimated de-ionizing time following the three-pole trip.

AR 3-P DEAD TIME 2: This is the dead time following the second three-pole trip or initiated by the AR 3P TD INIT input. This intentional delay is typically used for a time delayed three-pole autoreclose (as opposed to high speed three-pole autoreclose).

**AR EXTEND DEAD T 1**: This setting selects an operand that will adapt the duration of the dead time for the first shot to the possibility of non-simultaneous tripping at the two line ends. Typically this is the operand set when the communication channel is out of service

AR DEAD TIME 1 EXTENSION: This timer is used to set the length of the dead time 1 extension for possible non-simultaneous tripping of the two ends of the line.

**AR RESET**: This setting selects the operand that forces the autoreclose scheme from any state to Reset. Typically this is a manual reset from lockout, local or remote.

**AR RESET TIME**: A reset timer output resets the recloser following a successful reclosure sequence. The setting is based on the breaker time which is the minimum time required between successive reclose sequences.

AR BKR CLOSED: This setting selects an operand that indicates that the breaker(s) are closed at the end of the reset time and the scheme can reset.

AR BLOCK: This setting selects the operand that blocks the Autoreclose scheme (it can be a sum of conditions such as: Time Delayed Tripping, Breaker Failure, Bus Differential Protection, etc.). If the block signal is present before autoreclose scheme initiation the AR DISABLED FlexLogic™ operand will be set. If the block signal occurs when the scheme is in the RIP state the scheme will be sent to Lockout.

**AR PAUSE**: The pause input offers the ability to freeze the autoreclose cycle until the pause signal disappears. This may be done when a trip occurs and simultaneously or previously, some conditions are detected such as out-of step or loss of guard frequency, or a remote transfer trip signal is received. When the "pause" signal disappears the autoreclose cycle is resumed. This feature can also be used when a transformer is tapped from the protected line and a reclose is not desirable until the it is disconnected from the line. In this situation, the reclose scheme is "paused" until the transformer is disconnected.

AR INCOMPLETE SEQ TIME: This timer is used to set the maximum time interval allowed for a single reclose shot. It is started whenever a reclosure is initiated and is active until the CLOSE BKR1 or BKR2 signal is sent. If all conditions allowing a breaker closure are not satisfied when this time expires, the scheme goes to "Lockout". The minimum permissible setting is established by the "3-P Dead Time 2" timer setting. Settings beyond this will determine the "wait" time for the breaker to open so that the reclose cycle can continue and/or for the AR PAUSE signal to reset and allow the reclose cycle to continue and/or for the AR BKR1(2) BLK signal to disappear and allow the AR CLOSE BKR1(2) signal to be sent.

AR BLOCK BKR2: This input selects an operand that will block the reclose command for breaker No.2. This condition can be for example: breaker low air pressure, reclose in progress on another line (for the central breaker in a breaker and a half arrangement), or a sum of conditions combined in FlexLogic<sup>™</sup>.

AR BKR2 MNL CLOSE: This setting selects an operand asserted when breaker No. 2 is manually commanded to close.

**AR CLOSE TIME BKR2**: This setting represents the closing time for the breaker No. 2 from the moment the "Close" command is sent to the moment the contacts are closed.

AR TRANSFER 1 TO 2: This setting establishes how the scheme performs when the breaker closing sequence is 1-2 and breaker No. 1 is blocked. When set to "YES" the closing command will be transferred direct to breaker No. 2 without waiting the transfer time. When set to "NO" the closing command will be blocked by the AR BKR1 BLK signal and the scheme will be sent to LOCKOUT by the incomplete sequence timer.

**AR TRANSFER 2 TO 1**: This setting establishes how the scheme performs when the breaker closing sequence is 2-1 and breaker No. 2 is blocked. When set to "YES" the closing command will be transferred direct to breaker No. 1 without waiting the transfer time. When set to "NO" the closing command will be blocked by the AR BKR2 BLK signal and the scheme will be sent to LOCKOUT by the incomplete sequence timer.

**AR BKR1 FAIL OPTION**: This setting establishes how the scheme performs when the breaker closing sequence is 1-2 and breaker No. 1 has failed to close. When set to "Continue" the closing command will be transferred to breaker No. 2 which will continue the reclosing cycle until successful (the scheme will reset) or unsuccessful (the scheme will go to Lockout). When set to "Lockout" the scheme will go to lockout without attempting to reclose breaker No. 2.

AR BKR2 FAIL OPTION: This setting establishes how the scheme performs when the breaker closing sequence is 2-1 and breaker No. 2 has failed to close. When set to "Continue" the closing command will be transferred to breaker No. 1 which will continue the reclosing cycle until successful (the scheme will reset) or unsuccessful (the scheme will go to Lockout). When set to "Lockout" the scheme will go to lockout without attempting to reclose breaker No. 1.

AR 1-P DEAD TIME: Set this intentional delay longer than the estimated de-ionizing time following the first single-pole trip.

AR BREAKER SEQUENCE: This setting selects the breakers reclose sequence:

- 1 = reclose breaker 1 only
- 2 = reclose breaker 2 only
- 1&2 = reclose both breakers simultaneously
- 1-2 = reclose breakers sequentially; breaker No. 1 first
- 2-1 = reclose breakers sequentially; breaker No. 2 first

AR TRANSFER TIME: The transfer time is used only for breaker closing sequence 1-2 or 2-1, when the two breakers are reclosed sequentially. The transfer timer is initiated by a close signal to the first breaker. The transfer timer transfers the reclose signal from the breaker selected to close first to the second breaker. The time delay setting is based on the maximum time interval between the autoreclose signal and the protection trip contact closure assuming a permanent fault (unsuccessful reclose). Therefore, the minimum setting is equal to the maximum breaker closing time plus the maximum line protection operating time plus a suitable margin. This setting will prevent the autoreclose scheme from transferring the close signal to the second breaker unless a successful reclose of the first breaker occurs.



For correct operation of the autoreclose scheme, the Breaker Control feature must be enabled and configured properly. When the breaker reclose sequence is "1-2" or "2-1" the breaker that will reclose second in sequence (breaker No. 2 for sequence 1-2 and breaker No. 1 for sequence 2-1) must be configured to trip three-pole for any type of fault

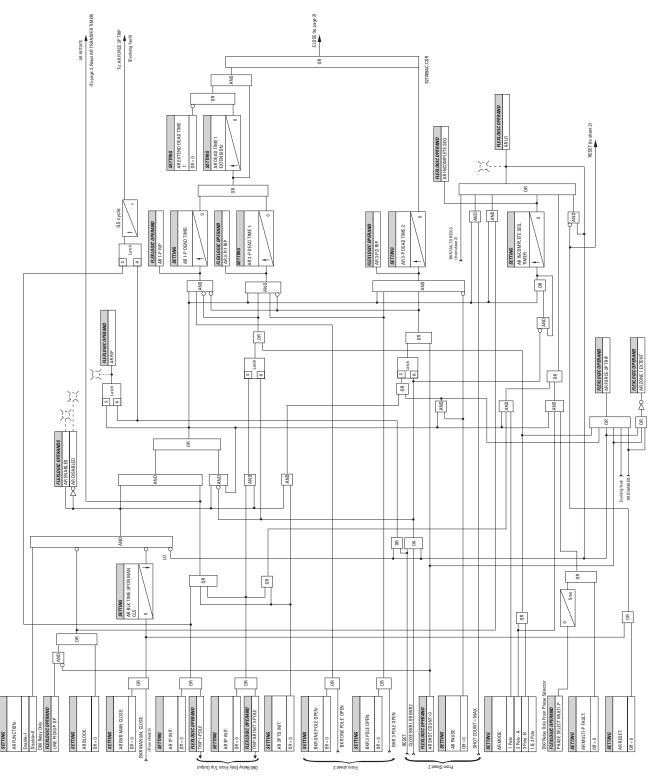



Figure 5-66: SINGLE-POLE AUTORECLOSE LOGIC (SHEET 1 OF 3)

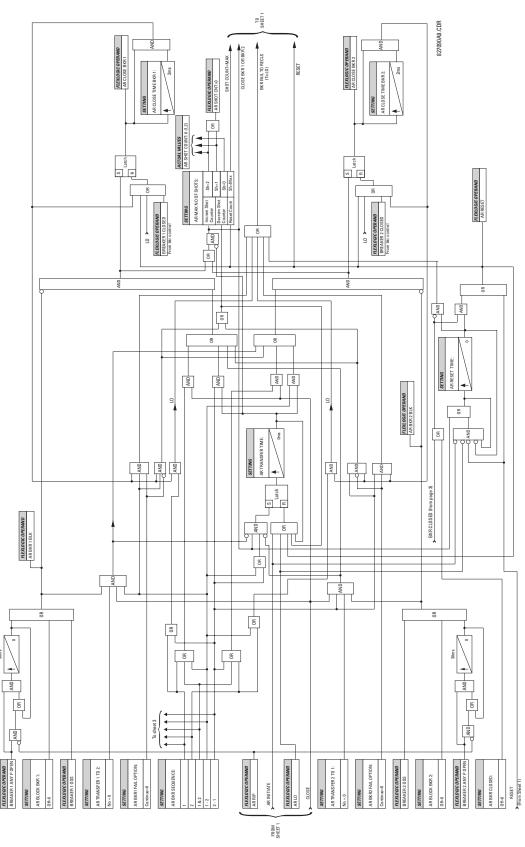



Figure 5–67: SINGLE-POLE AUTORECLOSE LOGIC (SHEET 2 OF 3)

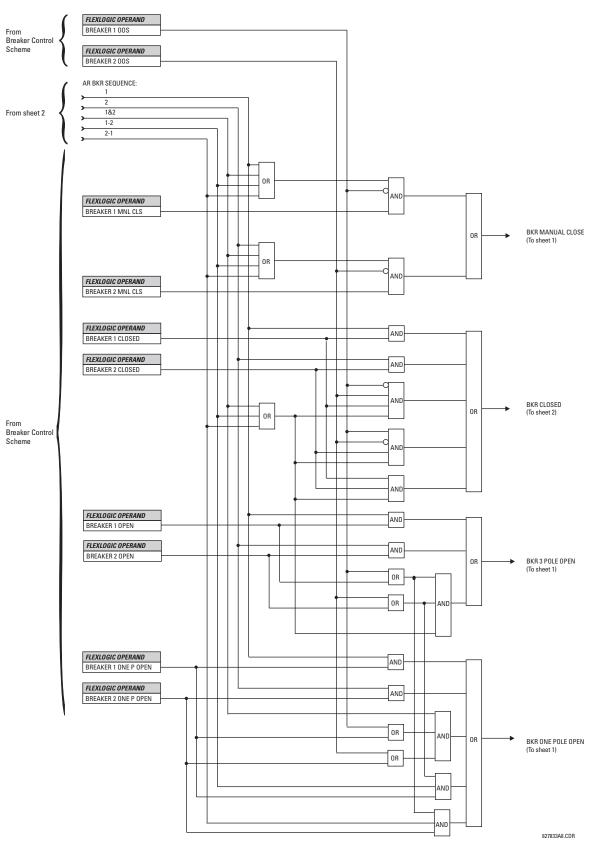



Figure 5-68: SINGLE-POLE AUTORECLOSE LOGIC (SHEET 3 OF 3)

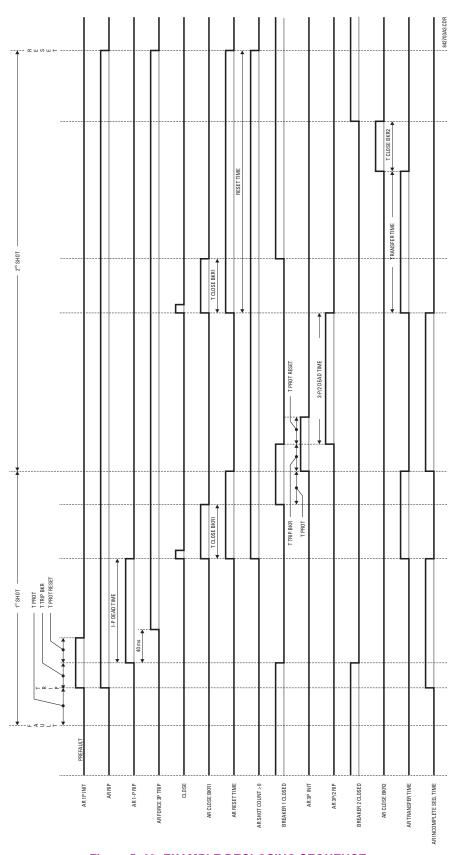
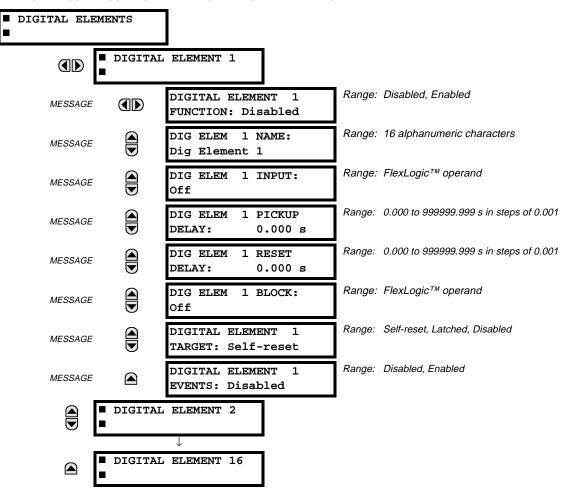




Figure 5-69: EXAMPLE RECLOSING SEQUENCE

#### PATH: SETTINGS ♥ CONTROL ELEMENTS ♥ DIGITAL ELEMENTS



There are 16 identical Digital Elements available, numbered 1 to 16. A Digital Element can monitor any FlexLogic™ operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a 'name' which will be referenced in any target message, a blocking input from any selected FlexLogic™ operand, and a timer for pickup and reset delays for the output operand.

**DIGITAL ELEMENT 1 INPUT:** Selects a FlexLogic<sup>™</sup> operand to be monitored by the Digital Element.

DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".

DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to "0".

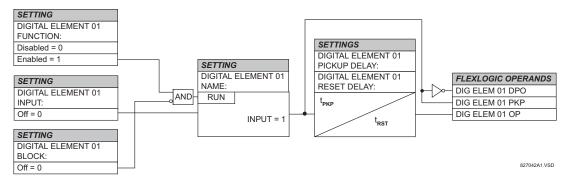



Figure 5–70: DIGITAL ELEMENT SCHEME LOGIC

# a) CIRCUIT MONITORING APPLICATIONS

Some versions of the digital input modules include an active Voltage Monitor circuit connected across Form-A contacts. The Voltage Monitor circuit limits the trickle current through the output circuit (see Technical Specifications for Form-A).

As long as the current through the Voltage Monitor is above a threshold (see Technical Specifications for Form-A), the Flex-Logic<sup>™</sup> operand "Cont Op # VOn" will be set. (# represents the output contact number). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the FlexLogic<sup>™</sup> operand "Cont Op # VOff" will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which Form-A contacts are inserted.

### b) BREAKER TRIP CIRCUIT INTEGRITY MONITORING - EXAMPLE 1

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the Voltage Monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.

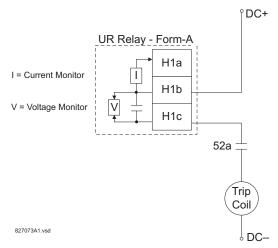
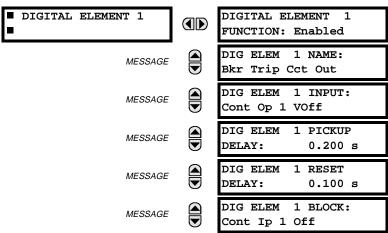
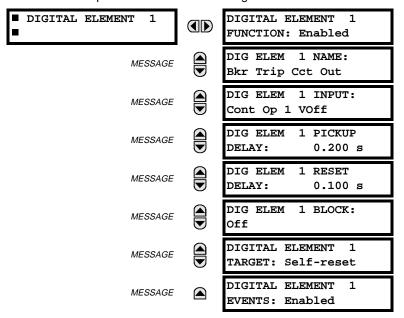




Figure 5-71: TRIP CIRCUIT EXAMPLE 1

Assume the output contact H1 is a trip contact. Using the contact output settings, this output will be given an ID name, e.g. "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, e.g. "Cont Ip 1" and will be set "ON" when the breaker is closed. Using Digital Element 1 to monitor the breaker trip circuit, the settings will be:



MESSAGE


DIGITAL ELEMENT 1
TARGET: Self-reset

DIGITAL ELEMENT 1
EVENTS: Enabled

NOTE: The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

# c) BREAKER TRIP CIRCUIT INTEGRITY MONITORING - EXAMPLE 2

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in Figure: TRIP CIRCUIT - EXAMPLE 2). This can be achieved by connecting a suitable resistor (as listed in the VALUES OF RESISTOR 'R' table) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position - the BLOCK setting is selected to Off. In this case, the settings will be:



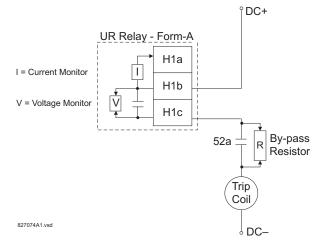
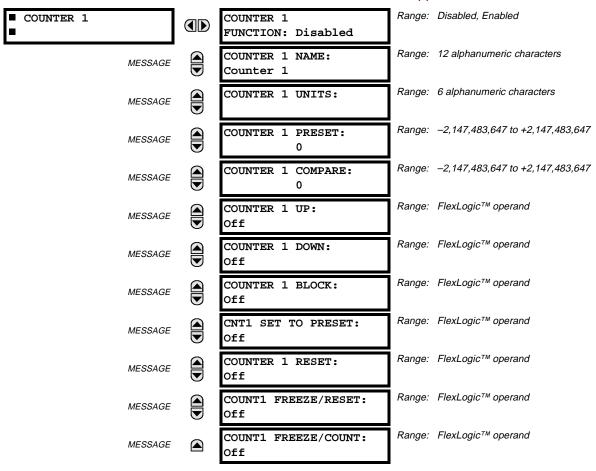




Table 5-27: VALUES OF RESISTOR 'R'

| POWER<br>SUPPLY (V DC) | RESISTANCE<br>(OHMS) | POWER<br>(WATTS) |
|------------------------|----------------------|------------------|
| , ,                    | , ,                  | ,                |
| 24                     | 1000                 | 2                |
| 30                     | 5000                 | 2                |
| 48                     | 10000                | 2                |
| 110                    | 25000                | 5                |
| 125                    | 25000                | 5                |
| 250                    | 50000                | 5                |

Figure 5-72: TRIP CIRCUIT EXAMPLE 2

### PATH: SETTINGS ⇔ U CONTROL ELEMENTS ⇔ UDIGITAL COUNTERS ⇔ COUNTER 1(8)



There are 8 identical digital counters, numbered from 1 to 8. A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

# **COUNTER 1 UNITS:**

Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding Actual Values status.

# **COUNTER 1 PRESET:**

Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.

### **COUNTER 1 COMPARE:**

Sets the value to which the accumulated count value is compared. Three FlexLogic™ output operands are provided to indicate if the present value is "more than (HI)", "equal to (EQL)", or "less than (LO)" the set value.

## **COUNTER 1 UP:**

Selects the FlexLogic<sup>™</sup> operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of +2,147,483,647 counts, the counter will rollover to −2,147,483,647.

### **COUNTER 1 DOWN:**

Selects the FlexLogic<sup>™</sup> operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of -2,147,483,647 counts, the counter will rollover to +2,147,483,647.

#### COUNTER 1 BLOCK:

Selects the FlexLogic<sup>™</sup> operand for blocking the counting operation.

#### **CNT1 SET TO PRESET:**

Selects the FlexLogic<sup>™</sup> operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:

- 1. When the counter is enabled and the "CNT1 SET TO PRESET" operand has the value 1 (when the counter is enabled and "CNT1 SET TO PRESET" is 0, the counter will be set to 0.)
- 2. When the counter is running and the "CNT1 SET TO PRESET" operand changes the state from 0 to 1 ("CNT1 SET TO PRESET" changing from 1 to 0 while the counter is running has no effect on the count).
- 3. When a reset or reset/freeze command is sent to the counter and the "CNT1 SET TO PRESET" operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the "CNT1 SET TO PRESET" operand has the value 0, the counter will be set to 0).

# **COUNTER 1 RESET:**

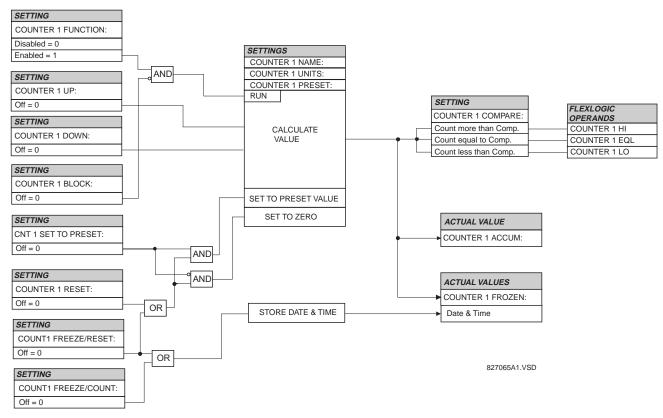
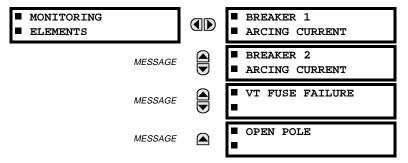
Selects the FlexLogic<sup>™</sup> operand for setting the count to either '0' or the preset value depending on the state of the "CNT1 SET TO PRESET" operand.

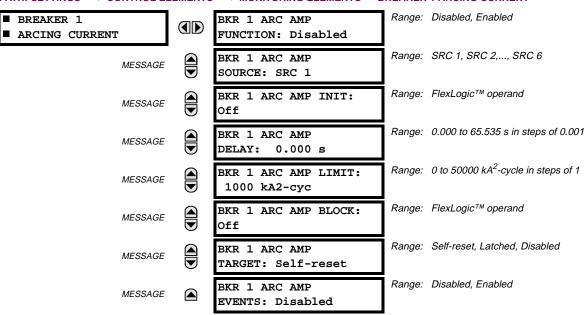
### **COUNTER 1 FREEZE/RESET:**

Selects the FlexLogic<sup>™</sup> operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to '0' or the preset value.

# **COUNTER 1 FREEZE/COUNT:**

Selects the FlexLogic<sup>TM</sup> operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.



Figure 5-73: DIGITAL COUNTER SCHEME LOGIC

#### PATH: SETTINGS ♥ CONTROL ELEMENTS ♥ MONITORING ELEMENTS



# a) BREAKER 1(2) ARCING CURRENT

PATH: SETTINGS  $\Rightarrow \emptyset$  CONTROL ELEMENTS  $\Rightarrow \emptyset$  MONITORING ELEMENTS  $\Rightarrow$  BREAKER 1 ARCING CURRENT



There are 2 identical Breaker Arcing Current features available for Breakers 1 and 2. This element calculates an estimate of the per-phase wear on the breaker contacts by measuring and integrating the current squared passing through the breaker contacts as an arc. These per-phase values are added to accumulated totals for each phase and compared to a programmed threshold value. When the threshold is exceeded in any phase, the relay can set an output operand to "1". The accumulated value for each phase can be displayed as an actual value.

The operation of the scheme is shown in the following logic diagram. The same output operand that is selected to operate the output relay used to trip the breaker, indicating a tripping sequence has begun, is used to initiate this feature. A time delay is introduced between initiation and the starting of integration to prevent integration of current flow through the breaker before the contacts have parted. This interval includes the operating time of the output relay, any other auxiliary relays and the breaker mechanism. For maximum measurement accuracy, the interval between change-of-state of the operand (from 0 to 1) and contact separation should be measured for the specific installation. Integration of the measured current continues for 100 milliseconds, which is expected to include the total arcing period.

### **BKR 1 ARC AMP INIT:**

Selects the same output operand that is selected to operate the output relay used to trip the breaker.

# **BKR 1 ARC AMP DELAY**:

This setting is used to program the delay interval between the time the tripping sequence is initiated and the time the breaker contacts are expected to part, starting the integration of the measured current.

# **BKR 1 ARC AMP LIMIT:**

Selects the threshold value above which the output operand is set.

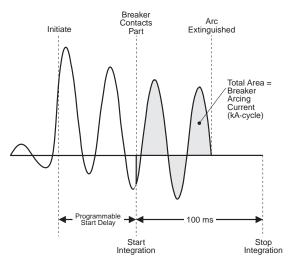



Figure 5-74: ARCING CURRENT MEASUREMENT

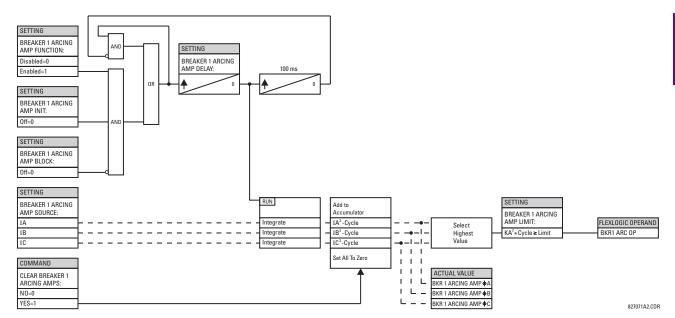



Figure 5-75: BREAKER ARCING CURRENT SCHEME LOGIC

### PATH: SETTINGS ⇒ ⇩ CONTROL ELEMENTS ⇒ ⇩ MONITORING ELEMENTS ⇒ ⇩ VT FUSE FAILURE



Every signal source includes a fuse failure scheme.

The VT fuse failure detector can be used to raise an alarm and/or block elements that may operate incorrectly for a full or partial loss of AC potential caused by one or more blown fuses. Some elements that might be blocked (via the BLOCK input) are distance, voltage restrained overcurrent, and directional current.

There are two classes of fuse failure that may occur: (A) loss of one or two phases, and (B) loss of all three phases. A different means of detection is required for each class. An indication of class A failures is a significant level of negative sequence voltage, whereas an indication of class B failures is when positive sequence current is present and there is an insignificant amount of positive sequence voltage. These noted indications of fuse failure could also be present when faults are present on the system, so a means of detecting faults and inhibiting fuse failure declarations during these events is provided. Once the fuse failure condition is declared, it will be sealed-in until the cause that generated it disappears.

An additional condition is introduced to inhibit a fuse failure declaration when the monitored circuit is de-energized; positive sequence voltage and current are both below threshold levels.

The common FUNCTION setting will Enable/Disable the fuse failure feature for all 6 sources.

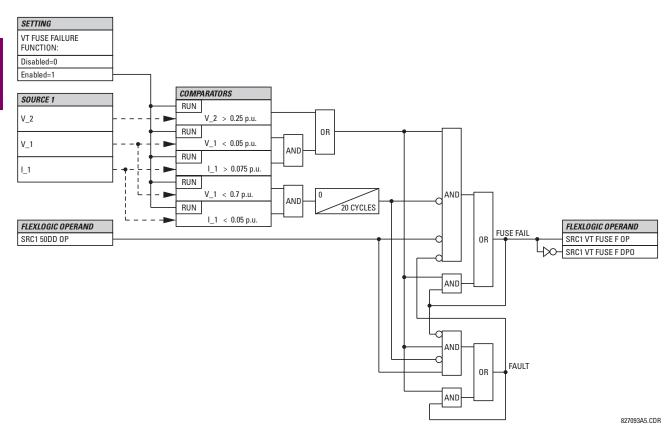
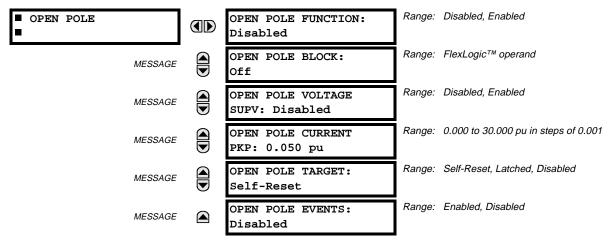




Figure 5-76: VT FUSE FAIL SCHEME LOGIC

E

### c) OPEN POLE DETECTOR

### PATH: SETTINGS ⇔ ⊕ CONTROL ELEMENTS ⇔ ⊕ MONITORING ELEMENTS ⇒ ⊕ OPEN POLE



The open pole detector is intended to identify an open pole of the line circuit breaker. The scheme monitors the breakers auxiliary contacts, current in the circuit and optionally voltage on the line. The scheme generates output operands used to block the phase selector and some specific protection elements, thus preventing maloperation during the dead time of a single pole autoreclose cycle. The scheme declares an open pole at the moment a single-pole trip is issued.

In two breaker and breaker and a half applications, an open pole condition is declared when:

- both breakers have an open pole on the same phase or
- the current on the line drops below a threshold or
- the current and voltage on the line drop below a threshold.

The OPEN POLE logic becomes operational only when a TRIP 1-POLE command is issued and resets 150 ms (time for breaker to close) after the AR 1-P RIP operand resets. The intention is for the OPEN POLE logic to operate only when an open pole condition occurs following a single pole trip during a single phase fault. An open pole condition should not be declared, and protections and the phase selector blocked, when a pole is accidentally open (without a trip command) or for a remote end open (single or three phase).

The Open Pole feature uses signals defined by the SOURCE setting under the Common Distance Settings.

Voltage supervision can be used only with wye VTs on the line side of the breaker(s).

The **OPEN POLE CURRENT PICKUP** setting establishes the current threshold below which an open pole is declared.

For convenience, the position of the breaker poles defined in the Breaker Control feature and available as FlexLogic<sup>TM</sup> operand BREAKER 1/2 ΦA CLSD through BREAKER 1/2 ΦC CLSD and BREAKER 1/2 OOS are used by the Open Pole feature. For correct operation of the Open Pole Detector, the Breaker Control, Trip Output, and Single Pole Autoreclose features must be enabled and configured properly. When used in configuration with only one breaker, the BREAKER 2 FUNCTION should be "Enabled" and the BREAKER 2 OUT OF SV setting should be "On" (see the BREAKER CONTROL section for additional details).

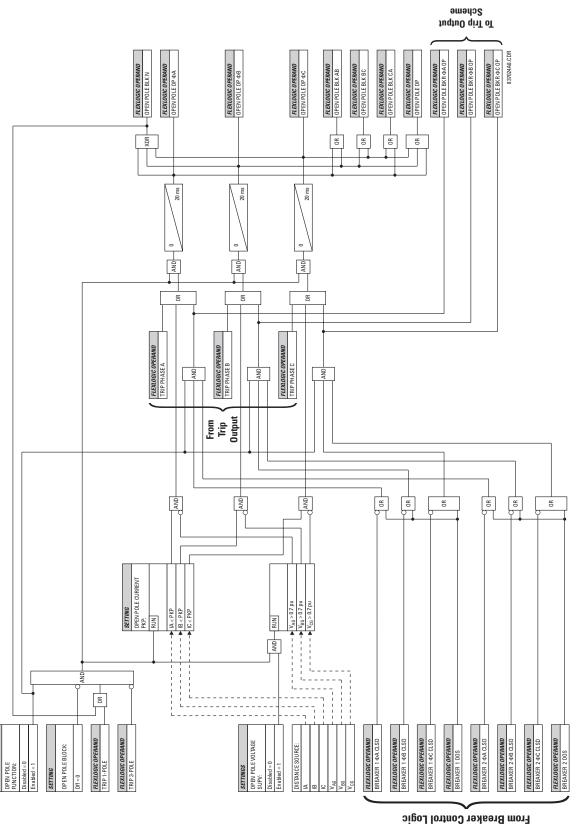
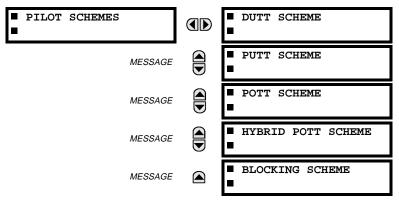
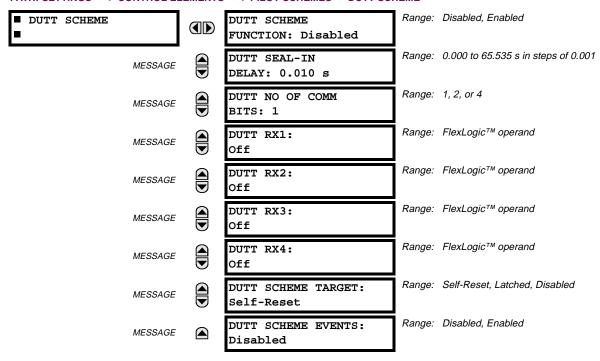




Figure 5-77: OPEN POLE DETECTOR LOGIC

**5.6.9 PILOT SCHEMES** 


#### PATH: SETTINGS ➡ U CONTROL ELEMENTS ➡ U PILOT SCHEMES



This menu allows the selection and the setting up (see the following sub-menus) of a protection signaling scheme. See also, the section on Protection Signaling Schemes in the APPLICATION OF SETTINGS chapter.

# a) DIRECT UNDER-REACHING TRANSFER TRIP (DUTT)

#### 



This scheme uses an under-reaching Zone 1 distance element to key a transfer trip signal(s) to the remote end(s), where on receipt, the DUTT pilot scheme operates without additional protection supervision. For proper operation of the scheme the Zone 1 phase and ground distance elements must be enabled, configured, and set per rules of distance relaying.

In single-pole tripping applications, the scheme uses local fault type identification provided by the PHASE SELECTOR together with information received from the remote terminal(s). The latter may be coded into one, two or four bits over the communications channel.

The scheme generates output operands (DUTT TX1 through DUTT TX4) that are used to transmit the direct under-reaching signals to the remote end(s). Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operands should be assigned to operate output contacts connected to assert the individual bits at the interface.

To make the scheme a fully operational stand-alone feature, the scheme output operands must be configured to interface with other relay functions, output contacts in particular. Typically, the output operands should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application. When used in conjunction with the Trip Output, the scheme is pre-configured to initiate trip, breaker fail, and single-pole autoreclose actions.

#### **DUTT SEAL-IN DELAY:**

The output FlexLogic<sup>™</sup> operand (DUTT OP) is produced according to the DUTT scheme logic. A seal-in time delay is applied to this operand for coping with noisy communication channels such as a Power Line Carrier. The **DUTT SEAL-IN DELAY** is a minimum guaranteed duration of the DUTT OP pulse. As this operand activates the Trip Table of the DUTT scheme, the trip operands DUTT TRIP A, B, C and 3P are sealed-in for the same period of time.

### **DUTT NO OF COMM BITS:**

This setting specifies the number of bits available on the communications channel. With only one bit available, the scheme sends the direct under-reaching transfer trip command on bit no.1 (DUTT TX1 operand) and responds to the direct trip command received on bit no. 1 (DUTT RX1 setting). The scheme uses only local fault type identification provided by the PHASE SELECTOR to assert the Output Operands DUTT TRIP A, B, C and 3P (see the THEORY OF OPERATION chapter for details on the use of communication channels.)

# **DUTT RX1 through DUTT RX4:**

These settings allow the user to select the FlexLogic<sup>TM</sup> operands that represent the receive signals for the scheme. Typically input contacts interfacing with a signaling system are used.

The DUTT scheme requires a secure and dependable signaling system. For this reason, a series/parallel combination of receive signal "contacts" is often used. This is accomplished by using a multi-bit communications system to transmit redundant copies of the TX signal (often via different paths) and building appropriate security logic (such as series (AND gate) or 2-out-of-3 voting logic) with FlexLogic<sup>TM</sup>. The DUTT RX settings should be associated with the final (secure) TX signals.

In single-bit applications, **DUTT RX1** must be used. In two-bit applications, **DUTT RX2** must be used. In four-bit applications, **DUTT RX1**, **DUTT RX2**, **DUTT RX3**, and **DUTT RX4** must be used. In multi-terminal applications, the RX signals from two or more remote terminals should be connected through OR gates in the FlexLogic<sup>™</sup> and the resulting signals should be configured as the DUTT RX inputs.

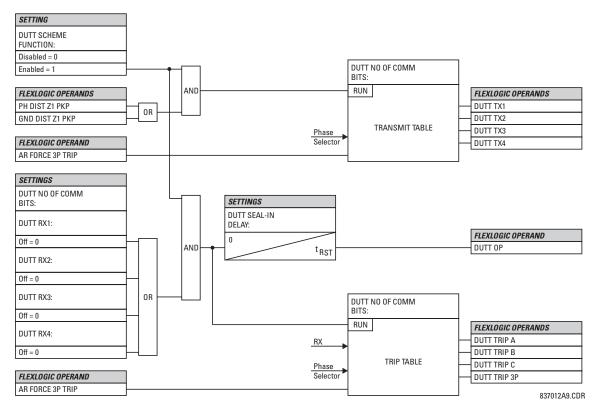



Figure 5-78: DUTT SCHEME LOGIC

## b) PERMISSIVE UNDER-REACHING TRANSFER TRIP (PUTT)

## PATH: SETTINGS ⇔ ♥ CONTROL ELEMENTS ⇔ ♥ PILOT SCHEMES ⇔ ♥ PUTT SCHEME

| ■ PUTT SCHEME |     | PUTT SCHEME<br>FUNCTION: Disabled | Range: | Disabled, Enabled                   |
|---------------|-----|-----------------------------------|--------|-------------------------------------|
| MESSAC        | E 🖢 | PUTT RX PICKUP<br>DELAY: 0.000 s  | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAC        | E 🖢 | PUTT SEAL-IN<br>DELAY: 0.010 s    | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAC        | E 🖢 | PUTT NO OF COMM<br>BITS: 1        | Range: | 1, 2, or 4                          |
| MESSAC        | E 🖢 | PUTT RX1:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAC        | E 🖢 | PUTT RX2:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAC        | E 🖢 | PUTT RX3:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAC        | E 🖢 | PUTT RX4:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAC        | E 🖢 | PUTT SCHEME TARGET:<br>Self-Reset | Range: | Self-Reset, Latched, Disabled       |
| MESSAC        | E 📤 | PUTT SCHEME EVENTS:<br>Disabled   | Range: | Disabled, Enabled                   |

This scheme uses an under-reaching Zone 1 distance element to key a transfer trip signal(s) to the remote terminal(s) where it is supervised by an over-reaching Zone 2 distance element. For proper operation, the Zone 1 and 2 phase and ground distance elements must be enabled, configured, and set per rules of distance relaying.

In single-pole tripping applications, the scheme uses local fault type identification provided by the Phase Selector together with information received from the remote terminal(s). The scheme generates output operands (PUTT TX1 through PUTT TX4) that are used to transmit the signal to the remote end(s). Choices of communications channel include Remote Inputs/ Outputs and telecommunications interfaces. When used with telecommunications facilities the output operands should be assigned to operate output contacts connected to assert the individual bits at the interface.

To make the scheme a fully operational stand-alone feature, the scheme output operands must be configured to interface with other relay functions, output contacts in particular. Typically, the output operands should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application. When used in conjunction with the Trip Output element, the scheme is pre-configured to initiate trip, breaker fail and single-pole autoreclose actions.

## **PUTT RX PICKUP DELAY:**

This setting enables the relay to cope with spurious receive signals. This delay should be set longer than the longest spurious TX signal that can be received simultaneously with the zone 1 pickup. The selected delay will increase the response time of the scheme.

# **PUTT SEAL-IN DELAY:**

The output FlexLogic<sup>™</sup> operand (PUTT OP) is produced according to the PUTT scheme logic. A seal-in time delay is applied to this operand for coping with noisy communication channels such as a Power Line Carrier. The **PUTT SEAL-IN DELAY** is a minimum guaranteed duration of the PUTT OP pulse. As this operand activates the Trip Table of the PUTT scheme, the trip operands PUTT TRIP A, B, C and 3P are sealed-in for the same period of time.

# **PUTT NO OF COMM BITS:**

This setting specifies the number of bits of the communications channel available for the scheme. The transmit codes and trip table of the PUTT scheme are identical as those for the direct under-reaching transfer trip scheme. Please refer to the THEORY OF OPERATION chapter for more information.

# **PUTT RX1 through PUTT RX4:**

These settings allow the user to select the FlexLogic<sup>TM</sup> operands that represent the receive signals for the scheme. Typically input contacts interfacing with a signaling system are used. In single-bit applications, PUTT RX1 must be used. In two-bit applications, PUTT RX1 and PUTT RX2 must be used. In four-bit applications, PUTT RX1, PUTT RX2, PUTT RX3, and PUTT RX4 must be used. In multi-terminal applications, the RX signals from two or more remote terminals should be connected through OR gates in the FlexLogic<sup>TM</sup> and the resulting signals should be configured as the PUTT RX inputs.

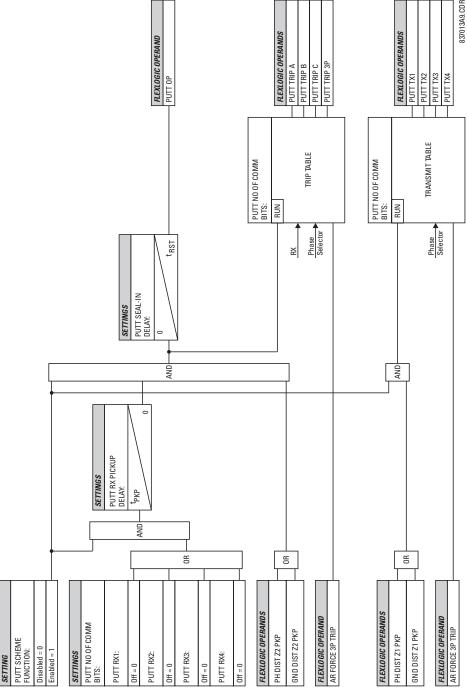



Figure 5-79: PUTT SCHEME LOGIC

5 SETTINGS 5.6 CONTROL ELEMENTS

# c) PERMISSIVE OVER-REACHING TRANSFER TRIP (POTT)

# PATH: SETTINGS $\Rightarrow \emptyset$ CONTROL ELEMENTS $\Rightarrow \emptyset$ PILOT SCHEMES $\Rightarrow \emptyset$ POTT SCHEME

| ■ POTT SCHEME |       | POTT SCHEME                            |        | Disabled, Enabled                      |
|---------------|-------|----------------------------------------|--------|----------------------------------------|
|               |       | FUNCTION: Disabled                     |        |                                        |
| MESS          | AGE   | POTT PERMISSIVE<br>ECHO: Disabled      | Range: | Disabled, Enabled                      |
| MESS          | AGE 🙀 | POTT RX PICKUP<br>DELAY: 0.000 s       | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE   | TRANS BLOCK PICKUP<br>DELAY: 0.020 s   | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE 🔻 | TRANS BLOCK RESET<br>DELAY: 0.090 s    | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE 🔻 | ECHO DURATION:<br>0.100 s              | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE   | ECHO LOCKOUT:<br>0.250 s               | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE 🔻 | LINE END OPEN PICKUP<br>DELAY: 0.050 s | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE 👿 | POTT SEAL-IN<br>DELAY: 0.010 s         | Range: | 0.000 to 65.535 sec. in steps of 0.001 |
| MESS          | AGE   | GND DIR O/C FWD:<br>Off                | Range: | FlexLogic™ operand                     |
| MESS          | AGE 👿 | POTT NO OF COMM<br>BITS: 1             | Range: | 1, 2, or 4                             |
| MESS          | AGE 🙀 | POTT RX1:<br>Off                       | Range: | FlexLogic™ operand                     |
| MESS          | AGE   | POTT RX2:<br>Off                       | Range: | FlexLogic™ operand                     |
| MESS          | AGE   | POTT RX3:<br>Off                       | Range: | FlexLogic™ operand                     |
| MESS          | AGE   | POTT RX4:<br>Off                       | Range: | FlexLogic™ operand                     |
| MESS          | AGE   | POTT SCHEME TARGET:<br>Self-Reset      | Range: | Self-Reset, Latched, Disabled          |
| MESS          | AGE 🛕 | POTT SCHEME EVENTS:<br>Disabled        | Range: | Disabled, Enabled                      |

This scheme is intended for two-terminal line applications only. The scheme uses an over-reaching Zone 2 distance element to essentially compare the direction to a fault at both terminals of the line.

Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 2 distance element to key the scheme and initiate its operation. This provides increased coverage for high-resistance faults.

For proper operation, the Zone 2 phase and ground distance elements must be enabled, configured and set per rules of distance relaying. The Line Pickup element should be enabled, configured and set properly to detect line-end-open/weak-infeed conditions. If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured and set accordingly.

In single-pole tripping applications, the scheme uses local fault type identification provided by the Phase Selector together with information received from the remote terminal. The scheme generates output operands (POTT TX1 through POTT TX4) that are used to transmit the signal to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operands should be assigned to operate output contacts connected to assert the individual bits at the interface.

To make the scheme fully operational as a stand-alone feature, the scheme output operands must be configured to interface with other relay functions, output contacts in particular. Typically, the output operands should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application.

When used in conjunction with the Trip Output element, the scheme is pre-configured to initiate trip, breaker fail, and single-pole autoreclose actions.

## **POTT PERMISSIVE ECHO:**

If set to "Enabled" this setting will result in sending a permissive echo signal(s) to the remote end under certain conditions. (See the THEORY OF OPERATION chapter.) The echo is sent only once and then the echo logic locks out for the time specified by the **ECHO LOCKOUT** setting. The duration of the echo pulse is settable as **ECHO DURATION**.

The echo is sent back only if none of the overreaching protection elements operates.

## POTT RX PICKUP DELAY:

This setting enables the relay to cope with spurious receive signals. The delay should be set longer than the longest spurious TX signal that can be received simultaneously with the Zone 2 pickup. The selected delay will increase the response time of the scheme.

## TRANS BLOCK PICKUP DELAY:

This setting defines a transient blocking mechanism embedded in the POTT scheme for coping with the exposure of a ground directional overcurrent function (if used) to current reversal conditions. The transient blocking mechanism applies to the ground overcurrent path only as the reach settings for the Zone 2 distance functions is not expected to be long for two-terminal applications, and the security of the distance functions is not endangered by the current reversal conditions.

Upon receiving the POTT RX signal, the transient blocking mechanism allows the RX signal to be passed and aligned with the **GND DIR O/C FWD** indication only for a period of time defined as **TRANS BLOCK PICKUP DELAY**. After that the ground directional overcurrent path will be virtually disabled for a period of time specified as **TRANS BLOCK RESET DELAY**.

The **TRANS BLOCK PICKUP DELAY** should be long enough to give the selected ground directional overcurrent function time to operate, but not longer than the fastest possible operation time of the protection system that can create current reversal conditions within the reach of the selected ground directional overcurrent function.

This setting should take into account the **POTT RX PICKUP DELAY**. The POTT RX signal is shaped for aligning with the ground directional indication as follows: the original RX signal is delayed by the **POTT RX PICKUP DELAY**, then terminated at **TRANS BLOCK PICKUP DELAY** after the pickup of the original POTT TX signal, and eventually locked-out for **TRANS BLOCK RESET DELAY**.

## TRANS BLOCK RESET DELAY:

This setting defines a transient blocking mechanism embedded in the POTT scheme for coping with the exposure of a ground directional overcurrent function (if used) to current reversal conditions (see the **TRANS BLOCK PICKUP DELAY**).

This delay should be selected long enough to cope with transient conditions including not only current reversals but also spurious negative- and zero-sequence currents occurring during breaker operations. The breaker failure time of the surrounding protection systems within the reach of the ground directional function used by the POTT scheme may be considered to make sure that the ground directional function is not jeopardized during delayed breaker operations.

# **ECHO DURATION:**

This setting defines the guaranteed and exact duration of the echo pulse. The duration does not depend on the duration and shape of the received RX signal. This setting enables the relay to avoid a permanent lock-up of the transmit/receive loop.

# **ECHO LOCKOUT:**

This setting defines the lockout period for the echo logic after sending the echo pulse.

5 SETTINGS 5.6 CONTROL ELEMENTS

#### LINE END OPEN PICKUP DELAY:

This setting defines the pickup setting for validation of the line end open conditions as detected by the Line Pickup logic through the LINE PICKUP LEO PKP FlexLogic™ operand. The validated line end open condition is a requirement for the POTT scheme to return a received echo signal (if the ECHO feature is enabled). The value of this setting should take into account the principle of operation and settings of the Line Pickup element.

## **POTT SEAL-IN DELAY:**

The output FlexLogic™ operand (POTT OP) is produced according to the POTT scheme logic. A seal-in time delay is applied to this operand for coping with noisy communication channels. The **POTT SEAL-IN DELAY** defines a minimum guaranteed duration of the POTT OP pulse. As this operand activates the Trip Table of the POTT scheme, the trip operands POTT TRIP A, B, C and 3P are sealed-in for the same period of time.

# **GND DIR O/C FWD:**

This setting defines the FlexLogic<sup>™</sup> operand (if any) of a protection element that is used in addition to the Zone 2 for identifying faults on the protected line, and thus, for keying the communication channel and initiating operation of the scheme.

Good directional integrity is the key requirement for an over-reaching forward-looking protection element used as **GND DIR O/C FWD**. Even though any FlexLogic<sup>™</sup> operand could be used as **GND DIR O/C FWD** allowing the user to combine responses of various protection elements, or to apply extra conditions through FlexLogic<sup>™</sup> equations, this extra signal is primarily meant to be the output operand from either the Negative-Sequence Directional IOC or Neutral Directional IOC. Both of these elements have separate forward (FWD) and reverse (REV) output operands. The forward indication should be used (**NEG SEQ DIR OC1 FWD** or **NEUTRAL DIR OC1 FWD**).

## POTT NO OF COMM BITS:

This setting specifies the number of bits of the communications channel available for the scheme. The transmit codes and Trip Tables of the POTT scheme are the same as those for the permissive under-reaching transfer trip scheme. Please refer to the description of the PUTT scheme for more information.

## **POTT RX1 through POTT RX4:**

These settings allow the user to select the FlexLogic<sup>™</sup> operands that represent the receive signals for the scheme. Typically input contacts interfacing with a signaling system are used. In single-bit applications, POTT RX1 must be used. In two-bit applications, POTT RX1 and POTT RX2 must be used. In four-bit applications, POTT RX1, POTT RX2, POTT RX3, and POTT RX4 must be used.

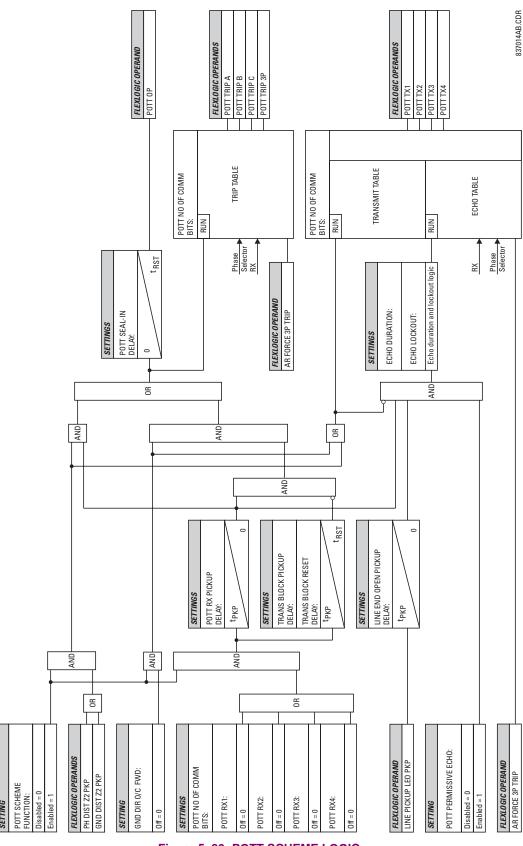



Figure 5-80: POTT SCHEME LOGIC

5 SETTINGS 5.6 CONTROL ELEMENTS

# d) HYBRID PERMISSIVE OVER-REACHING TRANSFER TRIP

## PATH: SETTINGS ⇒ ⊕ CONTROL ELEMENTS ⇒ ⊕ PILOT SCHEMES ⇒ ⊕ HYBRID POTT SCHEME

| ■ HYBRID POTT SCHEME | HYB POTT SCHEME<br>FUNCTION: Disabled | Range: | Disabled, Enabled                   |
|----------------------|---------------------------------------|--------|-------------------------------------|
| MESSAGE              | HYB POTT PERMISSIVE<br>ECHO: Disabled | Range: | Disabled, Enabled                   |
| MESSAGE              | HYB POTT RX PICKUP<br>DELAY: 0.000 s  | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE              | TRANS BLOCK PICKUP<br>DELAY: 0.020 s  | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE              | TRANS BLOCK RESET<br>DELAY: 0.090 s   | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE              | ECHO DURATION:<br>0.100 s             | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE              | ECHO LOCKOUT:<br>0.250 s              | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE              | HYB POTT SEAL-IN<br>DELAY: 0.010 s    | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE              | GND DIR O/C FWD:<br>Off               | Range: | FlexLogic™ operand                  |
| MESSAGE              | GND DIR O/C REV:<br>Off               | Range: | FlexLogic™ operand                  |
| MESSAGE              | HYB POTT NO OF COMM<br>BITS: 1        | Range: | 1, 2, or 4                          |
| MESSAGE              | HYB POTT RX1:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAGE              | HYB POTT RX2:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAGE              | HYB POTT RX3:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAGE              | HYB POTT RX4:<br>Off                  | Range: | FlexLogic™ operand                  |
| MESSAGE              | HYB POTT SCHEME<br>TARGET: Self-Reset | Range: | Self-Reset, Latched, Disabled       |
| MESSAGE              | HYB POTT EVENT:<br>Disabled           | Range: | Disabled, Enabled                   |

Generally, this scheme uses an overreaching Zone 2 distance element to essentially compare the direction to a fault at all terminals of the line. Ground directional overcurrent functions available in the D60 can be used in conjunction with the Zone 2 distance element to key the scheme and initiate operation. This increases the coverage for high-resistance faults.

The scheme is intended for three-terminal applications and for weak-infeed conditions. As a long reach of the overreaching distance element may be required for three-terminal applications, transient blocking logic is provided for both distance and ground directional overcurrent elements. In order to cope with weak-infeed conditions an echo feature is made available.

By default the scheme uses the reverse-looking Zone 4 distance element to identify reverse faults. Additionally, reverse-looking ground directional overcurrent functions can be used in conjunction with the Zone 4.

For proper operation, the Zone 2 and 4 phase and ground distance elements must be enabled, configured and set per rules of distance relaying. The Line Pickup element should be enabled, configured and set properly to detect line-end-open/weak-infeed and undervoltage conditions. If used by the scheme, the selected ground directional overcurrent function(s) must be enabled, configured, and set accordingly.

In single-pole tripping applications, the scheme uses local fault type identification provided by the Phase Selector together with information received from the remote terminal. The scheme generates output operands (HYBRID POTT TX1 through HYBRID POTT TX4) that are used to transmit the signal to the remote terminal(s). Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface. When used with telecommunications facilities the output operands should be assigned to operate output contacts connected to assert the individual bits at the interface.

To make the scheme fully operational as a stand-alone feature, the scheme output operands must be configured to interface with other relay functions, output contacts in particular. Typically, the output operands should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application.

When used in conjunction with the Trip Output element, the scheme is pre-configured to initiate trip, breaker fail and single-pole autoreclose actions.

## **HYB POTT PERMISSIVE ECHO:**

If set to "Enabled" this setting will result in sending a permissive echo signal to the remote end(s) under certain conditions. (See the THEORY OF OPERATION chapter). The echo is sent only once and then the echo logic locks out for the time specified by the **ECHO LOCKOUT**. The duration of the echo pulse is settable as **ECHO DURATION**.

The echo is sent back only if none of the overreaching protection elements operates.

## **HYB POTT RX PICKUP DELAY:**

This setting enables the relay to cope with spurious received signals. The delay should be set longer than the longest spurious TX signal that can be received simultaneously with the Zone 2 pickup. The selected delay will increase the response time of the scheme.

## TRANS BLOCK PICKUP DELAY:

This setting defines a transient blocking mechanism embedded in the Hybrid POTT scheme for coping with the exposure of both the over-reaching Zone 2 and ground directional overcurrent function to current reversal conditions.

The transient blocking logic applies to both operate (trip) and send (transmit) paths. Identifying the fault as a reverse fault prevents the scheme from both operating and keying the channel. If the reverse fault condition prevails for **TRANS BLOCK PICKUP DELAY**, the blocking operation will be extended by the transient blocking timer for **TRANS BLOCK RESET DELAY**. This allows riding through current reversal conditions.

The **TRANS BLOCK PICKUP DELAY** should not be longer than the fastest possible trip time for faults on an adjacent line so that extended blocking action could be established. This should take into account the pickup time of the reverse-looking elements of the scheme.

The delay defined by this setting should not be too short in order to avoid locking up a spurious reverse fault indication that can occur during internal fault conditions.

#### TRANS BLOCK RESET DELAY:

This setting defines a transient blocking mechanism embedded in the Hybrid POTT scheme for coping with the exposure of the overreaching protection functions to current reversal conditions (see also the **TRANS BLOCK PICKUP DELAY**).

This delay should be selected long enough to cope with transient conditions including not only current reversals but also spurious negative- and zero-sequence currents occurring during breaker operations (in the case when Neutral Directional or Negative-Sequence Directional overcurrent functions are used). The breaker failure time of the surrounding protection systems within the reach of the ground directional function used by the Hybrid POTT scheme should be considered to make sure that the ground directional function is not jeopardized during delayed breaker operations.

# **ECHO DURATION:**

This setting defines the guaranteed and exact duration of the echo pulse. The duration does not depend on the duration and shape of the received RX signals. This setting enables the relay to avoid a permanent lock-up of the transmit/receive loop.

5 SETTINGS 5.6 CONTROL ELEMENTS

## **ECHO LOCKOUT:**

This setting defines the lockout period for the echo logic after sending the echo pulse. This setting enables the relay to avoid oscillations of the echo pulses during an autoreclosure dead-time after clearing an internal fault.

## **POTT SEAL-IN DELAY:**

The output FlexLogic<sup>™</sup> operand (HYB POTT OP) is produced according to the HYBRID POTT scheme logic. The **POTT SEAL-IN DELAY** defines a minimum guaranteed duration of the HYB POTT OP pulse. As this operand runs the Trip Table of the Hybrid POTT scheme, the trip operands HYB POTT TRIP A, B, C and 3P are sealed-in for the same period of time.

## GND DIR O/C FWD:

This setting defines the FlexLogic<sup>™</sup> operand (if any) of a protection element that is used in addition to Zone 2 for identifying faults on the protected line, and thus, for keying the communication channel and initiating operation of the scheme (both through the transient blocking logic). Good directional integrity is the key requirement for an over-reaching forward-looking protection element used as **GND DIR O/C FWD**.

Even though any FlexLogic<sup>™</sup> operand could be used as **GND DIR O/C FWD** enabling the user to combine responses of various protection elements or to apply extra conditions through FlexLogic<sup>™</sup> equations, this extra signal is primarily meant to be the output operand from either the Negative-Sequence Directional IOC or Neutral Directional IOC. Both these elements have separate forward (FWD) and reverse (REV) output operands. The forward indication should be used (**NEG SEQ DIR OC1 FWD** or **NEUTRAL DIR OC1 FWD**).

The selected protection element (or elements in combination) should be coordinated with the selection of **GND DIR O/C REV**. For all the forward external faults seen by an element used as **GND DIR O/C FWD** at one end of the line, the reverse-looking element used as **GND DIR O/C REV** at the other end should pickup and provide a blocking signal.

## **GND DIR O/C REV:**

This setting defines the FlexLogic<sup>™</sup> operand (if any) of a protection element that is used in addition to zone 4 for identifying reverse faults, and thus, for stopping the transmit signal and initiating the transient blocking timer.

Good directional integrity is the key requirement for a reverse-looking protection element used as GND DIR O/C REV.

Even though any FlexLogic<sup>™</sup> operand could be used as **GND DIR O/C REV** enabling the user to combine responses of various protection elements or to apply extra conditions through FlexLogic<sup>™</sup> equations, this extra signal is primarily meant to be the output operand from either the Negative Sequence Directional IOC or Neutral Directional IOC. Both these elements have separate forward (FWD) and reverse (REV) output operands. The reverse indication should be used (**NEG SEQ DIR OC1 REV**).

The selected protection element (or elements in combination) should be coordinated with the selection of **GND DIR O/C FWD**. For all the forward external faults seen by an element used as **GND DIR O/C FWD** at one end of the line, the reverse-looking element used as **GND DIR O/C REV** at the other end should pickup and provide a blocking signal.

# **HYB POTT NO OF COMM BITS:**

This setting specifies the number of bits of the communications channel available for the scheme. The transmit codes and Trip Table of the Hybrid POTT scheme are the same as those for the permissive under-reaching transfer trip scheme. Please refer to the description of the PUTT scheme for more information.

## **HYB POTT RX1 through HYB POTT RX4:**

These settings allow the user to select the FlexLogic™ operands that represent the receive signals for the scheme. Typically input contacts interfacing with a signaling system are used. In single-bit applications, HYB POTT RX1 must be used. In two-bit applications, HYB POTT RX1 and HYB POTT RX2 must be used. In four-bit applications, HYB POTT RX1, HYB POTT RX2, HYB POTT RX3, and HYB POTT RX4 must be used.

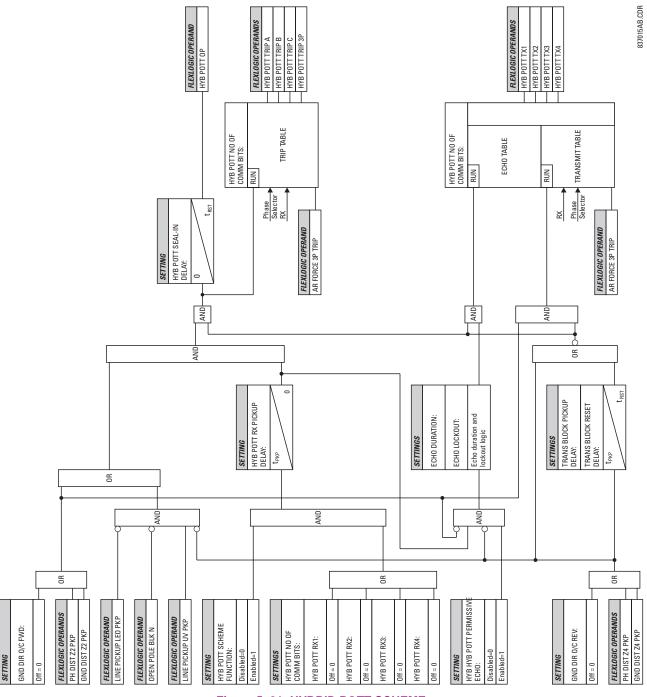



Figure 5-81: HYBRID POTT SCHEME

5 SETTINGS 5.6 CONTROL ELEMENTS

## e) DIRECTIONAL COMPARISON BLOCKING

## PATH: SETTINGS ⇒ ⊕ CONTROL ELEMENTS ⇒ ⊕ PILOT SCHEMES ⇒ ⊕ BLOCKING SCHEME

| ■ BLOCKING SCHEME | BLOCKING SCHEME<br>FUNCTION: Disabled  | Range: | Disabled, Enabled                   |
|-------------------|----------------------------------------|--------|-------------------------------------|
| MESSAGE           | BLOCK RX CO-ORD PKP<br>DELAY: 0.010 s  | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE           | TRANS BLOCK PICKUP<br>DELAY: 0.030 s   | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE           | TRANS BLOCK RESET<br>DELAY: 0.090 s    | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE           | BLOCK SCHEME SEAL-IN<br>DELAY: 0.010 s | Range: | 0.000 to 65.535 s in steps of 0.001 |
| MESSAGE           | GND DIR O/C FWD:<br>Off                | Range: | FlexLogic™ operand                  |
| MESSAGE           | GND DIR O/C REV:<br>Off                | Range: | FlexLogic™ operand                  |
| MESSAGE           | BLOCK SCHEME NO OF<br>COMM BITS: 1     | Range: | 1, 2, or 4                          |
| MESSAGE           | BLOCK SCHEME RX1:<br>Off               | Range: | FlexLogic™ operand                  |
| MESSAGE           | BLOCK SCHEME RX2:<br>Off               | Range: | FlexLogic™ operand                  |
| MESSAGE           | BLOCK SCHEME RX3:<br>Off               | Range: | FlexLogic™ operand                  |
| MESSAGE           | BLOCK SCHEME RX4:<br>Off               | Range: | FlexLogic™ operand                  |
| MESSAGE           | BLOCK SCHEME EVENT:<br>Off             | Range: | FlexLogic™ operand                  |

Generally, the scheme compares the direction to a fault at all terminals of the line. Unlike the permissive schemes, the absence of a blocking signal permits operation of the scheme. Consequently, the scheme is biased toward dependability and requires an "on/off" type of signaling.

By default this scheme uses only a forward-looking over-reaching Zone 2 distance element to identify forward faults. Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 2 distance element to increase the coverage for high-resistance faults. Also by default, only a reverse-looking Zone 4 distance element to identify reverse faults. Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 4 distance element for better time and sensitivity coordination.

For proper operation, the Zone 2 and 4 phase and ground distance elements must be enabled, configured and set per rules of distance relaying. If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured and set accordingly.

In single-pole tripping applications, the scheme uses local fault type identification provided by the Phase Selector together with information received from the remote terminal.

The scheme generates output operands (DIR BLOCK TX INIT and DIR BLOCK TX1 STOP through DIR BLOCK TX4 STOP) that control the transmission of signals to the remote end(s). When used with telecommunications facilities the output operands should be assigned to operate output contacts connected to key the transmitter at the interface.

The output operand from the scheme (DIR BLOCK A, B, C and 3P) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application.

To make the scheme fully operational as a stand-alone feature, the scheme output operands must be configured to interface with other relay functions, output contacts in particular. Typically, the output operands should be programmed to initiate a trip, breaker fail, and autoreclose, and drive a user-programmable LED as per user application.

When used in conjunction with the Trip Output element, the scheme is pre-configured to initiate trip, breaker fail, and single-pole autoreclose actions.

#### **BLOCK RX CO-ORD PKP DELAY:**

This setting defines a delay for the forward-looking protection elements used by the scheme for coordination with the blocking response from the remote end(s). This setting should include both the response time of the protection elements used to establish a blocking signal and the total transmission time of that signal including the relay communications equipment interfacing and the communications channel itself.

# TRANS BLOCK PICKUP DELAY:

This setting defines a transient blocking mechanism embedded in the Blocking scheme for coping with the exposure of both the over-reaching Zone 2 and ground directional overcurrent function to current reversal conditions.

The transient blocking logic applies to the send path only. Identifying the fault as a reverse fault establishes the blocking signal. If the reverse fault condition prevails for **TRANS BLOCK PICKUP DELAY**, the blocking operation will be extended by the transient blocking timer for **TRANS BLOCK RESET DELAY**. This allows riding through current reversal conditions.

The **TRANS BLOCK PICKUP DELAY** should not be longer than the fastest possible trip time for faults on an adjacent line so that the extended blocking action could be established. This should take into account the pickup time of the reverse-looking elements of the scheme. The delay defined by this setting should not be too short in order to avoid locking up a spurious reverse fault indication that can occur during internal fault conditions.

## TRANS BLOCK RESET DELAY:

This setting defines a transient blocking mechanism embedded in the Blocking scheme for coping with the exposure of the overreaching protection functions to current reversal conditions (see also the **TRANS BLOCK PICKUP DELAY**).

This delay should be selected long enough to cope with transient conditions including not only current reversals but also spurious negative and zero-sequence currents occurring during breaker operations (in the case when Neutral Directional or Negative Sequence Directional overcurrent functions are used). Breaker failure time of the surrounding protection systems within the reach of the ground directional function used by the Blocking scheme should be considered to make sure that the ground directional function is not jeopardized during delayed breaker operations.

# **BLOCK SCHEME SEAL-IN DELAY:**

The output FlexLogic™ operand (DIR BLOCK OP) is produced according to the Blocking scheme logic. The **BLOCK SCHEME SEAL-IN DELAY** defines a minimum guaranteed duration of the DIR BLOCK OP pulse. As this operand runs the Trip Table of the Blocking scheme, the trip operands DIR BLOCK TRIP A, B, C and 3P are sealed-in for the same period of time.

# **GND DIR O/C FWD:**

This setting defines the FlexLogic<sup>™</sup> operand (if any) of a protection element used in addition to zone 2 for identifying faults on the protected line, and thus, for initiating operation of the scheme. Good directional integrity is the key requirement for an over-reaching forward-looking protection element used as **GND DIR O/C FWD**.

Even though any FlexLogic<sup>™</sup> operand could be used as **GND DIR O/C FWD** enabling the user to combine responses of various protection elements or to apply extra conditions through FlexLogic<sup>™</sup> equations, this extra signal is primarily meant to be the output operand from either the Negative-Sequence Directional IOC or Neutral Directional IOC. Both these elements have separate forward (FWD) and reverse (REV) output operands.

The forward indication should be used (NEG SEQ DIR OC1 FWD or NEUTRAL DIR OC1 FWD).

The selected protection element (or elements in combination) should be coordinated with the selection of **GND DIR O/C REV**. For all the forward external faults seen by an element used as **GND DIR O/C FWD** at one end of the line, the reverse-looking element used as **GND DIR O/C REV** at the other end should pickup and provide a blocking signal.

# GND DIR O/C REV:

This setting defines the FlexLogic<sup>™</sup> operand (if any) of a protection element that is used in addition to zone 4 for identifying reverse faults, and thus, for initiating the blocking signal. Either reverse-looking directional or non-directional overcurrent protection element may be used as **GND DIR O/C REV**.

5 SETTINGS 5.6 CONTROL ELEMENTS

Even though any FlexLogic<sup>™</sup> operand could be used as **GND DIR O/C REV**, enabling the user to combine responses of various protection elements or to apply extra conditions through FlexLogic<sup>™</sup> equations, this extra signal is primarily meant to be the output operand from either the Negative Sequence Directional IOC, Neutral Directional IOC, or a non-directional IOC.

The selected protection element (or elements in combination) should be coordinated with the selection of **GND DIR O/C FWD**. For all the forward external faults seen by an element used as **GND DIR O/C FWD** at one end of the line, the reverse-looking element used as **GND DIR O/C REV** at the other end should pickup and provide a blocking signal.

## **BLOCK SCHEME NO OF COMM BITS:**

This setting specifies the number of bits of the communications channel available for the scheme.

With only one bit available, the scheme sends the blocking signal by asserting the DIR BLOCK TX INIT FlexLogic™ operand. This operand should be used to start the channel (set the blocking signal). On internal faults, the scheme removes the blocking signal by asserting the DIR BLOCK TX1 FlexLogic™ operand.

For tripping the scheme responds to lack of the blocking signal on bit no. 1 (BLOCK SCHEME RX1 setting). The scheme uses only local fault type identification provided by the Phase Selector to assert the Output Operands DUTT TRIP A, B, C and 3P. Please refer to the THEORY OF OPERATION chapter for more information on communications.

To take advantage of the four-bit blocking scheme, the blocking signals should be initiated from a disturbance detector. This can be accomplished by using both 50DD and DIR BLOCK TX INIT to assert the blocking signal. Subsequently, specific bits will be de-asserted by the scheme based on the phase selection providing the peer relay with more information on the fault type. Otherwise, the peer relay issues a three-pole trip upon receiving the bit pattern (0,0,0,0).

# **BLOCK SCHEME RX1 through BLOCK SCHEME RX4:**

These settings allow the user to select the FlexLogic<sup>™</sup> operands that represent the receive signals for the scheme. Typically input contacts interfacing with a signaling system are used.

In single-bit applications, **BLOCK SCHEME RX1** must be used. In two-bit applications, **BLOCK SCHEME RX1** and **BLOCK SCHEME RX2** must be used. In four-bit applications, **BLOCK SCHEME RX1**, **BLOCK SCHEME RX2**, **BLOCK SCHEME RX3**, and **BLOCK SCHEME RX4** must be used.

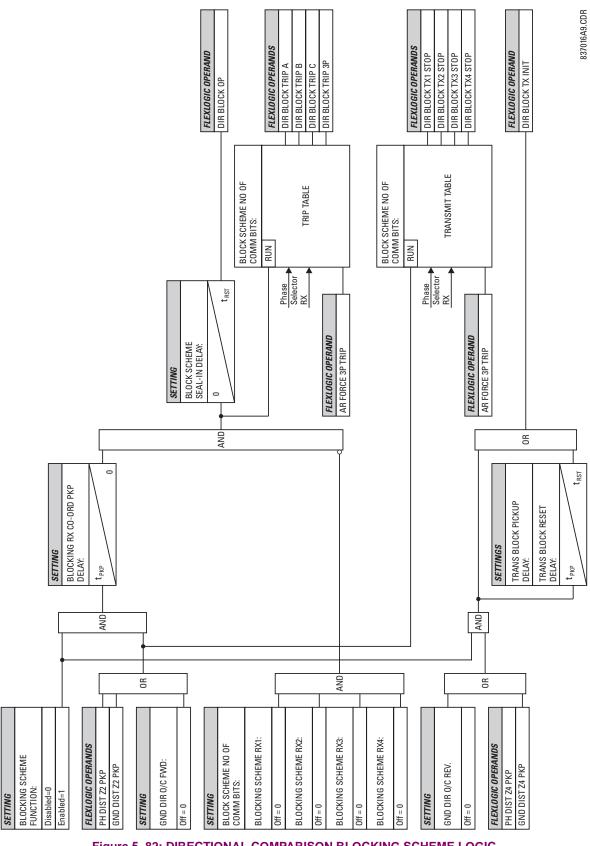
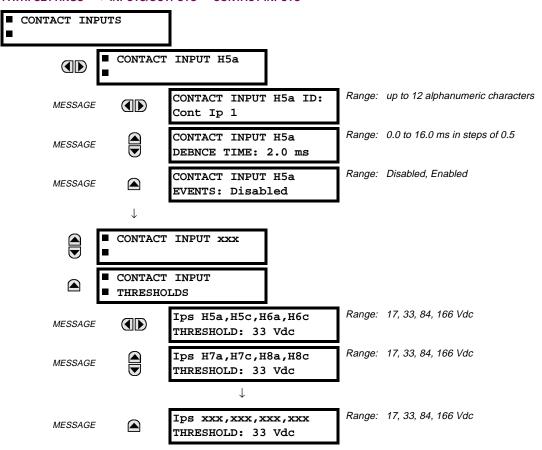




Figure 5-82: DIRECTIONAL COMPARISON BLOCKING SCHEME LOGIC

#### **5.7.1 CONTACT INPUTS**

#### PATH: SETTINGS □ □ INPUTS/OUTPUTS □ CONTACT INPUTS



The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.

An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The "Contact Ip X On" (Logic 1) FlexLogic™ operand corresponds to contact input "X" being closed, while "Contact Input X Off" corresponds to contact input "X" being open. The **CONTACT INPUT DEBNCE TIME** defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If **CONTACT INPUT EVENTS** is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a user-settable debounce time in order for the D60 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms; thus the 6th sample in a row validates the change of state (mark no.1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic<sup>TM</sup> operand and logs an event as per user setting.

A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).

Protection and control elements, as well as FlexLogic<sup>™</sup> equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic<sup>™</sup> operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic<sup>™</sup> equations, are fed with the updated states of the contact inputs.

5.7 INPUTS / OUTPUTS 5 SETTINGS

The FlexLogic<sup>™</sup> operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1msec.

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms. With a contact debounce time setting of 3.0 ms, the FlexLogic<sup>TM</sup> operand-assert time limits are: 3.0 + 0.0 = 3.0 ms and 3.0 + 2.1 = 5.1 ms. These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a 1  $\mu$ s accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic<sup>TM</sup> operand is asserted/de-asserted later, after validating the change.

The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no.5, 6, 7, and 8 below) transitions.

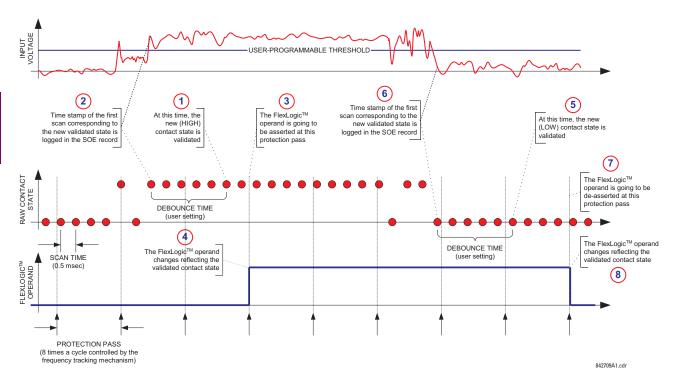
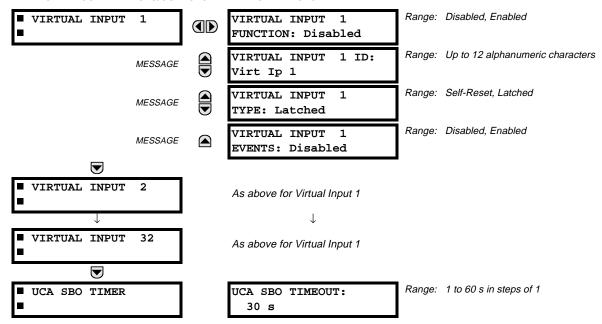



Figure 5-83: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING

Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The **CONTACT INPUT THRESHOLDS** determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 16 for 24 V sources, 30 for 48 V sources, 80 for 110 to 125 V sources and 140 for 250 V sources.


For example, to use contact input H5a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

CONTACT INPUT H5A ID: "Breaker Closed (52b)"
CONTACT INPUT H5A EVENTS: "Enabled"

Note that the 52b contact is closed when the breaker is open and open when the breaker is closed.

**5.7.2 VIRTUAL INPUTS** 

#### PATH: SETTINGS ♥ INPUTS/OUTPUTS ♥ VIRTUAL INPUTS ♥



There are 32 virtual inputs that can be individually programmed to respond to input signals from the keypad (COMMANDS menu) and non-UCA2 communications protocols only. All virtual input operands are defaulted to OFF = 0 unless the appropriate input signal is received. **Virtual input states are preserved through a control power loss**.

If the VIRTUAL INPUT x FUNCTION is to "Disabled", the input will be forced to 'OFF' (Logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic™ operands in response to received input signals and the applied settings.

There are two types of operation: Self-Reset and Latched. If **VIRTUAL INPUT x TYPE** is "Self-Reset", when the input signal transits from OFF = 0 to ON = 1, the output operand will be set to ON = 1 for only one evaluation of the FlexLogic<sup>TM</sup> equations and then return to OFF = 0. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input, ON = 1 or OFF = 0.



The "Self-Reset" operating mode generates the output operand for a single evaluation of the FlexLogic™ equations. If the operand is to be used anywhere other than internally in a FlexLogic™ equation, it will likely have to be lengthened in time. A FlexLogic™ timer with a delayed reset can perform this function.

The Select-Before-Operate timer sets the interval from the receipt of an Operate signal to the automatic de-selection of the virtual input, so that an input does not remain selected indefinitely (used only with the UCA Select-Before-Operate feature).

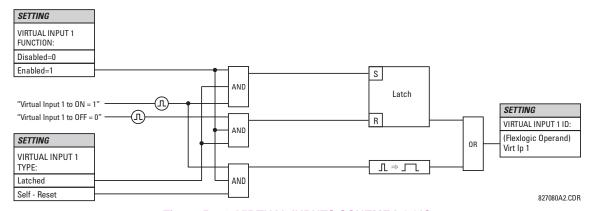
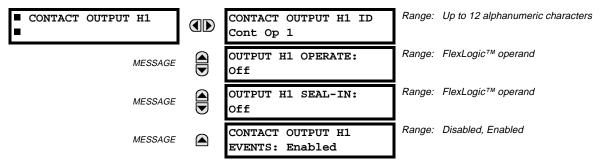




Figure 5-84: VIRTUAL INPUTS SCHEME LOGIC

#### **5.7.3 CONTACT OUTPUTS**

#### PATH: SETTINGS ⇔ ⊕ INPUTS/OUTPUTS ⇔ ⊕ CONTACT OUTPUTS ⇔ CONTACT OUTPUT H1



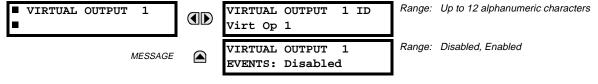
Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.

An ID may be assigned to each contact output. The signal that can OPERATE a contact output may be any FlexLogic™ operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic™ operand may be used to SEAL-IN the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

#### **EXAMPLE:**

The trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the TRIP CIRCUIT EXAMPLE in the DIGITAL ELEMENTS section). The monitor will set a flag (see the Specifications for Form-A). The name of the FlexLogic™ operand set by the monitor, consists of the output relay designation, followed by the name of the flag; e.g. 'Cont Op 1 IOn' or 'Cont Op 1 IOff'.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called "trip seal-in".


This can be realized in the UR using the 'Cont Op 1 IOn' FlexLogic™ operand to seal-in the Contact Output as follows:

CONTACT OUTPUT H1 ID: "Cont Op 1"
OUTPUT H1 OPERATE: "Off"

OUTPUT H1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"

**5.7.4 VIRTUAL OUTPUTS** 

# PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ VIRTUAL OUTPUTS $\Rightarrow$ VIRTUAL OUTPUT 1



There are 64 virtual outputs that may be assigned via FlexLogic<sup>™</sup>. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the FlexLogic<sup>™</sup> equations. Any change of state of a virtual output can be logged as an event if programmed to do so.

For example, if Virtual Output 1 is the trip signal from FlexLogic<sup>™</sup> and the trip relay is used to signal events, the settings would be programmed as follows:

VIRTUAL OUTPUT 1 ID: "Trip"

VIRTUAL OUTPUT 1 EVENTS: "Disabled"

**5.7.5 REMOTE DEVICES** 

# a) OVERVIEW

Remote inputs and outputs, which are a means of exchanging information regarding the state of digital points between remote devices, are provided in accordance with the Electric Power Research Institute's (EPRI) UCA2 "Generic Object Oriented Substation Event (GOOSE)" specifications.



The UCA2 specification requires that communications between devices be implemented on Ethernet communications facilities. For UR relays, Ethernet communications is provided only on the type 9C and 9D versions of the CPU module.

The sharing of digital point state information between GOOSE equipped relays is essentially an extension to FlexLogic<sup>™</sup> to allow distributed FlexLogic<sup>™</sup> by making operands available to/from devices on a common communications network. In addition to digital point states, GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data from only those messages that have originated in selected devices.

GOOSE messages are designed to be short, high priority and with a high level of reliability. The GOOSE message structure contains space for 128 bit pairs representing digital point state information. The UCA specification provides 32 "DNA" bit pairs, which are status bits representing pre-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The UR implementation provides 32 of the 96 available UserSt bit pairs.

The UCA2 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the "default update" time) if a change-of-state has not occurred. The transmitting device also sends a "hold time" which is set to three times the programmed default time, which is required by the receiving device.

Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message "hold" time for the device. The receiving relay sets a timer assigned to the originating device to the "hold" time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. This mechanism allows a receiving device to fail to detect a single transmission from a remote device which is sending messages at the slowest possible rate, as set by its "default update" timer, without reverting to use of the programmed default states. If a message is received from a remote device before the "hold" time expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where 'Offline' indicates 'non-communicating', can be displayed.

The GOOSE facility provides for 64 remote inputs and 32 remote outputs.

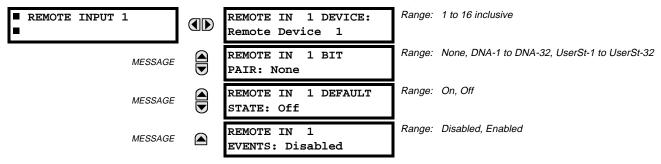
# b) LOCAL DEVICES: ID of Device for Transmitting GOOSE Messages

In a UR relay, the device ID that identifies the originator of the message is programmed in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ INSTALLATION ⇒ ⊕ RELAY NAME setting.

## c) REMOTE DEVICES: ID of Device for Receiving GOOSE Messages

PATH: SETTINGS ➡ INPUTS/OUTPUTS ➡ IREMOTE DEVICES ➡ REMOTE DEVICE 1(16)






REMOTE DEVICE 1 ID: Remote Device 1 Range: up to 20 alphanumeric characters

Sixteen Remote Devices, numbered from 1 to 16, can be selected for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.

#### **5.7.6 REMOTE INPUTS**

PATH: SETTINGS ♥ INPUTS/OUTPUTS ♥ REMOTE INPUTS ♥ REMOTE INPUT 1(32)



Remote Inputs which create FlexLogic™ operands at the receiving relay, are extracted from GOOSE messages originating in remote devices. The relay provides 32 Remote Inputs, each of which can be selected from a list consisting of 64 selections: DNA-1 through DNA-32 and UserSt-1 through UserSt-32. The function of DNA inputs is defined in the UCA2 specifications and is presented in the UCA2 DNA ASSIGNMENTS table in the Remote Outputs section. The function of UserSt inputs is defined by the user selection of the FlexLogic™ operand whose state is represented in the GOOSE message. A user must program a DNA point from the appropriate operand.

Remote Input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

**REMOTE IN 1 DEVICE** selects the number (1 to 16) of the Remote Device which originates the required signal, as previously assigned to the remote device via the setting **REMOTE DEVICE NN ID** (see REMOTE DEVICES section). **REMOTE IN 1 BIT PAIR** selects the specific bits of the GOOSE message required. **REMOTE IN 1 DEFAULT STATE** selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating.



For more information on GOOSE specifications, see REMOTE INPUTS/OUTPUTS OVERVIEW in the REMOTE DEVICES section.

# 5.7.7 REMOTE OUTPUTS: DNA BIT PAIRS

# PATH: SETTINGS ♥ Unputs/outputs ♥ Remote outputs dna bit pairs ♥ Remote ouputs dna-1 bit pair

■ REMOTE OUTPUTS
■ DNA- 1 BIT PAIR

DNA- 1 OPERAND:
off

DNA- 1 OPERAND:
ABOVE OFF

DNA- 1 EVENTS:
Disabled

Range: FlexLogic™ Operand

Range: Disabled, Enabled

Remote Outputs (1 to 32) are FlexLogic<sup>™</sup> operands inserted into GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic<sup>™</sup> operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-28: UCA DNA2 ASSIGNMENTS

| DNA   | DEFINITION               | INTENDED FUNCTION                              | LOGIC 0        | LOGIC 1       |
|-------|--------------------------|------------------------------------------------|----------------|---------------|
| 1     | OperDev                  |                                                | Trip           | Close         |
| 2     | Lock Out                 |                                                | LockoutOff     | LockoutOn     |
| 3     | Initiate Reclosing       | Initiate remote reclose sequence               | InitRecloseOff | InitRecloseOn |
| 4     | Block Reclosing          | Prevent/cancel remote reclose sequence         | BlockOff       | BlockOn       |
| 5     | Breaker Failure Initiate | Initiate remote breaker failure scheme         | BFIOff         | BFIOn         |
| 6     | Send Transfer Trip       | Initiate remote trip operation                 | TxXfrTripOff   | TxXfrTripOn   |
| 7     | Receive Transfer Trip    | Report receipt of remote transfer trip command | RxXfrTripOff   | RxXfrTripOn   |
| 8     | Send Perm                | Report permissive affirmative                  | TxPermOff      | TxPermOn      |
| 9     | Receive Perm             | Report receipt of permissive affirmative       | RxPermOff      | RxPermOn      |
| 10    | Stop Perm                | Override permissive affirmative                | StopPermOff    | StopPermOn    |
| 11    | Send Block               | Report block affirmative                       | TxBlockOff     | TxBlockOn     |
| 12    | Receive Block            | Report receipt of block affirmative            | RxBlockOff     | RxBlockOn     |
| 13    | Stop Block               | Override block affirmative                     | StopBlockOff   | StopBlockOn   |
| 14    | BkrDS                    | Report breaker disconnect 3-phase state        | Open           | Closed        |
| 15    | BkrPhsADS                | Report breaker disconnect phase A state        | Open           | Closed        |
| 16    | BkrPhsBDS                | Report breaker disconnect phase B state        | Open           | Closed        |
| 17    | BkrPhsCDS                | Report breaker disconnect phase C state        | Open           | Closed        |
| 18    | DiscSwDS                 |                                                | Open           | Closed        |
| 19    | Interlock DS             |                                                | DSLockOff      | DSLockOn      |
| 20    | LineEndOpen              | Report line open at local end                  | Open           | Closed        |
| 21    | Status                   | Report operating status of local GOOSE device  | Offline        | Available     |
| 22    | Event                    |                                                | EventOff       | EventOn       |
| 23    | Fault Present            |                                                | FaultOff       | FaultOn       |
| 24    | Sustained Arc            | Report sustained arc                           | SustArcOff     | SustArcOn     |
| 25    | Downed Conductor         | Report downed conductor                        | DownedOff      | DownedOn      |
| 26    | Sync Closing             |                                                | SyncClsOff     | SyncClsOn     |
| 27    | Mode                     | Report mode status of local GOOSE device       | Normal         | Test          |
| 28→32 | Reserved                 |                                                |                |               |



For more information on GOOSE specifications, see REMOTE INPUTS/OUTPUTS OVERVIEW in the REMOTE DEVICES section.

■ REMOTE OUTPUTS ■ UserSt- 1 BIT PAIR

MESSAGE

UserSt- 1 OPERAND:
Off
UserSt- 1 EVENTS:

Disabled

Range: FlexLogic™ operand

Range: Disabled, Enabled

Remote Outputs 1 to 32 originate as GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic™ operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.

The following setting represents the time between sending GOOSE messages when there has been no change of state of any selected digital point. This setting is located in the PRODUCT SETUP ⇔ COMMUNICATIONS ⇔ UCA/MMS PROTOCOL settings menu.

DEFAULT GOOSE UPDATE
TIME: 60 s

Range: 1 to 60 s in steps of 1

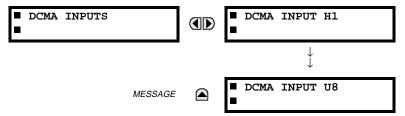


For more information on GOOSE specifications, see REMOTE INPUTS/OUTPUTS - OVERVIEW in the REMOTE DEVICES section.

5.7.9 RESETTING

■ RESETTING ■

RESET OPERAND: Off Range: FlexLogic™ operand


Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic<sup>™</sup> latches) to the reset state. The RESET command can be sent from the faceplate RESET button, a remote device via a communications channel, or any programmed operand.

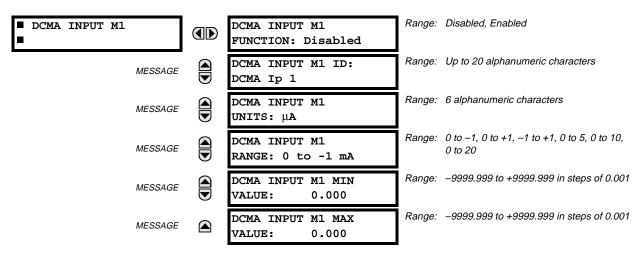
When the RESET command is received by the relay, two FlexLogic<sup>™</sup> operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the FlexLogic<sup>™</sup> operand "RESET OP". Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.

5

**5.8.1 DCMA INPUTS** 

#### 



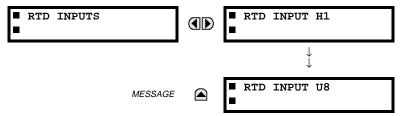

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of –1 to +20 mA DC, suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in the HARDWARE chapter.

Before the DCMA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.

DCMA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown below for the first channel of a type 5F transducer module installed in slot M.

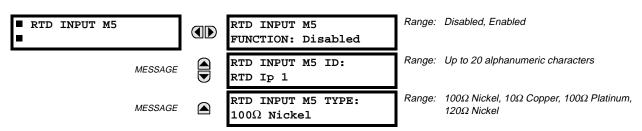



The function of the channel may be either "Enabled" or "Disabled." If Disabled, there will not be an actual value created for the channel. An alphanumeric "ID" is assigned to the channel - this ID will be included in the display of the channel actual value, along with the programmed "UNITS" associated with the parameter measured by the transducer, such as Volt, °C, MegaWatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The RANGE setting is used to select the specific mA DC range of the transducer connected to the input channel.

The MIN VALUE and MAX VALUE settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to  $250^{\circ}$ C; in this case the MIN value would be 0 and the MAX value 250. Another example would be a Watt transducer with a span from -20 to +180 MW; in this case the MIN value would be -20 and the MAX value 180. Intermediate values between the MIN and MAX are scaled linearly.

5.8.2 RTD INPUTS

#### PATH: SETTINGS ♥ TRANSDUCER I/O ♥ RTD INPUTS




Hardware and software is provided to receive signals from external Resistance Temperature Detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in the HARDWARE chapter.

RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

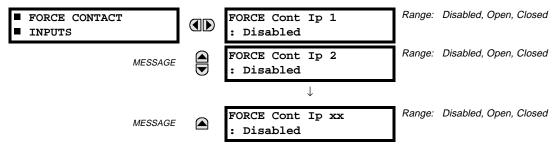
Settings are automatically generated for every channel available in the specific relay as shown below for the first channel of a type 5C transducer module installed in slot M.



The function of the channel may be either "Enabled" or "Disabled." If Disabled, there will not be an actual value created for the channel. An alphanumeric "ID" is assigned to the channel - this ID will be included in the display of the channel actual value. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.

5 SETTINGS 5.9 TESTING

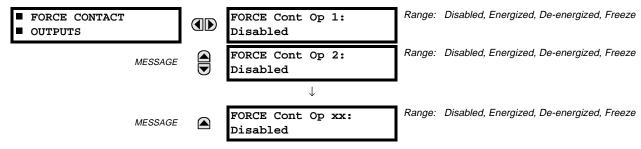
5.9.1 TEST MODE


#### PATH: SETTINGS ⇒ \$\Partial\$ TESTING \$\Rightarrow\$ TEST MODE



The relay provides test settings to verify that the relay is functional using simulated conditions to test all contact inputs and outputs. While the relay is in Test Mode (TEST MODE FUNCTION: "Enabled"), the feature being tested overrides normal functioning of the relay. During this time the Test Mode LED will remain on. Once out of Test Mode (TEST MODE FUNCTION: "Disabled"), the normal functioning of the relay will be restored.

#### **5.9.2 FORCE CONTACT INPUTS**

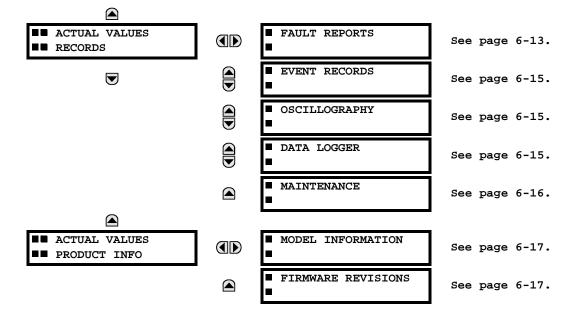

## PATH: SETTINGS ⇒ \$\Partial\$ TESTING \$\Rightarrow\$\$ FORCE CONTACT INPUTS



The Force Contact Inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be ON indicating that the relay is in test mode. The state of each contact input may be programmed as Disabled, Open, or Closed. All contact input operations return to normal when all settings for this feature are disabled.

## **5.9.3 FORCE CONTACT OUTPUTS**

#### 




The Force Contact Output feature provides a method of performing checks on all contact outputs. Once enabled, the relay is placed into Test Mode, allowing this feature to override the normal contact outputs functions. The TEST MODE LED will be ON. The state of each contact output may be programmed as Disabled, Energized, De-energized, or Freeze. The Freeze option maintains the output contact in the state at which it was frozen. All contact output operations return to normal when all the settings for this feature are disabled.

# **6.1.1 ACTUAL VALUES MAIN MENU**

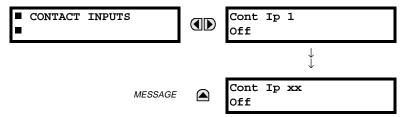
| ■■ ACTUAL VALUES<br>■■ STATUS | ■ CONTACT INPUTS                  | See page 6-3.  |
|-------------------------------|-----------------------------------|----------------|
| ♥                             | ■ VIRTUAL INPUTS                  | See page 6-3.  |
|                               | ■ REMOTE INPUTS                   | See page 6-3.  |
|                               | ■ CONTACT OUTPUTS                 | See page 6-4.  |
|                               | ■ VIRTUAL OUTPUTS                 | See page 6-4.  |
|                               | ■ AUTORECLOSE<br>■                | See page 6-4.  |
|                               | ■ REMOTE DEVICES<br>■ STATUS      | See page 6-4.  |
|                               | ■ REMOTE DEVICES<br>■ STATISTICS  | See page 6-5.  |
|                               | ■ DIGITAL COUNTERS                | See page 6-5.  |
|                               | ■ FLEX STATES<br>■                | See page 6-5.  |
| _                             | ■ ETHERNET<br>■                   | See page 6-5.  |
| ■ ACTUAL VALUES ■ METERING    | SOURCE SRC 1                      | See page 6-9.  |
| ⊌                             | SOURCE SRC 2                      |                |
|                               | <b>↓</b>                          |                |
|                               | SOURCE SRC 6                      |                |
|                               | SYNCHROCHECK                      | See page 6-11. |
|                               | ■ TRACKING FREQUENCY              | See page 6-11. |
|                               | FLEXELEMENTS                      | See page 6-12. |
|                               | ■ TRANSDUCER I/O<br>■ DCMA INPUTS | See page 6-12. |
|                               | ■ TRANSDUCER I/O<br>■ RTD INPUTS  | See page 6-12. |

6.1 OVERVIEW 6 ACTUAL VALUES



6

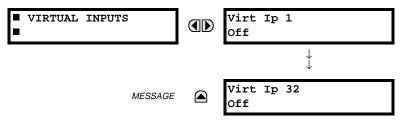
6 ACTUAL VALUES 6.2 STATUS


**6.2.1 NOTES** 



For status reporting, 'On' represents Logic 1 and 'Off' represents Logic 0.

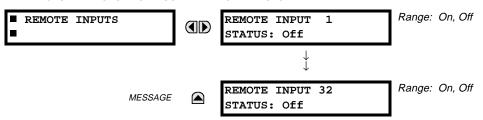
**6.2.2 CONTACT INPUTS** 


## 



The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.

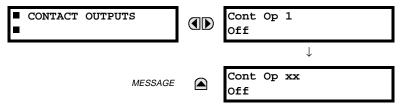
**6.2.3 VIRTUAL INPUTS** 


#### 



The present status of the 32 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name-array index. The second line of the display indicates the logic state of the virtual input.

**6.2.4 REMOTE INPUTS** 


# 



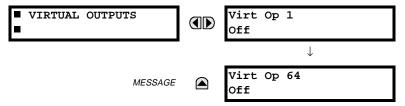
The present state of the 32 remote inputs is shown here.

The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

## **6.2.5 CONTACT OUTPUTS**



The present state of the contact outputs is shown here.


The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.



For Form-A outputs, the state of the voltage(V) and/or current(I) detectors will show as: Off, VOff, IOff, On, VOn, and/or IOn. For Form-C outputs, the state will show as Off or On.

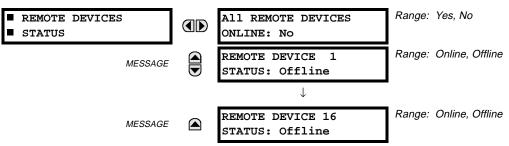
**6.2.6 VIRTUAL OUTPUTS** 

PATH: ACTUAL VALUES ⇒ STATUS ⇒ ♥ VIRTUAL OUTPUTS



The present state of up to 64 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic™ equation for that output.

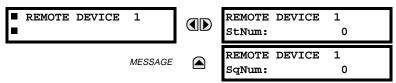
**6.2.7 AUTORECLOSE** 


PATH: ACTUAL VALUES  $\Rightarrow$  STATUS  $\Rightarrow$   $\P$  AUTORECLOSE  $\Rightarrow$  AUTORECLOSE 1



The automatic reclosure shot count is shown here.

# **6.2.8 REMOTE DEVICES STATUS**

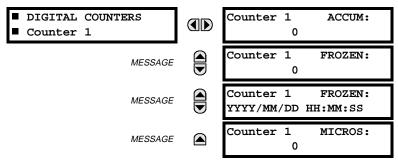

## 



The present state of up to 16 programmed Remote Devices is shown here. The **ALL REMOTE DEVICES ONLINE** message indicates whether or not all programmed Remote Devices are online. If the corresponding state is "No", then at least one required Remote Device is not online.

## **6.2.9 REMOTE DEVICES STATISTICS**

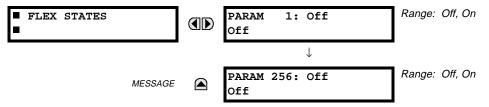
## PATH: ACTUAL VALUES ➡ STATUS ➡ REMOTE DEVICES STATISTICS ➡ REMOTE DEVICE 1(16)




Statistical data (2 types) for up to 16 programmed Remote Devices is shown here.

- The StNum number is obtained from the indicated Remote Device and is incremented whenever a change of state of at least one DNA or UserSt bit occurs.
- The **SqNum** number is obtained from the indicated Remote Device and is incremented whenever a GOOSE message is sent. This number will rollover to zero when a count of 4,294,967,295 is incremented.

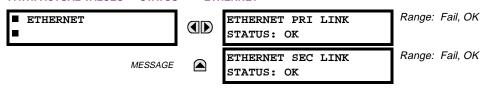
**6.2.10 DIGITAL COUNTERS** 


# PATH: ACTUAL VALUES ➡ DIGITAL COUNTERS ➡ DIGITAL COUNTERS Counter 1(8)



The present status of the 8 digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date/time stamp for the frozen count. The **Counter n MICROS** value refers to the microsecond portion of the time stamp.

6.2.11 FLEX STATES


# 



There are 256 FlexState bits available. The second line value indicates the state of the given FlexState bit.

**6.2.12 ETHERNET** 

# 



# **6.3.1 METERING CONVENTIONS**

# a) UR CONVENTION FOR MEASURING POWER AND ENERGY

The following figure illustrates the conventions established for use in UR relays.

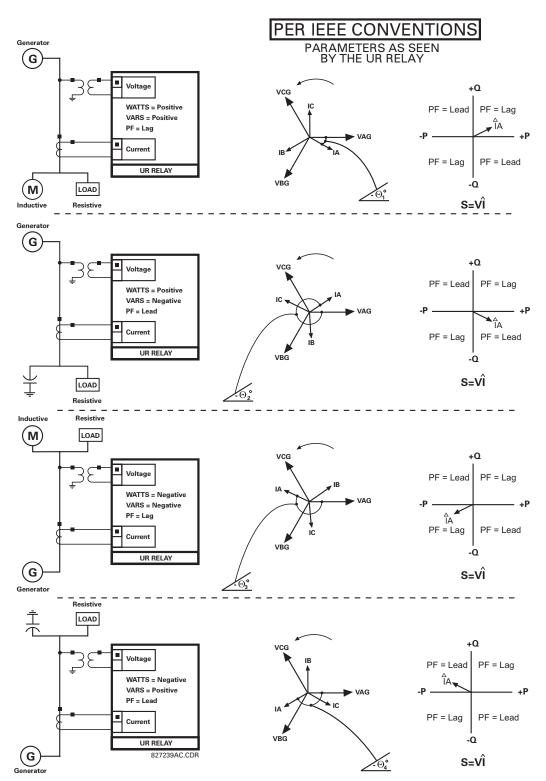



Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

6.3 METERING

## b) UR CONVENTION FOR MEASURING PHASE ANGLES

All phasors calculated by UR relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the SETTINGS  $\Rightarrow \P$  SYSTEM SETUP  $\Rightarrow \P$  POWER SYSTEM  $\Rightarrow \P$  FREQUENCY AND PHASE REFERENCE setting. This setting defines a particular Source to be used as the reference.

The relay will first determine if any "Phase VT" bank is indicated in the Source. If it is, voltage channel VA of that bank is used as the angle reference. Otherwise, the relay determines if any "Aux VT" bank is indicated; if it is, the auxiliary voltage channel of that bank is used as the angle reference. If neither of the two conditions is satisfied, then two more steps of this hierarchical procedure to determine the reference signal include "Phase CT" bank and "Ground CT" bank.

If the AC signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.

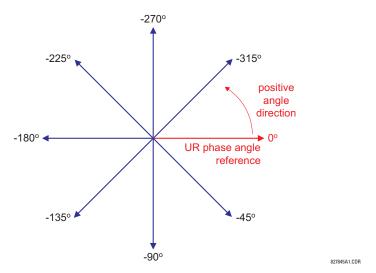



Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION

# c) UR CONVENTION FOR MEASURING SYMMETRICAL COMPONENTS

UR relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

# **WYE-Connected Instrument Transformers:**

· ABC phase rotation:

$$V_{-0} = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$

$$V_{-1} = \frac{1}{3}(V_{AG} + aV_{BG} + a^{2}V_{CG})$$

$$V_{-2} = \frac{1}{3}(V_{AG} + a^{2}V_{BG} + aV_{CG})$$

ACB phase rotation:

$$V_{-0} = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$

$$V_{-1} = \frac{1}{3}(V_{AG} + a^2V_{BG} + aV_{CG})$$

$$V_{-2} = \frac{1}{3}(V_{AG} + aV_{BG} + a^2V_{CG})$$

The above equations apply to currents as well.

# **DELTA-Connected Instrument Transformers:**

ABC phase rotation:

$$V_{0} = N/A$$

$$V_{1} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

$$V_{2} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

• ACB phase rotation:

$$V_{-0} = N/A$$

$$V_{-1} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

$$V_{-2} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

The zero-sequence voltage is not measurable under the DELTA connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.

Table 6-1: CALCULATING VOLTAGE SYMMETRICAL COMPONENTS EXAMPLE

| SYSTEM          | SYSTEM VOLTAGES, SEC. V * |                         |                 |                 |                 | VT    | UR INPU     | TS, SEC. \      | /              | SYMM. C        | OMP, SEC       | :. V           |
|-----------------|---------------------------|-------------------------|-----------------|-----------------|-----------------|-------|-------------|-----------------|----------------|----------------|----------------|----------------|
| V <sub>AG</sub> | V <sub>BG</sub>           | V <sub>CG</sub>         | V <sub>AB</sub> | V <sub>BC</sub> | V <sub>CA</sub> | CONN. | F5AC        | F6AC            | F7AC           | V <sub>0</sub> | V <sub>1</sub> | V <sub>2</sub> |
| 13.9<br>∠0°     | 76.2<br>∠–125°            | 79.7<br>∠–250°          | 84.9<br>∠–313°  | 138.3<br>∠–97°  | 85.4<br>∠–241°  | WYE   | 13.9<br>∠0° | 76.2<br>∠–125°  | 79.7<br>∠–250° | 19.5<br>∠–192° | 56.5<br>∠–7°   | 23.3<br>∠–187° |
|                 | NN (only Vetermined)      | $^{\prime}_1$ and $V_2$ | 84.9<br>∠0°     | 138.3<br>∠–144° | 85.4<br>∠–288°  | DELTA | 84.9<br>∠0° | 138.3<br>∠–144° | 85.4<br>∠–288° | N/A            | 56.5<br>∠–54°  | 23.3<br>∠–234° |

\* The power system voltages are phase-referenced – for simplicity – to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the UR displays are always referenced as specified under SETTINGS

⇒ ♣ SYSTEM SETUP ⇒ ♣ POWER SYSTEM ⇒ ♣ FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.

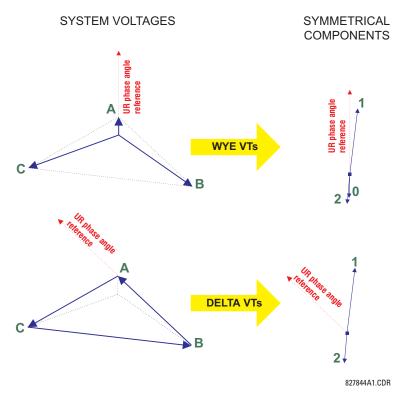
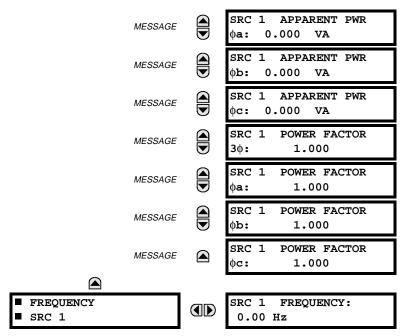



Figure 6-3: ILLUSTRATION OF THE UR CONVENTION FOR SYMMETRICAL COMPONENTS

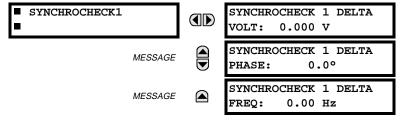

**6.3.2 SOURCES** 

#### PATH: ACTUAL VALUES ⇒ \$ METERING ⇒ SOURCE SRC 1 ⇒

| PATH: ACTUAL VALUES ⇔       | METER | RING ⇒ S | SOURCE SRC 1 ⇒                             |
|-----------------------------|-------|----------|--------------------------------------------|
| ■ PHASE CURRENT<br>■ SRC 1  |       |          | SRC 1 RMS Ia: 0.000<br>b: 0.000 c: 0.000 A |
| ME                          | SSAGE |          | SRC 1 RMS Ia:<br>0.000 A                   |
| ME                          | SSAGE |          | SRC 1 RMS Ib:<br>0.000 A                   |
| ME                          | SSAGE |          | SRC 1 RMS Ic:<br>0.000 A                   |
| ME                          | SSAGE |          | SRC 1 RMS In:<br>0.000 A                   |
| ME                          | SSAGE |          | SRC 1 PHASOR Ia:<br>0.000 A 0.0°           |
| ME                          | SSAGE |          | SRC 1 PHASOR Ib:<br>0.000 A 0.0°           |
| ME                          | SSAGE |          | SRC 1 PHASOR IC:<br>0.000 A 0.0°           |
| ME                          | SSAGE |          | SRC 1 PHASOR In:<br>0.000 A 0.0°           |
| ME                          | SSAGE |          | SRC 1 ZERO SEQ IO:<br>0.000 A 0.0°         |
| ME                          | SSAGE |          | SRC 1 POS SEQ I1:<br>0.000 A 0.0°          |
| ME                          | SSAGE |          | SRC 1 NEG SEQ I2:<br>0.000 A 0.0°          |
|                             |       |          |                                            |
| ■ GROUND CURRENT<br>■ SRC 1 |       |          | SRC 1 RMS Ig:<br>0.000 A                   |
| ME                          | SSAGE |          | SRC 1 PHASOR Ig:<br>0.000 A 0.0°           |
| ME                          | SSAGE |          | SRC 1 PHASOR Igd:<br>0.000 A 0.0°          |
|                             |       |          |                                            |
| ■ PHASE VOLTAGE<br>■ SRC 1  |       |          | SRC 1 RMS Vag:<br>0.000 V                  |
| ME                          | SSAGE |          | SRC 1 RMS Vbg:<br>0.000 V                  |
| ME                          | SSAGE |          | SRC 1 RMS Vcg:<br>0.000 V                  |
| ME                          | SSAGE |          | SRC 1 PHASOR Vag:<br>0.000 V 0.0°          |
| ME                          | SSAGE |          | SRC 1 PHASOR Vbg:<br>0.000 V 0.0°          |

| ME                          | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | SRC 1 PHASOR Vcg:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ME                          | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | SRC 1 RMS Vab:<br>0.000 V                                                                                                                                                                                                                                                                                       |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 RMS Vbc:<br>0.000 V                                                                                                                                                                                                                                                                                       |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 RMS Vca:<br>0.000 V                                                                                                                                                                                                                                                                                       |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 PHASOR Vab:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                               |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 PHASOR Vbc:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                               |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 PHASOR Vca:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                               |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 ZERO SEQ V0:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                              |
| ME                          | ESSAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SRC 1 POS SEQ V1:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                               |
| ME                          | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>A</b> | SRC 1 NEG SEQ V2:<br>0.000 V 0.0°                                                                                                                                                                                                                                                                               |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |                                                                                                                                                                                                                                                                                                                 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>.</b> | CDC 1 DWC V                                                                                                                                                                                                                                                                                                     |
| AUXILIARY VOLTAG            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8        | SRC 1 RMS Vx:                                                                                                                                                                                                                                                                                                   |
| SRC 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.000 V                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.000 V<br>SRC 1 PHASOR Vx:                                                                                                                                                                                                                                                                                     |
| ME                          | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.000 V<br>SRC 1 PHASOR Vx:                                                                                                                                                                                                                                                                                     |
| ME  ■ POWER ■ SRC 1         | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER                                                                                                                                                                                                                                                        |
| POWER SRC 1                 | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 30: 0.000 W  SRC 1 REAL POWER                                                                                                                                                                                                                          |
| POWER SRC 1                 | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 30: 0.000 W  SRC 1 REAL POWER 0.000 W  SRC 1 REAL POWER                                                                                                                                                                                                |
| POWER SRC 1  ME             | ESSAGE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 3 0.000 W  SRC 1 REAL POWER 4 0.000 W  SRC 1 REAL POWER 5 0.000 W  SRC 1 REAL POWER 5 REAL POWER 6 REAL POWER                                                                                                                                          |
| POWER SRC 1  ME             | ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESS |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 30: 0.000 W  SRC 1 REAL POWER 0a: 0.000 W  SRC 1 REAL POWER 0b: 0.000 W  SRC 1 REAL POWER 0c: 0.000 W  SRC 1 REAL POWER                                                                                                                                |
| POWER SRC 1  ME  ME         | ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESS |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 30: 0.000 W  SRC 1 REAL POWER 0a: 0.000 W  SRC 1 REAL POWER 0b: 0.000 W  SRC 1 REAL POWER 0c: 0.000 W  SRC 1 REAL POWER 0c: 0.000 W  SRC 1 REAL POWER 0c: 0.000 W  SRC 1 REAL POWER                                                                    |
| POWER SRC 1  ME  ME  ME     | ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESS |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 30: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REACTIVE PWR 30: 0.000 var  SRC 1 REACTIVE PWR 0: 0.000 var  SRC 1 REACTIVE PWR    |
| POWER SRC 1  ME  ME  ME  ME | ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESSAGE ( ESS |          | 0.000 V  SRC 1 PHASOR Vx: 0.000 V 0.0°  SRC 1 REAL POWER 30: 0.000 W  SRC 1 REAL POWER 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REAL POWER 0: 0.000 W  SRC 1 REACTIVE PWR 30: 0.000 var  SRC 1 REACTIVE PWR 0a: 0.000 var  SRC 1 REACTIVE PWR 0a: 0.000 var  SRC 1 REACTIVE PWR |

6 ACTUAL VALUES 6.3 METERING




A maximum of 6 identical Source menus are available, numbered from SRC 1 to SRC 6. "SRC 1" will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS \$\Rightarrow\$ \Pi\$ SYSTEM SETUP \$\Rightarrow\$ \Pi\$ SIGNAL SOURCES).

**SOURCE FREQUENCY** is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see **SETTINGS**  $\Rightarrow \emptyset$  **SYSTEM SETUP**  $\Rightarrow \emptyset$  **POWER SYSTEM**). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.

**6.3.3 SYNCHROCHECK** 

#### PATH: ACTUAL VALUES ➡♥ METERING ➡♥ SYNCHROCHECK 1



The Actual Values menu for SYNCHROCHECK2 is identical to that of SYNCHROCHECK1. If a Synchrocheck Function setting is set to "Disabled", the corresponding Actual Values menu item will not be displayed.

**6.3.4 TRACKING FREQUENCY** 

#### PATH: ACTUAL VALUES ➡ ♣ METERING ➡ ♣ TRACKING FREQUENCY



The tracking frequency is displayed here. The frequency is tracked based on configuration of the reference source. See **SETTINGS**  $\Rightarrow \$$  **SYSTEM SETUP**  $\Rightarrow \$$  **POWER SYSTEM** for more details on frequency metering and tracking. With three-phase inputs configured the frequency is measured digitally using a Clarke combination of all three-phase signals for optimized performance during faults, open pole, and VT fuse fail conditions.

PATH: ACTUAL VALUES ♥ UMETERING ♥ FLEXELEMENT 1(8)

| ■ FLEXELEMENT 1 | FLEXELEMENT 1 OpSig: |
|-----------------|----------------------|
| •               | 0.000 pu             |

The operating signals for the FlexElements are displayed in pu values using the following definitions of the base units.

## Table 6-2: FLEXELEMENT™ BASE UNITS

| BREAKER ARCING AMPS<br>(Brk X Arc Amp A, B, and C) | $BASE = 2000 \text{ kA}^2 \times \text{cycle}$                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| dcmA                                               | BASE = maximum value of the <b>DCMA INPUT MAX</b> setting for the two transducers configured under the +IN and -IN inputs. |
| FREQUENCY                                          | f <sub>BASE</sub> = 1 Hz                                                                                                   |
| PHASE ANGLE                                        | φ <sub>BASE</sub> = 360 degrees (see the UR angle referencing convention)                                                  |
| POWER FACTOR                                       | PF <sub>BASE</sub> = 1.00                                                                                                  |
| RTDs                                               | BASE = 100°C                                                                                                               |
| SOURCE CURRENT                                     | I <sub>BASE</sub> = maximum nominal primary RMS value of the +IN and -IN inputs                                            |
| SOURCE POWER                                       | $P_{BASE}$ = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and -IN inputs                                        |
| SOURCE VOLTAGE                                     | V <sub>BASE</sub> = maximum nominal primary RMS value of the +IN and -IN inputs                                            |
| SYNCHROCHECK<br>(Max Delta Volts)                  | V <sub>BASE</sub> = maximum primary RMS value of all the sources related to the +IN and -IN inputs                         |

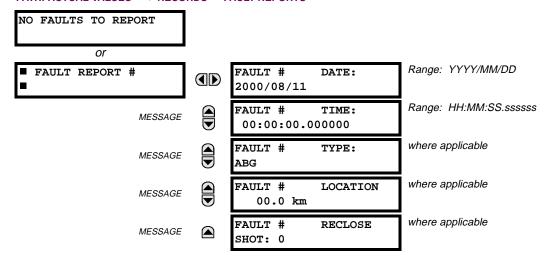
6.3.6 TRANSDUCER I/O

## a) DCMA INPUTS

PATH: ACTUAL VALUES ➡⇩ METERING ➡⇩ TRANSDUCER I/O DCMA INPUTS ➡ DCMA INPUT xx



Actual values for each DCMA input channel that is Enabled are displayed with the top line as the programmed channel "ID" and the bottom line as the value followed by the programmed units.


## b) RTD INPUTS

PATH: ACTUAL VALUES  $\Rightarrow \emptyset$  METERING  $\Rightarrow \emptyset$  TRANSDUCER I/O RTD INPUTS  $\Rightarrow$  RTD INPUT xx



Actual values for each RTD input channel that is Enabled are displayed with the top line as the programmed channel "ID" and the bottom line as the value.

PATH: ACTUAL VALUES ➡ \$\mathfrak{I}\$ RECORDS ➡ FAULT REPORTS ➡



The latest 10 fault reports can be stored. The most recent fault location calculation (when applicable) is displayed in this menu, along with the date and time stamp of the event which triggered the calculation. See the **SETTINGS** ⇒ **PRODUCT SETUP** ⇒ ⊕ **FAULT REPORT** menu for assigning the Source and Trigger for fault calculations. Refer to the **COMMANDS** ⇒ ⊕ **CLEAR RECORDS** menu for clearing fault reports.

#### **6.4.2 FAULT LOCATOR OPERATION**

Fault Type determination is required for calculation of Fault Location – the algorithm uses the angle between the negative and positive sequence components of the relay currents. To improve accuracy and speed of operation, the fault components of the currents are used, i.e., the pre-fault phasors are subtracted from the measured current phasors. In addition to the angle relationships, certain extra checks are performed on magnitudes of the negative and zero sequence currents.

The single-ended fault location method assumes that the fault components of the currents supplied from the local (A) and remote (B) systems are in phase. The figure below shows an equivalent system for fault location.

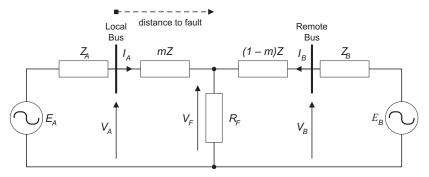



Figure 6-4: EQUIVALENT SYSTEM FOR FAULT LOCATION

The following equations hold true for this equivalent system.

$$V_A = m \cdot Z \cdot I_A + R_F \cdot (I_A + I_B)$$
 eqn. 1

where: m = sought pu distance to fault, Z = positive sequence impedance of the line.

The currents from the local and remote systems can be parted between their fault (F) and pre-fault load (pre) components:

$$I_A = I_{AF} + I_{Apre}$$
 eqn. 2

**6 ACTUAL VALUES** 6.4 RECORDS

and neglecting shunt parameters of the line:

$$I_B = I_{BF} - I_{Apre}$$
 eqn. 3

Inserting equations 2 and 3 into equation 1 and solving for the fault resistance yields:

$$R_F = \frac{V_A - m \cdot Z \cdot I_A}{I_{AF} \cdot \left(1 + \frac{I_{BF}}{I_{AF}}\right)} \quad \text{eqn. 4}$$

Assuming the fault components of the currents,  $I_{AF}$  and  $I_{BF}$  are in phase, and observing that the fault resistance, as impedance, does not have any imaginary part gives:

$$\operatorname{Im}\left(\frac{V_A - m \cdot Z \cdot I_A}{I_{AF}}\right) \quad \text{eqn. 5}$$

where: Im() represents the imaginary part of a complex number. Equation 5 solved for the unknown m creates the following fault location algorithm:

$$m = \frac{\text{Im}(V_A \cdot I_{AF}^*)}{\text{Im}(Z \cdot I_A \cdot I_{AF}^*)} \text{ eqn. 6}$$

where: \* denotes the complex conjugate and:  $I_{AF} = I_A - I_{Apre}$  eqn. 7

Depending on the fault type, appropriate voltage and current signals are selected from the phase quantities before applying equations 6 and 7 (the superscripts denote phases, the subscripts denote stations):

- For AG faults:  $V_A = V_A^A$ ,  $I_A = I_A^A + K_0 \cdot I_{0A}$  eqn. 8a For BG faults:  $V_A = V_A^B$ ,  $I_A = I_A^B + K_0 \cdot I_{0A}$  eqn. 8b
- For CG faults:  $V_A = V_A^C$ ,  $I_A = I_A^{BC} + K_0 \cdot I_{0A}$  eqn. 8c
- For AB and ABG faults:  $V_A = V_A^A V_A^B$ ,  $I_A = I_A^A I_A^B$ eqn. 8d
- For BC and BCG faults:  $V_A = V_A^B V_A^C$ ,  $I_A = I_A^B I_A^C$ eqn. 8e
- For CA and CAG faults:  $V_A = V_A^C V_A^A$ ,  $I_A = I_A^C I_A^A$  eqn. 8f where  $K_0$  is the zero sequence compensation factor (for equations 8a to 8f)
- For ABC faults, all three AB, BC, and CA loops are analyzed and the final result is selected based upon consistency of the results

The element calculates the distance to the fault (with m in miles or kilometers) and the phases involved in the fault.

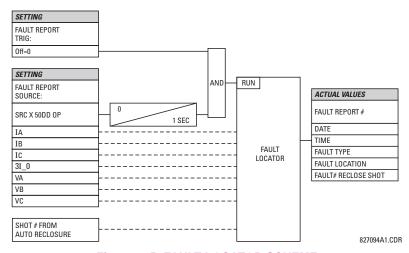
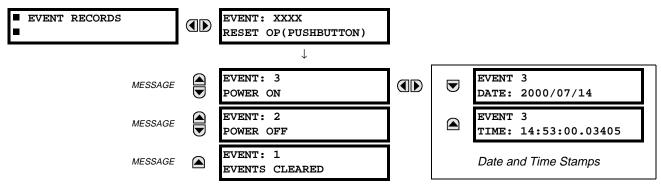
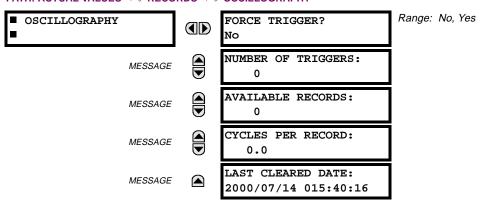




Figure 6-5: FAULT LOCATOR SCHEME

**6.4.3 EVENT RECORDS** 

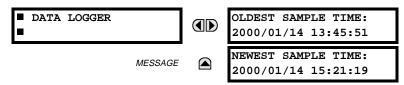

#### PATH: ACTUAL VALUES ➡♥ RECORDS ➡♥ EVENT RECORDS



The Event Records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the COMMANDS CLEAR RECORDS menu for clearing event records.

**6.4.4 OSCILLOGRAPHY** 

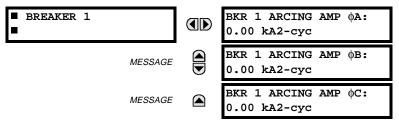
#### PATH: ACTUAL VALUES ⇔ \$\Pi\$ RECORDS \$\Rightarrow\$ OSCILLOGRAPHY




This menu allows the user to view the number of triggers involved and number of oscillography traces available. The 'cycles per record' value is calculated to account for the fixed amount of data storage for oscillography. See the OSCIL-LOGRAPHY section of Chapter 5.

A trigger can be forced here at any time by setting "Yes" to the **FORCE TRIGGER?** command. Refer to the **COMMANDS** ⇒ UCLEAR RECORDS menu for clearing the oscillography records.

6.4.5 DATA LOGGER

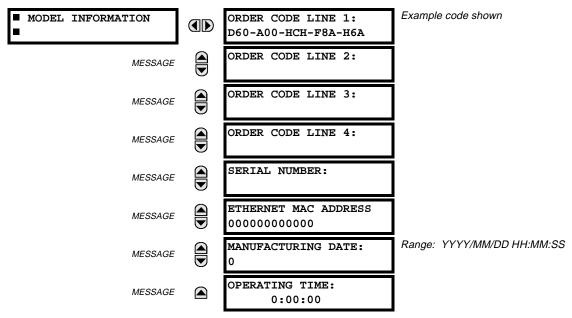

#### PATH: ACTUAL VALUES ⇔ \$\Pi\$ RECORDS ⇒ \$\Pi\$ DATA LOGGER



The **OLDEST SAMPLE TIME** is the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The **NEWEST SAMPLE TIME** is the time the most recent samples were taken. It counts up at the defined sampling rate. If Data Logger channels are defined, then both values are static.

# a) BREAKER 1(2)

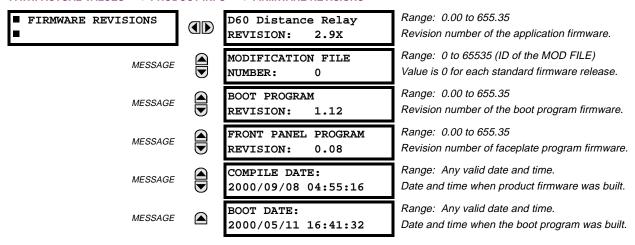
PATH: ACTUAL VALUES ♥ \$\Pi\$ RECORDS ♥ \$\Pi\$ MAINTENANCE ♥ BREAKER 1



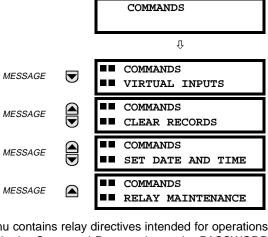

There is an identical Actual Value menu for each of the 2 Breakers. The **BKR 1 ARCING AMP** values are in units of  $kA^2$ -cycles. Refer to the **COMMANDS**  $\Rightarrow \emptyset$  **CLEAR RECORDS** menu for clearing breaker arcing current records.

G

#### **6.5.1 MODEL INFORMATION**


#### PATH: ACTUAL VALUES □ □ PRODUCT INFO □ MODEL INFORMATION




The product order code, serial number, Ethernet MAC address, date/time of manufacture, and operating time are shown here.

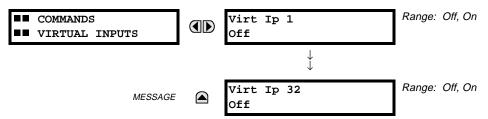
## **6.5.2 FIRMWARE REVISIONS**

#### 



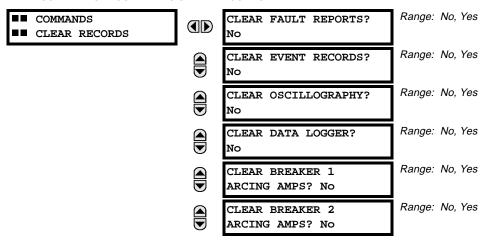
The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.




The COMMANDS menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the Command Password; see the PASSWORD SECURITY menu description in the PRODUCT SETUP section of Chapter 5. The following flash message appears after successfully command entry:

COMMAND EXECUTED

MENU


7.1.2 VIRTUAL INPUTS

#### PATH: COMMANDS URTUAL INPUTS



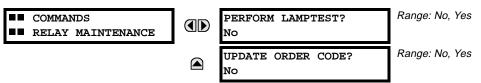
The states of up to 32 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a logical state 'Off' (0) or 'On' (1).

#### PATH: COMMANDS UCCOMMANDS CLEAR RECORDS



This menu contains commands for clearing historical data such as the Event Records. Data is cleard by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".

7.1.4 SET DATE AND TIME


#### PATH: COMMANDS The SET DATE AND TIME

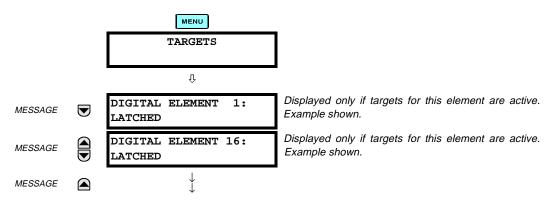


The date and time can be entered here via the faceplate keypad, provided that the IRIG-B signal is not being used. The time setting is based on the 24-hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time will take effect at the moment the **ENTER** key is clicked.

7.1.5 RELAY MAINTENANCE

#### PATH: COMMANDS TRELAY MAINTENANCE




This menu contains commands for relay maintenance purposes. Commands are activated by changing a command setting to "Yes" and pressing the key. The command setting will then automatically revert to "No".

The **PERFORM LAMPTEST** command turns on all faceplate LEDs and display pixels for a short duration. The **UPDATE ORDER CODE** command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

UPDATING... PLEASE WAIT

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the following message will be shown.

ORDER CODE NOT UPDATED



The status of any active targets will be displayed in the TARGETS menu. If no targets are active, the display will read:



#### a) TARGET MESSAGES

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.

The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS

| PRIORITY | ACTIVE STATUS | DESCRIPTION                              |
|----------|---------------|------------------------------------------|
| 1        | OP            | element operated and still picked up     |
| 2        | PKP           | element picked up and timed out          |
| 3        | LATCHED       | element had operated but has dropped out |

If a self test error is detected, a message appears indicating the cause of the error. For example:

UNIT NOT PROGRAMMED :Self Test Error

7.2.2 RELAY SELF-TESTS

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the TROUBLE indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:

- the critical fail relay on the power supply module is de-energized
- all other output relays are de-energized and are prevented from further operation
- the faceplate IN SERVICE indicator is turned off
- a RELAY OUT OF SERVICE event is recorded

# Table 7–2: MAJOR SELF-TEST ERROR MESSAGES

| SELF-TEST ERROR<br>MESSAGE                                                                                                                | LATCHED<br>TARGET<br>MSG? | DESCRIPTION OF PROBLEM                                                                        | HOW OFTEN THE<br>TEST IS PERFORMED                                                   | WHAT TO DO                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT NOT PROGRAMMED                                                                                                                       | No                        | PRODUCT SETUP ⇔ Ū<br>INSTALLATION setting<br>indicates relay is not in a<br>programmed state. | On power up and whenever the <b>RELAY PROGRAMMED</b> setting is altered.             | Program all settings (especially those under PRODUCT SETUP                                                                                                        |
| EQUIPMENT MISMATCH with 2nd-line detail message                                                                                           | No                        | Configuration of modules does not match the order code stored in the CPU.                     | On power up; thereafter, the backplane is checked for missing cards every 5 seconds. | Check all module types against<br>the order code, ensure they are<br>inserted properly, and cycle<br>control power (if problem<br>persists, contact the factory). |
| UNIT NOT CALIBRATED                                                                                                                       | No                        | Settings indicate the unit is not calibrated.                                                 | On power up.                                                                         | Contact the factory.                                                                                                                                              |
| FLEXLOGIC ERR TOKEN with 2nd-line detail message                                                                                          | No                        | FlexLogic equations do not compile properly.                                                  | Event driven; whenever Flex-<br>Logic equations are modified.                        | Finish all equation editing and use self test to debug any errors.                                                                                                |
| DSP ERRORS:  A/D RESET FAILURE  A/D CAL FAILURE  A/D INT. MISSING  A/D VOLT REF. FAIL  NO DSP INTERRUPTS  DSP CHECKSUM FAILED  DSP FAILED | Yes                       | CT/VT module with digital signal processor may have a problem.                                | Every 1/8th of a cycle.                                                              | Cycle the control power (if the problem recurs, contact the factory).                                                                                             |
| PROGRAM MEMORY<br>Test Failed                                                                                                             | Yes                       | Error was found while checking Flash memory.                                                  | Once flash is uploaded with new firmware.                                            | Contact the factory.                                                                                                                                              |

# Table 7-3: MINOR SELF-TEST ERROR MESSAGES

| SELF-TEST<br>ERROR MESSAGE                    | LATCHED<br>TARGET<br>MSG? | DESCRIPTION OF PROBLEM                                                                                                          | HOW OFTEN THE<br>TEST IS PERFORMED                                                                                                                         | WHAT TO DO                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEPROM<br>CORRUPTED                           | Yes                       | The non-volatile memory has been corrupted.                                                                                     | On power up only.                                                                                                                                          | Contact the factory.                                                                                                                                                                                                                                                                                                                                                                   |
| IRIG-B FAILURE                                | No                        | Bad IRIG-B input signal.                                                                                                        | Monitored whenever an IRIG-B signal is received.                                                                                                           | <ul> <li>Ensure the IRIG-B cable is connected to the relay.</li> <li>Check functionality of the cable (i.e. look for physical damage or perform a continuity test).</li> <li>Ensure the IRIG-B receiver is functioning properly.</li> <li>Check the input signal level; it may be lower than specification.</li> <li>If none of the above items apply, contact the factory.</li> </ul> |
| PRIM ETHERNET<br>FAIL                         | No                        | Primary Ethernet connection failed                                                                                              | Monitored every 2 seconds                                                                                                                                  | Check connections.                                                                                                                                                                                                                                                                                                                                                                     |
| SEC ETHERNET FAIL                             | No                        | Secondary Ethernet connection failed                                                                                            | Monitored every 2 seconds                                                                                                                                  | Check connections.                                                                                                                                                                                                                                                                                                                                                                     |
| BATTERY FAIL                                  | No                        | Battery is not functioning.                                                                                                     | Monitored every 5 seconds.<br>Reported after 1 minute if<br>problem persists.                                                                              | Replace the battery.                                                                                                                                                                                                                                                                                                                                                                   |
| PROTOTYPE<br>FIRMWARE                         | Yes                       | A prototype version of the firmware is loaded.                                                                                  | On power up only.                                                                                                                                          | Contact the factory.                                                                                                                                                                                                                                                                                                                                                                   |
| SYSTEM<br>EXCEPTION or<br>ABNORMAL<br>RESTART | Yes                       | Abnormal restart due to modules<br>being removed/inserted when<br>powered-up, abnormal DC supply,<br>or internal relay failure. | Event driven.                                                                                                                                              | Contact the factory.                                                                                                                                                                                                                                                                                                                                                                   |
| LOW ON MEMORY                                 | Yes                       | Memory is close to 100% capacity                                                                                                | Monitored every 5 seconds.                                                                                                                                 | Contact the factory.                                                                                                                                                                                                                                                                                                                                                                   |
| WATCHDOG<br>ERROR                             | No                        | Some tasks are behind schedule                                                                                                  | Event driven.                                                                                                                                              | Contact the factory.                                                                                                                                                                                                                                                                                                                                                                   |
| REMOTE DEVICE<br>OFFLINE                      | Yes                       | One or more GOOSE devices are not responding                                                                                    | Event driven. Occurs when a device programmed to receive GOOSE messages stops receiving message. Time is 1 to 60 sec. depending on GOOSE protocol packets. | Check GOOSE setup                                                                                                                                                                                                                                                                                                                                                                      |

The distance elements use memory voltage for polarization. Additional supervising functions – different for ground and phase distance zones – complement a classical mho characteristic in order to enhance the directional integrity and reach accuracy:

- To avoid overreaching during resistive faults under heavy pre-fault load conditions, the ground distance elements utilize a load-adaptive (zero-sequence polarized) reactance characteristic to supervise the base mho characteristic.
- Both negative and zero-sequence currents are compared with the memory voltage to enhance directional integrity of the ground distance elements.
- It is well known that ground distance elements as per the principle of distance relaying may have limited accuracy during double-line-to-ground faults. In order to prevent maloperation in such cases the ground elements are blocked by an extra "fault-type comparator" that utilizes the phase angle between the negative- and zero-sequence currents.
- The phase distance elements use reactance and memory polarized directional characteristics to supervise the mho characteristic.
- Both ground and phase distance elements have the current supervision functions built-in.

The quadrilateral distance characteristic uses the reactance, directional, and current supervising functions as described above. Right and left blinders adjustable as to both the resistive and angular positions complete the characteristic.

More information regarding the distance characteristics is found in the DISTANCE CHARACTERISTICS section. An example of analysis of the steady-state operation of the distance elements is found in the DISTANCE ELEMENTS ANALYSIS section.

The relay provides four zones of distance protection. All zones are identical in terms of settings. However, Zone 1 has extra adaptive mechanisms built-in to enhance the transient reach accuracy even when the voltage signals are supplied from poor quality voltage sources such as Capacitive Voltage Transformers (CVTs). Ground Zones 2 trough 4, in turn, have an extra zero-sequence directional supervision implemented for their time-delayed operation after the memory expires. Consequently, Zone 1 is recommended as an underreaching element, and Zones 2 through 4 are recommended as overreaching elements and for time-delayed tripping.

The relay uses offset ground directional overcurrent functions as an optional supplement of the ground distance protection for pilot-aided schemes. The elements are described in more details in the GROUND DIRECTIONAL O/C section.

The relay provides for an adaptive distance reach control to cope with the overreaching and sub-synchronous oscillations when applied to, or in a near vicinity of series compensated lines. More details can be found in the APPLICATION ON SERIES COMPENSATED LINES section.

The distance elements use phase angle comparators to shape their characteristics as described in detail in the DISTANCE CHARACTERISTICS section. The voltage and current phasors are estimated using optimized techniques as explained in the next section.

#### **8.1.2 PHASOR ESTIMATION**

The relay samples its input AC signals at 64 samples per power system cycle. A fast and accurate frequency tracking mechanism ensures accurate filtering and phasor estimation during off-nominal frequency conditions.

The phasor estimation process for both currents and voltages is based on the commonly used Fourier algorithm. Due to a different nature of signal distortions in the current and voltage signals digital pre-filtering algorithms have been, however, designed and optimized separately for the current and voltage channels.

The current signals are pre-filtered using an improved digital MIMIC filter. The filter removes effectively the DC component (–s) guaranteeing transient overshoot below 2% regardless of the initial magnitude and time constant of the dc component (–s). The filter has significantly better frequency response for higher frequencies as compared with a classical MIMIC filter. This was possible without introducing any significant phase delay thanks to the high sampling rate used by the relay.

The voltage signals are pre-filtered using a special digital filter designed to cope with CVT transients. The patented filter combines filtering and memory actions enabling the relay to cope with CVT noise under high Source Impedance Ratios (SIRs). The filter controls underestimation of the fault voltage magnitude to less than 1% of the nominal and prevents certain phase angle anomalies that can be encountered under heavy CVT noise and high SIRs.

#### **8.1.3 DISTANCE CHARACTERISTICS**

The relay shapes its distance characteristics using phase angle comparators and voltage and current phasors estimated as described in the previous section.

The following definitions pertain to all of the distance functions:

- I<sub>A</sub> phase A current phasor
- I<sub>B</sub> phase B current phasor
- I<sub>C</sub> phase C current phasor
- I<sub>G</sub> ground current from a parallel line
- V<sub>A</sub> phase A to ground voltage phasor
- V<sub>B</sub> phase B to ground voltage phasor
- V<sub>C</sub> phase C to ground voltage phasor
- ()\_1 positive-sequence phasor of () derived from the phase quantities
- ()\_2 negative-sequence phasor of () derived from the phase quantities
- ()\_0 zero-sequence phasor of () derived from the phase quantities
- ()M memorized value of ()
- Z reach impedance (REACH ∠ RCA)
- $Z_D$  directional characteristic impedance (1  $\angle$  DIR RCA)
- $Z_R$  right blinder characteristic impedance:  $Z_R = RGT BLD \times sin (RGT BLD RCA \angle (RGT BLD RCA 90^\circ))$
- $Z_1$  left blinder characteristic impedance:  $Z_1 = \text{LFT BLD} \times \sin(\text{LFT BLD RCA} \neq (\text{LFT BLD RCA} + 90^\circ))$
- K0 zero-sequence compensating factor:  $K0 = (z_0/z_1 \text{ MAG } \angle z_0/z_1 \text{ ANG}) 1$
- K0M mutual zero-sequence compensating factor: K0M = 1/3 x zom/z1 MAG ∠ zom/z1 ANG

## a) MHO CHARACTERISTIC

The dynamic 100% memory polarized mho characteristic is achieved by checking the angle between:

A ground element:  $I_A \times Z + I_- 0 \times K0 \times Z + I_G \times K0M \times Z - V_A$  and  $V_{A-}1M$  B ground element:  $I_B \times Z + I_- 0 \times K0 \times Z + I_G \times K0M \times Z - V_B$  and  $V_{B-}1M$  C ground element:  $I_C \times Z + I_- 0 \times K0 \times Z + I_G \times K0M \times Z - V_C$  and  $V_{C-}1M$ 

The limit angle of the comparator is adjustable enabling the user to shape the characteristic as a mho or a lens as shown in the figures below. The memory-polarized mho characteristic has an excellent directional integrity built-in as explained in the MEMORY POLARIZATION section.

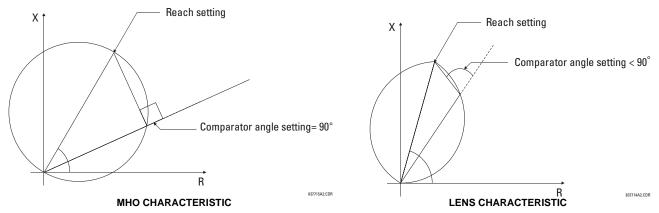



Figure 8-1: MHO AND LENS CHARACTERISTICS

#### b) REACTANCE CHARACTERISTIC

The reactance characteristic is achieved by checking the angle between:

 $(I_A - I_B) \times Z - (V_A - V_B)$  and  $(I_A - I_B) \times Z$ AB phase element: BC phase element:  $(I_B - I_C) \times Z - (V_B - V_C)$  and  $(I_B - I_C) \times Z$  $(I_C - I_A) \times Z - (V_C - V_A)$  and  $(I_C - I_A) \times Z$ CA phase element:  $I_A \times Z + I_- 0 \times K0 \times Z + I_G \times K0M \times Z - V_A \quad \text{and} \quad I_- 0 \times Z$ A ground element:  $I_B \times Z + I_- 0 \times K0 \times Z + I_G \times K0M \times Z - V_B$  and  $I_- 0 \times Z$ B ground element:  $I_C \times Z + I_{-}0 \times K0 \times Z + I_G \times K0M \times Z - V_C$  and  $I_{-}0 \times Z$ C ground element:

If the MHO characteristic is selected, the limit angle of the comparator is adjustable concurrently with the limit angle of the mho characteristic, resulting in a tent shape complementing the lens characteristic being effectively applied. If the QUAD characteristic is selected, the reactance comparator constitutes the upper boundary of the operating region.

The reactance characteristic enables the relay to avoid overreaching on resistive faults during heavy load conditions.

#### c) DIRECTIONAL CHARACTERISTIC

The directional characteristic is achieved by checking the angle between:

 $(I_A - I_B) \times Z_D \quad \text{and} \quad (V_A - V_B) \_1M$ AB phase element:  $(I_B - I_C) \times Z_D$  and  $(V_B - V_C)_1M$ BC phase element:  $(I_C - I_A) \times Z_D$  and  $(V_C - V_A)_1M$ CA phase element:

 $I\_0 \times Z_D \quad \text{and} \quad V_A\_1M$ A ground element:  $I_{A}$ 2  $\times$   $Z_{D}$  and  $V_{A}$ 1 M

 $I\_0 \times Z_D \quad \text{and} \quad V_B\_1M$ 

B ground element:  $I_{B}_{-}2 \times \bar{Z}_{D}$  and  $V_{B}_{-}1M$ 

C ground element:

The characteristic and limit angles of the directional comparator are adjustable independently from the mho and reactance comparators. The directional characteristic improves directional integrity of the distance functions.

## d) RIGHT BLINDER

The right blinder characteristic is achieved by checking the angle between the following signals:

A ground element: 
$$\begin{split} I_A \times Z_R + I_- 0 \times K0 \times Z_R + I_G \times K0M \times Z_R - V_A & \text{and} & I_A \times Z_R + I_- 0 \times K0 \times Z_R + I_G \times K0M \times Z_R \\ B & \text{ground element:} & I_B \times Z_R + I_- 0 \times K0 \times Z_R + I_G \times K0M \times Z_R - V_B & \text{and} & I_B \times Z_R + I_- 0 \times K0 \times Z_R + I_G \times K0M \times Z_R \\ C & \text{ground element:} & I_C \times Z_R + I_- 0 \times K0 \times Z_R + I_G \times K0M \times Z_R - V_C & \text{and} & I_C \times Z_R + I_- 0 \times K0 \times Z_R + I_G \times K0M \times Z_R \\ \end{split}$$

The blinders apply to the QUAD characteristic only.

## e) LEFT BLINDER

The left blinder characteristic is achieved by checking the angle between the following signals:

The blinders apply to the QUAD characteristic only.

#### f) FAULT-TYPE CHARCTERISTIC

The fault-type characteristic applies to ground elements only and is achieved by checking the angle between:

A ground element:  $I_0$  and  $I_{A_2}$  B ground element:  $I_0$  and  $I_{B_2}$  C ground element:  $I_0$  and  $I_{C_2}$ 

The limit angle of the comparator is not adjustable and equals 50°. The fault-type characteristic is intended to block the ground distance elements during double-line-to-ground faults.

## g) ZERO-SEQUENCE DIRECTIONAL CHARACTERISTIC

The extra zero-sequence characteristic applies to ground Zones 2 through 4 only and is achieved by checking the angle between:

A ground element:  $I\_0 \times Z_D$  and  $-V\_0$ B ground element:  $I\_0 \times Z_D$  and  $-V\_0$ C ground element:  $I\_0 \times Z_D$  and  $-V\_0$ 

The limit angle of the comparator is not adjustable and equals 90°. The zero-sequence directional characteristic improves directional integrity for time-delayed operations after the memory expires.

## h) OVERCURRENT SUPERVISION

The overcurrent supervision responds to the following currents:

The following tables summarize the characteristics of the distance elements

Table 8-1: MHO PHASE DISTANCE FUNCTIONS

| CHARACTERISTIC | COMPARATOR INPUTS |      | LIMIT ANGLE    |
|----------------|-------------------|------|----------------|
| Variable MHO   | $I \times Z - V$  | V_1M | COMP LIMIT     |
| Reactance      | I×Z-V             | I×Z  | COMP LIMIT     |
| Directional    | $I \times Z_D$    | V_1M | DIR COMP LIMIT |

Table 8-2: MHO GROUND DISTANCE FUNCTIONS

| CHARACTERISTIC | COMPARATOR INPUTS |         | LIMIT ANGLE                 |
|----------------|-------------------|---------|-----------------------------|
| Variable MHO   | $I \times Z - V$  | V_1M    | COMP LIMIT                  |
| Reactance      | $I \times Z - V$  | I_0 × Z | COMP LIMIT                  |
| Directional    | $I_0 \times Z_D$  | V_1M    | DIR COMP LIMIT              |
| Directional    | $I_2 \times Z_D$  | V_1M    | DIR COMP LIMIT              |
| Fault-type     | I_0               | I_2     | 50°                         |
| Zero-sequence  | $I_0 \times Z_D$  | -V_0    | 90° (Zones 2, 3 and 4 only) |

Table 8-3: QUAD PHASE DISTANCE FUNCTIONS

| CHARACTERISTIC | COMPARATOR INPUTS  |                | LIMIT ANGLE    |
|----------------|--------------------|----------------|----------------|
| Reactance      | $I \times Z - V$   | I×Z            | COMP LIMIT     |
| Directional    | $I \times Z_D$     | V_1M           | DIR COMP LIMIT |
| Right Blinder  | $I \times Z_R - V$ | $I \times Z_R$ | 90°            |
| Left Blinder   | $I \times Z_L - V$ | $I \times Z_L$ | 90°            |

Table 8-4: QUAD GROUND DISTANCE FUNCTIONS

| CHARACTERISTIC | COMPARAT           | FOR INPUTS     | LIMIT ANGLE                  |
|----------------|--------------------|----------------|------------------------------|
| Reactance      | I×Z-V              | V_1M           | COMP LIMIT                   |
| Directional    | $I_0 \times Z_D$   | V_1M           | DIR COMP LIMIT               |
| Directional    | $I_2 \times Z_D$   | V_1M           | DIR COMP LIMIT               |
| Right Blinder  | $I \times Z_R - V$ | $I \times Z_R$ | 90°                          |
| Left Blinder   | $I \times Z_L - V$ | $I \times Z_L$ | 90°                          |
| Fault-type     | I_0                | I_2            | 50°                          |
| Zero-sequence  | $I_0 \times Z_D$   | -V_0           | 90° (Zones 2, 3, and 4 only) |

All distance functions use memory polarization. The positive-sequence voltage – either memorized or actual – is used as a polarizing signal. The memory is established when the positive-sequence voltage remains above 80% of its nominal value for five power system cycles. The memory voltage is a three-cycle old voltage.

Once established, the memory is applied for the user-specified time interval. The memory timer is started when the voltage drops below 80% of nominal. After the memory expires, the relay checks the magnitude of the actual positive-sequence voltage. If it is higher than 10% of nominal, the actual voltage is used; if lower, the memory voltage continues to be used.

The memory-polarized mho has an extra directional integrity built-in as illustrated below. The self-polarized mho characteristic is shifted in the reverse direction for a forward fault by an amount proportional to the source impedance, and in the forward direction for a reverse fault.

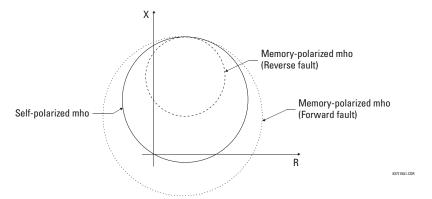



Figure 8-2: DYNAMIC SHIFT OF THE MHO CHARACTERISTIC

The same desirable effect of memory polarization applies to the directional comparator of the QUAD characteristic

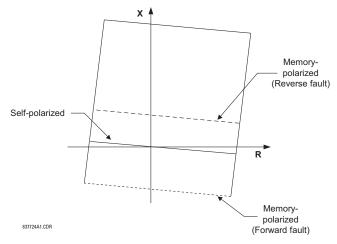



Figure 8-3: DYNAMIC SHIFT OF THE MEMORY-POLARIZED DIRECTIONAL CHARACTERISTIC

Mutual zero-sequence compensation may raise concerns regarding directional integrity on reverse faults in the situation when the relay gets "overcompensated". This problem does not affect the D60 because its ground distance elements use zero-sequence and negative-sequence currents in extra directional comparators. Both the currents are from the protected line and are not affected by any compensation as the latter applies only to the reach defining comparators: the mho, reactance and blinder characteristics.

This subsection shows how to analyze the operation of the distance elements in steady states using the results of short circuit studies. All quantities are secondary ohms, volts, and amperes. Ground phase A and phase AB distance elements are analyzed.

Assume the following settings have been entered:

| Phase Rotation:                     | ABC     | Right Blinder Reach: | $10~\Omega$ |
|-------------------------------------|---------|----------------------|-------------|
| Nominal Secondary Voltage:          | 69.28 V | Right Blinder RCA:   | 88°         |
| Distance Reach:                     | 14 Ω    | Left Blinder Reach:  | $5\Omega$   |
| Distance RCA:                       | 88°     | Left Blinder RCA:    | 88°         |
| Directional RCA:                    | 88°     | Z0/Z1 Magnitude:     | 4.55        |
| Overcurrent supervision:            | 3 A     | Z0/Z1 Angle:         | -12°        |
| Distance Comparator limit angle:    | 75°     | Z0M/Z1 Magnitude:    | 0           |
| Directional Comparator limit angle: | 75°     |                      |             |

Assume the following signals are injected to the relay:

Based on the entered setting the relay calculates:

For the assumed steady-state injection the relay calculates:

| V <sub>A</sub> _1 | = 58.83 V ∠−2.1° | -V_0             | = 29.18 V ∠8.4°   |
|-------------------|------------------|------------------|-------------------|
| $V_{A}_{-}1M$     | = 64.71 V ∠0.0°  | $(V_A - V_B)_1$  | = 93.35 V ∠32.0°  |
| I_0               | = 1.37 A ∠−68.2° | $(V_A - V_B)_1M$ | = 112.08 V ∠30.0° |
| I <sub>A</sub> _2 | = 1.37 A ∠−68.1° | $I_A - I_B$      | = 7.39 A ∠−109.1° |

#### a) MHO PHASE A GROUND ELEMENT (BEFORE MEMORY EXPIRES)

```
\begin{array}{ll} I_{A} \times Z + I_{\_0} \times K0 \times Z + I_{A} \times K0M \times Z - V_{A} = 103.33 \ V \ \angle -3.9^{\circ} \\ V_{A\_1}M &= 64.71 \ V \ \angle 0.0^{\circ} \\ I_{A\_2} \times Z_{D} &= 1.37 \ V \ \angle 19.8^{\circ} \\ I_{\_0} \times Z &= 19.11 \ V \ \angle 19.8^{\circ} \\ I_{\_0} \times Z_{D} &= 1.37 \ V \ \angle 19.8^{\circ} \end{array}
```

- Overcurrent supervision: | 3 × I\_0 | = 4.09 A > 3 A
- Mho difference angle =  $|-3.9^{\circ} 0^{\circ}| = 3.9^{\circ} < 75^{\circ}$
- Reactance difference angle =  $|-3.9^{\circ} 19.8^{\circ}| = 23.7^{\circ} < 75^{\circ}$
- Zero-sequence directional difference angle = | 19.8° 0.0° | = 19.8° < 75°
- Negative-sequence directional difference angle = | 19.8° 0.0° | = 19.8° < 75°</li>
- Fault-type comparator difference angle = | 19.8° 19.8° | = 0.0° < 50°</li>

All four comparators and the overcurrent supervision are satisfied.

The MHO phase A ground element will operate for this fault.

## b) MHO PHASE A GROUND ELEMENT (AFTER MEMORY EXPIRES)

After the memory expires the relay checks the actual positive-sequence voltage and compares it with 10% of the nominal voltage:

$$|V_{A}_{-}1| = 58.83 \text{ V} > 0.1 \times 69.28 \text{ V}$$

After the memory expires the relay will use the actual voltage for polarization.

```
\begin{array}{ll} I_{A} \times Z + I_{-}0 \times K0 \times Z + I_{G} \times K0M \times Z - V_{A} = 103.33 \text{ V } \angle -3.9^{\circ} \\ V_{A} - 1 & = 58.83 \text{ V } \angle -2.1^{\circ} \\ I_{A} - 2 \times Z_{D} & = 1.37 \text{ V } \angle 19.8^{\circ} \\ I_{-}0 \times Z & = 19.11 \text{ V } \angle 19.8^{\circ} \\ I_{-}0 \times Z_{D} & = 1.37 \text{ V } \angle 19.8^{\circ} \end{array}
```

- Overcurrent supervision: | 3 × I\_0 | = 4.09 A > 3 A
- Mho difference angle =  $|-3.9^{\circ} (-2.1^{\circ})| = 1.8^{\circ} < 75^{\circ}$
- Reactance difference angle = | -3.9° 19.8° | = 23.7° < 75°
- Zero-sequence directional difference angle = | 19.8° (-2.1°) | = 21.9° < 75°</li>
- Negative-sequence directional difference angle = | 19.8° (-2.1°) | = 21.9° < 75°</li>
- Fault-type comparator difference angle =  $|19.8^{\circ} 19.8^{\circ}| = 0.0^{\circ} < 50^{\circ}$

All four comparators and the overcurrent supervision are satisfied.

## The Zone 1 MHO phase A ground element will operate for this fault.

Zero-sequence directional difference angle for Zones 2 through 4 (phase A) = | 19.8° - 8.4° | = 11.4° < 90°.</li>

Zones 2 through 4 phase A ground elements will pick-up, time-out and operate.

## c) MHO AB PHASE ELEMENT

$$\begin{array}{lll} (I_A - I_B) \times Z - (V_A - V_B) & = 88.65 \ V \angle -78.7^{\circ} \\ (V_A - V_B)\_1M & = 112.08 \ V \angle 30.0^{\circ} \\ (I_A - I_B) \times Z & = 103.50 \ V \angle -21.2^{\circ} \\ (I_A - I_B) \times Z_D & = 7.39 \ V \angle -21.2^{\circ} \\ \end{array}$$

- Overcurrent supervision:  $|(I_A I_B) / \sqrt{3}| = 4.27 \text{ A} > 3 \text{ A}$
- Mho difference angle =  $|-78.7^{\circ} 30.0^{\circ}| = 108.7^{\circ} > 75^{\circ}$
- Reactance difference angle = | -78.7° (-21.2°) | = 57.5° < 75°
- Directional difference angle = | -21.2° 30.0° | = 51.2° < 75°</li>

The mho comparator is not satisfied.

## The MHO AB phase element will not operate for this fault.

Repeating the above analysis one concludes that out of the six distance elements only the ground element in phase A will operate for this fault.

# 8

#### d) QUAD PHASE A TO GROUND ELEMENT (BEFORE MEMORY EXPIRES)

- Overcurrent supervision:  $| 3 \times I_0 | = 4.09 \text{ A} > 3 \text{ A}$
- Reactance difference angle =  $|-3.9^{\circ} 19.8^{\circ}| = 23.7^{\circ} < 75^{\circ}$
- Zero-sequence difference angle =  $|-19.8^{\circ} 0.0^{\circ}| = 19.8^{\circ} < 75^{\circ}$
- Negative-sequence directional difference angle = | −19.8° − 0.0° | = 19.8° < 75°</li>
- Right blinder difference angle =  $|-93.0^{\circ} (-109.2^{\circ})| = 16.2^{\circ} < 90^{\circ}$
- Left blinder difference angle =  $|82.9^{\circ} 108.7^{\circ}| = 25.8^{\circ} < 90^{\circ}$
- Fault-type comparator difference angle =  $|19.8^{\circ} 19.8^{\circ}| = 0.0^{\circ} < 50^{\circ}$

All six comparators and the overcurrent supervision are satisfied.

The QUAD phase A ground element will operate for this fault.

8.2.1 DESCRIPTION

Consider the negative-sequence directional overcurrent element. As illustrated below, the negative-sequence voltage could be low during internal fault conditions.

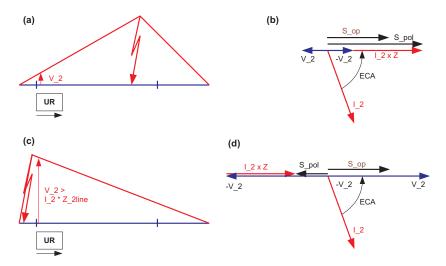



Figure 8-4: OFFSET IMPEDANCE AUGMENTATION

In order to ensure operation of the element under such circumstances the angle comparator uses a polarizing voltage augmented by the negative-sequence current as per following equations:

• Forward-looking element: S\_pol = -V\_2+I\_2 × Z\_offset × 1∠ECA

 $S_{op} = I_2 \times 1 \angle ECA$ 

• Reverse-looking element:  $S_{pol} = -V_2 + I_2 \times Z_{offset} \times 1 \angle ECA$ 

 $S_{op} = -I_2 \times 1 \angle ECA$ 

where: ECA = forward ECA angle (maximum torque angle); Z\_offset = offset impedance

The effect of the augmentation for forward and reverse fault is shown in the figures above. As long as the offset impedance is not higher than the negative-sequence line impedance the element will ensure correct and fast fault direction identification for both forward and reverse faults. The same principle applies to the neutral directional overcurrent element.

**8.2.2 EXAMPLE** 

Consider relay input signals as in the DISTANCE ELEMENTS ANALYSIS section and assume an offset impedance of 4  $\Omega$  and ECA and limit angles of 88° and 90°, respectively. The relay calculates the following negative-sequence quantities:

$$V_2 = 6.39 \text{ V } \angle -159.6^\circ; I_2 = 1.37 \text{ A } \angle -68.1^\circ; I_1 = 2.94 \text{ A } \angle -144.2^\circ$$

and the following signals for the directional unit of the negative-sequence directional overcurrent element:

Forward-looking element: S\_pol = 11.87 V ∠20.2°

 $S_{op} = 1.37 \text{ V} \angle 20.2^{\circ}$ 

Reverse-looking element: S\_pol = 11.87 V∠20.2°

 $S_{op} = 1.37 \text{ V} \angle -160.0^{\circ}$ 

After comparing the angles, a solid forward indication is given.

Assume further the pickup setting of 0.25 A for both forward and reverse directions, and the "Negative-sequence" mode setting entered for the overcurrent unit of the element. The relay calculates the operating signal using the positive-sequence restraint:

$$I_{op} = |I_2| - |I_1| / 8 = 1.003 A > 0.25 A.$$

The overcurrent unit will pickup and the element will operate in the forward direction.

8.3.1 DESCRIPTION

Faults on or in a close vicinity of series compensated lines may create problems for distance protection:

- Voltage and/or current inversion may lead to false direction discrimination by directional elements. This may potentially
  include both a failure to operate on a forward in-zone fault as well as misoperation on a reverse fault. Both distance
  and overcurrent directional elements can be affected.
- Series-capacitors and their overvoltage protection equipment (air gaps and/or Metal-Oxide Varistors) have a steady-state overreaching effect on the apparent impedance seen by the relay a forward fault may appear much closer to the relay as compared with the actual fault location. The apparent impedance may be shifted towards the relay by as much as the total reactance of the series capacitors placed between the potential source of the relay and the fault point. This extreme steady-state overreach happens during low-current faults when the air-gaps do not flashover or the MOVs do not conduct any significant current.
- In addition to the above steady-state overreach effect; sub-synchronous oscillations in both currents and voltages may cause significant transient overreach.

Distance protection elements of the D60 deal with the problem of voltage inversion by using 100% memory polarized directional comparators. As the memory duration is set longer that the slowest fault clearing time for reverse faults, it is guaranteed that the distance element would not pick-up on reverse faults should the voltage inversion happen.

At the same time, it is guaranteed that the distance elements would pick-up for all forward faults regardless of any voltage inversion as long as the memory voltage is used. Before the memory expires the relay would respond to any fault on the protected line. Stepped distance backup zones operate after the memory voltage expires. But the backup protection responds to distant faults that do not cause any inversion of the positive-sequence voltage. As a result, the time-delayed stepped-distance zones are guaranteed to operate.

Distance protection elements of the D60 deal with the problem of current inversion by using a multi-input-comparator approach as described in the DISTANCE CHARACTERITICS subsection. Should the current inversion happen, the distance elements are secure on reverse faults because multiple conditions involving fault-loop, negative-sequence and zero-sequence currents and the memory voltage are checked prior to declaring a forward fault.

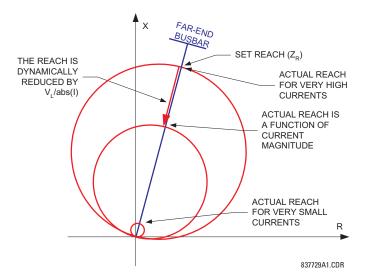
On close-in forward faults beyond the series capacitors as seen from the relaying point, the current inversion phenomenon may take place for a short period of time. The condition cannot sustain for a long time as very high fault currents would occur causing large voltage drops across the series capacitors and prompting the overvoltage protection of the capacitors to operate quickly. This would effectively remove the series compensation and eliminate the current inversion. However, when the currents used by distance comparator (fault-loop current for ground and phase distance protection, and the negative- and zero-sequence currents for ground elements) stay shifted by more than 90 degrees from their natural fault position determined by the user as the element characteristic angle, the distance elements may fail to pick-up on such a forward fault for the brief period of current inversion. This is an inherent attribute of the 100% memory polarized mho element, and not a weakness particular to the D60 relay.

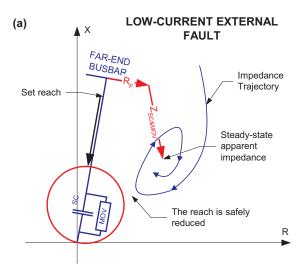
Therefore, for dependability, it is recommended to use high-set phase overcurrent protection for direct tripping on close-in faults potentially causing current inversion, and overreaching ground fault directional overcurrent functions (such as negative-sequence, ground or neutral) for communication-aided schemes.

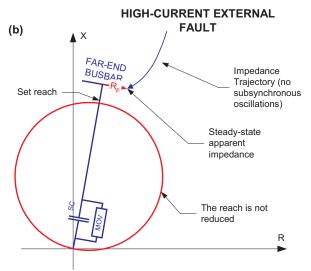
The problem of steady-state overreaching due to the negative reactance of the series capacitors may be addressed in the D60 in a traditional way by shortening the reach of an underreaching distance elements to the net inductive reactance of the line between the potential source and the far end busbar (-s). This generic approach has two major drawbacks. First, it leaves large portion of the line uncovered by the directly tripping distance protection. Second, it does not solve the transient overreaching problem caused by sub-synchronous oscillations.

Therefore, the D60 offers a unique option for dynamic reach control that is effectively based on the magnitude of the current flowing through the series capacitor bank (-s). The underreaching distance functions can be set as for plain uncompensated line, i.e. using the impedance of the line alone, and the relay would control an effective reach accordingly using the current magnitude as illustrated in the figure below.

The reach is reduced sufficiently to cope with both steady-state and transient overreach phenomena. For large degrees of compensation and small-current faults, the transient overreach may be as high as 100%. This means that fast distance protection is not achievable. The adaptive D60's mechanism would guarantee security on external faults. Overreaching ground fault directional overcurrent functions (such as negative-sequence, ground or neutral) shall be used for dependability.





Figure 8-5: DYNAMIC REACH CONTROL


Section (a) of the figure below shows the effect of adaptive reach control for low-current external fault. The reach is reduced sufficiently to cope with both transient and steady-state overreach. Section (b) shows a high-current external fault. The air gaps or MOVs conduct majority of the fault current and neither steady-state nor transient overreach takes place. The relay does not reduce its reach as it is not necessary. Section (c) shows a high-current internal fault. Because of the large current, the reach is not reduced and the element responds to this internal fault. Traditional approach would leave this fault out of the relay reach.

The neutral and negative-sequence directional protection functions of the relay cope with the voltage and/or current inversions by adding appropriate offset to their polarizing signals as explained in the GROUND DIRECTIONAL OVERCURRENT subsection. The offset impedance can always be successfully selected to guarantee correct fault direction discrimination regardless of the degree of compensation and location of the series capacitors and the potential source.

Refer to the APPLICATION OF SETTINGS chapter for detailed recommendations on settings for series compensation applications.

8-13





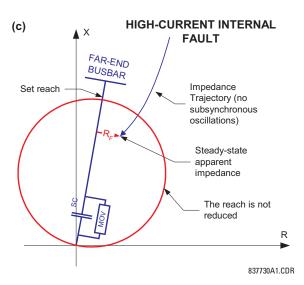



Figure 8-6: DYNAMIC REACH FOR EXTERNAL AND INTERNAL FAULTS

See the SINGLE POLE OPERATION diagram in this section for an overview of trip and reclose operations.

Single pole operations make use of many features of the relay. At the minimum, the Trip Output, Recloser, Breaker Control, Open Pole Detector, and Phase Selector must be fully programmed and in service; and either protection elements or digital inputs representing fault detection must be available for successful operation. When single pole trip-and-reclose is required overall control within the relay is performed by the Trip Output element. This element includes interfaces with pilot aided schemes, the Line Pickup, Breaker Control, and Breaker Failure elements.

Single pole operations are based on use of the Phase Selector to identify the type of the fault, to eliminate incorrect fault identification that can be made by distance elements in some circumstances and to provide trip initiation from elements that are not capable of any fault type identification, such as high-set negative-sequence directional overcurrent element. The scheme is also designed to make use of the advantages provided by communications channels with multiple-bit capacities for fault identification.

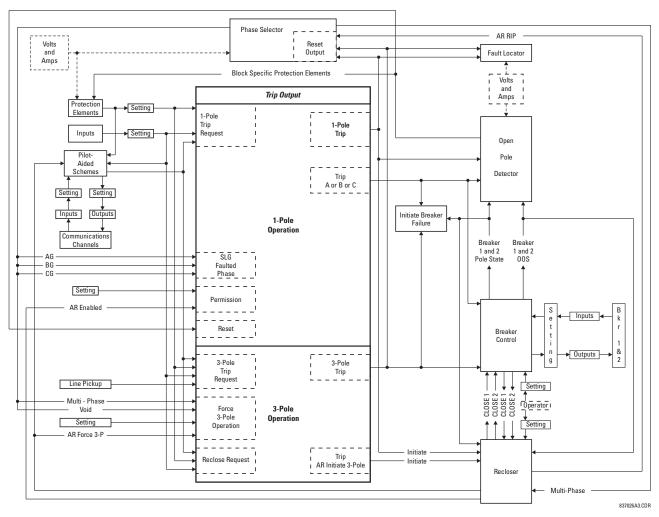



Figure 8-7: SINGLE-POLE OPERATION

The Trip Output element receives requests for single and three pole trips and three pole reclose initiation, which it then processes to generate outputs that are used to:

- determine whether a single or three pole operation should be performed
- initiate tripping of breaker poles A, B and C, either individually or as a group
- initiate Breaker Failure protection for phases A, B and C, either individually or as a group

- notify the Open Pole Detector when a single pole operation is imminent
- initiate either single or three pole reclosing
- notify the Phase Selector when a trip operation is imminent

When notified that a single pole operation has been initiated Open Pole Detector will:

- initiate blocking of protection elements that could potentially mis-operate when a breaker pole is open
- instruct the Phase Selector to de-assert all outputs, as an Open Pole invalidates calculations.

The operation of the scheme on a line in a single breaker arrangement will be described. The line is protected by a D60 relay using the Line Pickup, Z1 Phase and Ground Distance elements, and a Permissive Overreaching Transfer Trip scheme (using Z2 Phase and Ground distance elements as well as Negative-Sequence Directional Overcurrent elements, GND DIR O/C FWD: "NEG SEQ OC1 FWD", GND DIR O/C REV: "NEG SEQ OC1 REV"). Z1 is configured to issue a single-pole trip when appropriate (TRIP 1-POLE INPUT-1: "GND DIST Z1 OP", TRIP 1-POLE INPUT-2: "PHS DIST Z1 OP"). By default the POTT scheme will issue a single-pole trip. It is assumed that when tripping three-poles both the Z1 and the POTT shall initiate three-pole reclosing. This is achieved by setting TRIP RECLOSE INPUT-1: "POTT TRIP 3P", TRIP RECLOSE INPUT-2: "GND DIST Z1 OP", and TRIP RECLOSE INPUT-3: "PHS DIST Z1 OP".

It is assumed for this discussion that the relay features that are shown on SINGLE POLE OPERATION figure have all been programmed for the application and are in service. The description begins with line breakers open at both the local and remote ends, and the operation of the scheme is described in chronological order.

Because the line is de-energized the Line Pickup element is armed. The Recloser is presently enabled. An operator requests that Breaker Control close the breaker, and it operates output relays to close breaker poles A, B and C. This operator manual close request is also forwarded from BREAKER CONTROL to RECLOSER, which becomes disabled, deasserting its ENABLED output. This output is transferred to TRIP OUTPUT, where it converts any input request for a single pole operation into a three-pole operation. At RECLOSER, the AR1 BLK TIME @ MAN CLOSE timer is started.

The breaker closes and status monitoring contacts on the breaker poles change state; the new breaker pole states are reported to BREAKER CONTROL, which in turn transfers these states to RECLOSER, TRIP OUTPUT, BREAKER FAIL-URE and OPEN POLE Detector. Because a fault is not detected the AR1 BLK TIME @ MAN CLOSE times out and the RECLOSER is enabled, which asserts the ENABLED output, informing TRIP OUTPUT that single pole trip operations are now permitted. When normal voltage appears on the line the LINE PICKUP element is disarmed. As the local line breaker has not tripped the operator closes the breaker at the remote end of the line, placing the line in service.

Several scenarios are considered below.

#### a) SLG FAULT

An AG fault occurs close to the considered relay. Immediately after the fault, the Disturbance Detector (50DD) picks-up and activates the PHASE SELECTOR. The PHASE SELECTOR recognizes an AG fault by asserting its PHASE SELECT AG operand. Ground distance Z1 (AG element) responds to the fault. As the fault is close to the relay the phase distance Z1 (AB, CA elements) may respond to this fault as well. In any case, a single-pole operation is requested by Z1 via the GND DIST Z1 OP and/or PHS DIST Z1 OP operands.

At this moment the request to trip is placed for the TRIP OUTPUT. As the fault is recognized as an AG fault, the TRIP PHASE A operand is asserted by the TRIP OUTPUT. This signal is passed to the BREAKER CONTROL scheme and results in tripping pole A of the breaker.

Simultaneously with the TRIP PHASE A operand, the TRIP 1-POLE operand is asserted. This operand activates the OPEN POLE detector. The latter detector responds to the TRIP PHASE A signal by declaring phase A open by asserting OPEN POLE OP FA (even before it is actually opened). The TRIP PHASE A signal resets only after the breaker actually operates as indicated by its auxiliary contact. At this moment the OPEN POLE detector responds to the breaker position and continues to indicate phase A opened. This indication results in establishing blocking signals for neutral and negative-sequence overcurrent elements (OPEN POLE BLK N), and distance elements (OPEN POLE BLK AB, OPEN POLE BLK CA). The two latter operands block phase distance AB and CA elements, respectively (all zones); the OPEN POLE FA OP blocks the ground distance AG elements (all zones). As a result, the Z1 OP and Z2 PKP operands that were picked-up reset immediately. The following distance elements remain operational guarding the line against evolving faults: BG, CG and BC.

As Z2 and/or negative-sequence directional elements pick-up due to the fault, the permission to trip is keyed to the remote end. Assume here that a single-bit channel is used. If so, no extra information is sent to the remote end, just permission to trip sent over the TX1 operand. Upon receiving permission to trip over the RX1, the POTT decides to trip. The scheme will check the PHASE SELECTOR for phase type identification and will issue a trip for phase A by asserting the POTT TRIP A operand. This operand is passed to the TRIP OUTPUT and results in exactly same action as described above for Z1.

Depending on response times, the actual trip is initiated either by the Z1 or by the POTT. At the moment TRIP 1-POLE operand is asserted, the PHASE SELECTOR resets and no other trip action could take place. After the trip command is issued all the picked up elements are forced to reset by the OPEN POLE detector.

The TRIP 1-POLE operand initiates automatically a single-pole autoreclose. The AR is started and asserts its AR RIP operand. This operand keeps blocking the PHASE SELECTOR so that it does not respond to any subsequent events. At the same time the operand removes zero-sequence directional supervision from ground distance zones 2 and 3 so that they could respond to a single-line-to-ground fault during OPEN POLE conditions.

8 msec after the AR is initiated, the AR FORCE 3-P TRIP operand is asserted. This operand acts as an enabler for any existing trip request. In this case none of the protection elements is picked up at this time, therefore no more trips are initiated.

When the RECLOSER dead time interval is complete it signals BREAKER CONTROL to close the breaker. BREAKER CONTROL operates output relays to close the breaker.

When pole A of the breaker closes this new status is reported to BREAKER CONTROL, which transfers this data to BREAKER FAILURE, RECLOSER, OPEN POLE detector and TRIP OUTPUT. The response at BREAKER FAILURE is dependent on the programming of that element. The response at RECLOSER is not relevant to this discussion. At OPEN POLE Detector the blocking signals to protection elements are de-asserted.

If the fault was transient the reset time would expire at RECLOSER and the AR FORCE 3-P TRIP and RIP outputs would be de-asserted, returning all features to the state described at the beginning of this description.

If the fault was permanent appropriate protection elements would detect it and place a trip request for the TRIP OUTPUT. As the AR FORCE 3-P TRIP is still asserted, the request is executed as a three-pole trip.

The response of the system from this point is as described above for the second trip, except the RECLOSER will go to lockout upon the next initiation (depending on the number of shots programmed).

## b) SLG FAULT EVOLVING INTO LLG

When an AG fault occurs the events unfold initially as in the previous example. If the fault evolves quickly, the PHASE SELECTOR will change its initial assessment from AG to ABG fault and when the trip request is placed either by the Z1 or the POTT, a trip-pole trip will be initiated. If this is the case, all three TRIP PHASE A, B and C operands will be asserted. The command is passed to the BREAKER CONTROL element and results in a three-pole trip. At the same time the RECLOSER is initiated as per settings of the TRIP OUTPUT. As the TRIP 3-POLE operand is asserted (not the TRIP 1-POLE operand) the OPEN POLE is not activated. Because the AR RIP in progress is asserted, the PHASE SELECTOR is blocked as well.

If the fault evolves slowly, the sequence is different: The relay trips phase A as in the previous example. The PHASE SELECTOR Resets, the OPEN POLE detector is activated and forces Z1 and Z2 AG, AB, CA and negative-sequence overcurrent elements to reset. If the Z1 BG element picks up, or Z2 BG element picks up resulting in operation of the POTT scheme, no trip command will be issued until the AR FORCE 3-P TRIP is asserted. This happens 8 msec after the first trip. If at this time or any time later a request for trip is placed (due to an evolving fault), a three-pole trip is initiated. The TRIP 1-POLE operand is de-asserted by the TRIP 3-POLE operand, resetting the OPEN POLE detector. Shortly all three-poles are opened.

When the dead time expires, the RECLOSER signals the BREAKER CONTROL to close the breaker. At this time all the protection elements are operational, as the OPEN POLE is not blocking any elements. If the line-side VTs are used, the LINE PICKUP element is armed as well. If there is a fault on the line, these elements will pickup the fault and issue next request for trip. This request results in three-pole trip as the AR FORCE 3-P TRIP is still asserted.

The response of the system from this point is as described above for the second trip, except the RECLOSER will go to lock-out upon the next initiation (depending on the number of shots programmed).

The D60 uses phase relations between current symmetrical components for phase selection. First, the algorithm validates if there is enough zero-, positive-, and negative-sequence currents for reliable analysis. The comparison is adaptive; that is, the magnitudes of the three symmetrical components used mutually as restraints confirm if a given component is large enough to be used for phase selection. Once the current magnitudes are validated, the algorithm analyzes phase relations between the negative and positive-sequence currents and negative and zero-sequence currents (when applicable) as illustrated below.

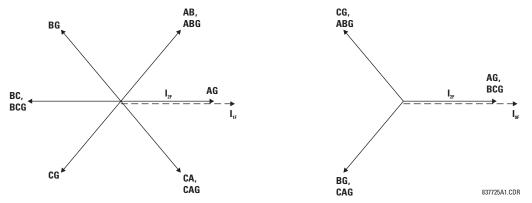



Figure 8–8: PHASE SELECTION PRINCIPLE (ABC PHASE ROTATION)

Due to dual comparisons, the algorithm is very secure. For increased accuracy and to facilitate operation in weak systems, the pre-fault components are removed from the analyzed currents. The algorithm is very fast and ensures proper phase selection before any of the correctly set protection elements operates.

Under unusual circumstances such as weak-infeed conditions with the zero-sequence current dominating during any ground fault, or during cross-country faults, the current-based phase selector may not recognize any of the known fault pattern. If this is the case, voltages are used for phase selection. The voltage algorithm is the same as the current-based algorithm, e.g. phase angles between the zero-, negative-, and positive-sequence voltages are used. The pre-fault values are subtracted prior to any calculations.

The pre-fault quantities are captured and the calculations start when the DISTURBANCE DETECTOR (50DD) operates.

When the trip command is issued by the TRIP OUTPUT logic (TRIP 1-POLE or TRIP 3-POLE) and during autoreclosure cycle (AR RIP), the phase selector resets all its output operands and ignores any subsequent operations of the DISTUR-BANCE DETECTOR.




Figure 8-9: PHASE SELECTOR LOGIC

In the D60 relay pilot-aided schemes transmit a code representing the type of fault determined by the local phase selector according to the scheme logic. At a receiving terminal the local and remote data is combined to determine the action to be performed. Schemes can be used with channels that can carry one, two or four bits. Using a one-bit channel, the schemes at all terminals of the line use their local phase selectors to identify the fault type and initiate appropriate tripping actions. In single pole operation applications however, a three-pole trip can be performed in the event of an in-line single-phase fault co-incident with a fault on a different phase (cross-country fault) that is within the reach of the local phase selector, which is considerably longer than the line. This possibility can be reduced by using a two-bit channel, and eliminated by using a four-bit channel.

Using two-bit channels, the relays can share limited information about their local phase selection, improving considerably the accuracy of single-pole tripping on cross-country faults. Two-bit channels however can only provide four different messages, one of which must be "no fault has been detected." With only three messages available it is not possible to transmit sufficient information to eliminate the use of local phase selector data, so a three-pole operation can occur in a cross-country fault condition. Using four-bit channels, the relays share enough information about fault types seen from all the line terminals that local fault selector data can be rejected. In addition, in multiple bit systems the relays do not respond to non-valid bit combinations, making the protection system more immune to communication problems than in a single bit system.

Each scheme within the relay has a setting that specifies the number of bits available on the associated communications channel. This setting defines the input (RX1, RX2, RX3, RX4) and output (TX1, TX2, TX3, TX4 for communications and [SCHEME ABBREVIATION] TRIP A, TRIP B, TRIP C, TRIP 3P for action) operands used by the scheme, the data codes used to convey fault data between terminals, and the method of combining information from the local and remote terminals to produce an output.

## a) SINGLE-BIT CHANNELS

The TX1 and RX1 operands are used, and fault data is coded per the following tables.

Table 8-5: PERMISSIVE SCHEME TRANSIT CODES FOR 1-BIT CHANNELS

| PHASE SELECTOR DETERMINATION OF           | BIT PATTERN TRANSMITTED |
|-------------------------------------------|-------------------------|
| FAULT TYPE                                | TX1                     |
| AG, BC, BCG, BG, CA, CAG, CG, AB, ABG, 3P | 1                       |
| Unrecognized or AR FORCE 3P TRIP          | 1                       |
| None of the above                         | 0                       |

Table 8-6: BLOCKING SCHEME TRANSIT CODES FOR 1-BIT CHANNELS

| PHASE SELECTOR DETERMINATION OF           | BIT PATTERN TRANSMITTED |
|-------------------------------------------|-------------------------|
| FAULT TYPE                                | TX1                     |
| AG, BC, BCG, BG, CA, CAG, CG, AB, ABG, 3P | 0                       |
| Unrecognized or AR FORCE 3P TRIP          | 0                       |
| None of the above                         | 1                       |

The action output is generated per the following tables.

Table 8-7: PERMISSIVE SCHEME TRIP TABLE FOR 1-BIT CHANNELS

| REMOT                | E DATA               | LOCAL DATA                                    |                   |  |
|----------------------|----------------------|-----------------------------------------------|-------------------|--|
| BIT PATTERN RECEIVED | REMOTE DETERMINATION | LOCAL DETERMINATION OF                        | TRIP OUTPUT       |  |
| RX1                  | OF FAULT TYPE        | FAULT TYPE                                    |                   |  |
| 1                    | Any                  | AG Fault                                      | Trip Phase A      |  |
| 1                    | Any                  | BG Fault                                      | Trip Phase B      |  |
| 1                    | Any                  | CG Fault                                      | Trip Phase C      |  |
| 1                    | Any                  | MULTI-P, Unrecognized, or<br>AR FORCE 3P TRIP | Trip Three Phases |  |

Table 8-8: BLOCKING SCHEME TRIP TABLE FOR 1-BIT CHANNELS

| REMO                 | TE DATA       | LOCAL DATA                                    |                   |  |
|----------------------|---------------|-----------------------------------------------|-------------------|--|
| BIT PATTERN RECEIVED |               |                                               | TRIP OUTPUT       |  |
| RX1                  | OF FAULT TYPE | FAULT TYPE                                    |                   |  |
| 0                    | Any           | AG Fault                                      | Trip Phase A      |  |
| 0                    | Any           | BG Fault                                      | Trip Phase B      |  |
| 0                    | Any           | CG Fault                                      | Trip Phase C      |  |
| 0                    | Any           | MULTI-P, Unrecognized, or<br>AR FORCE 3P TRIP | Trip Three Phases |  |

The scheme initiates a three-phase trip if the PHASE SELECTOR fails to recognize the fault type or after the AR FORCE 3P TRIP operand is.

## b) TWO-BIT CHANNELS

The TX1, TX2, RX1 and RX2 operands are used and fault data is coded per the following tables.

Table 8-9: PERMISSIVE SCHEME TRANSMIT CODES FOR TWO-BIT CHANNELS

| PHASE SELECTOR DETERMINATION     | BIT PATTERN TRANSMITTED |     |  |  |
|----------------------------------|-------------------------|-----|--|--|
| OF FAULT TYPE                    | TX1                     | TX2 |  |  |
| AG, BC, BCG                      | 1                       | 0   |  |  |
| BG, CA, CAG                      | 0                       | 1   |  |  |
| CG, AB, ABG, 3P                  | 1                       | 1   |  |  |
| Unrecognized or AR FORCE 3P TRIP | 1                       | 1   |  |  |
| None of the above                | 0                       | 0   |  |  |

Table 8-10: BLOCKING SCHEME TRANSMIT CODES FOR TWO-BIT CHANNELS

| PHASE SELECTOR DETERMINATION OF FAULT TYPE | BIT PATTERN | TRANSMITTED | FLEXLOGIC™ OPERANDS<br>ASSERTED |          |
|--------------------------------------------|-------------|-------------|---------------------------------|----------|
|                                            | TX1         | TX2         | TX1 STOP                        | TX2 STOP |
| AG, BC, BCG                                | 0           | 1           | 1                               | 0        |
| BG, CA, CAG                                | 1           | 0           | 0                               | 1        |
| CG, AB, ABG, 3P                            | 0           | 0           | 1                               | 1        |
| Unrecognized or AR FORCE 3P TRIP           | 0           | 0           | 1                               | 1        |
| None of the above                          | 1           | 1           | 0                               | 0        |

The action output is generated per the following tables.

Table 8-11: PERMISSIVE SCHEME TRIP TABLE FOR TWO-BIT CHANNELS

|            | REMOTE      | DATA                 | LOCAL                    | DATA              |  |
|------------|-------------|----------------------|--------------------------|-------------------|--|
| BIT PATTER | RN RECEIVED | REMOTE DETERMINATION | LOCAL DETERMINATION      | TRIP OUTPUT       |  |
| RX1        | RX2         | OF FAULT TYPE        | OF FAULT TYPE            |                   |  |
| 1          | 0           | AG, BC, BCG          | AG, AB, ABG CA, CAG, 3P  | Trip Phase A      |  |
| 0          | 1           | BG, CA, CAG          | AG                       |                   |  |
| 1          | 1           | CG, AB, ABG, 3P      | AG                       |                   |  |
| 0          | 1           | BG, CA, CAG          | BG, AB, ABG, BC, BCG, 3P | Trip Phase B      |  |
| 1          | 1           | CG, AB, ABG, 3P      | BG                       |                   |  |
| 1          | 0           | AG, BC, BCG          | BG                       |                   |  |
| 1          | 1           | CG, AB, ABG, 3P      | CG, BC, BCG, CA, CAG     | Trip Phase C      |  |
| 1          | 0           | AG, BC, BCG          | CG                       |                   |  |
| 0          | 1           | BG, CA, CAG          | CG                       |                   |  |
| 1          | 1           | CG, AB, ABG, 3P      | AB, ABG, 3P              | Trip Three Phases |  |
| 1          | 0           | AG, BC, BCG          | BC, BCG                  |                   |  |
| 0          | 1           | BG, CA, CAG          | CA, CAG                  |                   |  |

Table 8-12: BLOCKING SCHEME TRIP TABLE FOR TWO-BIT CHANNELS

|            | REMOTE     | DATA                 | LOCAL                                          | . DATA            |
|------------|------------|----------------------|------------------------------------------------|-------------------|
| BIT PATTER | N RECEIVED | REMOTE DETERMINATION | LOCAL DETERMINATION                            | TRIP OUTPUT       |
| RX1        | RX2        | OF FAULT TYPE        | OF FAULT TYPE                                  |                   |
| 0          | 1          | AG, BC, BCG          | AG, AB, ABG CA, CAG, 3P                        | Trip Phase A      |
| 1          | 0          | BG, CA, CAG          | AG                                             |                   |
| 0          | 0          | CG, AB, ABG, 3P      | AG                                             |                   |
| 1          | 0          | BG, CA, CAG          | BG, AB, ABG, BC, BCG, 3P                       | Trip Phase B      |
| 0          | 0          | CG, AB, ABG, 3P      | BG                                             |                   |
| 0          | 1          | AG, BC, BCG          | BG                                             |                   |
| 0          | 0          | CG, AB, ABG, 3P      | CG, BC, BCG, CA, CAG                           | Trip Phase C      |
| 0          | 1          | AG, BC, BCG          | CG                                             |                   |
| 1          | 0          | BG, CA, CAG          | CG                                             |                   |
| 0          | 0          | CG, AB, ABG, 3P      | AB, ABG, 3P, Unrecognized, or AR FORCE 3P TRIP | Trip Three Phases |
| 0          | 1          | AG, BC, BCG          | BC, BCG Unrecognized, or<br>AR FORCE 3P TRIP   |                   |
| 1          | 0          | BG, CA, CAG          | CA, CAG Unrecognized, or<br>AR FORCE 3P TRIP   |                   |

## c) FOUR-BIT CHANNELS

The TX1, TX2, TX3, TX4, RX1, RX2, RX3 and RX4 operands are used.

Table 8–13: PERMISSIVE SCHEME TRANSMIT CODES FOR 4-BIT CHANNELS

| PHASE SELECTOR                   | BIT PATTERN TRANSMITTED |     |     |     |  |
|----------------------------------|-------------------------|-----|-----|-----|--|
| DETERMINATION OF FAULT TYPE      | TX1                     | TX2 | TX3 | TX4 |  |
| AG                               | 1                       | 0   | 0   | 0   |  |
| BG                               | 0                       | 1   | 0   | 0   |  |
| CG                               | 0                       | 0   | 1   | 0   |  |
| MULTI-P                          | 0                       | 0   | 0   | 1   |  |
| Unrecognized or AR FORCE 3P TRIP | 0                       | 0   | 0   | 1   |  |
| None of the above                | 0                       | 0   | 0   | 0   |  |

Table 8-14: BLOCKING SCHEME TRANSMIT CODES FOR 4-BIT CHANNELS

| PHASE SELECTOR                             | BIT PATTERN TRANSMITTED |     |     |     | FLEXLOGIC™ OPRERANDS ASSERTED |          |          |          |
|--------------------------------------------|-------------------------|-----|-----|-----|-------------------------------|----------|----------|----------|
| DETERMINATION OF FAULT TYPE                | TX1                     | TX2 | TX3 | TX4 | TX1 STOP                      | TX2 STOP | TX3 STOP | TX4 STOP |
| AG                                         | 0                       | 1   | 1   | 1   | 1                             | 0        | 0        | 0        |
| BG                                         | 1                       | 0   | 1   | 1   | 0                             | 1        | 0        | 0        |
| CG                                         | 1                       | 1   | 0   | 1   | 0                             | 0        | 1        | 0        |
| MULTI-P, Unrecognized, or AR FORCE 3P TRIP | 1                       | 1   | 1   | 0   | 0                             | 0        | 0        | 1        |
| None of the above                          | 1                       | 1   | 1   | 1   | 0                             | 0        | 0        | 0        |

The action output is generated per the following tables.

Table 8-15: PERMISSIVE SCHEME TRIP TABLE FOR 4-BIT CHANNELS

|              |             | REMO      | TE DATA |                             | LOCAL DATA                          |                   |  |
|--------------|-------------|-----------|---------|-----------------------------|-------------------------------------|-------------------|--|
| В            | IT PATTERI  | N RECEIVE | D       | REMOTE                      | LOCAL DETERMINATION OF              | TRIP OUTPUT       |  |
| RX1          | RX2         | RX3       | RX4     | DETERMINATION OF FAULT TYPE | FAULT TYPE                          |                   |  |
| 0            | 0           | 0         | 1       | MULTI-P                     | AG                                  | Trip Phase A      |  |
| 1            | 0           | 0         | 0       | AG                          | AG, AB, ABG, CA, CAG, 3P            |                   |  |
| 0            | 1           | 0         | 0       | BG                          | BG, AB, ABG, BC, BCG, 3P            | Trip Phase B      |  |
| 0            | 0           | 0         | 1       | MULTI-P                     | BG                                  |                   |  |
| 0            | 0           | 1         | 0       | CG                          | CG, BC, BCG, CA, CAG, 3P            | Trip Phase C      |  |
| 0            | 0           | 0         | 1       | MULTI-P                     | CG                                  |                   |  |
| 1            | 0           | 0         | 0       | AG                          | BG, CG, BC, BCG                     | Trip Three Phases |  |
| 0            | 1           | 0         | 0       | BG                          | AG, CG, CA, CAG                     |                   |  |
| 0            | 0           | 1         | 0       | CG                          | AG, BG, AB, ABG                     |                   |  |
| 0            | 0           | 0         | 1       | MULTI-P                     | MULTI-P                             |                   |  |
| Any valid of | combination | •         | •       | Any                         | Unrecognized or<br>AR FORCE 3P TRIP |                   |  |
| Any other    | combination |           |         |                             |                                     | None              |  |

Table 8–16: BLOCKING SCHEME TRIP TABLE FOR FOUR-BIT CHANNELS

|             |             | REMO      | TE DATA |                                            | LOCAL DATA                          |                   |  |
|-------------|-------------|-----------|---------|--------------------------------------------|-------------------------------------|-------------------|--|
| В           | IT PATTERI  | N RECEIVE | D       |                                            |                                     | TRIP OUTPUT       |  |
| RX1         | RX2         | RX3       | RX4     | OF FAULT TYPE                              | OF FAULT TYPE                       |                   |  |
| 1           | 1           | 1         | 0       | MULTI-P                                    | AG                                  | Trip Phase A      |  |
| 0           | 1           | 1         | 1       | AG                                         | AG, AB, ABG, CA, CAG, 3P            |                   |  |
| 1           | 1           | 1         | 0       | MULTI-P                                    | BG                                  | Trip Phase B      |  |
| 1           | 0           | 1         | 1       | BG                                         | BG, AB, ABG, BC, BCG, 3P            |                   |  |
| 1           | 1           | 1         | 0       | MULTI-P                                    | CG                                  | Trip Phase C      |  |
| 1           | 1           | 0         | 1       | CG                                         | CG, BC, BCG, CA, CAG, 3P            |                   |  |
| 0           | 1           | 1         | 1       | AG                                         | BG, CG, BC, BCG                     | Trip Three Phases |  |
| 1           | 0           | 1         | 1       | BG                                         | AG, CG, CA, CAG                     |                   |  |
| 1           | 1           | 0         | 1       | CG                                         | AG, BG, AB, ABG                     |                   |  |
| 1           | 1           | 1         | 0       | MULTI-P                                    | MULTI-P                             |                   |  |
| 0           | 0           | 0         | 0       | Any – blockng channel<br>was not initiated | Trip as in a single-bit scheme      |                   |  |
| Any valid o | combination |           | •       | Any                                        | Unrecognized or<br>AR FORCE 3P TRIP |                   |  |
| Any other   | combination |           |         | <u>'</u>                                   |                                     | None              |  |

8

The "echo" feature can reduce the response time of an over-reaching scheme when a terminal is disconnected from the line. In this condition, a Zone 2 element at the terminal that remains in-service can detect a fault, but cannot trip, as a permissive signal is not received from the remote terminal. This feature is provided in the permissive over-reaching transfer trip and hybrid permissive over-reaching transfer trip schemes.

#### **Permissive Over-Reaching Transfer Trip Scheme:**

When used this feature will "echo" a reliable received permissive signal back to the originating terminal when a lineend-open condition is identified by the Line Pickup logic. The Permissive Echo is programmed as a one-shot logic. The echo is sent only once and then the echo logic locks out for a settable period. The duration of the echo pulse does not depend on the duration or shape of the received RX signals but is settable.

The echo is sent back only if none of the overreaching protection elements operates.

## Hybrid Permissive Over-Reaching Transfer Trip Permissive Echo:

When used this feature will "echo" a reliable received permissive signal back to the originating terminal if the line-endopen condition is recognized by the LINE PICKUP scheme and the fault is not identified as a reverse fault by the zone 4 or the ground directional overcurrent function (if used). The Permissive Echo is programmed as a one-shot logic. The echo is sent only once and then the echo logic locks out for a settable period. The duration of the echo pulse does not depend on the duration or shape of the received RX signal but is settable as ECHO DURATION.

The echo is sent back only if none of the overreaching protection elements operates.

## **Permissive Echo Operands And Transmit Codes:**

In single-pole tripping, single-bit channel applications the signal received on bit no. 1 (RX1) is echoed back on bit no. 1 (TX1). In two- and four-bit applications the following Echo Tables apply.

Table 8-17: ECHO TABLE FOR 2-BIT CHANNELS

| LOCAL DETERMINATION                        | ECHOED BITS        |     |  |
|--------------------------------------------|--------------------|-----|--|
| OF FAULT TYPE                              | TX1                | TX2 |  |
| AG                                         | 1                  | 0   |  |
| BG                                         | 0                  | 1   |  |
| CG                                         | 1                  | 1   |  |
| MULTI-P, Unrecognized, or AR FORCE 3P TRIP | Repeat as received |     |  |

## Table 8-18: ECHO TABLE FOR 4-BIT CHANNELS

| LOCAL DETERMINATION OF                     | ECHOED BITS        |     |     |     |
|--------------------------------------------|--------------------|-----|-----|-----|
| FAULT TYPE                                 | TX1                | TX2 | TX3 | TX4 |
| AG                                         | 1                  | 0   | 0   | 0   |
| BG                                         | 0                  | 1   | 0   | 0   |
| CG                                         | 0                  | 0   | 1   | 0   |
| MULTI-P, Unrecognized, or AR FORCE 3P TRIP | Repeat as received |     |     |     |

# 3

#### 8.4.5 COORDINATION BETWEEN PILOT SCHEMES AND PHASE SELECTOR

For local fault type identification the pilot schemes use the Phase Selector. The latter may fail to respond to certain fault scenarios. Examples are: simultaneous forward and reverse fault, simultaneous SLG and LL fault involving different phases (e.g. AG and BC) or two simultaneous faults in the same direction but at very different locations. The Phase Selector is optimized to either indicate correctly the forward fault or to assert the VOID flag. For example, a combination of AG and BC is not a valid fault type - it is two different simultaneous faults and as such cannot be described by any single fault pattern, therefore, the Phase Selector would assert the VOID flag.

The VOID phase selection combined with a local trip request (such as high-set directional overcurrent) will result in three-pole trip as per TRIP OUTPUT logic.

The Pilot Schemes, however, try to recover more information from the distance elements. Each scheme uses a forward looking, either underreaching or overreaching, distance zone. A given Pilot Scheme analyzes this zone for fault type identification if the Phase Selector asserts its VOID flag: the DUTT scheme uses Z1; all the other schemes use Z2. The schemes analyze all six fault loops of the zone to determine the fault type.

For example, simultaneous forward AG and reverse BG faults may result in the VOID indication. The POTT scheme would analyze the Z2 response. As only the AG element is picked up, the local phase selection is determined as AG. This is a correct indication.

Depending on the number of bits used for communications, the accuracy of the overall response will be further improved as illustrated in the next subsection.

This enhanced operation of the pilot-aided schemes is the reason to use a short pilot scheme priority time when setting the Trip Output logic. The timer will force the scheme to wait for a decision from the pilot scheme for a short period of time before accepting any local trip request. The advantage, however, materializes only if more than one-bit communications channels are used, and is important only on parallel lines or when the application requires maximum accuracy of single-pole tripping. In other cases, it is not recommended to delay the local trip decision.

#### 8.4.6 CROSS COUNTRY FAULT EXAMPLE

Assume a single pole operation application where D60 relays are used to protect a two terminal line, (terminals T1 and T2) using phase and ground distance zone 1, 2 and 3 elements in a permissive over-reaching transfer trip scheme. The performance of the system with one- two and four-bit communications channels is outlined for a mid-line phase A-to-ground fault and a co-incident phase B-to-ground fault just behind terminal T2. Assume also that the reclosers are enabled and reset.

At T1 the following protection elements will pickup:

- Ground Distance Zone 1, 2, and 3 for an AG fault
- Ground Distance Zone 2 and 3 for a BG fault
- Phase Distance Zone 2 and 3 for an AB fault

At T1 the phase selector will determine the fault is type ABG. This response is independent from the distance elements – the Phase Selector sees two forward faults.

At T2 the following protection elements will pickup:

Ground Distance Zone 1, 2, and 3 for an AG fault

At T2 the phase selector will determine the fault is type AG. The reverse BG fault is likely to be ignored.

If a one-bit channel is used, terminal T1 will trip three poles but terminal T2 will trip phase A only, (see the Tables below) which is undesirable.

| TERMINAL | REMO                 | TE DATA              | LOCAL DATA          |                   |  |
|----------|----------------------|----------------------|---------------------|-------------------|--|
|          | BIT PATTERN RECEIVED | REMOTE DETERMINATION | LOCAL DETERMINATION | TRIP OUTPUT       |  |
|          | RX1                  | OF FAULT TYPE        | OF FAULT TYPE       |                   |  |
| T1       | 1                    | Any                  | MULTI-P (ABG)       | Trip Three Phases |  |
| T2       | 1                    | Any                  | AG                  | Trip Phase A      |  |

If a two-bit channel is used both terminals will trip phase A only, (see the Tables below) which is the desired outcome.

| TERMINAL |                      | REMOT | E DATA               | LOCAL DATA    |              |  |
|----------|----------------------|-------|----------------------|---------------|--------------|--|
|          | BIT PATTERN RECEIVED |       | REMOTE DETERMINATION |               | TRIP OUTPUT  |  |
|          | RX1 RX2              |       | OF FAULT TYPE        | OF FAULT TYPE |              |  |
| T1       | 1                    | 0     | AG                   | ABG           | Trip Phase A |  |
| T2       | 1                    | 1     | ABG                  | AG            | Trip Phase A |  |

If a four-bit channel is used both terminals will trip phase A only, (see the Tables below) which is the desired outcome.

| ٦ | <b>TERMINAL</b> | REMOTE DATA          |     |     |      |                      | LOCAL DATA          |              |  |
|---|-----------------|----------------------|-----|-----|------|----------------------|---------------------|--------------|--|
|   |                 | BIT PATTERN RECEIVED |     |     | IVED | REMOTE DETERMINATION | LOCAL DETERMINATION | TRIP OUTPUT  |  |
|   |                 | RX1                  | RX2 | RX3 | RX4  | OF FAULT TYPE        | OF FAULT TYPE       |              |  |
|   | T1              | 0                    | 0   | 0   | 1    | AG                   | ABG                 | Trip Phase A |  |
|   | T2              | 1                    | 0   | 0   | 0    | ABG                  | AG                  | Trip Phase A |  |

This chapter provides general application guidelines for stepped distance, overcurrent and pilot protection. Where relevant, design details and performance characteristics of the D60 are given to facilitate the process of setting the relay for a given application.

#### 9.1.2 IMPACT OF THE USE OF MEMORY POLARIZATION

As explained in THEORY OF OPERATION chapter, the D60 uses a memorized positive sequence voltage as a polarizing signal in order to achieve dependable operation for forward faults and secure non-operation for reverse faults.

The dynamic shift of the characteristic ensures improved directionality, but it also means that if a backup function is required for a reverse fault on the bus, then it is appropriate to reverse the zone 4 so that a time delayed backup function may be obtained. As mentioned earlier, it may be beneficial to also avoid extremely large reach settings by setting a remote backup so that it is reverse looking. This strategy can be beneficial if the reduced reach enhances the discrimination between the load and fault conditions.

#### 9.1.3 HIGH SET OVERCURRENT ELEMENTS

Especially at low SIR values, fast fault clearance times may be seen as extremely important, both from system stability, and from equipment damage viewpoints. The high-set overcurrent element, when set appropriately, can be extremely useful in achieving these goals. It helps the setting calculations if the system impedances are reasonably well known.

The overcurrent pick up should be set to the greater of the following values:

- 1. The maximum infeed seen by the relay, for a close in reverse fault.
- 2. The maximum fault level seen by the relay for a fault at 100% of the protected line.

The maximum error of the phase overcurrent elements is below 2%. A safety factor of 1.25 should be used to account for relay errors and system impedance uncertainty.

If CT saturation is an issue such as close to a generation where long lasting dc components are likely to saturate the CTs, it should be noted that the IOC elements require 1.33 cycle of data to operate for a multiple of pickup of 1.01. For higher multiples of pickup, the relation between the multiple of pickup and the amount of data required for operation before complete CT saturation is approximately linear. For example, for a multiple of pickup of 4, approximately 1.33 / 4 = 0.332 of power cycle is required by the phase IOC to operate. The above information should not be confused with the operating time, which includes some inherent delays such as a trip rated output contact.

## a) PHASE CURRENT SUPERVISION AND USAGE OF THE FUSE FAILURE ELEMENT

The phase-to-phase (delta) current is used to supervise the phase distance elements, primarily to ensure that in a de-energized state the distance elements will not be picked up due to noise or induced voltages, on the line.

However, this supervision feature may also be employed to prevent operation under fuse failure conditions. This obviously requires that the setting must be above maximum load current and less than the minimum fault conditions for which operation is expected. This potential problem may be avoided by the use of a separate fuse fail function, which means that the phase current supervision can be set much lower, typically 2 times the capacitance charging current of the line.

The usage of the fuse fail function is also important during double-contingency events such as an external fault during fuse fail conditions. The current supervision alone would not prevent maloperation in such circumstances.

It must be kept in mind that the Fuse Failure element provided on the D60 needs some time to detect fuse fail conditions. This may create a race between the instantaneous Zone 1 and the Fuse Failure element. Therefore, for maximum security, it is recommended to both set the current supervision above the maximum load current and use the Fuse Failure function. The current supervision prevents maloperation immediately after the fuse fail condition giving some time for the Fuse Failure element to take over and block the distance elements permanently. This is of a secondary importance for time-delayed Zones 2 through 4 as the Fuse Failure element has some extra time for guaranteed operation. The current supervision may be set below the maximum load current for the time delayed zones.

Blocking distance elements during fuse fail conditions may not be acceptable in some applications and/or under some protection philosophies. Applied solutions may vary from not using the Fuse Failure element for blocking at all; through using it and modifying − through FlexLogic<sup>™</sup> and multiple setting groups mechanisms − other protection functions or other relays to provide some protection after detecting fuse fail conditions and blocking the distance elements; to using it and accepting the fact that the distance protection will not respond to subsequent internal faults until the problem is addressed.



To be fully operational, the Fuse Failure element must be enabled, and its output FlexLogic™ operand must be indicated as the blocking signal for the selected protection elements.

For convenience, the current supervision threshold incorporates the square root of 3 factor.

### b) PHASE DISTANCE ZONE 1

As typically used for direct tripping, the Zone 1 reach must be chosen so that it does not extend beyond the far end (s) of the protected line. The Zone 1 provides nominally instantaneous protection for any phase fault within a pre-determined distance from the relay location. To ensure that no overreach occurs, typically requires a setting of 80 to 90% of the line length, which covers CT and VT errors, relay inaccuracy and transient overreach as well as uncertainty in the line impedance for each phase, although transposition may minimize this latter concern. The total relay inaccuracy including both steady state and transient overreach even when supplied from CVTs under the Source Impedance Ratios of up to 30, is below 5%.

#### c) PHASE DISTANCE ZONE 2

The Zone 2 is an overreaching element, which essentially covers the final 10 to 20% of the line length with a time delay. The additional function for the Zone 2 is as a timed backup for faults on the remote bus. Typically the reach is set to 125% of the positive sequence impedance of the line, to ensure operation, with an adequate margin, for a fault at 100% of the line length. The necessary time delay must ensure that coordination is achieved with the clearance of a close-in fault on the next line section, including the breaker operating time.

Typically the Zone 2 time delay would be 0.2 to 0.6 sec., although this may have to be reviewed more carefully if a short line terminates on the remote bus because the two Zone 2 elements may overlap and therefore not coordinate satisfactorily.

## d) PHASE DISTANCE ZONE 3

If a remote backup philosophy is followed, then the reach of this element must be set to account for any infeed at the remote bus, plus the impedance of the longest line which terminates on this remote bus. The time delay must coordinate with other time-delayed protections on any remote line. Circuit loading limitations created by a long zone reach may be overcome by using lens or quadrilateral characteristics and/or a load encroachment supervising characteristic. Consideration should also be given to a situation where the load impedance may enter into the relay characteristic for a time longer than the chosen time delay, which could occur transiently during a system power swing. For this reason the Power Swing Blocking function should be used.

#### e) PHASE DISTANCE ZONE 4

A further contribution to remote backup, the reach of this element must be set to account for any infeed at the remote bus. The time delay must coordinate with other time-delayed protections on the next line. The use of a lens characteristic or the load encroachment element may be advantageous if load limits are a problem.

To avoid extremely large reach settings, the D60 has the ability to implement any element so that it is reverse looking, which then can provide a back up for the longest line terminated on the local bus. This strategy can be beneficial if the reduced reach helps discrimination between the load and fault conditions, but must be implemented at both ends of the protected line.

9.2.2 GROUND DISTANCE

## a) NEUTRAL CURRENT SUPERVISION

The current supervision for the ground distance elements responds to an internally calculated neutral current (3 x I\_0). The setting for this element should be based on twice the zero-sequence line capacitance current or the maximum zero-sequence unbalance under maximum load conditions. This element should not be used to prevent an output when the load impedance is inside the distance characteristic on a steady state basis.

## b) GROUND DISTANCE ZONE 1

The Zone 1 reach must be set so that nominally instantaneous operation does not extend beyond the end of the protected line. However this may be somewhat more complicated than for the phase elements, because of zero sequence mutual induction with an adjacent parallel line, possibly carried on the same tower, which can be out of service and grounded at multiple points. A fault beyond 100% of the protected line may cause overreach unless the reach is reduced significantly, sometimes as low as 65% of the line length. If the line being protected does not have a significant interaction with an adjacent circuit, then the typical 80% setting may be used. If there is significant mutual coupling between the parallel lines, then the mutual compensation feature of the ground distance elements can be used instead of a drastic reduction in the reach.

However, even in this case, there is more uncertainty as compared with the phase distance elements because the zero-sequence impedance of the line and thus the zero-sequence-compensating factors may vary significantly due to weather and other conditions.

#### c) GROUND DISTANCE ZONE 2

To ensure that the Zone 2 can see 100% of the line, inter-circuit mutual effects must be considered, as they can contribute to a significant under-reach. Typically this may occur on double circuit lines, when both lines may carry the same current. An analytical study should be carried out to determine the appropriate reach setting.

The main purpose of this element is to operate for faults beyond the reach of the local Zone 1 element, and therefore a time delay must be used similar to the phase fault case.

### d) GROUND DISTANCE ZONE 3

This remote back up function must have a reach which is set to account for any infeed at the remote bus, plus the impedance of the longest line which terminates on this remote bus. Similar to the phase fault case, a Zone 3 element must be time coordinated with timed clearances on the next section.

## e) GROUND DISTANCE ZONE 4

As a further contribution to a remote backup philosophy, the reach of this element must be set to account for any infeed at the remote bus. The time delay must coordinate with other time-delayed protections on the next line. The use of a lens characteristic or load encroachment element may be advantageous if load limits are a problem. To avoid extremely large reach settings the D60 has the ability to implement any element, so that it is reverse looking. This strategy can be beneficial if the reduced reach enhances the discrimination between the load and fault conditions. It should be recognized however that, if adopted, this approach must be implemented at both ends of the protected line.

The D60 includes five common pilot-aided schemes:

- direct under-reaching transfer trip (DUTT)
- permissive under-reaching transfer trip (PUTT)
- permissive over-reaching transfer trip (POTT)
- hybrid permissive over-reaching transfer trip (HYB-POTT)
- directional comparison blocking

### 9.3.2 DIRECT UNDER-REACHING TRANSFER TRIP (DUTT)

This scheme uses an under-reaching Zone 1 distance element to key a transfer trip signal to the remote end(s), where on receipt, the DUTT pilot scheme operates without any additional supervision.

For proper operation of the scheme the Zone 1 phase and ground distance elements must be enabled, configured and set per rules of distance relaying.

The scheme generates an output operand (DUTT TX) that is used to transmit the signal to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface.

Note that the same protection signaling may be used by a breaker failure scheme, in which case the signal can be sealed in by breaker fail for a time longer than the auto-reclose "reclaim" time which then prevents auto-reclose when not required.

A provision for an optional seal-in of the send signal is made to cover those situations where PLC (Power Line Carrier) signaling is used and the signal must be transmitted in a potentially noisy situation due to the fault.

The scheme output operand (DUTT OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and auto-reclose, and drive a user-programmable LED as per user application.

#### 9.3.3 PERMISSIVE UNDER-REACHING TRANSFER TRIP (PUTT)

This scheme uses an under-reaching Zone 1 distance element to key a transfer trip signal to the remote end where it is supervised by the over-reaching Zone 2 distance elements.

For proper operation of the scheme the Zone 1 and 2 phase and ground distance elements must be enabled, configured and set per rules of distance relaying.

The scheme generates an output operand (PUTT TX) that is used to transmit the signal to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface.

The PUTT RX PICKUP DELAY timer can be used to ride through spurious PLC receive signals.

The scheme output operand (PUTT OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and auto-reclose, and drive a user-programmable LED as per user application.

#### 9.3.4 PERMISSIVE OVERREACHING TRANSFER TRIP (POTT)

This scheme is intended for two-terminal line applications only.

This scheme uses an over-reaching Zone 2 distance element to essentially compare the direction to a fault at both the ends of the line.

Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 2 distance element to key the scheme and initiate its operation. This provides increased coverage for high-resistance faults.

9

Good directional integrity is the key requirement for an over-reaching forward-looking protection element used to supplement Zone 2. Even though any FlexLogic<sup>™</sup> operand could be used for this purpose allowing the user to combine responses of various protection elements, or to apply extra conditions through FlexLogic<sup>™</sup> equations, this extra signal is primarily meant to be the output operand from either the Negative-Sequence Directional IOC or Neutral Directional IOC. Both of these elements have separate forward (FWD) and reverse (REV) output operands. The forward indication should be used (NEG SEQ DIR OC1 FWD or NEUTRAL DIR OC1 FWD).

An important consideration is when one of the line terminals is open. It is then necessary to identify this condition and arrange for a continuous sending of the permissive signal or use a slower but more secure echo feature to send a signal to the other terminal, which is producing the fault infeed. With any echo scheme however, a means must be provided to avoid a permanent lock up of the transmit/receive loop. The echo co-ordination (ECHO DURATION) and lock-out (ECHO LOCK-OUT) timers perform this function by ensuring that the permissive signal is echoed once for a guaranteed duration of time before going to a lockout for a settable period of time.

It should be recognized that in ring bus or breaker and a half situations, it may be the line disconnect or a combination of the disconnect and/or the breaker(s) status that is the indication that the terminal is open.

The POTT RX PICKUP DELAY timer is included in the permissive receive path to ride through spurious receive outputs that may be produced during external faults, when power line carrier is utilized as the communications medium.

No current reversal logic is included for the overreaching phase and ground distance elements, because long reaches are not usually required for two terminal lines. A situation can occur however, where the ground distance element will have an extended reach. This situation is encountered when it is desired to account for the zero sequence inter-circuit mutual coupling. This is not a problem for the ground distance elements in the D60 which do have a current reversal logic built into their design as part of the technique used to improve ground fault directionality.

Unlike the distance protection elements the ground directional overcurrent functions do not have their reach well defined, therefore the current reversal logic is incorporated for the extra signal supplementing Zone 2 in the scheme. The transient blocking approach for this POTT scheme is to recognize that a permissive signal has been received and then allow a settable time TRANS BLOCK PICKUP DELAY for the local forward looking directional element to pick up.

The scheme generates an output operand (POTT TX) that is used to transmit the signal to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface. Power Line Carrier (PLC) channels are not recommended for this scheme since the PLC signal can be interrupted by a fault.

For proper operation of the scheme the Zone 2 phase and ground distance elements must be enabled, configured and set per rules of distance relaying. The LINE PICKUP element should be enabled, configured and set properly to detect line-end-open/weak-infeed conditions.

If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured and set accordingly The output operand from the scheme (POTT OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and auto-reclose, and drive a user-programmable LED as per user application.

### 9.3.5 HYBRID POTT SCHEME (HYB-POTT)

Generally, this scheme uses an over-reaching Zone 2 distance element to essentially compare the direction to a fault at both ends of the line. Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 2 distance element to key the scheme and initiate its operation. This increases the coverage for high-resistance faults.

The scheme is intended for three-terminal applications and for weak-infeed conditions. As a long reach of the overreaching distance element may be required for three-terminal applications, transient blocking logic is provided for both distance and ground directional overcurrent elements. In order to cope with weak-infeed conditions an echo feature is made available.

By default the scheme uses the reverse-looking Zone 4 distance element to identify reverse faults. Additionally, reverse-looking ground directional overcurrent functions can be used in conjunction with Zone 4.

For proper operation of the scheme the Zone 2 and 4 phase and ground distance elements must be enabled, configured and set per rules of distance relaying. The LINE PICKUP element should be enabled, configured and set properly to detect line-end-open/weak-infeed and undervoltage conditions.

9

If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured and set accordingly.

The scheme generates an output operand (HYBRID POTT TX) that is used to transmit the signal to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface.

For more application recommendation refer to the POTT scheme.

The output operand from the scheme (HYBRID POTT OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and auto-reclose, and drive a user-programmable LED as per user application.

#### 9.3.6 DIRECTIONAL COMPARISON BLOCKING SCHEME

Generally, the scheme compares the direction to a fault at both ends of the line. Unlike the permissive schemes, the absence of a blocking signal permits operation of the scheme. Consequently, the scheme is biased toward dependability and requires an "on/off" type of signaling.

By default this scheme uses only a forward-looking over-reaching Zone 2 distance element to identify forward faults. Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 2 distance element to increase the coverage for high-resistance faults.

By default the scheme uses only a reverse-looking Zone 4 distance element to identify reverse faults. Ground directional overcurrent functions available in the relay can be used in conjunction with the Zone 4 distance element for better time and sensitivity coordination.

For proper operation of the scheme the Zone 2 and 4 phase and ground distance elements must be enabled, configured and set per rules of distance relaying.

If used by this scheme, the selected ground directional overcurrent function(s) must be enabled, configured and set accordingly.

The scheme generates output operands (BLOCKING SCHEME TX INIT and BLOCKING SCHEME TX STOP) that are used control the transmission of signals to the remote end. Choices of communications channel include Remote Inputs/Outputs and telecommunications interfaces. When used with telecommunications facilities the output operand should be assigned to operate an output contact connected to key the transmitter at the interface.

A blocking scheme may be preferred over a Hybrid-POTT scheme, because of shorter reach settings for the Zone 2 elements. This follows from the fundamental difference that all zone 2 elements are required to see an internal fault for the POTT approach, under all system conditions, which in turn, means that the reversed Zone 4 block initiate elements must also have an increased reach. A blocking scheme on the other hand, can have much shorter Zone 2 reach settings if sequential clearance can be accepted. The simple rule to ensure that all faults can be cleared, is for each terminal to have a reach setting equal to the distance to the tap plus twice the distance from the tap to the remote terminal.

The Zone 2 element must have a coordinating timer BLOCK RX CO-ORD PKP DELAY, to ensure that the blocking signal is received for all external faults that are within the set reach of the local overreaching Zone 2.

Transient blocking logic is implemented via timer TRANS BLOCK, which continues to send a blocking signal for a settable time TRANS BLOCK RESET DELAY, if it was being sent for at least 30 ms during the initial reverse fault set via TRANS BLOCK PICKUP DELAY.

The output operand from the scheme (BLOCKING SCHEME OP) must be configured to interface with other relay functions, output contacts in particular, in order to make the scheme fully operational. Typically, the output operand should be programmed to initiate a trip, breaker fail, and auto-reclose, and drive a user-programmable LED as per user application.

For reasons described in the THEORY OF OPERATION chapter it is recommended to apply a combination of distance, ground directional overcurrent and high-set overcurrent functions for protection of series compensated lines.

The setting rules described below must take into account variety of system configurations, particularly a status of series capacitors (in-service, by-passed). Either the worst-case topology shall be considered or - if possible - adaptive settings shall be applied though the MULTIPLE SETTING GROUPS mechanism.

A line compensating capacitor is a bank of three physical capacitors and their overvoltage protecting devices (air gaps and/ or MOVs). If none of the MOV/gaps conducts any significant current, the positive-, negative- and zero-sequence reactance of the three-phase bank equal the reactance of the actual (phase) capacitors. Under asymmetrical conditions, however, such as a single line to ground fault, when only one MOV/gap may operate, the series capacitor bank would create extra (series) asymmetry in addition to the fault (shunt) asymmetry. The positive-, negative- and zero-sequence impedances will differ from each other and will not equal the impedance of the phase capacitors. Moreover, there may be mutual coupling between the sequence networks representing the series capacitor bank. This makes analytical analysis of fault conditions very burdensome. For setting calculations, however, it is justified to assume the zero-, positive- and negative-sequence reactance of the capacitor bank equal the reactance of the actual (phase) capacitors. This represents a worst-case low-current fault scenario, when the steady-state effects of series compensation are most weighty.

9.4.2 DISTANCE

Traditionally, the reach setting of an underreaching distance function shall be set based on the net inductive impedance between the potential source of the relay and the far-end busbar, or location for which the zone must not overreach. Faults behind series capacitors on the protected and adjacent lines need to be considered for this purpose. For further illustration a sample system shown in the figure below is considered.

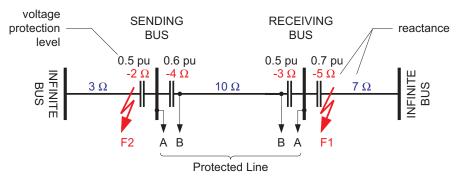



Figure 9-1: SAMPLE SERIES COMPENSATED SYSTEM

Assuming 20% security margin, the underreaching zone shall be set as follows.

At the SENDING BUS one must consider an external fault at F1 as the 5  $\Omega$  capacitor would contribute to the overreaching effect. Any fault behind F1 is less severe as extra inductive line impedance increases the apparent impedance:

```
Reach Setting: 0.8 \times (10-3-5) = 1.6 \Omega if the line-side (B) VTs are used Reach Setting: 0.8 \times (10-4-3-5) = -1.6 \Omega if the bus-side (A) VTs are used
```

The negative value means that an underreaching zone cannot be used as the circuit between the potential source of the relay and an external fault for which the relay must not pick-up, is overcompensated, i.e. capacitive.

At the RECEIVING BUS, one must consider a fault at F2:

```
Reach Setting: 0.8 \times (10 - 4 - 2) = 3.2 \Omega if the line-side (B) VTs are used Reach Setting: 0.8 \times (10 - 4 - 3 - 2) = 0.8 \Omega if the bus-side (A) VTs are used
```

Practically, however, to cope with the effect of sub-synchronous oscillations, one may need to reduce the reach even more. As the characteristics of sub-synchronous oscillations are in complex relations with fault and system parameters, no solid setting recommendations are given with respect to extra security margin for sub-synchronous oscillations. It is strongly recommended to use a power system simulator to verify the reach settings or to use an adaptive D60 feature for dynamic reach control.

If the adaptive reach control feature is used, the PHS DIST Z1 VOLT LEVEL setting shall be set accordingly.

If a minimuto flash over

This setting is a sum of the overvoltage protection levels for all the series capacitors located between the relay potential source and the far-end busbar, or location for which the zone must not overreach. The setting is entered in pu of the phase VT nominal voltage (RMS, not peak value).

If a minimum fault current level (phase current) is causing a voltage drop across a given capacitor that prompts its air gap to flash over or its MOV to carry practically all the current, then the series capacitor shall be excluded from the calculations (the capacitor is immediately by-passed by its overvoltage protection system and does not cause any overreach problems).

If a minimum fault current does not guarantee an immediate capacitor by-pass, then the capacitor must be included in the calculation: its overvoltage protection level, either air gap flash-over voltage or MOV knee-point voltage, shall be used (RMS, not peak value).

Assuming none of the series capacitors in the sample system is guaranteed to get by-passed, the following calculations apply:

For the SENDING BUS: 0.5 + 0.7 = 1.2 pu if the line-side (B) VTs are used

0.6 + 0.5 + 0.7 = 1.8 pu if the bus-side (A) VTs are used

For the RECEIVING BUS: 0.6 + 0.5 = 1.1 pu if the line-side (B) VTs are used

0.6 + 0.5 + 0.5 = 1.6 pu if the bus-side (A) VTs are used

### 9.4.3 GROUND DIRECTIONAL OVERCURRENT

Ground directional overcurrent function (negative-sequence or neutral) uses an offset impedance to guarantee correct fault direction discrimination. The following setting rules apply.

- 1. If the net impedance between the potential source and the local equivalent system is inductive, then there is no need for an offset. Otherwise, the offset impedance shall be at least the net capacitive reactance.
- 2. The offset cannot be higher than the net inductive reactance between the potential source and the remote equivalent system. For simplicity and extra security, the far-end busbar may be used rather than the remote equivalent system.

As the ground directional functions are meant to provide maximum fault resistance coverage, it is justified to assume that the fault current is very low and none of the series capacitors is guaranteed to get by-passed. Consider settings of the negative-sequence directional overcurrent protection element for the SAMPLE SERIES-COMPENSATED SYSTEM.

#### SENDING BUS relay, bus-side VTs:

- Net inductive reactance from the relay into the local system = -2 + 3 = 1 Ω > 0; there is no need for offset.
- Net inductive reactance from relay through far-end busbar =  $-4 + 10 3 = 3 \Omega$ ; the offset cannot be higher than  $3 \Omega$ .
- It is recommended to use 1.5  $\Omega$  offset impedance.

## SENDING BUS relay, line-side VTs:

- Net inductive reactance from relay into local system =  $-2 + 3 4 = -3 \Omega < 0$ ; an offset impedance  $\geq 3 \Omega$  must be used.
- Net inductive reactance from relay through far-end busbar =  $10 3 = 7 \Omega$ ; the offset cannot be higher than  $7 \Omega$ .
- It is recommended to use 5  $\Omega$  offset impedance.

#### RECEIVING BUS relay, bus-side VTs:

- Net inductive reactance from relay into local system = -5 + 7 = 2 Ω > 0; there is no need for offset.
- Net inductive reactance from relay through far-end busbar = -3 + 10 4 = 3 Ω; the offset cannot be higher than 3 Ω.
- It is recommended to use 1.5  $\Omega$  offset impedance.

#### RECEIVING BUS relay, line-side VTs:

- Net inductive reactance from relay into local system =  $-3 5 + 7 = -1 \Omega < 0$ ; an offset impedance  $\geq 1 \Omega$  must be used.
- Net inductive reactance from relay through far-end busbar =  $10 4 = 6 \Omega$ ; the offset cannot be higher than  $6 \Omega$ .
- It is recommended to use 3.5  $\Omega$  offset impedance.

## 9.4.4 HIGH-SET PHASE OVERCURRENT

The setting rules for high-set overcurrent protection are explained in the HIGH-SET OVERCURRENT ELEMENTS section.

10 COMMISSIONING 10.1 PRODUCT SETUP

The following tables are provided to keep a record of settings to be used on a relay.

10.1.1 PRODUCT SETUP

Table 10–1: PRODUCT SETUP (Sheet 1 of 14)

| Table 10–1: PRODUCT SETUP (S     | <u> </u> |
|----------------------------------|----------|
| SETTING                          | VALUE    |
| PASSWORD SECURITY                |          |
| Access Level                     |          |
| Command Password                 |          |
| Setting Password                 |          |
| Encrypted Command Password       |          |
| Encrypted Setting Password       |          |
| DISPLAY PROPERTIES               |          |
| Flash Message Time               |          |
| Default Message Timeout          |          |
| Default Message Intensity        |          |
| REAL TIME CLOCK                  |          |
| IRIG-B Signal Type               |          |
| COMMUNICATIONS > SERIAL PORT     | 'S       |
| RS485 COM1 Baud Rate             |          |
| RS485 COM1 Parity                |          |
| RS485 COM2 Baud Rate             |          |
| RS485 COM2 Parity                |          |
| COMMUNICATIONS > NETWORK         |          |
| IP Address                       |          |
| Subnet IP Mask                   |          |
| Gateway IP Address               |          |
| OSI Network Address (NSAP)       |          |
| Ethernet Operation Mode          |          |
| Ethernet Primary Link Monitor    |          |
| Ethernet Secondary Link Monitor  |          |
| COMMUNICATIONS > MODBUS PRO      | TOCOL    |
| Modbus Slave Address             |          |
| Modbus TCP Port Number           |          |
| COMMUNICATIONS > DNP PROTOC      | OL       |
| DNP Port                         |          |
| DNP Address                      |          |
| DNP Network Client Address 1     |          |
| DNP Network Client Address 2     |          |
| DNP TCP/UDP Port Number          |          |
| DNP Unsol Response Function      |          |
| DNP Unsol Response Timeout       |          |
| DNP Unsol Response Max Retries   |          |
| Unsol Response Dest Address      |          |
| User Map for DNP Analogs         |          |
| Number of Sources in Analog List |          |
|                                  |          |

Table 10-1: PRODUCT SETUP (Sheet 2 of 14)

| SETTING                          | VALUE       |
|----------------------------------|-------------|
| DNP Current Scale Factor         |             |
| DNP Voltage Scale Factor         |             |
| DNP Power Scale Factor           |             |
| DNP Energy Scale Factor          |             |
| DNP Other Scale Factor           |             |
| DNP Current Default Deadband     |             |
| DNP Voltage Default Deadband     |             |
| DNP Power Default Deadband       |             |
| DNP Energy Default Deadband      |             |
| DNP Other Default Deadband       |             |
| DNP Time Sync In IIN Period      |             |
| DNP Message Fragment Size        |             |
| COMMUNICATIONS > UCA/MMS PRO     | OTOCOL      |
| Default GOOSE Update Time        |             |
| UCA Logical Device               |             |
| UCA/MMS TCP Port Number          |             |
| COMMUNICATIONS > WEB SERVER      | HTTP PROT.  |
| HTTP TCP Port Number             |             |
| COMMUNICATIONS > TFTP PROTOC     | OL          |
| TFTP Main UDP Port Number        |             |
| TFTP Data UDP Port 1 Number      |             |
| TFTP Data UDP Port 2 Number      |             |
| COMMUNICATIONS > IEC 60870-5-10  | 04 PROTOCOL |
| IEC 60870-5-104 Function         |             |
| IEC TCP Port Number              |             |
| IEC Common Address of ASDU       |             |
| IEC Cyclic Data Period           |             |
| Number of Sources in MMENC1 List |             |
| IEC Current Default Threshold    |             |
| IEC Voltage Default Threshold    |             |
| IEC Power Default Threshold      |             |
| IEC Energy Default Threshold     |             |
| IEC Other Default Threshold      |             |
| OSCILLOGRAPHY                    |             |
| Number of Records                |             |
| Trigger Mode                     |             |
| Trigger Position                 |             |
| Trigger Source                   |             |
| AC Input Waveforms               |             |
| FAULT REPORT                     |             |
| Fault Report Source              |             |

10.1 PRODUCT SETUP 10 COMMISSIONING

## Table 10-1: PRODUCT SETUP (Sheet 3 of 14)

# SETTING VALUE Fault Report Trigger OSCILLOGRAPHY > DIGITAL CHANNELS Digital Channel 1 Digital Channel 2 Digital Channel 3 Digital Channel 4 Digital Channel 5 Digital Channel 6 Digital Channel 7 Digital Channel 8 Digital Channel 9 Digital Channel 10 Digital Channel 11 Digital Channel 12 Digital Channel 13 Digital Channel 14 Digital Channel 15 Digital Channel 16 Digital Channel 17 Digital Channel 18 Digital Channel 19 Digital Channel 20 Digital Channel 21 Digital Channel 22 Digital Channel 23 Digital Channel 24 Digital Channel 25 Digital Channel 26 Digital Channel 27 Digital Channel 28 Digital Channel 29 Digital Channel 30 Digital Channel 31 Digital Channel 32 Digital Channel 33 Digital Channel 34 Digital Channel 35 Digital Channel 36 Digital Channel 37 Digital Channel 38 Digital Channel 39 Digital Channel 40 Digital Channel 41 Digital Channel 42 Digital Channel 43 Digital Channel 44 Digital Channel 45

Table 10-1: PRODUCT SETUP (Sheet 4 of 14)

| SETTING                     | VALUE |
|-----------------------------|-------|
| Digital Channel 46          |       |
| Digital Channel 47          |       |
| Digital Channel 48          |       |
| Digital Channel 49          |       |
| Digital Channel 50          |       |
| Digital Channel 51          |       |
| Digital Channel 52          |       |
| Digital Channel 53          |       |
| Digital Channel 54          |       |
| Digital Channel 55          |       |
| Digital Channel 56          |       |
| Digital Channel 57          |       |
| Digital Channel 58          |       |
| Digital Channel 59          |       |
| Digital Channel 60          |       |
| Digital Channel 61          |       |
| Digital Channel 62          |       |
| Digital Channel 63          |       |
| Digital Channel 64          |       |
| OSCILLOGRAPHY > ANALOG CHAN | INELS |
| Analog Channel 1            |       |
| Analog Channel 2            |       |
| Analog Channel 3            |       |
| Analog Channel 4            |       |
| Analog Channel 5            |       |
| Analog Channel 6            |       |
| Analog Channel 7            |       |
| Analog Channel 8            |       |
| Analog Channel 9            |       |
| Analog Channel 10           |       |
| Analog Channel 11           |       |
| Analog Channel 12           |       |
| Analog Channel 13           |       |
| Analog Channel 14           |       |
| Analog Channel 15           |       |
| Analog Channel 16           |       |
| DATA LOGGER                 |       |
| Rate Channel 1              |       |
|                             |       |
| Channel 2                   |       |
| Channel 4                   |       |
| Channel 4                   |       |
| Channel 5                   |       |
| Channel 6                   |       |
| Channel 7                   |       |
| Channel 8                   |       |
| Channel 9                   |       |

10 COMMISSIONING 10.1 PRODUCT SETUP

Table 10-1: PRODUCT SETUP (Sheet 5 of 14)

| SETTING                | VALUE |
|------------------------|-------|
| Channel 10             | VALUE |
| Channel 11             |       |
| Channel 12             |       |
| Channel 13             |       |
| Channel 14             |       |
| Channel 15             |       |
| Channel 16             |       |
| USER PROGRAMMABLE LEDS |       |
| Trip LED Input         |       |
| Alarm LED Input        |       |
| LED 1 Operand          |       |
| LED 1 Type             |       |
|                        |       |
| LED 2 Operand          |       |
| LED 2 Type             |       |
| LED 3 Operand          |       |
| LED 3 Type             |       |
| LED 4 Operand          |       |
| LED 4 Type             |       |
| LED 5 Operand          |       |
| LED 5 Type             |       |
| LED 6 Operand          |       |
| LED 6 Type             |       |
| LED 7 Operand          |       |
| LED 7 Type             |       |
| LED 8 Operand          |       |
| LED 8 Type             |       |
| LED 9 Operand          |       |
| LED 9 Type             |       |
| LED 10 Operand         |       |
| LED 10 Type            |       |
| LED 11 Operand         |       |
| LED 11 Type            |       |
| LED 12 Operand         |       |
| LED 12 Type            |       |
| LED 13 Operand         |       |
| LED 13 Type            |       |
| LED 14 Operand         |       |
| LED 14 Type            |       |
| LED 15 Operand         |       |
| LED 15 Type            |       |
| LED 16 Operand         |       |
| LED 16 Type            |       |
| LED 17 Operand         |       |
| LED 17 Type            |       |
| LED 18 Operand         |       |
| LED 18 Type            |       |
| LED 19 Operand         |       |
| -                      | i     |

Table 10-1: PRODUCT SETUP (Sheet 6 of 14)

| Table 10–1: PRODUCT SETUP (SI | •     |
|-------------------------------|-------|
| SETTING                       | VALUE |
| LED 19 Type                   |       |
| LED 20 Operand                |       |
| LED 20 Type                   |       |
| LED 21 Operand                |       |
| LED 21 Type                   |       |
| LED 22 Operand                |       |
| LED 22 Type                   |       |
| LED 23 Operand                |       |
| LED 23 Type                   |       |
| LED 24 Operand                |       |
| LED 24 Type                   |       |
| LED 25 Operand                |       |
| LED 25 Type                   |       |
| LED 26 Operand                |       |
| LED 26 Type                   |       |
| LED 27 Operand                |       |
| LED 27 Type                   |       |
| LED 28 Operand                |       |
| LED 28 Type                   |       |
| LED 29 Operand                |       |
| LED 29 Type                   |       |
| LED 30 Operand                |       |
| LED 30 Type                   |       |
| LED 31 Operand                |       |
| LED 31 Type                   |       |
| LED 32 Operand                |       |
| LED 32 Type                   |       |
| LED 33 Operand                |       |
| LED 33 Type                   |       |
| LED 34 Operand                |       |
| LED 34 Type                   |       |
| LED 35 Operand                |       |
| LED 35 Type                   |       |
| LED 36 Operand                |       |
| LED 36 Type                   |       |
| LED 37 Operand                |       |
| LED 37 Type                   |       |
| LED 38 Operand                |       |
| LED 38 Type                   |       |
| LED 39 Operand                |       |
| LED 39 Type                   |       |
| LED 40 Operand                |       |
| LED 40 Type                   |       |
| LED 41 Operand                |       |
| LED 41 Type                   |       |
| LED 42 Operand                |       |
| LED 42 Type                   |       |
| 125 12 13PO                   |       |

10.1 PRODUCT SETUP 10 COMMISSIONING

Table 10-1: PRODUCT SETUP (Sheet 7 of 14)

SETTING VALUE LED 43 Operand LED 43 Type LED 44 Operand LED 44 Type LED 45 Operand LED 45 Type LED 46 Operand LED 46 Type LED 47 Operand LED 47 Type LED 48 Operand LED 48 Type **FLEX STATE PARAMETERS** Flex State Parameter 1 Flex State Parameter 2 Flex State Parameter 3 Flex State Parameter 4 Flex State Parameter 5 Flex State Parameter 6 Flex State Parameter 7 Flex State Parameter 8 Flex State Parameter 9 Flex State Parameter 10 Flex State Parameter 11 Flex State Parameter 12 Flex State Parameter 13 Flex State Parameter 14 Flex State Parameter 15 Flex State Parameter 16 Flex State Parameter 17 Flex State Parameter 18 Flex State Parameter 19 Flex State Parameter 20 Flex State Parameter 21 Flex State Parameter 22 Flex State Parameter 23 Flex State Parameter 24 Flex State Parameter 25 Flex State Parameter 26 Flex State Parameter 27 Flex State Parameter 28 Flex State Parameter 29 Flex State Parameter 30 Flex State Parameter 31 Flex State Parameter 32 Flex State Parameter 33 Flex State Parameter 34

Table 10-1: PRODUCT SETUP (Sheet 8 of 14)

| Flex State Parameter 35 Flex State Parameter 36 Flex State Parameter 37 Flex State Parameter 38 Flex State Parameter 39 Flex State Parameter 40 |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Flex State Parameter 37 Flex State Parameter 38 Flex State Parameter 39                                                                         |   |
| Flex State Parameter 38 Flex State Parameter 39                                                                                                 |   |
| Flex State Parameter 39                                                                                                                         |   |
|                                                                                                                                                 |   |
| Flex State Parameter 40                                                                                                                         |   |
|                                                                                                                                                 |   |
| Flex State Parameter 41                                                                                                                         |   |
| Flex State Parameter 42                                                                                                                         |   |
| Flex State Parameter 43                                                                                                                         | - |
| Flex State Parameter 44                                                                                                                         |   |
| Flex State Parameter 45                                                                                                                         |   |
| Flex State Parameter 46                                                                                                                         | = |
| Flex State Parameter 47                                                                                                                         |   |
| Flex State Parameter 48                                                                                                                         | 1 |
| Flex State Parameter 49                                                                                                                         | - |
| Flex State Parameter 50                                                                                                                         | - |
| Flex State Parameter 51                                                                                                                         |   |
| Flex State Parameter 52                                                                                                                         |   |
| Flex State Parameter 53                                                                                                                         | - |
| Flex State Parameter 54                                                                                                                         | _ |
| Flex State Parameter 55                                                                                                                         |   |
| Flex State Parameter 56                                                                                                                         | _ |
| Flex State Parameter 57                                                                                                                         | _ |
| Flex State Parameter 58                                                                                                                         |   |
|                                                                                                                                                 |   |
| Flex State Parameter 59                                                                                                                         |   |
| Flex State Parameter 60                                                                                                                         |   |
| Flex State Parameter 61                                                                                                                         |   |
| Flex State Parameter 62                                                                                                                         |   |
| Flex State Parameter 63                                                                                                                         |   |
| Flex State Parameter 64                                                                                                                         |   |
| Flex State Parameter 65                                                                                                                         |   |
| Flex State Parameter 66                                                                                                                         |   |
| Flex State Parameter 67                                                                                                                         |   |
| Flex State Parameter 68                                                                                                                         |   |
| Flex State Parameter 69                                                                                                                         |   |
| Flex State Parameter 70                                                                                                                         |   |
| Flex State Parameter 71                                                                                                                         |   |
| Flex State Parameter 72                                                                                                                         |   |
| Flex State Parameter 73                                                                                                                         | _ |
| Flex State Parameter 74                                                                                                                         |   |
| Flex State Parameter 75                                                                                                                         |   |
| Flex State Parameter 76                                                                                                                         |   |
| Flex State Parameter 77                                                                                                                         |   |
| Flex State Parameter 78                                                                                                                         |   |
| Flex State Parameter 79                                                                                                                         |   |
| Flex State Parameter 80                                                                                                                         |   |
| Flex State Parameter 81                                                                                                                         |   |

10 COMMISSIONING 10.1 PRODUCT SETUP

Table 10-1: PRODUCT SETUP (Sheet 9 of 14)

SETTING VALUE Flex State Parameter 82 Flex State Parameter 83 Flex State Parameter 84 Flex State Parameter 85 Flex State Parameter 86 Flex State Parameter 87 Flex State Parameter 88 Flex State Parameter 89 Flex State Parameter 90 Flex State Parameter 91 Flex State Parameter 92 Flex State Parameter 93 Flex State Parameter 94 Flex State Parameter 95 Flex State Parameter 96 Flex State Parameter 97 Flex State Parameter 98 Flex State Parameter 99 Flex State Parameter 100 Flex State Parameter 101 Flex State Parameter 102 Flex State Parameter 103 Flex State Parameter 104 Flex State Parameter 105 Flex State Parameter 106 Flex State Parameter 107 Flex State Parameter 108 Flex State Parameter 109 Flex State Parameter 110 Flex State Parameter 111 Flex State Parameter 112 Flex State Parameter 113 Flex State Parameter 114 Flex State Parameter 115 Flex State Parameter 116 Flex State Parameter 117 Flex State Parameter 118 Flex State Parameter 119 Flex State Parameter 120 Flex State Parameter 121 Flex State Parameter 122 Flex State Parameter 123 Flex State Parameter 124 Flex State Parameter 125 Flex State Parameter 126 Flex State Parameter 127 Flex State Parameter 128

Table 10-1: PRODUCT SETUP (Sheet 10 of 14)

| Table 10–1: PRODUCT SETUP (SI | -     |
|-------------------------------|-------|
| SETTING                       | VALUE |
| Flex State Parameter 129      |       |
| Flex State Parameter 130      |       |
| Flex State Parameter 131      |       |
| Flex State Parameter 132      |       |
| Flex State Parameter 133      |       |
| Flex State Parameter 134      |       |
| Flex State Parameter 135      |       |
| Flex State Parameter 136      |       |
| Flex State Parameter 137      |       |
| Flex State Parameter 138      |       |
| Flex State Parameter 139      |       |
| Flex State Parameter 140      |       |
| Flex State Parameter 141      |       |
| Flex State Parameter 142      |       |
| Flex State Parameter 143      |       |
| Flex State Parameter 144      |       |
| Flex State Parameter 145      |       |
| Flex State Parameter 146      |       |
| Flex State Parameter 147      |       |
| Flex State Parameter 148      |       |
| Flex State Parameter 149      |       |
| Flex State Parameter 150      |       |
| Flex State Parameter 151      |       |
| Flex State Parameter 152      |       |
| Flex State Parameter 153      |       |
| Flex State Parameter 154      |       |
| Flex State Parameter 155      |       |
| Flex State Parameter 156      |       |
| Flex State Parameter 157      |       |
| Flex State Parameter 158      |       |
| Flex State Parameter 159      |       |
| Flex State Parameter 160      |       |
| Flex State Parameter 161      |       |
| Flex State Parameter 162      |       |
| Flex State Parameter 163      |       |
| Flex State Parameter 164      |       |
| Flex State Parameter 165      |       |
| Flex State Parameter 166      |       |
| Flex State Parameter 167      |       |
| Flex State Parameter 168      |       |
| Flex State Parameter 169      |       |
| Flex State Parameter 170      |       |
| Flex State Parameter 171      |       |
| Flex State Parameter 172      |       |
| Flex State Parameter 173      |       |
| Flex State Parameter 174      |       |
| Flex State Parameter 175      |       |
| TICA GLALE LATAINIELE 173     |       |

10.1 PRODUCT SETUP 10 COMMISSIONING

Table 10-1: PRODUCT SETUP (Sheet 11 of 14)

**SETTING** VALUE Flex State Parameter 176 Flex State Parameter 177 Flex State Parameter 178 Flex State Parameter 179 Flex State Parameter 180 Flex State Parameter 181 Flex State Parameter 182 Flex State Parameter 183 Flex State Parameter 184 Flex State Parameter 185 Flex State Parameter 186 Flex State Parameter 187 Flex State Parameter 188 Flex State Parameter 189 Flex State Parameter 190 Flex State Parameter 191 Flex State Parameter 192 Flex State Parameter 193 Flex State Parameter 194 Flex State Parameter 195 Flex State Parameter 196 Flex State Parameter 197 Flex State Parameter 198 Flex State Parameter 199 Flex State Parameter 200 Flex State Parameter 201 Flex State Parameter 202 Flex State Parameter 203 Flex State Parameter 204 Flex State Parameter 205 Flex State Parameter 206 Flex State Parameter 207 Flex State Parameter 208 Flex State Parameter 209 Flex State Parameter 210 Flex State Parameter 211 Flex State Parameter 212 Flex State Parameter 213 Flex State Parameter 214 Flex State Parameter 215 Flex State Parameter 216 Flex State Parameter 217 Flex State Parameter 218 Flex State Parameter 219 Flex State Parameter 220 Flex State Parameter 221 Flex State Parameter 222

Table 10-1: PRODUCT SETUP (Sheet 12 of 14)

| SETTING                  | VALUE |
|--------------------------|-------|
| Flex State Parameter 223 |       |
| Flex State Parameter 224 |       |
| Flex State Parameter 225 |       |
| Flex State Parameter 226 |       |
| Flex State Parameter 227 |       |
| Flex State Parameter 228 |       |
| Flex State Parameter 229 |       |
| Flex State Parameter 230 |       |
|                          |       |
| Flex State Parameter 231 |       |
| Flex State Parameter 232 |       |
| Flex State Parameter 233 |       |
| Flex State Parameter 234 |       |
| Flex State Parameter 235 |       |
| Flex State Parameter 236 |       |
| Flex State Parameter 237 |       |
| Flex State Parameter 238 |       |
| Flex State Parameter 239 |       |
| Flex State Parameter 240 |       |
| Flex State Parameter 241 |       |
| Flex State Parameter 242 |       |
| Flex State Parameter 243 |       |
| Flex State Parameter 244 |       |
| Flex State Parameter 245 |       |
| Flex State Parameter 246 |       |
| Flex State Parameter 247 |       |
| Flex State Parameter 248 |       |
| Flex State Parameter 249 |       |
| Flex State Parameter 250 |       |
| Flex State Parameter 251 |       |
| Flex State Parameter 252 |       |
| Flex State Parameter 253 |       |
| Flex State Parameter 254 |       |
| Flex State Parameter 255 |       |
| Flex State Parameter 256 |       |
| USER DISPLAY 1           |       |
| Disp 1 Top Line          |       |
| Disp 1 Bottom Line       |       |
| Disp 1 Item 1            |       |
| Disp 1 Item 2            |       |
| Disp 1 Item 3            |       |
| Disp 1 Item 4            |       |
| Disp 1 Item 5            |       |
| USER DISPLAY 2           |       |
| Disp 2 Top Line          |       |
| Disp 2 Bottom Line       |       |
| Disp 2 Item 1            |       |
| Disp 2 Item 2            |       |
| •                        |       |

10 COMMISSIONING 10.1 PRODUCT SETUP

Table 10-1: PRODUCT SETUP (Sheet 13 of 14)

| SETTING                            | VALUE |
|------------------------------------|-------|
| Disp 2 Item 3                      | TALUL |
| Disp 2 Item 4                      |       |
| Disp 2 Item 5                      |       |
| USER DISPLAY 3                     |       |
| Disp 3 Top Line                    |       |
| Disp 3 Bottom Line                 |       |
| Disp 3 Item 1                      |       |
| Disp 3 Item 2                      |       |
| Disp 3 Item 3                      |       |
| Disp 3 Item 4                      |       |
| •                                  |       |
| Disp 3 Item 5 USER DISPLAY 4       |       |
|                                    |       |
| Disp 4 Top Line Disp 4 Bottom Line |       |
| ·                                  |       |
| Disp 4 Item 1                      |       |
| Disp 4 Item 2                      |       |
| Disp 4 Item 3                      |       |
| Disp 4 Item 4                      |       |
| Disp 4 Item 5                      |       |
| USER DISPLAY 5                     |       |
| Disp 5 Top Line                    |       |
| Disp 5 Bottom Line                 |       |
| Disp 5 Item 1                      |       |
| Disp 5 Item 2                      |       |
| Disp 5 Item 3                      |       |
| Disp 5 Item 4                      |       |
| Disp 5 Item 5                      |       |
| USER DISPLAY 6                     | I     |
| Disp 6 Top Line                    |       |
| Disp 6 Bottom Line                 |       |
| Disp 6 Item 1                      |       |
| Disp 6 Item 2                      |       |
| Disp 6 Item 3                      |       |
| Disp 6 Item 4                      |       |
| Disp 6 Item 5                      |       |
| USER DISPLAY 7                     |       |
| Disp 7 Top Line                    |       |
| Disp 7 Bottom Line                 |       |
| Disp 7 Item 1                      |       |
| Disp 7 Item 2                      |       |
| Disp 7 Item 3                      |       |
| Disp 7 Item 4                      |       |
| Disp 7 Item 5                      |       |
| -                                  |       |
| USER DISPLAY 8                     |       |
| USER DISPLAY 8 Disp 8 Top Line     |       |
| USER DISPLAY 8                     |       |

Table 10-1: PRODUCT SETUP (Sheet 14 of 14)

| SETTING        | VALUE |  |
|----------------|-------|--|
| Disp 8 Item 2  |       |  |
| Disp 8 Item 3  |       |  |
| Disp 8 Item 4  |       |  |
| Disp 8 Item 5  |       |  |
| INSTALLATION   |       |  |
| Relay Settings |       |  |
| Relay Name     |       |  |
|                |       |  |

Table 10-2: SYSTEM SETUP (Sheet 1 of 3)

| SETTING      |             | VALUE |
|--------------|-------------|-------|
| CURRENT BAN  | IK 1        |       |
| Phase CT     | Primary     |       |
| Phase CT     | Secondary   |       |
| Ground CT    | Primary     |       |
| Ground CT    | Secondary   |       |
| CURRENT BAN  |             | _     |
| Phase CT     | Primary     |       |
| Phase CT     | Secondary   |       |
| Ground CT    | Primary     |       |
| Ground CT    | Secondary   |       |
| CURRENT BAN  | IK 3        |       |
| Phase CT     | Primary     |       |
| Phase CT     |             |       |
| Ground CT    | Primary     |       |
| Ground CT    | Secondary   |       |
| CURRENT BAN  | IK 4        |       |
| Phase CT     |             |       |
| Phase CT     |             |       |
| Ground CT    | Primary     |       |
| Ground CT    |             |       |
| CURRENT BAN  |             |       |
| Phase CT     | Primary     |       |
| Phase CT     |             |       |
| Ground CT    | Primary     |       |
| Ground CT    |             |       |
| CURRENT BAN  |             |       |
| Phase CT     | Primary     |       |
| Phase CT     | Secondary   |       |
| Ground CT    | Primary     |       |
| Ground CT    | •           |       |
| VOLTAGE BAN  |             |       |
| Phase VT     | Connection  |       |
| Phase VT     |             |       |
| Phase VT     | Ratio       |       |
| Auxiliary VT | Connection  |       |
| Auxiliary VT | Secondary   |       |
| Auxiliary VT | Ratio       |       |
| VOLTAGE BAN  |             | 1     |
| Phase VT     | Connection  |       |
| Phase VT     | _ Secondary |       |
| Phase VT     | Ratio       |       |
| Auxiliary VT | Connection  |       |
| Auxiliary VT | Secondary   |       |
| Auxiliary VT | Ratio       |       |

Table 10-2: SYSTEM SETUP (Sheet 2 of 3)

| SETTING                                    | VALUE |
|--------------------------------------------|-------|
| VOLTAGE BANK 3                             |       |
| Phase VT Connection                        |       |
| Phase VT Secondary                         |       |
| Phase VT Ratio                             |       |
| Auxiliany VT Connection                    |       |
| Auxiliary VT Secondary                     |       |
| Auxiliary VT Secondary  Auxiliary VT Ratio |       |
| POWER SYSTEM                               |       |
| Nominal Frequency                          |       |
| Phase Rotation                             |       |
| Frequency and Phase Reference              |       |
| Frequency Tracking                         |       |
| SIGNAL SOURCE 1                            |       |
| Source 1 Name                              |       |
| Source 1 Phase CT                          |       |
| Source 1 Ground CT                         |       |
| Source 1 Phase VT                          |       |
| Source 1 Auxiliary VT                      |       |
| SIGNAL SOURCE 2                            |       |
| Source 2 Name                              |       |
| Source 2 Phase CT                          |       |
| Source 2 Ground CT                         |       |
| Source 2 Phase VT                          |       |
| Source 2 Auxiliary VT                      |       |
| SIGNAL SOURCE 3                            |       |
| Source 3 Name                              |       |
| Source 3 Phase CT                          |       |
| Source 3 Ground CT                         |       |
| Source 3 Phase VT                          |       |
| Source 3 Auxiliary VT                      |       |
| SIGNAL SOURCE 4                            |       |
| Source 4 Name                              |       |
| Source 4 Phase CT                          |       |
| Source 4 Ground CT                         |       |
| Source 4 Phase VT                          |       |
| Source 4 Auxiliary VT                      |       |
| SIGNAL SOURCE 5                            |       |
| Source 5 Name                              |       |
| Source 5 Phase CT                          |       |
| GSource 5 round CT                         |       |
| Source 5 Phase VT                          |       |
| Source 5 Auxiliary VT                      |       |
| SIGNAL SOURCE 6                            |       |
| Source 6 Name                              |       |
| 554156 6 Hallio                            |       |

10 COMMISSIONING 10.2 SYSTEM SETUP

Table 10-2: SYSTEM SETUP (Sheet 3 of 3)

| SETTING                            | VALUE |
|------------------------------------|-------|
| Source 6 Phase CT                  |       |
| Source 6 Ground CT                 |       |
| Source 6 Phase VT                  |       |
| Source 6 Auxiliary VT              |       |
| LINE                               |       |
| Pos. Seq. Impedance Magnitude      |       |
| Pos. Seq. Impedance Angle          |       |
| Zero Seq. Impedance Magnitude      |       |
| Zero Seq. Impedance Angle          |       |
| Line Length Units                  |       |
| Line Length                        |       |
| BREAKER 1                          |       |
| Breaker 1 Function                 |       |
| Breaker 1 Pushbutton Control       |       |
| Breaker 1 Name                     |       |
| Breaker 1 Mode                     |       |
| Breaker 1 Open                     |       |
| Breaker 1 Close                    |       |
| Breaker 1 ΦA/3-Pole                |       |
| Breaker 1 ΦB                       |       |
| Breaker 1 ΦC                       |       |
| Breaker 1 Ext Alarm                |       |
| Breaker 1 Alarm Delay              |       |
| Breaker 1 Out of Sv                |       |
| Breaker 1 Manual Close Recall Time |       |
| BREAKER 2                          |       |
| Breaker 2 Function                 |       |
| Breaker 2 Pushbutton Control       |       |
| Breaker 2 Name                     |       |
| Breaker 2 Mode                     |       |
| Breaker 2 Open                     |       |
| Breaker 2 Close                    |       |
| Breaker 2 ΦA/3-Pole                |       |
| Breaker 2 ΦB                       |       |
| Breaker 2 ΦC                       |       |
| Breaker 2 Ext Alarm                |       |
| Breaker 2 Alarm Delay              |       |
| Breaker 2 Out of Sv                |       |
| Breaker 2 Manual Close Recall Time |       |
| UCA SBO TIMER (FOR BREAKERS        | 1/2)  |
| UCA SBO Timeout                    |       |

Table 10–3: FLEXCURVE™ TABLE

| RESET | TIME<br>MS | RESET | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS |
|-------|------------|-------|------------|---------|------------|---------|------------|---------|------------|---------|------------|
| 0.00  |            | 0.68  |            | 1.03    |            | 2.9     |            | 4.9     |            | 10.5    |            |
| 0.05  |            | 0.70  |            | 1.05    |            | 3.0     |            | 5.0     |            | 11.0    |            |
| 0.10  |            | 0.72  |            | 1.1     |            | 3.1     |            | 5.1     |            | 11.5    |            |
| 0.15  |            | 0.74  |            | 1.2     |            | 3.2     |            | 5.2     |            | 12.0    |            |
| 0.20  |            | 0.76  |            | 1.3     |            | 3.3     |            | 5.3     |            | 12.5    |            |
| 0.25  |            | 0.78  |            | 1.4     |            | 3.4     |            | 5.4     |            | 13.0    |            |
| 0.30  |            | 0.80  |            | 1.5     |            | 3.5     |            | 5.5     |            | 13.5    |            |
| 0.35  |            | 0.82  |            | 1.6     |            | 3.6     |            | 5.6     |            | 14.0    |            |
| 0.40  |            | 0.84  |            | 1.7     |            | 3.7     |            | 5.7     |            | 14.5    |            |
| 0.45  |            | 0.86  |            | 1.8     |            | 3.8     |            | 5.8     |            | 15.0    |            |
| 0.48  |            | 0.88  |            | 1.9     |            | 3.9     |            | 5.9     |            | 15.5    |            |
| 0.50  |            | 0.90  |            | 2.0     |            | 4.0     |            | 6.0     |            | 16.0    |            |
| 0.52  |            | 0.91  |            | 2.1     |            | 4.1     |            | 6.5     |            | 16.5    |            |
| 0.54  |            | 0.92  |            | 2.2     |            | 4.2     |            | 7.0     |            | 17.0    |            |
| 0.56  |            | 0.93  |            | 2.3     |            | 4.3     |            | 7.5     |            | 17.5    |            |
| 0.58  |            | 0.94  |            | 2.4     |            | 4.4     |            | 8.0     |            | 18.0    |            |
| 0.60  |            | 0.95  |            | 2.5     |            | 4.5     |            | 8.5     |            | 18.5    |            |
| 0.62  |            | 0.96  |            | 2.6     |            | 4.6     |            | 9.0     |            | 19.0    |            |
| 0.64  |            | 0.97  |            | 2.7     |            | 4.7     |            | 9.5     |            | 19.5    |            |
| 0.66  |            | 0.98  |            | 2.8     |            | 4.8     |            | 10.0    |            | 20.0    |            |

10 COMMISSIONING 10.2 SYSTEM SETUP

10.2.3 FLEXCURVE™ B

Table 10–4: FLEXCURVE™ TABLE

| RESET | TIME<br>MS | RESET | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS | OPERATE | TIME<br>MS |
|-------|------------|-------|------------|---------|------------|---------|------------|---------|------------|---------|------------|
| 0.00  |            | 0.68  |            | 1.03    |            | 2.9     |            | 4.9     |            | 10.5    |            |
| 0.05  |            | 0.70  |            | 1.05    |            | 3.0     |            | 5.0     |            | 11.0    |            |
| 0.10  |            | 0.72  |            | 1.1     |            | 3.1     |            | 5.1     |            | 11.5    |            |
| 0.15  |            | 0.74  |            | 1.2     |            | 3.2     |            | 5.2     |            | 12.0    |            |
| 0.20  |            | 0.76  |            | 1.3     |            | 3.3     |            | 5.3     |            | 12.5    |            |
| 0.25  |            | 0.78  |            | 1.4     |            | 3.4     |            | 5.4     |            | 13.0    |            |
| 0.30  |            | 0.80  |            | 1.5     |            | 3.5     |            | 5.5     |            | 13.5    |            |
| 0.35  |            | 0.82  |            | 1.6     |            | 3.6     |            | 5.6     |            | 14.0    |            |
| 0.40  |            | 0.84  |            | 1.7     |            | 3.7     |            | 5.7     |            | 14.5    |            |
| 0.45  |            | 0.86  |            | 1.8     |            | 3.8     |            | 5.8     |            | 15.0    |            |
| 0.48  |            | 0.88  |            | 1.9     |            | 3.9     |            | 5.9     |            | 15.5    |            |
| 0.50  |            | 0.90  |            | 2.0     |            | 4.0     |            | 6.0     |            | 16.0    |            |
| 0.52  |            | 0.91  |            | 2.1     |            | 4.1     |            | 6.5     |            | 16.5    |            |
| 0.54  |            | 0.92  |            | 2.2     |            | 4.2     |            | 7.0     |            | 17.0    |            |
| 0.56  |            | 0.93  |            | 2.3     |            | 4.3     |            | 7.5     |            | 17.5    |            |
| 0.58  |            | 0.94  |            | 2.4     |            | 4.4     |            | 8.0     |            | 18.0    |            |
| 0.60  |            | 0.95  |            | 2.5     |            | 4.5     |            | 8.5     |            | 18.5    | _          |
| 0.62  |            | 0.96  |            | 2.6     |            | 4.6     |            | 9.0     |            | 19.0    |            |
| 0.64  |            | 0.97  |            | 2.7     |            | 4.7     |            | 9.5     |            | 19.5    |            |
| 0.66  |            | 0.98  |            | 2.8     |            | 4.8     |            | 10.0    |            | 20.0    |            |

10-11

Table 10-5: FLEXLOGIC™ (Sheet 1 of 17)

**SETTING** VALUE FLEXLOGIC EQUATION EDITOR FlexLogic Entry 1 FlexLogic Entry 2 FlexLogic Entry 3 FlexLogic Entry 4 FlexLogic Entry 5 FlexLogic Entry 6 FlexLogic Entry 7 FlexLogic Entry 8 FlexLogic Entry 9 FlexLogic Entry 10 FlexLogic Entry 11 FlexLogic Entry 12 FlexLogic Entry 13 FlexLogic Entry 14 FlexLogic Entry 15 FlexLogic Entry 16 FlexLogic Entry 17 FlexLogic Entry 18 FlexLogic Entry 19 FlexLogic Entry 20 FlexLogic Entry 21 FlexLogic Entry 22 FlexLogic Entry 23 FlexLogic Entry 24 FlexLogic Entry 25 FlexLogic Entry 26 FlexLogic Entry 27 FlexLogic Entry 28 FlexLogic Entry 29 FlexLogic Entry 30 FlexLogic Entry 31 FlexLogic Entry 32 FlexLogic Entry 33 FlexLogic Entry 34 FlexLogic Entry 35 FlexLogic Entry 36 FlexLogic Entry 37 FlexLogic Entry 38 FlexLogic Entry 39 FlexLogic Entry 40 FlexLogic Entry 41 FlexLogic Entry 42 FlexLogic Entry 43

Table 10-5: FLEXLOGIC™ (Sheet 2 of 17)

| SETTING            | VALUE |
|--------------------|-------|
| FlexLogic Entry 44 | VALUE |
| FlexLogic Entry 45 |       |
|                    |       |
| FlexLogic Entry 46 |       |
| FlexLogic Entry 47 |       |
| FlexLogic Entry 48 |       |
| FlexLogic Entry 49 |       |
| FlexLogic Entry 50 |       |
| FlexLogic Entry 51 |       |
| FlexLogic Entry 52 |       |
| FlexLogic Entry 53 |       |
| FlexLogic Entry 54 |       |
| FlexLogic Entry 55 |       |
| FlexLogic Entry 56 |       |
| FlexLogic Entry 57 |       |
| FlexLogic Entry 58 |       |
| FlexLogic Entry 59 |       |
| FlexLogic Entry 60 |       |
| FlexLogic Entry 61 |       |
| FlexLogic Entry 62 |       |
| FlexLogic Entry 63 |       |
| FlexLogic Entry 64 |       |
| FlexLogic Entry 65 |       |
| FlexLogic Entry 66 |       |
| FlexLogic Entry 67 |       |
| FlexLogic Entry 68 |       |
| FlexLogic Entry 69 |       |
| FlexLogic Entry 70 |       |
| FlexLogic Entry 71 |       |
| FlexLogic Entry 72 |       |
| FlexLogic Entry 73 |       |
| FlexLogic Entry 74 |       |
| FlexLogic Entry 75 |       |
| FlexLogic Entry 76 |       |
| FlexLogic Entry 77 |       |
| FlexLogic Entry 78 |       |
| FlexLogic Entry 79 |       |
| FlexLogic Entry 80 |       |
| FlexLogic Entry 81 |       |
| FlexLogic Entry 82 |       |
| FlexLogic Entry 83 |       |
| FlexLogic Entry 84 |       |
| FlexLogic Entry 85 |       |
| FlexLogic Entry 86 |       |
| FlexLogic Entry 87 |       |
| ·                  |       |

10 COMMISSIONING 10.3 FLEXLOGIC™

Table 10-5: FLEXLOGIC™ (Sheet 3 of 17)

SETTING VALUE FlexLogic Entry 88 FlexLogic Entry 89 FlexLogic Entry 90 FlexLogic Entry 91 FlexLogic Entry 92 FlexLogic Entry 93 FlexLogic Entry 94 FlexLogic Entry 95 FlexLogic Entry 96 FlexLogic Entry 97 FlexLogic Entry 98 FlexLogic Entry 99 FlexLogic Entry 100 FlexLogic Entry 101 FlexLogic Entry 102 FlexLogic Entry 103 FlexLogic Entry 104 FlexLogic Entry 105 FlexLogic Entry 106 FlexLogic Entry 107 FlexLogic Entry 108 FlexLogic Entry 109 FlexLogic Entry 110 FlexLogic Entry 111 FlexLogic Entry 112 FlexLogic Entry 113 FlexLogic Entry 114 FlexLogic Entry 115 FlexLogic Entry 116 FlexLogic Entry 117 FlexLogic Entry 118 FlexLogic Entry 119 FlexLogic Entry 120 FlexLogic Entry 121 FlexLogic Entry 122 FlexLogic Entry 123 FlexLogic Entry 124 FlexLogic Entry 125 FlexLogic Entry 126 FlexLogic Entry 127 FlexLogic Entry 128 FlexLogic Entry 129 FlexLogic Entry 130 FlexLogic Entry 131 FlexLogic Entry 132 FlexLogic Entry 133 FlexLogic Entry 134

Table 10-5: FLEXLOGIC™ (Sheet 4 of 17)

| Table 10–5: FLEXLOGIC™ (Sheet            | •     |
|------------------------------------------|-------|
| SETTING                                  | VALUE |
| FlexLogic Entry 135                      |       |
| FlexLogic Entry 136                      |       |
| FlexLogic Entry 137                      |       |
| FlexLogic Entry 138                      |       |
| FlexLogic Entry 139                      |       |
| FlexLogic Entry 140                      |       |
| FlexLogic Entry 141                      |       |
| FlexLogic Entry 142                      |       |
| FlexLogic Entry 143                      |       |
| FlexLogic Entry 144                      |       |
| FlexLogic Entry 145                      |       |
| FlexLogic Entry 146                      |       |
| FlexLogic Entry 147                      |       |
| FlexLogic Entry 148                      |       |
| FlexLogic Entry 149                      |       |
| FlexLogic Entry 150                      |       |
| FlexLogic Entry 151                      |       |
| FlexLogic Entry 152                      |       |
| FlexLogic Entry 153                      |       |
| FlexLogic Entry 154                      |       |
| FlexLogic Entry 155                      |       |
| FlexLogic Entry 156                      |       |
| FlexLogic Entry 157                      |       |
| FlexLogic Entry 158                      |       |
| FlexLogic Entry 159                      |       |
| FlexLogic Entry 160                      |       |
| FlexLogic Entry 161                      |       |
| FlexLogic Entry 162                      |       |
| FlexLogic Entry 163                      |       |
| FlexLogic Entry 164                      |       |
| FlexLogic Entry 165                      |       |
| FlexLogic Entry 166                      |       |
| FlexLogic Entry 167                      |       |
| FlexLogic Entry 168                      |       |
| FlexLogic Entry 169                      |       |
| FlexLogic Entry 170                      |       |
| FlexLogic Entry 170  FlexLogic Entry 171 |       |
| FlexLogic Entry 171  FlexLogic Entry 172 |       |
| FlexLogic Entry 173                      |       |
|                                          |       |
| FlexLogic Entry 174 FlexLogic Entry 175  |       |
| 9 /                                      |       |
| FlexLogic Entry 176                      |       |
| FlexLogic Entry 177                      |       |
| FlexLogic Entry 178                      |       |
| FlexLogic Entry 179                      |       |
| FlexLogic Entry 180                      |       |
| FlexLogic Entry 181                      |       |

10.3 FLEXLOGIC™ 10 COMMISSIONING

Table 10-5: FLEXLOGIC™ (Sheet 5 of 17)

SETTING VALUE FlexLogic Entry 182 FlexLogic Entry 183 FlexLogic Entry 184 FlexLogic Entry 185 FlexLogic Entry 186 FlexLogic Entry 187 FlexLogic Entry 188 FlexLogic Entry 189 FlexLogic Entry 190 FlexLogic Entry 191 FlexLogic Entry 192 FlexLogic Entry 193 FlexLogic Entry 194 FlexLogic Entry 195 FlexLogic Entry 196 FlexLogic Entry 197 FlexLogic Entry 198 FlexLogic Entry 199 FlexLogic Entry 200 FlexLogic Entry 201 FlexLogic Entry 202 FlexLogic Entry 203 FlexLogic Entry 204 FlexLogic Entry 205 FlexLogic Entry 206 FlexLogic Entry 207 FlexLogic Entry 208 FlexLogic Entry 209 FlexLogic Entry 210 FlexLogic Entry 211 FlexLogic Entry 212 FlexLogic Entry 213 FlexLogic Entry 214 FlexLogic Entry 215 FlexLogic Entry 216 FlexLogic Entry 217 FlexLogic Entry 218 FlexLogic Entry 219 FlexLogic Entry 220 FlexLogic Entry 221 FlexLogic Entry 222 FlexLogic Entry 223 FlexLogic Entry 224 FlexLogic Entry 225 FlexLogic Entry 226 FlexLogic Entry 227 FlexLogic Entry 228

Table 10-5: FLEXLOGIC™ (Sheet 6 of 17)

| SETTING             | VALUE  |
|---------------------|--------|
| FlexLogic Entry 229 | 171202 |
| FlexLogic Entry 230 |        |
| FlexLogic Entry 231 |        |
| FlexLogic Entry 232 |        |
|                     |        |
| FlexLogic Entry 233 |        |
| FlexLogic Entry 234 |        |
| FlexLogic Entry 235 |        |
| FlexLogic Entry 236 |        |
| FlexLogic Entry 237 |        |
| FlexLogic Entry 238 |        |
| FlexLogic Entry 239 |        |
| FlexLogic Entry 240 |        |
| FlexLogic Entry 241 |        |
| FlexLogic Entry 242 |        |
| FlexLogic Entry 243 |        |
| FlexLogic Entry 244 |        |
| FlexLogic Entry 245 |        |
| FlexLogic Entry 246 |        |
| FlexLogic Entry 247 |        |
| FlexLogic Entry 248 |        |
| FlexLogic Entry 249 |        |
| FlexLogic Entry 250 |        |
| FlexLogic Entry 251 |        |
| FlexLogic Entry 252 |        |
| FlexLogic Entry 253 |        |
| FlexLogic Entry 254 |        |
| FlexLogic Entry 255 |        |
| FlexLogic Entry 256 |        |
| FlexLogic Entry 257 |        |
| FlexLogic Entry 258 |        |
| FlexLogic Entry 259 |        |
| FlexLogic Entry 260 |        |
| FlexLogic Entry 261 |        |
|                     |        |
| FlexLogic Entry 262 |        |
| FlexLogic Entry 263 |        |
| FlexLogic Entry 264 |        |
| FlexLogic Entry 265 |        |
| FlexLogic Entry 266 |        |
| FlexLogic Entry 267 |        |
| FlexLogic Entry 268 |        |
| FlexLogic Entry 269 |        |
| FlexLogic Entry 270 |        |
| FlexLogic Entry 271 |        |
| FlexLogic Entry 272 |        |
| FlexLogic Entry 273 |        |
| FlexLogic Entry 274 |        |
| FlexLogic Entry 275 |        |

10 COMMISSIONING 10.3 FLEXLOGIC™

Table 10-5: FLEXLOGIC™ (Sheet 7 of 17)

# SETTING VALUE FlexLogic Entry 276 FlexLogic Entry 277 FlexLogic Entry 278 FlexLogic Entry 279 FlexLogic Entry 280 FlexLogic Entry 281 FlexLogic Entry 282 FlexLogic Entry 283 FlexLogic Entry 284 FlexLogic Entry 285 FlexLogic Entry 286 FlexLogic Entry 287 FlexLogic Entry 288 FlexLogic Entry 289 FlexLogic Entry 290 FlexLogic Entry 291 FlexLogic Entry 292 FlexLogic Entry 293 FlexLogic Entry 294 FlexLogic Entry 295 FlexLogic Entry 296 FlexLogic Entry 297 FlexLogic Entry 298 FlexLogic Entry 299 FlexLogic Entry 300 FlexLogic Entry 301 FlexLogic Entry 302 FlexLogic Entry 303 FlexLogic Entry 304 FlexLogic Entry 305 FlexLogic Entry 306 FlexLogic Entry 307 FlexLogic Entry 308 FlexLogic Entry 309 FlexLogic Entry 310 FlexLogic Entry 311 FlexLogic Entry 312 FlexLogic Entry 313 FlexLogic Entry 314 FlexLogic Entry 315 FlexLogic Entry 316 FlexLogic Entry 317 FlexLogic Entry 318 FlexLogic Entry 319 FlexLogic Entry 320 FlexLogic Entry 321 FlexLogic Entry 322

Table 10-5: FLEXLOGIC™ (Sheet 8 of 17)

| Table 10–5: FLEXLOGIC™ (Sheet | •     |
|-------------------------------|-------|
| SETTING                       | VALUE |
| FlexLogic Entry 323           |       |
| FlexLogic Entry 324           |       |
| FlexLogic Entry 325           |       |
| FlexLogic Entry 326           |       |
| FlexLogic Entry 327           |       |
| FlexLogic Entry 328           |       |
| FlexLogic Entry 329           |       |
| FlexLogic Entry 330           |       |
| FlexLogic Entry 331           |       |
| FlexLogic Entry 332           |       |
| FlexLogic Entry 333           |       |
| FlexLogic Entry 334           |       |
| FlexLogic Entry 335           |       |
| FlexLogic Entry 336           |       |
| FlexLogic Entry 337           |       |
| FlexLogic Entry 338           |       |
| FlexLogic Entry 339           |       |
| FlexLogic Entry 340           |       |
| FlexLogic Entry 341           |       |
| FlexLogic Entry 342           |       |
| FlexLogic Entry 343           |       |
| FlexLogic Entry 344           |       |
| FlexLogic Entry 345           |       |
| FlexLogic Entry 346           |       |
| FlexLogic Entry 347           |       |
| FlexLogic Entry 348           |       |
| FlexLogic Entry 349           |       |
| FlexLogic Entry 350           |       |
| FlexLogic Entry 351           |       |
| FlexLogic Entry 352           |       |
| FlexLogic Entry 353           |       |
| FlexLogic Entry 354           |       |
| FlexLogic Entry 355           |       |
| FlexLogic Entry 356           |       |
| FlexLogic Entry 357           |       |
| · · ·                         |       |
| FlexLogic Entry 358           |       |
| FlexLogic Entry 359           |       |
| FlexLogic Entry 360           |       |
| FlexLogic Entry 361           |       |
| FlexLogic Entry 362           |       |
| FlexLogic Entry 363           |       |
| FlexLogic Entry 364           |       |
| FlexLogic Entry 365           |       |
| FlexLogic Entry 366           |       |
| FlexLogic Entry 367           |       |
| FlexLogic Entry 368           |       |
| FlexLogic Entry 369           |       |

D60 Line Distance Relay 10-15 10.3 FLEXLOGIC™ 10 COMMISSIONING

Table 10-5: FLEXLOGIC™ (Sheet 9 of 17)

SETTING VALUE FlexLogic Entry 370 FlexLogic Entry 371 FlexLogic Entry 372 FlexLogic Entry 373 FlexLogic Entry 374 FlexLogic Entry 375 FlexLogic Entry 376 FlexLogic Entry 377 FlexLogic Entry 378 FlexLogic Entry 379 FlexLogic Entry 380 FlexLogic Entry 381 FlexLogic Entry 382 FlexLogic Entry 383 FlexLogic Entry 384 FlexLogic Entry 385 FlexLogic Entry 386 FlexLogic Entry 387 FlexLogic Entry 388 FlexLogic Entry 389 FlexLogic Entry 390 FlexLogic Entry 391 FlexLogic Entry 392 FlexLogic Entry 393 FlexLogic Entry 394 FlexLogic Entry 395 FlexLogic Entry 396 FlexLogic Entry 397 FlexLogic Entry 398 FlexLogic Entry 399 FlexLogic Entry 400 FlexLogic Entry 401 FlexLogic Entry 402 FlexLogic Entry 403 FlexLogic Entry 404 FlexLogic Entry 405 FlexLogic Entry 406 FlexLogic Entry 407 FlexLogic Entry 408 FlexLogic Entry 409 FlexLogic Entry 410 FlexLogic Entry 411 FlexLogic Entry 412 FlexLogic Entry 413 FlexLogic Entry 414 FlexLogic Entry 415 FlexLogic Entry 416

Table 10-5: FLEXLOGIC™ (Sheet 10 of 17)

| CETTINO             | VALUE |
|---------------------|-------|
| SETTING             | VALUE |
| FlexLogic Entry 417 |       |
| FlexLogic Entry 418 |       |
| FlexLogic Entry 419 |       |
| FlexLogic Entry 420 |       |
| FlexLogic Entry 421 |       |
| FlexLogic Entry 422 |       |
| FlexLogic Entry 423 |       |
| FlexLogic Entry 424 |       |
| FlexLogic Entry 425 |       |
| FlexLogic Entry 426 |       |
| - '                 |       |
| FlexLogic Entry 427 |       |
| FlexLogic Entry 428 |       |
| FlexLogic Entry 429 |       |
| FlexLogic Entry 430 |       |
| FlexLogic Entry 431 |       |
| FlexLogic Entry 432 |       |
| FlexLogic Entry 433 |       |
| FlexLogic Entry 434 |       |
| FlexLogic Entry 435 |       |
| FlexLogic Entry 436 |       |
| FlexLogic Entry 437 |       |
| FlexLogic Entry 438 |       |
| FlexLogic Entry 439 |       |
| FlexLogic Entry 440 |       |
|                     |       |
| FlexLogic Entry 441 |       |
| FlexLogic Entry 442 |       |
| FlexLogic Entry 443 |       |
| FlexLogic Entry 444 |       |
| FlexLogic Entry 445 |       |
| FlexLogic Entry 446 |       |
| FlexLogic Entry 447 |       |
| FlexLogic Entry 448 |       |
| FlexLogic Entry 449 |       |
| FlexLogic Entry 450 |       |
| FlexLogic Entry 451 |       |
| FlexLogic Entry 452 |       |
| FlexLogic Entry 453 |       |
| FlexLogic Entry 454 |       |
| FlexLogic Entry 455 |       |
| FlexLogic Entry 456 |       |
| •                   |       |
| FlexLogic Entry 457 |       |
| FlexLogic Entry 458 |       |
| FlexLogic Entry 459 |       |
| FlexLogic Entry 460 |       |
| FlexLogic Entry 461 |       |
| FlexLogic Entry 462 |       |
| FlexLogic Entry 463 |       |

10 COMMISSIONING 10.3 FLEXLOGIC™

Table 10-5: FLEXLOGIC™ (Sheet 11 of 17)

# SETTING VALUE FlexLogic Entry 464 FlexLogic Entry 465 FlexLogic Entry 466 FlexLogic Entry 467 FlexLogic Entry 468 FlexLogic Entry 469 FlexLogic Entry 470 FlexLogic Entry 471 FlexLogic Entry 472 FlexLogic Entry 473 FlexLogic Entry 474 FlexLogic Entry 475 FlexLogic Entry 476 FlexLogic Entry 477 FlexLogic Entry 478 FlexLogic Entry 479 FlexLogic Entry 480 FlexLogic Entry 481 FlexLogic Entry 482 FlexLogic Entry 483 FlexLogic Entry 484 FlexLogic Entry 485 FlexLogic Entry 486 FlexLogic Entry 487 FlexLogic Entry 488 FlexLogic Entry 489 FlexLogic Entry 490 FlexLogic Entry 491 FlexLogic Entry 492 FlexLogic Entry 493 FlexLogic Entry 494 FlexLogic Entry 495 FlexLogic Entry 496 FlexLogic Entry 497 FlexLogic Entry 498 FlexLogic Entry 499 FlexLogic Entry 500 FlexLogic Entry 501 FlexLogic Entry 502 FlexLogic Entry 503 FlexLogic Entry 504 FlexLogic Entry 505 FlexLogic Entry 506 FlexLogic Entry 507 FlexLogic Entry 508 FlexLogic Entry 509 FlexLogic Entry 510

Table 10-5: FLEXLOGIC™ (Sheet 12 of 17)

|                                                                                                                                                                                                                       | t 12 of 17) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| SETTING                                                                                                                                                                                                               | VALUE       |
| FlexLogic Entry 511                                                                                                                                                                                                   |             |
| FlexLogic Entry 512                                                                                                                                                                                                   |             |
| FLEXLOGIC TIMER 1                                                                                                                                                                                                     |             |
| FlexLogic Timer 1 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 1 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 1 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 2                                                                                                                                                                                                     |             |
| FlexLogic Timer 2 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 2 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 2 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 3                                                                                                                                                                                                     | •           |
| FlexLogic Timer 3 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 3 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 3 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 4                                                                                                                                                                                                     |             |
| FlexLogic Timer 4 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 4 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 4 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 5                                                                                                                                                                                                     |             |
| FlexLogic Timer 5 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 5 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 5 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 6                                                                                                                                                                                                     |             |
| FlexLogic Timer 6 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 6 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 6 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 7                                                                                                                                                                                                     |             |
| FlexLogic Timer 7 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 7 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 7 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 8                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                       |             |
| FlexLogic Timer 8 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 8 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 8 Dropout Delay                                                                                                                                                                                       |             |
| FLEXLOGIC TIMER 9                                                                                                                                                                                                     |             |
| Fland agia Timor 0 T = 5                                                                                                                                                                                              | 1           |
| FlexLogic Timer 9 Type                                                                                                                                                                                                |             |
| FlexLogic Timer 9 Pickup Delay                                                                                                                                                                                        |             |
| FlexLogic Timer 9 Pickup Delay<br>FlexLogic Timer 9 Dropout Delay                                                                                                                                                     |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10                                                                                                                                     |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10 FlexLogic Timer 10 Type                                                                                                             |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10 FlexLogic Timer 10 Type FlexLogic Timer 10 Pickup Delay                                                                             |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10 FlexLogic Timer 10 Type FlexLogic Timer 10 Pickup Delay FlexLogic Timer 10 Dropout Delay                                            |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10 FlexLogic Timer 10 Type FlexLogic Timer 10 Pickup Delay FlexLogic Timer 10 Dropout Delay FLEXLOGIC TIMER 11                         |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10 FlexLogic Timer 10 Type FlexLogic Timer 10 Pickup Delay FlexLogic Timer 10 Dropout Delay FLEXLOGIC TIMER 11 FlexLogic Timer 11 Type |             |
| FlexLogic Timer 9 Pickup Delay FlexLogic Timer 9 Dropout Delay FLEXLOGIC TIMER 10 FlexLogic Timer 10 Type FlexLogic Timer 10 Pickup Delay FlexLogic Timer 10 Dropout Delay FLEXLOGIC TIMER 11                         |             |

10.3 FLEXLOGIC™ 10 COMMISSIONING

## Table 10-5: FLEXLOGIC™ (Sheet 13 of 17)

# **SETTING** VALUE **FLEXLOGIC TIMER 12** FlexLogic Timer 12 Type FlexLogic Timer 12 Pickup Delay FlexLogic Timer 12 Dropout Delay **FLEXLOGIC TIMER 13** FlexLogic Timer 13 Type FlexLogic Timer 13 Pickup Delay FlexLogic Timer 13 Dropout Delay **FLEXLOGIC TIMER 14** FlexLogic Timer 14 Type FlexLogic Timer 14 Pickup Delay FlexLogic Timer 14 Dropout Delay **FLEXLOGIC TIMER 15** FlexLogic Timer 15 Type FlexLogic Timer 15 Pickup Delay FlexLogic Timer 15 Dropout Delay **FLEXLOGIC TIMER 16** FlexLogic Timer 16 Type FlexLogic Timer 16 Pickup Delay FlexLogic Timer 16 Dropout Delay **FLEXLOGIC TIMER 17** FlexLogic Timer 17 Type FlexLogic Timer 17 Pickup Delay FlexLogic Timer 17 Dropout Delay FLEXLOGIC TIMER 18 FlexLogic Timer 18 Type FlexLogic Timer 18 Pickup Delay FlexLogic Timer 18 Dropout Delay **FLEXLOGIC TIMER 19** FlexLogic Timer 19 Type FlexLogic Timer 19 Pickup Delay FlexLogic Timer 19 Dropout Delay **FLEXLOGIC TIMER 20** FlexLogic Timer 20 Type FlexLogic Timer 20 Pickup Delay FlexLogic Timer 20 Dropout Delay **FLEXLOGIC TIMER 21** FlexLogic Timer 21 Type FlexLogic Timer 21 Pickup Delay FlexLogic Timer 21 Dropout Delay **FLEXLOGIC TIMER 22** FlexLogic Timer 22 Type FlexLogic Timer 22 Pickup Delay FlexLogic Timer 22 Dropout Delay **FLEXLOGIC TIMER 23** FlexLogic Timer 23 Type FlexLogic Timer 23 Pickup Delay

Table 10-5: FLEXLOGIC™ (Sheet 14 of 17)

| Table 10–5: FLEXLOGIC ····· (Sneet | · · · · · · · · · · · · · · · · · · · |
|------------------------------------|---------------------------------------|
| SETTING                            | VALUE                                 |
| FlexLogic Timer 23 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 24                 |                                       |
| FlexLogic Timer 24 Type            |                                       |
| FlexLogic Timer 24 Pickup Delay    |                                       |
| FlexLogic Timer 24 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 25                 |                                       |
| FlexLogic Timer 25 Type            |                                       |
| FlexLogic Timer 25 Pickup Delay    |                                       |
| FlexLogic Timer 25 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 26                 |                                       |
| FlexLogic Timer 26 Type            |                                       |
| FlexLogic Timer 26 Pickup Delay    |                                       |
| FlexLogic Timer 26 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 27                 |                                       |
| FlexLogic Timer 27 Type            |                                       |
| FlexLogic Timer 27 Pickup Delay    |                                       |
| FlexLogic Timer 27 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 28                 |                                       |
| FlexLogic Timer 28 Type            |                                       |
| FlexLogic Timer 28 Pickup Delay    |                                       |
| FlexLogic Timer 28 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 29                 |                                       |
| FlexLogic Timer 29 Type            |                                       |
| FlexLogic Timer 29 Pickup Delay    |                                       |
| FlexLogic Timer 29 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 30                 |                                       |
| FlexLogic Timer 30 Type            |                                       |
| FlexLogic Timer 30 Pickup Delay    |                                       |
| FlexLogic Timer 30 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 31                 |                                       |
| FlexLogic Timer 31 Type            |                                       |
| FlexLogic Timer 31 Pickup Delay    |                                       |
| FlexLogic Timer 31 Dropout Delay   |                                       |
| FLEXLOGIC TIMER 32                 |                                       |
| FlexLogic Timer 32 Type            |                                       |
| FlexLogic Timer 32 Pickup Delay    |                                       |
| FlexLogic Timer 32 Dropout Delay   |                                       |
| FLEXLELEMENT 1                     |                                       |
| FlexElement 1 Function             |                                       |
| FlexElement 1 Name                 |                                       |
| FlexElement 1 +IN                  |                                       |
| FlexElement 1 –IN                  |                                       |
| FlexElement 1 Input Mode           |                                       |
| FlexElement 1 Comp Mode            |                                       |
| FlexElement 1 Direction            |                                       |
|                                    |                                       |
| FlexElement 1 Pickup               |                                       |
| FlexElement 1 Hysteresis           |                                       |

10 COMMISSIONING 10.3 FLEXLOGIC™

Table 10-5: FLEXLOGIC™ (Sheet 15 of 17)

# SETTING VALUE FlexElement 1 dt Unit FlexElement 1 dt FlexElement 1 Pkp Delay FlexElement 1 Rst Delay FlexElement 1 Blk FlexElement 1 Target FlexElement 1 Events FLEXLELEMENT 2 FlexElement 2 Function FlexElement 2 Name FlexElement 2 +IN FlexElement 2 -IN FlexElement 2 Input Mode FlexElement 2 Comp Mode FlexElement 2 Direction FlexElement 2 Pickup FlexElement 2 Hysteresis FlexElement 2 dt Unit FlexElement 2 dt FlexElement 2 Pkp Delay FlexElement 2 Rst Delay FlexElement 2 Blk FlexElement 2 Target FlexElement 2 Events **FLEXLELEMENT 3** FlexElement 3 Function FlexElement 3 Name FlexElement 3 +IN FlexElement 3 -IN FlexElement 3 Input Mode FlexElement 3 Comp Mode FlexElement 3 Direction FlexElement 3 Pickup FlexElement 3 Hysteresis FlexElement 3 dt Unit FlexElement 3 dt FlexElement 3 Pkp Delay FlexElement 3 Rst Delay FlexElement 3 Blk FlexElement 3 Target FlexElement 3 Events **FLEXLELEMENT 4** FlexElement 4 Function FlexElement 4 Name FlexElement 4 +IN FlexElement 4 -IN FlexElement 4 Input Mode

Table 10–5: FLEXLOGIC™ (Sheet 16 of 17)

| SETTING Sheet            | VALUE |
|--------------------------|-------|
|                          | VALUE |
| FlexElement 4 Comp Mode  |       |
| FlexElement 4 Direction  |       |
| FlexElement 4 Pickup     |       |
| FlexElement 4 Hysteresis |       |
| FlexElement 4 dt Unit    |       |
| FlexElement 4 dt         |       |
| FlexElement 4 Pkp Delay  |       |
| FlexElement 4 Rst Delay  |       |
| FlexElement 4 Blk        |       |
| FlexElement 4 Target     |       |
| FlexElement 4 Events     |       |
| FLEXLELEMENT 5           |       |
| FlexElement 5 Function   |       |
| FlexElement 5 Name       |       |
| FlexElement 5 +IN        |       |
| FlexElement 5 –IN        |       |
| FlexElement 5 Input Mode |       |
| FlexElement 5 Comp Mode  |       |
| FlexElement 5 Direction  |       |
| FlexElement 5 Pickup     |       |
| FlexElement 5 Hysteresis |       |
| FlexElement 5 dt Unit    |       |
| FlexElement 5 dt         |       |
| FlexElement 5 Pkp Delay  |       |
| FlexElement 5 Rst Delay  |       |
| FlexElement 5 Blk        |       |
| FlexElement 5 Target     |       |
| FlexElement 5 Events     |       |
| FLEXLELEMENT 6           |       |
| FlexElement 6 Function   |       |
| FlexElement 6 Name       |       |
| FlexElement 6 +IN        |       |
| FlexElement 6 –IN        |       |
| FlexElement 6 Input Mode |       |
| FlexElement 6 Comp Mode  |       |
| FlexElement 6 Direction  |       |
| FlexElement 6 Pickup     |       |
| FlexElement 6 Hysteresis |       |
| FlexElement 6 dt Unit    |       |
| FlexElement 6 dt         |       |
| FlexElement 6 Pkp Delay  |       |
| FlexElement 6 Rst Delay  |       |
| FlexElement 6 Blk        |       |
| FlexElement 6 Target     |       |
| FlexElement 6 Events     |       |
| FLEXLELEMENT 7           |       |
| FlexElement 7 Function   |       |
|                          | i .   |

10.3 FLEXLOGIC™ 10 COMMISSIONING

Table 10–5: FLEXLOGIC™ (Sheet 17 of 17)

| SETTING                  | VALUE |
|--------------------------|-------|
| FlexElement 7 Name       |       |
| FlexElement 7 +IN        |       |
| FlexElement 7 –IN        |       |
| FlexElement 7 Input Mode |       |
| FlexElement 7 Comp Mode  |       |
| FlexElement 7 Direction  |       |
| FlexElement 7 Pickup     |       |
| FlexElement 7 Hysteresis |       |
| FlexElement 7 dt Unit    |       |
| FlexElement 7 dt         |       |
| FlexElement 7 Pkp Delay  |       |
| FlexElement 7 Rst Delay  |       |
| FlexElement 7 Blk        |       |
| FlexElement 7 Target     |       |
| FlexElement 7 Events     |       |
| FLEXLELEMENT 8           |       |
| FlexElement 8 Function   |       |
| FlexElement 8 Name       |       |
| FlexElement 8 +IN        |       |
| FlexElement 8 –IN        |       |
| FlexElement 8 Input Mode |       |
| FlexElement 8 Comp Mode  |       |
| FlexElement 8 Direction  |       |
| FlexElement 8 Pickup     |       |
| FlexElement 8 Hysteresis |       |
| FlexElement 8 dt Unit    |       |
| FlexElement 8 dt         |       |
| FlexElement 8 Pkp Delay  |       |
| FlexElement 8 Rst Delay  |       |
| FlexElement 8 Blk        |       |
| FlexElement 8 Target     |       |
| FlexElement 8 Events     |       |

Table 10–6: GROUPED ELEMENTS (Sheet 1 of 13)

| Table 10–6: GROUPED ELEMENT   | •     |
|-------------------------------|-------|
| SETTING                       | VALUE |
| LINE ELEMENTS                 |       |
| LINE PICKUP                   |       |
| Line Pickup Function          |       |
| Line Pickup Signal Source     |       |
| Phase IOC Line Pickup         |       |
| Positive Seq. UV Pickup       |       |
| Line End Open Pickup Delay    |       |
| Line End Open Reset Delay     |       |
| Positive Seq. OV Pickup Delay |       |
| AR CO-ORD Bypass              |       |
| AR CO-ORD Pickup Delay        |       |
| AR CO-ORD Reset Delay         |       |
| Line Pickup Block             |       |
| Line Pickup Target            |       |
| Line Pickup Events            |       |
| DISTANCE ELEMENTS             |       |
| DISTANCE                      |       |
| Distance Source               |       |
| Memory Duration               |       |
| PHASE DISTANCE Z1             |       |
| Phs Dist Z1 Function          |       |
| Phs Dist Z1 Direction         |       |
| Phs Dist Z1 Shape             |       |
| Phs Dist Z1 Reach             |       |
| Phs Dist Z1 RCA               |       |
| Phs Dist Z1 Comp. Limit       |       |
| Phs Dist Z1 Dir RCA           |       |
| Phs Dist Z1 Dir Comp. Limit   |       |
| Phs Dist Z1 Quad Rgt Bld      |       |
| Phs Dist Z1 Quad Rgt Bld RCA  |       |
| Phs Dist Z1 Quad Lft Bld      |       |
| Phs Dist Z1 Quad Lft Bld RCA  |       |
| Phs Dist Z1 Supv              |       |
| Phs Dist Z1 Volt Level        |       |
| Phs Dist Z1 Delay             |       |
| Phs Dist Z1 Blk               |       |
| Phs Dist Z1 Target            |       |
| Phs Dist Z1 Events            |       |
| PHASE DISTANCE Z2             |       |
| Phs Dist Z2 Function          |       |
| Phs Dist Z2 Direction         |       |
| Phs Dist Z2 Shape             |       |
| Phs Dist Z2 Reach             |       |
| Phs Dist Z2 RCA               |       |

Table 10-6: GROUPED ELEMENTS (Sheet 2 of 13)

| SETTING                      | VALUE |
|------------------------------|-------|
| Phs Dist Z2 Comp. Limit      | -     |
| Phs Dist Z2 Dir RCA          |       |
| Phs Dist Z2 Dir Comp. Limit  |       |
| Phs Dist Z2 Quad Rgt Bld     |       |
| Phs Dist Z2 Quad Rgt Bld RCA |       |
| Phs Dist Z2 Quad Lft Bld     |       |
| Phs Dist Z2 Quad Lft Bld RCA |       |
| Phs Dist Z2 Supv             |       |
| Phs Dist Z2 Volt Level       |       |
| Phs Dist Z2 Delay            |       |
| Phs Dist Z2 Blk              |       |
|                              |       |
| Phs Dist Z2 Target           |       |
| Phs Dist Z2 Events           |       |
| PHASE DISTANCE Z3            |       |
| Phs Dist Z3 Function         |       |
| Phs Dist Z3 Direction        |       |
| Phs Dist Z3 Shape            |       |
| Phs Dist Z3 Reach            |       |
| Phs Dist Z3 RCA              |       |
| Phs Dist Z3 Comp. Limit      |       |
| Phs Dist Z3 Dir RCA          |       |
| Phs Dist Z3 Dir Comp. Limit  |       |
| Phs Dist Z3 Quad Rgt Bld     |       |
| Phs Dist Z3 Quad Rgt Bld RCA |       |
| Phs Dist Z3 Quad Lft Bld     |       |
| Phs Dist Z3 Quad Lft Bld RCA |       |
| Phs Dist Z3 Supv             |       |
| Phs Dist Z3 Volt Level       |       |
| Phs Dist Z3 Delay            |       |
| Phs Dist Z3 Blk              |       |
| Phs Dist Z3 Target           |       |
| Phs Dist Z3 Events           |       |
| PHASE DISTANCE Z4            |       |
| Phs Dist Z4 Function         |       |
| Phs Dist Z4 Direction        |       |
| Phs Dist Z4 Shape            |       |
| Phs Dist Z4 Reach            |       |
| Phs Dist Z4 RCA              |       |
| Phs Dist Z4 Comp. Limit      |       |
| Phs Dist Z4 Dir RCA          |       |
| Phs Dist Z4 Dir Comp. Limit  |       |
| Phs Dist Z4 Quad Rgt Bld     |       |
| Phs Dist Z4 Quad Rgt Bld RCA |       |
| Phs Dist Z4 Quad Lft Bld     |       |
| Siot E                       |       |

## Table 10-6: GROUPED ELEMENTS (Sheet 3 of 13)

| SETTING                      | VALUE |
|------------------------------|-------|
|                              | VALUE |
| Phs Dist Z4 Quad Lft Bld RCA |       |
| Phs Dist Z4 Supv             |       |
| Phs Dist Z4 Volt Level       |       |
| Phs Dist Z4 Delay            |       |
| Phs Dist Z4 Blk              |       |
| Phs Dist Z4 Target           |       |
| Phs Dist Z4 Events           |       |
| GROUND DISTANCE Z1           |       |
| Gnd Dist Z1 Function         |       |
| Gnd Dist Z1 Direction        |       |
| Gnd Dist Z1 Shape            |       |
| Gnd Dist Z1 Z0/Z1 Mag        |       |
| Gnd Dist Z1 Z0/Z1 Ang        |       |
| Gnd Dist Z1 Z0M/Z1 Mag       |       |
| Gnd Dist Z1 Z0M/Z1 Ang       |       |
| Gnd Dist Z1 Reach            |       |
| Gnd Dist Z1 RCA              |       |
| Gnd Dist Z1 Comp Limit       |       |
| Gnd Dist Z1 Dir RCA          |       |
| Gnd Dist Z1 Dir Comp Limit   |       |
| Gnd Dist Z1 Quad Rgt Bld     |       |
| Gnd Dist Z1 Quad Rgt Bld RCA |       |
| Gnd Dist Z1 Quad Lft Bld     |       |
| Gnd Dist Z1 Quad Lft Bld RCA |       |
|                              |       |
| Gnd Dist Z1 Supv             |       |
| Gnd Dist Z1 Volt Level       |       |
| Gnd Dist Z1 Delay            |       |
| Gnd Dist Z1 Block            |       |
| Gnd Dist Z1 Target           |       |
| Gnd Dist Z1 Events           |       |
| GROUND DISTANCE Z2           |       |
| Gnd Dist Z2 Function         |       |
| Gnd Dist Z2 Direction        |       |
| Gnd Dist Z2 Shape            |       |
| Gnd Dist Z2 Z0/Z2 Mag        |       |
| Gnd Dist Z2 Z0/Z2 Ang        |       |
| Gnd Dist Z2 Z0M/Z2 Mag       |       |
| Gnd Dist Z2 Z0M/Z2 Ang       |       |
| Gnd Dist Z2 Reach            |       |
| Gnd Dist Z2 RCA              |       |
| Gnd Dist Z2 Comp Limit       |       |
| Gnd Dist Z2 Dir RCA          |       |
| Gnd Dist Z2 Dir Comp Limit   |       |
| Gnd Dist Z2 Quad Rgt Bld     |       |
| Gnd Dist Z2 Quad Rgt Bld RCA |       |
| Gnd Dist Z2 Quad Lft Bld     |       |
| Gnd Dist Z2 Quad Lft Bld RCA |       |

Table 10-6: GROUPED ELEMENTS (Sheet 4 of 13)

| SETTING                                  | VALUE |
|------------------------------------------|-------|
| Gnd Dist Z2 Supv                         | TALOL |
| Gnd Dist Z2 Volt Level                   |       |
| Gnd Dist Z2 Delay                        |       |
| Gnd Dist Z2 Block                        |       |
| Gnd Dist Z2 Target                       |       |
| Gnd Dist Z2 Events                       |       |
| GROUND DISTANCE Z3                       |       |
| Gnd Dist Z3 Function                     |       |
| Gnd Dist Z3 Direction                    |       |
| Gnd Dist Z3 Shape                        |       |
| Gnd Dist Z3 Z0/Z3 Mag                    |       |
| Gnd Dist Z3 Z0/Z3 Mag                    |       |
|                                          |       |
| Gnd Dist Z3 Z0M/Z3 Mag                   |       |
| Gnd Dist Z3 Z0M/Z3 Ang Gnd Dist Z3 Reach |       |
|                                          |       |
| Gnd Dist Z3 RCA                          |       |
| Gnd Dist Z3 Comp Limit                   |       |
| Gnd Dist Z3 Dir RCA                      |       |
| Gnd Dist Z3 Dir Comp Limit               |       |
| Gnd Dist Z3 Quad Rgt Bld                 |       |
| Gnd Dist Z3 Quad Rgt Bld RCA             |       |
| Gnd Dist Z3 Quad Lft Bld                 |       |
| Gnd Dist Z3 Quad Lft Bld RCA             |       |
| Gnd Dist Z3 Supv                         |       |
| Gnd Dist Z3 Volt Level                   |       |
| Gnd Dist Z3 Delay                        |       |
| Gnd Dist Z3 Block                        |       |
| Gnd Dist Z3 Target                       |       |
| Gnd Dist Z3 Events                       |       |
| GROUND DISTANCE Z4                       |       |
| Gnd Dist Z4 Function                     |       |
| Gnd Dist Z4 Direction                    |       |
| Gnd Dist Z4 Shape                        |       |
| Gnd Dist Z4 Z0/Z4 Mag                    |       |
| Gnd Dist Z4 Z0/Z4 Ang                    |       |
| Gnd Dist Z4 Z0M/Z4 Mag                   |       |
| Gnd Dist Z4 Z0M/Z4 Ang                   |       |
| Gnd Dist Z4 Reach                        |       |
| Gnd Dist Z4 RCA                          |       |
| Gnd Dist Z4 Comp Limit                   |       |
| Gnd Dist Z4 Dir RCA                      |       |
| Gnd Dist Z4 Dir Comp Limit               |       |
| Gnd Dist Z4 Quad Rgt Bld                 |       |
| Gnd Dist Z4 Quad Rgt Bld RCA             |       |
| Gnd Dist Z4 Quad Lft Bld                 |       |
| Gnd Dist Z4 Quad Lft Bld RCA             |       |
| Gnd Dist Z4 Supv                         |       |
|                                          |       |

10 COMMISSIONING 10.4 GROUPED ELEMENTS

Table 10-6: GROUPED ELEMENTS (Sheet 5 of 13)

| SETTING                        | VALUE |
|--------------------------------|-------|
| Gnd Dist Z4 Volt Level         |       |
| Gnd Dist Z4 Delay              |       |
| Gnd Dist Z4 Block              |       |
| Gnd Dist Z4 Target             |       |
| Gnd Dist Z4 Events             |       |
| POWER SWING DETECT             |       |
|                                |       |
| Power Swing Function           |       |
| Power Swing Mode               |       |
| Power Swing Mode               |       |
| Power Swing Supv               |       |
| Power Swing Fwd Reach          |       |
| Power Swing Fwd RCA            |       |
| Power Swing Rev Reach          |       |
| Power Swing Rev RCA            |       |
| Power Swing Outer Limit Angle  |       |
| Power Swing Middle Limit Angle |       |
| Power Swing Inner Limit Angle  |       |
| Power Swing Pickup Delay 1     |       |
| Power Swing Reset Delay 1      |       |
| Power Swing Pickup Delay 2     |       |
| Power Swing Pickup Delay 3     |       |
| Power Swing Pickup Delay 4     |       |
| Power Swing Seal-In Delay 1    |       |
| Power Swing Trip Mode          |       |
| Power Swing Blk                |       |
| Power Swing Target             |       |
| Power Swing Events             |       |
| LOAD ENCROACHMENT              |       |
| Load Encroachment Function     |       |
| Load Encroachment Source       |       |
| Load Encroachment Min Volt     |       |
| Load Encroachment Reach        |       |
| Load Encroachment Angle        |       |
| Load Encroachment Pkp Delay    |       |
| Load Encroachment Rst Delay    |       |
| Load Encroachment Blk          |       |
| Load Encroachment Target       |       |
| Load Encroachment Events       |       |
| CURRENT ELEMENTS               |       |
| PHASE TOC1                     |       |
| Phase TOC1 Function            |       |
| Phase TOC1 Signal Source       |       |
| Phase TOC1 Input               |       |
| Phase TOC1 Pickup              |       |
| Phase TOC1 Curve               |       |
| Phase TOC1 Multiplier          |       |
| Phase TOC1 Reset               |       |
|                                |       |

Table 10-6: GROUPED ELEMENTS (Sheet 6 of 13)

| Table 10–6: GROUPED ELEMENT  | S (Sheet 6 of 13) |
|------------------------------|-------------------|
| SETTING                      | VALUE             |
| Phase TOC1 Voltage Restraint |                   |
| Phase TOC1 Block A           |                   |
| Phase TOC1 Block B           |                   |
| Phase TOC1 Block C           |                   |
| Phase TOC1 Target            |                   |
| Phase TOC1 Events            |                   |
| PHASE TOC2                   |                   |
| Phase TOC2 Function          |                   |
| Phase TOC2 Signal Source     |                   |
| Phase TOC2 Input             |                   |
| Phase TOC2 Pickup            |                   |
| Phase TOC2 Curve             |                   |
| Phase TOC2 Multiplier        |                   |
| Phase TOC2 Reset             |                   |
| Phase TOC2 Voltage Restraint |                   |
| Phase TOC2 Block A           |                   |
| Phase TOC2 Block B           |                   |
| Phase TOC2 Block C           |                   |
| Phase TOC2 Target            |                   |
| Phase TOC2 Events            |                   |
| PHASE IOC1                   |                   |
| Phase IOC1 Function          |                   |
| Phase IOC1 Signal Source     |                   |
| Phase IOC1 Pickup            |                   |
| Phase IOC1 Pickup Delay      |                   |
| Phase IOC1 Reset Delay       |                   |
| Phase IOC1 Block A           |                   |
| Phase IOC1 Block B           |                   |
| Phase IOC1 Block C           |                   |
| Phase IOC1 Target            |                   |
| Phase IOC1 Events            |                   |
| PHASE IOC2                   |                   |
| Phase IOC2 Function          |                   |
| Phase IOC2 Signal Source     |                   |
| Phase IOC2 Pickup            |                   |
| Phase IOC2 Pickup Delay      |                   |
| Phase IOC2 Reset Delay       |                   |
| Phase IOC2 Block A           |                   |
| Phase IOC2 Block B           |                   |
| Phase IOC2 Block C           |                   |
| Phase IOC2 Target            |                   |
| Phase IOC2 Events            |                   |
| NEUTRAL TOC1                 |                   |
| Neutral TOC1 Function        |                   |
| Neutral TOC1 Signal Source   |                   |
| Neutral TOC1 Input           |                   |
| Neutral TOC1 Pickup          |                   |
| '                            | 1                 |

GE Power Management D60 Line Distance Relay 10-23

## Table 10-6: GROUPED ELEMENTS (Sheet 7 of 13)

| SETTING                    | VALUE |
|----------------------------|-------|
| Neutral TOC1 Curve         |       |
| Neutral TOC1 TD Multiplier |       |
| Neutral TOC1 Reset         |       |
| Neutral TOC1 Block         |       |
| Neutral TOC1 Target        |       |
| Neutral TOC1 Events        |       |
| NEUTRAL TOC2               |       |
| Neutral TOC2 Function      |       |
| Neutral TOC2 Signal Source |       |
| Neutral TOC2 Input         |       |
| Neutral TOC2 Pickup        |       |
| Neutral TOC2 Curve         |       |
| Neutral TOC2 TD Multiplier |       |
| Neutral TOC2 Reset         |       |
| Neutral TOC2 Block         |       |
| Neutral TOC2 Target        |       |
| Neutral TOC2 Events        |       |
| NEUTRAL IOC1               |       |
| Neutral IOC1 Function      |       |
| Neutral IOC1 Signal Source |       |
| Neutral IOC1 Pickup        |       |
| Neutral IOC1 Pickup Delay  |       |
| Neutral IOC1 Reset Delay   |       |
| Neutral IOC1 Block         |       |
| Neutral IOC1 Target        |       |
| Neutral IOC1 Events        |       |
| NEUTRAL IOC2               |       |
| Neutral IOC2 Function      |       |
| Neutral IOC2 Signal Source |       |
| Neutral IOC2 Pickup        |       |
| Neutral IOC2 Pickup Delay  |       |
| Neutral IOC2 Reset Delay   |       |
| Neutral IOC2 Block         |       |
| Neutral IOC2 Target        |       |
| Neutral IOC2 Events        |       |
| GROUND TOC1                |       |
| Ground TOC1 Function       |       |
| Ground TOC1 Signal Source  |       |
| Ground TOC1 Input          |       |
| Ground TOC1 Pickup         |       |
| Ground TOC1 Curve          |       |
| Ground TOC1 TD Multiplier  |       |
| Ground TOC1 Reset          |       |
| Ground TOC1 Block          |       |
| Ground TOC1 Target         |       |
| Ground TOC1 Events         |       |

Table 10-6: GROUPED ELEMENTS (Sheet 8 of 13)

| SETTING                      | VALUE |
|------------------------------|-------|
| GROUND TOC2                  |       |
| Ground TOC2 Function         |       |
| Ground TOC2 Signal Source    |       |
| Ground TOC2 Input            |       |
| Ground TOC2 Pickup           |       |
| Ground TOC2 Curve            |       |
| Ground TOC2 TD Multiplier    |       |
| Ground TOC2 Reset            |       |
| Ground TOC2 Block            |       |
| Ground TOC2 Target           |       |
| Ground TOC2 Events           |       |
| GROUND IOC1                  | -     |
| Ground IOC1 Function         |       |
| Ground IOC1 Signal Source    |       |
| Ground IOC1 Pickup           |       |
| Ground IOC1 Pickup Delay     |       |
| Ground IOC1 Reset Delay      |       |
| Ground IOC1 Block            |       |
| Ground IOC1 Target           |       |
| Ground IOC1 Events           |       |
| GROUND IOC2                  |       |
| Ground IOC2 Function         |       |
| Ground IOC2 Signal Source    |       |
| Ground IOC2 Pickup           |       |
| Ground IOC2 Pickup Delay     |       |
| Ground IOC2 Reset Delay      |       |
| Ground IOC2 Block            |       |
| Ground IOC2 Target           |       |
| Ground IOC2 Events           |       |
| NEG SEQ TOC1                 |       |
| Neg. Seq. TOC1 Function      |       |
| Neg. Seq. TOC1 Signal Source |       |
| Neg. Seq. TOC1 Pickup        |       |
| Neg. Seq. TOC1 Curve         |       |
| Neg. Seq. TOC1 TD Multiplier |       |
| Neg. Seq. TOC1 Reset         |       |
| Neg. Seq. TOC1 Block         |       |
| Neg. Seq. TOC1 Target        |       |
| Neg. Seq. TOC1 Events        |       |
| NEG SEQ TOC2                 |       |
| Neg. Seq. TOC2 Function      |       |
| Neg. Seq. TOC2 Signal Source |       |
| Neg. Seq. TOC2 Pickup        |       |
| Neg. Seq. TOC2 Curve         |       |
| Neg. Seq. TOC2 TD Multiplier |       |
| Neg. Seq. TOC2 Reset         |       |
| Neg. Seq. TOC2 Block         |       |

10 COMMISSIONING 10.4 GROUPED ELEMENTS

Table 10-6: GROUPED ELEMENTS (Sheet 9 of 13)

# SETTING VALUE Neg. Seq. TOC2 Target Neg. Seq. TOC2 Events NEG SEQ IOC1 Neg. Seq. IOC1 Function Neg. Seq. IOC1 Signal Source Neg. Seq. IOC1 Pickup Neg. Seq. IOC1 Pickup Delay Neg. Seq. IOC1 Reset Delay Neg. Seq. IOC1 Block Neg. Seq. IOC1 Target Neg. Seq. IOC1 Events NEG SEQ IOC2 Neg. Seq. IOC2 Function Neg. Seq. IOC2 Signal Source Neg. Seq. IOC2 Pickup Neg. Seq. IOC2 Pickup Delay Neg. Seq. IOC2 Reset Delay Neg. Seq. IOC2 Block Neg. Seq. IOC2 Target Neg. Seq. IOC2 Events **CURRENT DIRECTIONALS** PHASE DIRECTIONAL 1 Phase Dir 1 Function Phase Dir 1 Signal Source Phase Dir 1 Block Phase Dir 1 ECA Phase Dir Pol V1 Threshold Phase Dir 1 Block When V Mem Exp Phase Dir 1 Target Phase Dir 1 Events PHASE DIRECTIONAL 2 Phase Dir 2 Function Phase Dir 2 Signal Source Phase Dir 2 Block Phase Dir 2 ECA Phase Dir Pol V2 Threshold Phase Dir 2 Block When V Mem Exp Phase Dir 2 Target Phase Dir 2 Events NEUTRAL DIRECTIONAL OC1 Neutral Dir OC1 Function Neutral Dir OC1 Source Neutral Dir OC1 Polarizing Neutral Dir OC1 Pol Volt Neutral Dir OC1 Op Curr Neutral Dir OC1 Offeset Neutral Dir OC1 Fwd ECA

Table 10-6: GROUPED ELEMENTS (Sheet 10 of 13)

| Table 10–6: GROUPED ELEMENT                                                                                                                                                                                                                                                | •     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| SETTING                                                                                                                                                                                                                                                                    | VALUE |
| Neutral Dir OC1 Fwd Limit Angle                                                                                                                                                                                                                                            |       |
| Neutral Dir OC1 Fwd Pickup                                                                                                                                                                                                                                                 |       |
| Neutral Dir OC1 Rev Limit Angle                                                                                                                                                                                                                                            |       |
| Neutral Dir OC1 Rev Pickup                                                                                                                                                                                                                                                 |       |
| Neutral Dir OC1 Blk                                                                                                                                                                                                                                                        |       |
| Neutral Dir OC1 Target                                                                                                                                                                                                                                                     |       |
| Neutral Dir OC1 Events                                                                                                                                                                                                                                                     |       |
| NEUTRAL DIRECTIONAL OC2                                                                                                                                                                                                                                                    |       |
| Neutral Dir OC2 Function                                                                                                                                                                                                                                                   |       |
| Neutral Dir OC2 Source                                                                                                                                                                                                                                                     |       |
| Neutral Dir OC2 Polarizing                                                                                                                                                                                                                                                 |       |
| Neutral Dir OC2 Pol Volt                                                                                                                                                                                                                                                   |       |
| Neutral Dir OC2 Op Curr                                                                                                                                                                                                                                                    |       |
| Neutral Dir OC2 Offeset                                                                                                                                                                                                                                                    |       |
| Neutral Dir OC2 Fwd ECA                                                                                                                                                                                                                                                    |       |
| Neutral Dir OC2 Fwd Limit Angle                                                                                                                                                                                                                                            |       |
| Neutral Dir OC2 Fwd Pickup                                                                                                                                                                                                                                                 |       |
| Neutral Dir OC2 Rev Limit Angle                                                                                                                                                                                                                                            |       |
| Neutral Dir OC2 Rev Pickup                                                                                                                                                                                                                                                 |       |
| Neutral Dir OC2 Blk                                                                                                                                                                                                                                                        |       |
| Neutral Dir OC2 Target                                                                                                                                                                                                                                                     |       |
| Neutral Dir OC2 Events                                                                                                                                                                                                                                                     |       |
| NEG SEQ DIRECTIONAL OC1                                                                                                                                                                                                                                                    |       |
| Neg Seq Dir OC1 Function                                                                                                                                                                                                                                                   |       |
| Neg Seq Dir OC1 Source                                                                                                                                                                                                                                                     |       |
| Neg Seq Dir OC1 Offset                                                                                                                                                                                                                                                     |       |
| Neg Seq Dir OC1 Type                                                                                                                                                                                                                                                       |       |
| Neg Seq Dir OC1 Fwd ECA                                                                                                                                                                                                                                                    |       |
| Neg Seq Dir OC1 Fwd Limit Angle                                                                                                                                                                                                                                            |       |
| Neg Seq Dir OC1 Fwd Pickup                                                                                                                                                                                                                                                 |       |
| Neg Seq Dir OC1 Rev Limit Angle                                                                                                                                                                                                                                            |       |
| Neg Seq Dir OC1 Rev Pickup                                                                                                                                                                                                                                                 |       |
| Neg Seq Dir OC1 Block                                                                                                                                                                                                                                                      |       |
| Neg Seq Dir OC1 Target                                                                                                                                                                                                                                                     |       |
| -                                                                                                                                                                                                                                                                          |       |
| Neg Sea Dir OC1 Events                                                                                                                                                                                                                                                     |       |
| Neg Seq Dir OC1 Events                                                                                                                                                                                                                                                     |       |
| NEG SEQ DIRECTIONAL OC2                                                                                                                                                                                                                                                    |       |
| NEG SEQ DIRECTIONAL OC2 Neg Seq Dir OC2 Function                                                                                                                                                                                                                           |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source                                                                                                                                                                                                  |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset                                                                                                                                                                          |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type                                                                                                                                                    |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type  Neg Seq Dir OC2 Fwd ECA                                                                                                                           |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type  Neg Seq Dir OC2 Fwd ECA  Neg Seq Dir OC2 Fwd Limit Angle                                                                                          |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type  Neg Seq Dir OC2 Fwd ECA  Neg Seq Dir OC2 Fwd Limit Angle  Neg Seq Dir OC2 Fwd Pickup                                                              |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type  Neg Seq Dir OC2 Fwd ECA  Neg Seq Dir OC2 Fwd Limit Angle  Neg Seq Dir OC2 Fwd Pickup  Neg Seq Dir OC2 Rev Limit Angle                             |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type  Neg Seq Dir OC2 Fwd ECA  Neg Seq Dir OC2 Fwd Limit Angle  Neg Seq Dir OC2 Fwd Pickup  Neg Seq Dir OC2 Rev Limit Angle  Neg Seq Dir OC2 Rev Pickup |       |
| NEG SEQ DIRECTIONAL OC2  Neg Seq Dir OC2 Function  Neg Seq Dir OC2 Source  Neg Seq Dir OC2 Offset  Neg Seq Dir OC2 Type  Neg Seq Dir OC2 Fwd ECA  Neg Seq Dir OC2 Fwd Limit Angle  Neg Seq Dir OC2 Fwd Pickup  Neg Seq Dir OC2 Rev Limit Angle                             |       |

GE Power Management D60 Line Distance Relay 10-25

## Table 10-6: GROUPED ELEMENTS (Sheet 11 of 13)

| SETTING                  | VALUE |
|--------------------------|-------|
| Neg Seq Dir OC2 Events   |       |
| BREAKER FAILURE ELEMENTS |       |
| BREAKER FAILURE 1        |       |
| BF1 Function             |       |
| BF1 Mode                 |       |
| BF1 Source               |       |
| BF1 Use Amp Supv         |       |
| BF1 Use Seal-In          |       |
| BF1 3-Pole Initiate      |       |
| BF1 Block                |       |
| BF1 Ph Amp Supv Pickup   |       |
| BF1 N Amp Supv Pickup    |       |
| BF1 Use Timer 1          |       |
| BF1 Timer 1 Pickup Delay |       |
| BF1 Use Timer 2          |       |
| BF1 Timer 2 Pickup Delay |       |
| BF1 Use Timer 3          |       |
| BF1 Timer 3 Pickup Delay |       |
| BF1 Bkr POS1 ΦΑ/3P       |       |
| BF1 Bkr POS2 ΦΑ/3P       |       |
| BF1 Breaker Test On      |       |
| BF1 Ph Amp Hiset Pickup  |       |
| BF1 N Amp Hiset Pickup   |       |
| BF1 Ph Amp Loset Pickup  |       |
| BF1 N Amp Loset Pickup   |       |
| BF1 Loset Time Delay     |       |
| BF1 Trip Dropout Delay   |       |
| BF1 Target               |       |
| BF1 Events               |       |
| BF1 Ph A Initiate        |       |
| BF1 Ph B Initiate        |       |
| BF1 Ph C Initiate        |       |
| BF1 Bkr POS1 ΦB          |       |
| BF1 Bkr POS1 ΦC          |       |
| BF1 Bkr POS2 ΦB          |       |
| BF1 Bkr POS2 ΦC          |       |
| BREAKER FAILURE 2        |       |
| BF2 Function             |       |
| BF2 Mode                 |       |
| BF2 Source               |       |
| BF2 Use Amp Supv         |       |
| BF2 Use Seal-In          |       |
| BF2 3-Pole Initiate      |       |
| BF2 Block                |       |
| BF2 Ph Amp Supv Pickup   |       |
| BF2 N Amp Supv Pickup    |       |
| BF2 Use Timer 1          |       |

Table 10-6: GROUPED ELEMENTS (Sheet 12 of 13)

| SETTING                                                                                                                                                                                                                                                                                                                                                                                          | VALUE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| BF2 Timer 1 Pickup Delay                                                                                                                                                                                                                                                                                                                                                                         | -     |
| BF2 Use Timer 2                                                                                                                                                                                                                                                                                                                                                                                  |       |
| BF2 Timer 2 Pickup Delay                                                                                                                                                                                                                                                                                                                                                                         |       |
| BF2 Use Timer 3                                                                                                                                                                                                                                                                                                                                                                                  |       |
| BF2 Timer 3 Pickup Delay                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| BF2 Bkr POS1 ΦA/3P                                                                                                                                                                                                                                                                                                                                                                               |       |
| BF2 Bkr POS2 ΦΑ/3P                                                                                                                                                                                                                                                                                                                                                                               |       |
| BF2 Breaker Test On                                                                                                                                                                                                                                                                                                                                                                              |       |
| BF2 Ph Amp Hiset Pickup                                                                                                                                                                                                                                                                                                                                                                          |       |
| BF2 N Amp Hiset Pickup                                                                                                                                                                                                                                                                                                                                                                           |       |
| BF2 Ph Amp Loset Pickup                                                                                                                                                                                                                                                                                                                                                                          |       |
| BF2 N Amp Loset Pickup                                                                                                                                                                                                                                                                                                                                                                           |       |
| BF2 Loset Time Delay                                                                                                                                                                                                                                                                                                                                                                             |       |
| BF2 Trip Dropout Delay                                                                                                                                                                                                                                                                                                                                                                           |       |
| BF2 Target                                                                                                                                                                                                                                                                                                                                                                                       |       |
| BF2 Events                                                                                                                                                                                                                                                                                                                                                                                       |       |
| BF2 Ph A Initiate                                                                                                                                                                                                                                                                                                                                                                                |       |
| BF2 Ph B Initiate                                                                                                                                                                                                                                                                                                                                                                                |       |
| BF2 Ph C Initiate                                                                                                                                                                                                                                                                                                                                                                                |       |
| BF2 Bkr POS1 ΦB                                                                                                                                                                                                                                                                                                                                                                                  |       |
| BF2 Bkr POS1 ΦC                                                                                                                                                                                                                                                                                                                                                                                  |       |
| BF2 Bkr POS2 ΦB                                                                                                                                                                                                                                                                                                                                                                                  |       |
| BF2 Bkr POS2 ΦC                                                                                                                                                                                                                                                                                                                                                                                  |       |
| DEZ DKI E OSZ WO                                                                                                                                                                                                                                                                                                                                                                                 |       |
| VOLTAGE ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| VOLTAGE ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                 |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1                                                                                                                                                                                                                                                                                                                                                            |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function                                                                                                                                                                                                                                                                                                                                         |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source                                                                                                                                                                                                                                                                                                              |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode                                                                                                                                                                                                                                                                                                  |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup                                                                                                                                                                                                                                                                            |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay                                                                                                                                                                                                                                          |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve                                                                                                                                                                                                                                                           |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Minimum Voltage  Phase UV1 Block                                                                                                                                                                                              |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Minimum Voltage  Phase UV1 Block  Phase UV1 Target                                                                                                                                                                            |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Minimum Voltage  Phase UV1 Block                                                                                                                                                                                              |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Minimum Voltage  Phase UV1 Block  Phase UV1 Target  Phase UV1 Events                                                                                                                                                          |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode Phase UV1 Pickup Phase UV1 Curve Phase UV1 Delay Phase UV1 Minimum Voltage Phase UV1 Block Phase UV1 Target Phase UV1 Events PHASE UNDERVOLTAGE 2 Phase UV2 Function                                                                                                                             |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Minimum Voltage  Phase UV1 Block  Phase UV1 Target  Phase UV1 Events  PHASE UNDERVOLTAGE 2  Phase UV2 Signal Source                                                                                                           |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode Phase UV1 Pickup Phase UV1 Curve Phase UV1 Delay Phase UV1 Minimum Voltage Phase UV1 Block Phase UV1 Target Phase UV1 Events PHASE UNDERVOLTAGE 2 Phase UV2 Signal Source Phase UV2 Mode                                                                                                         |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode Phase UV1 Pickup Phase UV1 Curve Phase UV1 Delay Phase UV1 Minimum Voltage Phase UV1 Block Phase UV1 Target Phase UV1 Events PHASE UNDERVOLTAGE 2 Phase UV2 Function Phase UV2 Mode Phase UV2 Pickup                                                                                             |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode Phase UV1 Pickup Phase UV1 Curve Phase UV1 Delay Phase UV1 Block Phase UV1 Block Phase UV1 Target Phase UV1 Events PHASE UNDERVOLTAGE 2 Phase UV2 Function Phase UV2 Mode Phase UV2 Pickup Phase UV2 Pickup                                                                                      |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Block  Phase UV1 Target  Phase UV1 Events  PHASE UNDERVOLTAGE 2  Phase UV2 Function  Phase UV2 Signal Source  Phase UV2 Pickup  Phase UV2 Pickup  Phase UV2 Curve  Phase UV2 Delay                                            |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode Phase UV1 Pickup Phase UV1 Curve Phase UV1 Delay Phase UV1 Block Phase UV1 Target Phase UV1 Target Phase UV1 Events PHASE UNDERVOLTAGE 2 Phase UV2 Function Phase UV2 Signal Source Phase UV2 Pickup Phase UV2 Curve Phase UV2 Delay Phase UV2 Delay Phase UV2 Minimum Voltage                   |       |
| VOLTAGE ELEMENTS PHASE UNDERVOLTAGE 1 Phase UV1 Function Phase UV1 Signal Source Phase UV1 Mode Phase UV1 Pickup Phase UV1 Curve Phase UV1 Delay Phase UV1 Block Phase UV1 Block Phase UV1 Target Phase UV1 Events PHASE UNDERVOLTAGE 2 Phase UV2 Function Phase UV2 Signal Source Phase UV2 Pickup Phase UV2 Curve Phase UV2 Delay Phase UV2 Minimum Voltage Phase UV2 Delay Phase UV2 Block    |       |
| VOLTAGE ELEMENTS  PHASE UNDERVOLTAGE 1  Phase UV1 Function  Phase UV1 Signal Source  Phase UV1 Mode  Phase UV1 Pickup  Phase UV1 Curve  Phase UV1 Delay  Phase UV1 Block  Phase UV1 Target  Phase UV1 Events  PHASE UNDERVOLTAGE 2  Phase UV2 Function  Phase UV2 Signal Source  Phase UV2 Pickup  Phase UV2 Curve  Phase UV2 Delay  Phase UV2 Delay  Phase UV2 Delay  Phase UV2 Minimum Voltage |       |

10 COMMISSIONING 10.4 GROUPED ELEMENTS

Table 10-6: GROUPED ELEMENTS (Sheet 13 of 13)

| SETTING                                   | VALUE |
|-------------------------------------------|-------|
| PHASE OVERVOLTAGE 1                       | VALUE |
| Phase OV1 Function                        |       |
|                                           |       |
| Phase OV1 Signal Source                   |       |
| Phase OV1 Pickup                          |       |
| Phase OV1 Delay                           |       |
| Phase OV1 Reset Delay                     |       |
| Phase OV1 Block                           |       |
| Phase OV1 Target                          |       |
| Phase OV1 Events                          |       |
| NEUTRAL OVERVOLTAGE 1                     |       |
| Neutral OV1 Function                      |       |
| Neutral OV1 Signal Source                 |       |
| Neutral OV1 Pickup                        |       |
| Neutral OV1 Pickup Delay                  |       |
| Neutral OV1 Reset Delay                   |       |
| Neutral OV1 Block                         |       |
| Neutral OV1 Target                        |       |
| Neutral OV1 Events                        |       |
| NEGATIVE SEQUENCE OVERVOLTA               | GE    |
| Neg Seq OV Function                       |       |
| Neg Seq OV Signal Source                  |       |
| Neg Seq OV Pickup                         |       |
| Neg Seq OV Delay                          |       |
| Neg Seq OV Reset Delay                    |       |
| Neg Seq OV Block                          |       |
| Neg Seq OV Target                         |       |
| Neg Seq OV Events                         |       |
| AUXILIARY UNDERVOLTAGE 1                  |       |
| Aux UV1 Function                          |       |
| Aux UV1 Signal Source                     |       |
| Aux UV1 Pickup                            |       |
| Aux UV1 Curve                             |       |
| Aux UV1 Delay                             |       |
| Aux UV1 Minimum Voltage                   |       |
| Aux UV1 Block                             |       |
| Aux UV1 Target                            |       |
| Aux UV1 Events                            |       |
| AUXILIARY OVERVOLTAGE 1                   |       |
| Aux OV1 Function                          |       |
| Aux OV1 Signal Source                     |       |
| Aux OV1 Signal Source  Aux OV1 Pickup     |       |
| Aux OV1 Pickup Delay                      |       |
| Aux OV1 Pickup Delay  Aux OV1 Reset Delay |       |
| Aux OV1 Reset Delay  Aux OV1 Block        |       |
|                                           |       |
| Aux OV1 Target                            |       |
| Aux OV1 Events                            |       |

Table 10–7: CONTROL ELEMENTS (Sheet 1 of 10) Table 10–7: CONTROL ELEMENTS (Sheet 2 of 10)

| SETTING                 | VALUE |
|-------------------------|-------|
| SETTING GROUPS          |       |
| Setting Groups Function |       |
| Setting Groups Block    |       |
| Group 2 Activate On     |       |
| Group 3 Activate On     |       |
| Group 4 Activate On     |       |
| Group 5 Activate On     |       |
| Group 6 Activate On     |       |
| Group 7 Activate On     |       |
| Group 8 Activate On     |       |
| Setting Group Events    |       |
| TRIP OUTPUT             |       |
| Trip Mode               |       |
| Trip 3-Pole Input-1     |       |
| Trip 3-Pole Input-2     |       |
| Trip 3-Pole Input-3     |       |
| Trip 3-Pole Input-4     |       |
| Trip 3-Pole Input-5     |       |
| Trip 3-Pole Input-6     |       |
| Trip 1-Pole Input-1     |       |
| Trip 1-Pole Input-2     |       |
| Trip 1-Pole Input-3     |       |
| Trip 1-Pole Input-4     |       |
| Trip 1-Pole Input-5     |       |
| Trip 1-Pole Input-6     |       |
| Trip Reclose Input-1    |       |
| Trip Reclose Input-2    |       |
| Trip Reclose Input-3    |       |
| Trip Reclose Input-4    |       |
| Trip Reclose Input-5    |       |
| Trip Reclose Input-6    |       |
| Trip Force 3-Pole       |       |
| Trip Pilot Priority     |       |
| Bkr ΦA Open             |       |
| Bkr ΦA Open             |       |
| Bkr ΦA Open             |       |
| Trip Events             |       |
| SYNCHROCHECK 1          |       |
| Synchk1 Function        |       |
| Synchk1 Block           |       |
| Synchk1 V1 Source       |       |
| Synchk1 V2 Source       |       |
| Synchk1 Max Volt Diff   |       |
| Synchk1 Max Angle Diff  |       |

| SETTING                    | VALUE |
|----------------------------|-------|
| Synchk1 Max Freq Diff      |       |
| Synchk1 Dead Source Select |       |
| Synchk1 Dead V1 Max Volt   |       |
| Synchk1 Dead V2 Max Volt   |       |
| Synchk1 Line V1 Min Volt   |       |
| Synchk1 Line V2 Min Volt   |       |
| Synchk1 Target             |       |
| Synchk1 Events             |       |
| SYNCHROCHECK 2             |       |
| Synchk2 Function           | İ     |
| Synchk2 Block              |       |
| Synchk2 V1 Source          |       |
| Synchk2 V2 Source          |       |
| Synchk2 Max Volt Diff      |       |
| Synchk2 Max Angle Diff     |       |
| Synchk2 Max Freq Diff      |       |
| Synchk2 Dead Source Select |       |
| Synchk2 Dead V1 Max Volt   |       |
| Synchk2 Dead V2 Max Volt   |       |
| Synchk2 Line V1 Min Volt   |       |
| Synchk2 Line V2 Min Volt   |       |
| Synchk2 Target             |       |
| Synchk2 Events             |       |
| AUTORECLOSE                |       |
| AR Function                |       |
| AR Mode                    |       |
| AR Max Number of Shots     |       |
| AR Block Bkr1              |       |
| AR Bkr 1 Mnl Close         |       |
| AR Close Time Bkr1         |       |
| AR Blk Time Upon Man Cls   |       |
| AR 1P Init                 |       |
| AR 3P Init                 |       |
| AR 3P TD Init              |       |
| AR 3-P Dead Time 1         |       |
| AR 3-P Dead Time 2         |       |
| AR Extend Dead T 1         |       |
| AR Dead Time 1 Extension   |       |
| AR Reset                   |       |
| AR Reset Time              |       |
| AR Block                   |       |
| AR Pause                   |       |
|                            |       |
| AR Incomplete Seq Time     |       |

10 COMMISSIONING 10.5 CONTROL ELEMENTS

Table 10-7: CONTROL ELEMENTS (Sheet 3 of 10)

# SETTING VALUE AR Bkr Mnl Close AR Close Time Bkr2 AR Transfer 1 to 2 AR Transfer 2 to 1 AR Bkr1 Fail Option AR Bkr2 Fail Option AR 1-P Dead Time AR Bkr Sequence AR Transfer Time AR Event **DIGITAL ELEMENT 1** Digital Element 1 Function Dig Elem 1 Name Dig Elem 1 Input Dig Elem 1 Pickup Delay Dig Elem 1 Reset Delay Dig Elem 1 Block Digital Element 1 Target Digital Element 1 Events **DIGITAL ELEMENT 2** Digital Element 2 Function Dig Elem 2 Name Dig Elem 2 Input Dig Elem 2 Pickup Delay Dig Elem 2 Reset Delay Dig Elem 2 Block Digital Element 2 Target Digital Element 2 Events **DIGITAL ELEMENT 3** Digital Element 3 Function Dig Elem 3 Name Dig Elem 3 Input Dig Elem 3 Pickup Delay Dig Elem 3 Reset Delay Dig Elem 3 Block Digital Element 3 Target Digital Element 3 Events **DIGITAL ELEMENT 4** Digital Element 4 Function Dig Elem 4 Name Dig Elem 4 Input Dig Elem 4 Pickup Delay Dig Elem 4 Reset Delay Dig Elem 4 Block Digital Element 4 Target Digital Element 4 Events

Table 10-7: CONTROL ELEMENTS (Sheet 4 of 10)

| Table 10–7: CONTROL ELEMENT | •     |
|-----------------------------|-------|
| SETTING                     | VALUE |
| DIGITAL ELEMENT 5           |       |
| Digital Element 5 Function  |       |
| Dig Elem 5 Name             |       |
| Dig Elem 5 Input            |       |
| Dig Elem 5 Pickup Delay     |       |
| Dig Elem 5 Reset Delay      |       |
| Dig Elem 5 Block            |       |
| Digital Element 5 Target    |       |
| Digital Element 5 Events    |       |
| DIGITAL ELEMENT 6           |       |
| Digital Element 6 Function  |       |
| Dig Elem 6 Name             |       |
| Dig Elem 6 Input            |       |
| Dig Elem 6 Pickup Delay     |       |
| Dig Elem 6 Reset Delay      |       |
| Dig Elem 6 Block            |       |
| Digital Element 6 Target    |       |
| Digital Element 6 Events    |       |
| DIGITAL ELEMENT 7           |       |
| Digital Element 7 Function  |       |
| Dig Elem 7 Name             |       |
| Dig Elem 7 Input            |       |
| Dig Elem 7 Pickup Delay     |       |
| Dig Elem 7 Reset Delay      |       |
| Dig Elem 7 Block            |       |
| Digital Element 7 Target    |       |
| Digital Element 7 Events    |       |
| DIGITAL ELEMENT 8           |       |
| Digital Element 8 Function  |       |
| Dig Elem 8 Name             |       |
| Dig Elem 8 Input            |       |
| Dig Elem 8 Pickup Delay     |       |
| Dig Elem 8 Reset Delay      |       |
| Dig Elem 8 Block            |       |
| Digital Element 8 Target    |       |
| Digital Element 8 Events    |       |
| DIGITAL ELEMENT 9           |       |
| Digital Element 9 Function  |       |
| Dig Elem 9 Name             |       |
| Dig Elem 9 Input            |       |
| Dig Elem 9 Pickup Delay     |       |
| Dig Elem 9 Reset Delay      |       |
| Dig Elem 9 Block            |       |
| Digital Element 9 Target    |       |
| Digital Element 9 Events    |       |
| DIGITAL ELEMENT 10          |       |
| Digital Element 10 Function |       |
|                             |       |

GE Power Management D60 Line Distance Relay 10-29

# Table 10-7: CONTROL ELEMENTS (Sheet 5 of 10)

| SETTING                                              | VALUE |
|------------------------------------------------------|-------|
| Dig Elem 10 Name                                     | TALOL |
| Dig Elem 10 Input                                    |       |
| Dig Elem 10 Pickup Delay                             |       |
| Dig Elem 10 Reset Delay                              |       |
| Dig Elem 10 Block                                    |       |
| Digital Element 10 Target                            |       |
| Digital Element 10 Events                            |       |
| DIGITAL ELEMENT 11                                   |       |
| Digital Element 11 Function                          |       |
| Dig Elem 11 Name                                     |       |
| Dig Elem 11 Input                                    |       |
| Dig Elem 11 Pickup Delay                             |       |
| Dig Elem 11 Reset Delay                              |       |
| Dig Elem 11 Block                                    |       |
| Digital Element 11 Target                            |       |
| Digital Element 11 Events                            |       |
| DIGITAL ELEMENT 12                                   |       |
| Digital Element 12 Function                          |       |
| Dig Elem 12 Name                                     |       |
| Dig Elem 12 Input                                    |       |
| Dig Elem 12 Pickup Delay                             |       |
| Dig Elem 12 Reset Delay                              |       |
| ·                                                    |       |
| Dig Elem 12 Block                                    |       |
| Digital Element 12 Target  Digital Element 12 Events |       |
| DIGITAL ELEMENT 13                                   |       |
| Digital Element 13 Function                          |       |
| Dig Elem 13 Name                                     |       |
| Dig Elem 13 Input                                    |       |
| Dig Elem 13 Pickup Delay                             |       |
| Dig Elem 13 Reset Delay                              |       |
| Dig Elem 13 Block                                    |       |
| Digital Element 13 Target                            |       |
|                                                      |       |
| Digital Element 13 Events  DIGITAL ELEMENT 14        |       |
| Digital Element 14 Function                          |       |
| Dig Elem 14 Name                                     |       |
|                                                      |       |
| Dig Elem 14 Input                                    |       |
| Dig Elem 14 Pickup Delay                             |       |
| Dig Elem 14 Reset Delay                              |       |
| Dig Elem 14 Block                                    |       |
| Digital Element 14 Target                            |       |
| Digital Element 14 Events                            |       |
| DIGITAL ELEMENT 15                                   | 1     |
| Digital Element 15 Function                          |       |
| Dig Elem 15 Name                                     |       |
| Dig Elem 15 Input                                    |       |

Table 10-7: CONTROL ELEMENTS (Sheet 6 of 10)

| SETTING                                        | VALUE |
|------------------------------------------------|-------|
|                                                | VALUE |
| Dig Elem 15 Pickup Delay                       |       |
| Dig Elem 15 Reset Delay                        |       |
| Dig Elem 15 Block                              |       |
| Digital Element 15 Target                      |       |
| Digital Element 15 Events                      |       |
| DIGITAL ELEMENT 16                             |       |
| Digital Element 16 Function                    |       |
| Dig Elem 16 Name                               |       |
| Dig Elem 16 Input                              |       |
| Dig Elem 16 Pickup Delay                       |       |
| Dig Elem 16 Reset Delay                        |       |
| Dig Elem 16 Block                              |       |
| Digital Element 16 Target                      |       |
| Digital Element 16 Events                      |       |
| DIGITAL COUNTER 1                              |       |
| Counter 1 Function                             |       |
| Counter 1 Name                                 |       |
| Counter 1 Units                                |       |
| Counter 1 Preset                               |       |
| Counter 1 Compare                              |       |
| Counter 1 Up                                   |       |
| Counter 1 Down                                 |       |
| Counter 1 Block                                |       |
| Counter 1 Set to Preset                        |       |
| Counter 1 Reset                                |       |
| Counter 1 Freeze/Reset                         |       |
| Counter 1 Freeze/Count                         |       |
| DIGITAL COUNTER 2                              |       |
| Counter 2 Function                             |       |
| Counter 2 Name                                 |       |
| Counter 2 Units                                |       |
| Counter 2 Preset                               |       |
| Counter 2 Compare                              |       |
| Counter 2 Up                                   |       |
| Counter 2 Down                                 |       |
| Counter 2 Block                                |       |
| Counter 2 Set to Preset                        |       |
| Counter 2 Reset                                |       |
| Counter 2 Freeze/Reset                         |       |
| Counter 2 Freeze/Reset  Counter 2 Freeze/Count |       |
|                                                |       |
| DIGITAL COUNTER 3                              |       |
| Counter 3 Function                             |       |
| Counter 3 Name                                 |       |
| Counter 3 Units                                |       |
| Counter 3 Preset                               |       |
| Counter 3 Compare                              |       |
| Counter 3 Up                                   |       |

10

10 COMMISSIONING 10.5 CONTROL ELEMENTS

Table 10-7: CONTROL ELEMENTS (Sheet 7 of 10)

# SETTING VALUE Counter 3 Down Counter 3 Block Counter 3 Set to Preset Counter 3 Reset Counter 3 Freeze/Reset Counter 3 Freeze/Count **DIGITAL COUNTER 4** Counter 4 Function Counter 4 Name Counter 4 Units Counter 4 Preset Counter 4 Compare Counter 4 Up Counter 4 Down Counter 4 Block Counter 4 Set to Preset Counter 4 Reset Counter 4 Freeze/Reset Counter 4 Freeze/Count **DIGITAL COUNTER 5** Counter 5 Function Counter 5 Name Counter 5 Units Counter 5 Preset Counter 5 Compare Counter 5 Up Counter 5 Down Counter 5 Block Counter 5 Set to Preset Counter 5 Reset Counter 5 Freeze/Reset Counter 5 Freeze/Count **DIGITAL COUNTER 6** Counter 6 Function Counter 6 Name Counter 6 Units Counter 6 Preset Counter 6 Compare Counter 6 Up Counter 6 Down Counter 6 Block Counter 6 Set to Preset Counter 6 Reset Counter 6 Freeze/Reset Counter 6 Freeze/Count **DIGITAL COUNTER 7** Counter 7 Function

Table 10-7: CONTROL ELEMENTS (Sheet 8 of 10)

| Table 10–7: CONTROL ELEMENT        | 13 (Sheet 0 of 10) |
|------------------------------------|--------------------|
| SETTING                            | VALUE              |
| Counter 7 Name                     |                    |
| Counter 7 Units                    |                    |
| Counter 7 Preset                   |                    |
| Counter 7 Compare                  |                    |
| Counter 7 Up                       |                    |
| Counter 7 Down                     |                    |
| Counter 7 Block                    |                    |
| Counter 7 Set to Preset            |                    |
| Counter 7 Reset                    |                    |
| Counter 7 Freeze/Reset             |                    |
| Counter 7 Freeze/Count             |                    |
| DIGITAL COUNTER 8                  |                    |
| Counter 8 Function                 |                    |
| Counter 8 Name                     |                    |
| Counter 8 Units                    |                    |
| Counter 8 Preset                   |                    |
| Counter 8 Compare                  |                    |
| Counter 8 Up                       |                    |
| Counter 8 Down                     |                    |
| Counter 8 Block                    |                    |
| Counter 8 Set to Preset            |                    |
| Counter 8 Reset                    |                    |
| Counter 8 Freeze/Reset             |                    |
| Counter 8 Freeze/Count             |                    |
| BREAKER 1 ARCING CURRENT           |                    |
| Bkr 1 Arc Amp Function             |                    |
| Bkr 1 Arc Amp Source               |                    |
| Bkr 1 Arc Amp Init                 |                    |
| Bkr 1 Arc Amp Delay                |                    |
| Bkr 1 Arc Amp Limit                |                    |
| Bkr 1 Arc Amp Block                |                    |
| Bkr 1 Arc Amp Target               |                    |
| Bkr 1 Arc Amp Events               |                    |
| BREAKER 2 ARCING CURRENT           |                    |
| Bkr 2 Arc Amp Function             |                    |
| Bkr 2 Arc Amp Source               |                    |
| Bkr 2 Arc Amp Init                 |                    |
| Bkr 2 Arc Amp Delay                |                    |
| Bkr 2 Arc Amp Limit                |                    |
| Bkr 2 Arc Amp Block                |                    |
| Bkr 2 Arc Amp Target               |                    |
| Bkr 2 Arc Amp Events               |                    |
| VT FUSE FAILURE                    |                    |
| VT Fuse Failure Function           |                    |
| OPEN POLE DETECTOR                 |                    |
|                                    |                    |
| Open Pole Function Open Pole Block |                    |

GE Power Management D60 Line Distance Relay 10-31

Table 10-7: CONTROL ELEMENTS (Sheet 9 of 10)

| SETTING                                 | VALUE  |
|-----------------------------------------|--------|
| Open Pole Voltage Supv                  | 7,1202 |
| Open Pole Current Pkp                   |        |
| Open Pole Target                        |        |
| Open Pole Events                        |        |
| DUTT SCHEME                             |        |
| DUTT Scheme Function                    |        |
| DUTT Seal-In Delay                      |        |
| DUTT No of Comm Bits                    |        |
| DUTT RX1                                |        |
| DUTT RX2                                |        |
| DUTT RX3                                |        |
| DUTT RX4                                |        |
| DUTT Scheme Target                      |        |
| DUTT Scheme Events                      |        |
| PUTT SCHEME                             |        |
| PUTT Scheme Function                    |        |
| PUTT RX Pickup Delay                    |        |
| ' '                                     |        |
| PUTT Seal-In Delay PUTT No of Comm Bits |        |
| PUTT RX1                                |        |
| PUTT RX2                                |        |
|                                         |        |
| PUTT RX3                                |        |
| PUTT RX4                                |        |
| PUTT Scheme Target                      |        |
| PUTT Scheme Events                      |        |
| POTT SCHEME                             |        |
| POTT Scheme Function                    |        |
| POTT Permissive Echo                    |        |
| POTT RX Pickup Delay                    |        |
| Trans Block Pickup Delay                |        |
| Trans Block Reset Delay                 |        |
| Echo Duration                           |        |
| Echo Lockout                            |        |
| Line End Open Pickup Delay              |        |
| POTT Seal-In Delay                      |        |
| Gnd Dir O/C Fwd                         |        |
| POTT No of Comm Bits                    |        |
| POTT RX1                                |        |
| POTT RX2                                |        |
| POTT RX3                                |        |
| POTT RX4                                |        |
| POTT Scheme Target                      |        |
| POTT Scheme Events                      |        |
| HYBRID POTT SCHEME                      |        |
| Hyb POTT Scheme Function                |        |
| Hyb POTT Permissive Echo                |        |
| Hyb POTT Rx Pickup Delay                |        |

Table 10-7: CONTROL ELEMENTS (Sheet 10 of 10)

| SETTING                                                                                                                                                                                                               | VALUE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Trans Block Pickup Delay                                                                                                                                                                                              |       |
| Trans Bloick Reset Delay                                                                                                                                                                                              |       |
| Echo Duration                                                                                                                                                                                                         |       |
| Echo Lockout                                                                                                                                                                                                          |       |
| Hyb POTT Seal-In Delay                                                                                                                                                                                                |       |
| Gnd Dir O/C Fwd                                                                                                                                                                                                       |       |
| Gnd Dir O/C Rev                                                                                                                                                                                                       |       |
| Hyb POTT No of Comm Bits                                                                                                                                                                                              |       |
| Hyb POTT RX1                                                                                                                                                                                                          |       |
| Hyb POTT RX2                                                                                                                                                                                                          |       |
| Hyb POTT RX3                                                                                                                                                                                                          |       |
| Hyb POTT RX4                                                                                                                                                                                                          |       |
| Hyb POTT Scheme Target                                                                                                                                                                                                |       |
| Hyb POTT Scheme Event                                                                                                                                                                                                 |       |
| BLOCKING SCHEME                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                       |       |
| Blocking Scheme Function                                                                                                                                                                                              |       |
| Blocking Scheme Function Block Rx Co-ord Pkp Delay                                                                                                                                                                    |       |
| ū                                                                                                                                                                                                                     |       |
| Block Rx Co-ord Pkp Delay                                                                                                                                                                                             |       |
| Block Rx Co-ord Pkp Delay<br>Trans Block Pickup Delay                                                                                                                                                                 |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay                                                                                                                                            |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay                                                                                                                 |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay Gnd Dir O/C Fwd                                                                                                 |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay Gnd Dir O/C Fwd Gnd Dir O/C Rev                                                                                 |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay Gnd Dir O/C Fwd Gnd Dir O/C Rev Block Scheme No of Comm Bits                                                    |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay Gnd Dir O/C Fwd Gnd Dir O/C Rev Block Scheme No of Comm Bits Block Scheme RX1                                   |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay Gnd Dir O/C Fwd Gnd Dir O/C Rev Block Scheme No of Comm Bits Block Scheme RX1 Block Scheme RX2                  |       |
| Block Rx Co-ord Pkp Delay Trans Block Pickup Delay Trans Block Reset Delay Block Scheme Seal-In Delay Gnd Dir O/C Fwd Gnd Dir O/C Rev Block Scheme No of Comm Bits Block Scheme RX1 Block Scheme RX2 Block Scheme RX3 |       |

# Table 10-8: CONTACT INPUTS

| CONTACT INPUT | ID | DEBNCE TIME | EVENTS | THRESHOLD |
|---------------|----|-------------|--------|-----------|
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |
|               |    |             |        |           |

## Table 10-9: VIRTUAL INPUTS

| VIRTUAL INPUT    | FUNCTION | ID | TYPE | EVENTS |
|------------------|----------|----|------|--------|
| Virtual Input 1  |          |    |      |        |
| Virtual Input 2  |          |    |      |        |
| Virtual Input 3  |          |    |      |        |
| Virtual Input 4  |          |    |      |        |
| Virtual Input 5  |          |    |      |        |
| Virtual Input 6  |          |    |      |        |
| Virtual Input 7  |          |    |      |        |
| Virtual Input 8  |          |    |      |        |
| Virtual Input 9  |          |    |      |        |
| Virtual Input 10 |          |    |      |        |
| Virtual Input 11 |          |    |      |        |
| Virtual Input 12 |          |    |      |        |
| Virtual Input 13 |          |    |      |        |
| Virtual Input 14 |          |    |      |        |
| Virtual Input 15 |          |    |      |        |
| Virtual Input 16 |          |    |      |        |
| Virtual Input 17 |          |    |      |        |
| Virtual Input 18 |          |    |      |        |
| Virtual Input 19 |          |    |      |        |
| Virtual Input 20 |          |    |      |        |
| Virtual Input 21 |          |    |      |        |
| Virtual Input 22 |          |    |      |        |
| Virtual Input 23 |          |    |      |        |
| Virtual Input 24 |          |    |      |        |
| Virtual Input 25 |          |    |      |        |
| Virtual Input 26 |          |    |      |        |
| Virtual Input 27 |          |    |      |        |
| Virtual Input 28 |          |    |      |        |
| Virtual Input 29 |          |    |      |        |
| Virtual Input 30 |          |    |      |        |
| Virtual Input 31 |          |    |      |        |
| Virtual Input 32 |          |    |      |        |

10.6.3 UCA SBO TIMER

## Table 10-10: UCA SBO TIMER

| UCA SBO TIMER   |  |
|-----------------|--|
| UCA SBO Timeout |  |

## Table 10-11: CONTACT OUTPUTS

| CONTACT OUTPUT | ID | OPERATE | SEAL-IN | EVENTS |
|----------------|----|---------|---------|--------|
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |
|                |    |         |         |        |

Table 10–12: VIRTUAL OUTPUTS (Sheet 1 of 2)

| VIRTUAL<br>OUTPUT | ID | EVENTS |
|-------------------|----|--------|
| 1                 |    |        |
| 2                 |    |        |
| 3                 |    |        |
| 4                 |    |        |
| 5                 |    |        |
| 6                 |    |        |
| 7                 |    |        |
| 8                 |    |        |
| 9                 |    |        |
| 10                |    |        |
| 11                |    |        |
| 12                |    |        |
| 13                |    |        |
| 14                |    |        |
| 15                |    |        |
| 16                |    |        |
| 17                |    |        |
| 18                |    |        |
| 19                |    |        |
| 20                |    |        |
| 21                |    |        |
| 22                |    |        |
| 23                |    |        |
| 24                |    |        |
| 25                |    |        |
| 26                |    |        |
| 27                |    |        |
| 28                |    |        |
| 29                |    |        |
| 30                |    |        |
| 31                |    |        |
| 32                |    |        |
| 33                |    |        |

Table 10–12: VIRTUAL OUTPUTS (Sheet 2 of 2)

| VIRTUAL<br>OUTPUT | ID | EVENTS |
|-------------------|----|--------|
| 34                |    |        |
| 35                |    |        |
| 36                |    |        |
| 37                |    |        |
| 38                |    |        |
| 39                |    |        |
| 40                |    |        |
| 41                |    |        |
| 42                |    |        |
| 43                |    |        |
| 44                |    |        |
| 45                |    |        |
| 46                |    |        |
| 47                |    |        |
| 48                |    |        |
| 49                |    |        |
| 50                |    |        |
| 51                |    |        |
| 52                |    |        |
| 53                |    |        |
| 54                |    |        |
| 55                |    |        |
| 56                |    |        |
| 57                |    |        |
| 58                |    |        |
| 59                |    |        |
| 60                |    |        |
| 61                |    |        |
| 62                |    |        |
| 63                |    |        |
| 64                |    |        |

## Table 10-13: REMOTE DEVICES

| REMOTE DEVICE    | ID |
|------------------|----|
| Remote Device 1  |    |
| Remote Device 2  |    |
| Remote Device 3  |    |
| Remote Device 4  |    |
| Remote Device 5  |    |
| Remote Device 6  |    |
| Remote Device 7  |    |
| Remote Device 8  |    |
| Remote Device 9  |    |
| Remote Device 10 |    |
| Remote Device 11 |    |
| Remote Device 12 |    |
| Remote Device 13 |    |
| Remote Device 14 |    |
| Remote Device 15 |    |
| Remote Device 16 |    |

## Table 10-14: REMOTE INPUTS

| REMOTE INPUT    | REMOTE DEVICE | BIT PAIR | DEFAULT STATE | EVENTS |
|-----------------|---------------|----------|---------------|--------|
| Remote Input 1  |               |          |               |        |
| Remote Input 2  |               |          |               |        |
| Remote Input 3  |               |          |               |        |
| Remote Input 4  |               |          |               |        |
| Remote Input 5  |               |          |               |        |
| Remote Input 6  |               |          |               |        |
| Remote Input 7  |               |          |               |        |
| Remote Input 8  |               |          |               |        |
| Remote Input 9  |               |          |               |        |
| Remote Input 10 |               |          |               |        |
| Remote Input 11 |               |          |               |        |
| Remote Input 12 |               |          |               |        |
| Remote Input 13 |               |          |               |        |
| Remote Input 14 |               |          |               |        |
| Remote Input 15 |               |          |               |        |
| Remote Input 16 |               |          |               |        |
| Remote Input 17 |               |          |               |        |
| Remote Input 18 |               |          |               |        |
| Remote Input 19 |               |          |               |        |
| Remote Input 20 |               |          |               |        |
| Remote Input 21 |               |          |               |        |
| Remote Input 22 |               |          |               |        |
| Remote Input 23 |               |          |               |        |
| Remote Input 24 |               |          |               |        |
| Remote Input 25 |               |          |               |        |
| Remote Input 26 |               |          |               |        |
| Remote Input 27 |               |          |               |        |
| Remote Input 28 |               |          |               |        |
| Remote Input 29 |               |          |               |        |
| Remote Input 30 |               |          |               |        |
| Remote Input 31 |               |          |               |        |
| Remote Input 32 |               |          |               |        |

**10.6.8 REMOTE OUTPUTS** 

Table 10–15: REMOTE OUTPUTS (Sheet 1 of 2)

Table 10–15: REMOTE OUTPUTS (Sheet 2 of 2)

| OUTPUT#   | OPERAND     | EVENTS |
|-----------|-------------|--------|
| REMOTE OU | TPUTS – DNA |        |
| 1         |             |        |
| 2         |             |        |
| 3         |             |        |
| 4         |             |        |
| 5         |             |        |
| 6         |             |        |
| 7         |             |        |
| 8         |             |        |
| 9         |             |        |
| 10        |             |        |
| 11        |             |        |
| 12        |             |        |
| 13        |             |        |
| 14        |             |        |
| 15        |             |        |
| 16        |             |        |
| 17        |             |        |
| 18        |             |        |
| 19        |             |        |
| 20        |             |        |
| 21        |             |        |
| 22        |             |        |
| 23        |             |        |
| 24        |             |        |
| 25        |             |        |
| 26        |             |        |
| 27        |             |        |
| 28        |             |        |
| 29        |             |        |
| 30        |             |        |
| 31        |             |        |
| 32        |             |        |

| OUTPUT#   | OPERAND        | EVENTS |
|-----------|----------------|--------|
| REMOTE OU | TPUTS - UserSt |        |
| 1         |                |        |
| 2         |                |        |
| 3         |                |        |
| 4         |                |        |
| 5         |                |        |
| 6         |                |        |
| 7         |                |        |
| 8         |                |        |
| 9         |                |        |
| 10        |                |        |
| 11        |                |        |
| 12        |                |        |
| 13        |                |        |
| 14        |                |        |
| 15        |                |        |
| 16        |                |        |
| 17        |                |        |
| 18        |                |        |
| 19        |                |        |
| 20        |                |        |
| 21        |                |        |
| 22        |                |        |
| 23        |                |        |
| 24        |                |        |
| 25        |                |        |
| 26        |                |        |
| 27        |                |        |
| 28        |                |        |
| 29        |                |        |
| 30        |                |        |
| 31        |                |        |
| 32        |                |        |

10.6.9 RESETTING

| SETTING       | VALUE |
|---------------|-------|
| RESETTING     |       |
| Reset Operand |       |

10.7.1 DCMA INPUTS

## Table 10-16: DCMA INPUTS

| DCMA FUNCTION INPUT | FUNCTION | ID UN | UNITS | UNITS RANGE | VAL | VALUES |  |
|---------------------|----------|-------|-------|-------------|-----|--------|--|
| INPUT               |          |       |       |             | MIN | MAX    |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |
|                     |          |       |       |             |     |        |  |

## Table 10-17: RTD INPUTS

| RTD INPUT | FUNCTION | ID | TYPE |
|-----------|----------|----|------|
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |
|           |          |    |      |

Table 10–18: FORCE CONTACT INPUTS

| FORCE CONTACT | INPUT |
|---------------|-------|
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |
|               |       |

Table 10–19: FORCE CONTACT OUTPUTS

| FORCE CONTACT | OUTPUT |
|---------------|--------|
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |
|               |        |

Table A-1: FLEXANALOG PARAMETERS (Sheet 1 of 4)

| SETTING | DISPLAY TEXT    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6144    | SRC 1 la RMS    | SRC 1 Phase A Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6146    | SRC 1 lb RMS    | SRC 1 Phase B Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6148    | SRC 1 lc RMS    | SRC 1 Phase C Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6150    | SRC 1 In RMS    | SRC 1 Neutral Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6152    | SRC 1 la Mag    | SRC 1 Phase A Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6154    | SRC 1 la Angle  | SRC 1 Phase A Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6155    | SRC 1 lb Mag    | SRC 1 Phase B Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6157    | SRC 1 lb Angle  | SRC 1 Phase B Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6158    | SRC 1 lc Mag    | SRC 1 Phase C Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6160    | SRC 1 lc Angle  | SRC 1 Phase C Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6161    | SRC 1 In Mag    | SRC 1 Neutral Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6163    | SRC 1 In Angle  | SRC 1 Neutral Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6164    | SRC 1 Ig RMS    | SRC 1 Ground Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6166    | SRC 1 lg Mag    | SRC 1 Ground Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6168    | SRC 1 Ig Angle  | SRC 1 Ground Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 6169    | SRC 1 I_0 Mag   | SRC 1 Zero Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 6171    | SRC 1 I_0 Angle | SRC 1 Zero Sequence Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 6172    | SRC 1 I_1 Mag   | SRC 1 Positive Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6174    | SRC 1 I_1 Angle | SRC 1 Positive Sequence Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 6175    | SRC 1 I 2 Mag   | SRC 1 Negative Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6177    | SRC 1 I_2 Angle | SRC 1 Negative Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6178    | SRC 1 Igd Mag   | SRC 1 Differential Ground Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6180    | SRC 1 Igd Angle | SRC 1 Differential Ground Current Magnitude (A)  SRC 1 Differential Ground Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6208    | SRC 2 la RMS    | SRC 2 Phase A Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6210    | SRC 2 lb RMS    | SRC 2 Phase B Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6212    | SRC 2 Ic RMS    | SRC 2 Phase C Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6214    | SRC 2 In RMS    | SRC 2 Neutral Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6216    | SRC 2 la Mag    | SRC 2 Phase A Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6218    | SRC 2 la Angle  | SRC 2 Phase A Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6219    | SRC 2 lb Mag    | SRC 2 Phase B Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6221    | SRC 2 lb Angle  | SRC 2 Phase B Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6222    | SRC 2 lc Mag    | SRC 2 Phase C Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6224    | SRC 2 Ic Angle  | SRC 2 Phase C Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6225    | SRC 2 In Mag    | SRC 2 Neutral Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6227    | SRC 2 In Angle  | SRC 2 Neutral Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6228    | SRC 2 Ig RMS    | SRC 2 Ground Current RMS (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6230    | SRC 2 lg Mag    | SRC 2 Ground Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6232    | SRC 2 Ig Angle  | SRC 2 Ground Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 6233    | SRC 2 I_0 Mag   | SRC 2 Zero Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 6235    | SRC 2 I_0 Angle | SRC 2 Zero Sequence Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 6236    | SRC 2 I_1 Mag   | SRC 2 Positive Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6238    | SRC 2 I_1 Angle | SRC 2 Positive Sequence Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 6239    | SRC 2 I_2 Mag   | SRC 2 Negative Sequence Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 6241    | SRC 2 I_2 Angle | SRC 2 Negative Sequence Current Angle (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 6242    | SRC 2 Igd Mag   | SRC 2 Differential Ground Current Magnitude (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| J_ IL   |                 | The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |  |

Table A-1: FLEXANALOG PARAMETERS (Sheet 2 of 4)

| SETTING | DISPLAY TEXT    | DESCRIPTION                                   |
|---------|-----------------|-----------------------------------------------|
| 6244    | SRC 2 Igd Angle | SRC 2 Differential Ground Current Angle (°)   |
| 6656    | SRC 1 Vag RMS   | SRC 1 Phase AG Voltage RMS (V)                |
| 6658    | SRC 1 Vbg RMS   | SRC 1 Phase BG Voltage RMS (V)                |
| 6660    | SRC 1 Vcg RMS   | SRC 1 Phase CG Voltage RMS (V)                |
| 6662    | SRC 1 Vag Mag   | SRC 1 Phase AG Voltage Magnitude (V)          |
| 6664    | SRC 1 Vag Angle | SRC 1 Phase AG Voltage Angle (°)              |
| 6665    | SRC 1 Vbg Mag   | SRC 1 Phase BG Voltage Magnitude (V)          |
| 6667    | SRC 1 Vbg Angle | SRC 1 Phase BG Voltage Angle (°)              |
| 6668    | SRC 1 Vcg Mag   | SRC 1 Phase CG Voltage Magnitude (V)          |
| 6670    | SRC 1 Vcg Angle | SRC 1 Phase CG Voltage Angle (°)              |
| 6671    | SRC 1 Vab RMS   | SRC 1 Phase AB Voltage RMS (V)                |
| 6673    | SRC 1 Vbc RMS   | SRC 1 Phase BC Voltage RMS (V)                |
| 6675    | SRC 1 Vca RMS   | SRC 1 Phase CA Voltage RMS (V)                |
| 6677    | SRC 1 Vab Mag   | SRC 1 Phase AB Voltage Magnitude (V)          |
| 6679    | SRC 1 Vab Angle | SRC 1 Phase AB Voltage Angle (°)              |
| 6680    | SRC 1 Vbc Mag   | SRC 1 Phase BC Voltage Magnitude (V)          |
| 6682    | SRC 1 Vbc Angle | SRC 1 Phase BC Voltage Angle (°)              |
| 6683    | SRC 1 Vca Mag   | SRC 1 Phase CA Voltage Magnitude (V)          |
| 6685    | SRC 1 Vca Angle | SRC 1 Phase CA Voltage Angle (°)              |
| 6686    | SRC 1 Vx RMS    | SRC 1 Auxiliary Voltage RMS (V)               |
| 6688    | SRC 1 Vx Mag    | SRC 1 Auxiliary Voltage Magnitude (V)         |
| 6690    | SRC 1 Vx Angle  | SRC 1 Auxiliary Voltage Angle (°)             |
| 6691    | SRC 1 V_0 Mag   | SRC 1 Zero Sequence Voltage Magnitude (V)     |
| 6693    | SRC 1 V_0 Angle | SRC 1 Zero Sequence Voltage Angle (°)         |
| 6694    | SRC 1 V_1 Mag   | SRC 1 Positive Sequence Voltage Magnitude (V) |
| 6696    | SRC 1 V_1 Angle | SRC 1 Positive Sequence Voltage Angle (°)     |
| 6697    | SRC 1 V_2 Mag   | SRC 1 Negative Sequence Voltage Magnitude (V) |
| 6699    | SRC 1 V_2 Angle | SRC 1 Negative Sequence Voltage Angle (°)     |
| 6720    | SRC 2 Vag RMS   | SRC 2 Phase AG Voltage RMS (V)                |
| 6722    | SRC 2 Vbg RMS   | SRC 2 Phase BG Voltage RMS (V)                |
| 6724    | SRC 2 Vcg RMS   | SRC 2 Phase CG Voltage RMS (V)                |
| 6726    | SRC 2 Vag Mag   | SRC 2 Phase AG Voltage Magnitude (V)          |
| 6728    | SRC 2 Vag Angle | SRC 2 Phase AG Voltage Angle (°)              |
| 6729    | SRC 2 Vbg Mag   | SRC 2 Phase BG Voltage Magnitude (V)          |
| 6731    | SRC 2 Vbg Angle | SRC 2 Phase BG Voltage Angle (°)              |
| 6732    | SRC 2 Vcg Mag   | SRC 2 Phase CG Voltage Magnitude (V)          |
| 6734    | SRC 2 Vcg Angle | SRC 2 Phase CG Voltage Angle (°)              |
| 6735    | SRC 2 Vab RMS   | SRC 2 Phase AB Voltage RMS (V)                |
| 6737    | SRC 2 Vbc RMS   | SRC 2 Phase BC Voltage RMS (V)                |
| 6739    | SRC 2 Vca RMS   | SRC 2 Phase CA Voltage RMS (V)                |
| 6741    | SRC 2 Vab Mag   | SRC 2 Phase AB Voltage Magnitude (V)          |
| 6743    | SRC 2 Vab Angle | SRC 2 Phase AB Voltage Angle (°)              |
| 6744    | SRC 2 Vbc Mag   | SRC 2 Phase BC Voltage Magnitude (V)          |
| 6746    | SRC 2 Vbc Angle | SRC 2 Phase BC Voltage Angle (°)              |
| 6747    | SRC 2 Vca Mag   | SRC 2 Phase CA Voltage Magnitude (V)          |
| 6749    | SRC 2 Vca Angle | SRC 2 Phase CA Voltage Angle (°)              |
| 6750    | SRC 2 Vx RMS    | SRC 2 Auxiliary Voltage RMS (V)               |

A-3

Table A-1: FLEXANALOG PARAMETERS (Sheet 3 of 4)

| SETTING | DISPLAY TEXT     | DESCRIPTION                                   |
|---------|------------------|-----------------------------------------------|
| 6752    | SRC 2 Vx Mag     | SRC 2 Auxiliary Voltage Magnitude (V)         |
| 6754    | SRC 2 Vx Angle   | SRC 2 Auxiliary Voltage Angle (°)             |
| 6755    | SRC 2 V_0 Mag    | SRC 2 Zero Sequence Voltage Magnitude (V)     |
| 6757    | SRC 2 V_0 Angle  | SRC 2 Zero Sequence Voltage Angle (°)         |
| 6758    | SRC 2 V_1 Mag    | SRC 2 Positive Sequence Voltage Magnitude (V) |
| 6760    | SRC 2 V_1 Angle  | SRC 2 Positive Sequence Voltage Angle (°)     |
| 6761    | SRC 2 V_2 Mag    | SRC 2 Negative Sequence Voltage Magnitude (V) |
| 6763    | SRC 2 V_2 Angle  | SRC 2 Negative Sequence Voltage Angle (°)     |
| 7168    | SRC 1 P          | SRC 1 Three Phase Real Power (W)              |
| 7170    | SRC 1 Pa         | SRC 1 Phase A Real Power (W)                  |
| 7172    | SRC 1 Pb         | SRC 1 Phase B Real Power (W)                  |
| 7174    | SRC 1 Pc         | SRC 1 Phase C Real Power (W)                  |
| 7176    | SRC 1 Q          | SRC 1 Three Phase Reactive Power (var)        |
| 7178    | SRC 1 Qa         | SRC 1 Phase A Reactive Power (var)            |
| 7180    | SRC 1 Qb         | SRC 1 Phase B Reactive Power (var)            |
| 7182    | SRC 1 Qc         | SRC 1 Phase C Reactive Power (var)            |
| 7184    | SRC 1 S          | SRC 1 Three Phase Apparent Power (VA)         |
| 7186    | SRC 1 Sa         | SRC 1 Phase A Apparent Power (VA)             |
| 7188    | SRC 1 Sb         | SRC 1 Phase B Apparent Power (VA)             |
| 7190    | SRC 1 Sc         | SRC 1 Phase C Apparent Power (VA)             |
| 7192    | SRC 1 PF         | SRC 1 Three Phase Power Factor                |
| 7193    | SRC 1 Phase A PF | SRC 1 Phase A Power Factor                    |
| 7194    | SRC 1 Phase B PF | SRC 1 Phase B Power Factor                    |
| 7195    | SRC 1 Phase C PF | SRC 1 Phase C Power Factor                    |
| 7200    | SRC 2 P          | SRC 2 Three Phase Real Power (W)              |
| 7202    | SRC 2 Pa         | SRC 2 Phase A Real Power (W)                  |
| 7204    | SRC 2 Pb         | SRC 2 Phase B Real Power (W)                  |
| 7206    | SRC 2 Pc         | SRC 2 Phase C Real Power (W)                  |
| 7208    | SRC 2 Q          | SRC 2 Three Phase Reactive Power (var)        |
| 7210    | SRC 2 Qa         | SRC 2 Phase A Reactive Power (var)            |
| 7212    | SRC 2 Qb         | SRC 2 Phase B Reactive Power (var)            |
| 7214    | SRC 2 Qc         | SRC 2 Phase C Reactive Power (var)            |
| 7216    | SRC 2 S          | SRC 2 Three Phase Apparent Power (VA)         |
| 7218    | SRC 2 Sa         | SRC 2 Phase A Apparent Power (VA)             |
| 7220    | SRC 2 Sb         | SRC 2 Phase B Apparent Power (VA)             |
| 7222    | SRC 2 Sc         | SRC 2 Phase C Apparent Power (VA)             |
| 7224    | SRC 2 PF         | SRC 2 Three Phase Power Factor                |
| 7225    | SRC 2 Phase A PF | SRC 2 Phase A Power Factor                    |
| 7226    | SRC 2 Phase B PF | SRC 2 Phase B Power Factor                    |
| 7227    | SRC 2 Phase C PF | SRC 2 Phase C Power Factor                    |
| 7552    | SRC 1 Frequency  | SRC 1 Frequency (Hz)                          |
| 7553    | SRC 2 Frequency  | SRC 2 Frequency (Hz)                          |
| 8704    | Brk 1 Arc Amp A  | Breaker 1 Arcing Amp Phase A (kA2-cyc)        |
| 8706    | Brk 1 Arc Amp B  | Breaker 1 Arcing Amp Phase B (kA2-cyc)        |
| 8708    | Brk 1 Arc Amp C  | Breaker 1 Arcing Amp Phase C (kA2-cyc)        |
| 8710    | Brk 2 Arc Amp A  | Breaker 2 Arcing Amp Phase A (kA2-cyc)        |
| 8712    | Brk 2 Arc Amp B  | Breaker 2 Arcing Amp Phase B (kA2-cyc)        |

# Table A-1: FLEXANALOG PARAMETERS (Sheet 4 of 4)

| SETTING | DISPLAY TEXT         | DESCRIPTION                            |
|---------|----------------------|----------------------------------------|
| 8714    | Brk 2 Arc Amp C      | Breaker 2 Arcing Amp Phase C (kA2-cyc) |
| 9216    | Synchchk 1 Delta V   | Synchrocheck 1 Delta Voltage (V)       |
| 9218    | Synchchk 1 Delta F   | Synchrocheck 1 Delta Frequency (Hz)    |
| 9219    | Synchchk 1 Delta Phs | Synchrocheck 1 Delta Phase (°)         |
| 9220    | Synchchk 2 Delta V   | Synchrocheck 2 Delta Voltage (V)       |
| 9222    | Synchchk 2 Delta F   | Synchrocheck 2 Delta Frequency (Hz)    |
| 9223    | Synchchk 2 Delta Phs | Synchrocheck 2 Delta Phase (°)         |
| 9248    | 1 S1 S2 Angle        | Power Swing S1 S2 Angle (°)            |
| 32768   | Tracking Frequency   | Tracking Frequency (Hz)                |
| 39425   | FlexElement 1 OpSig  | FlexElement 1 Actual                   |
| 39427   | FlexElement 2 OpSig  | FlexElement 2 Actual                   |
| 39429   | FlexElement 3 OpSig  | FlexElement 3 Actual                   |
| 39431   | FlexElement 4 OpSig  | FlexElement 4 Actual                   |
| 39433   | FlexElement 5 OpSig  | FlexElement 5 Actual                   |
| 39435   | FlexElement 6 OpSig  | FlexElement 6 Actual                   |
| 39437   | FlexElement 7 OpSig  | FlexElement 7 Actual                   |
| 39439   | FlexElement 8 OpSig  | FlexElement 8 Actual                   |
| 39441   | FlexElement 9 OpSig  | FlexElement 9 Actual                   |
| 39443   | FlexElement 10 OpSig | FlexElement 10 Actual                  |
| 39445   | FlexElement 11 OpSig | FlexElement 11 Actual                  |
| 39447   | FlexElement 12 OpSig | FlexElement 12 Actual                  |
| 39449   | FlexElement 13 OpSig | FlexElement 13 Actual                  |
| 39451   | FlexElement 14 OpSig | FlexElement 14 Actual                  |
| 39453   | FlexElement 15 OpSig | FlexElement 15 Actual                  |
| 39455   | FlexElement 16 OpSig | FlexElement 16 Actual                  |
| 40960   | Communications Group | Groups Communications Group            |
| 40971   | Active Setting Group | Current Setting Group                  |

**B.1.1 INTRODUCTION** 

**B.1 OVERVIEW** 

The UR series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus<sup>®</sup>, a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.

**B.1.2 PHYSICAL LAYER** 

The Modbus<sup>®</sup> RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10BaseT, or 10BaseF. Data flow is half-duplex in all configurations. See Chapter 3: HARDWARE for details on wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, or 115200 bps are available. Even, odd, and no parity are available. Refer to the COMMUNICATIONS section of the SETTINGS chapter for further details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address – see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus<sup>®</sup> RTU protocol is used.

**B.1.3 DATA LINK LAYER** 

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by 'dead-time' on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

Table B-1: MODBUS PACKET FORMAT

| DESCRIPTION   | SIZE                        |
|---------------|-----------------------------|
| SLAVE ADDRESS | 1 byte                      |
| FUNCTION CODE | 1 byte                      |
| DATA          | N bytes                     |
| CRC           | 2 bytes                     |
| DEAD TIME     | 3.5 bytes transmission time |

#### SLAVE ADDRESS

This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see Chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.

B.1 OVERVIEW APPENDIX B

A master transmit packet with a slave address of 0 indicates a broadcast command. All slaves on the communication link will take action based on the packet, but none will respond to the master. Broadcast mode is only recognized when associated with FUNCTION CODE 05h. For any other function code, a packet with broadcast mode slave address 0 will be ignored.

#### **FUNCTION CODE**

This is one of the supported functions codes of the unit which tells the slave what action to perform. See the SUPPORTED FUNCTION CODES section for complete details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the EXCEPTION RESPONSES section for further details.

#### DATA

This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.

### **CRC**

This is a two byte error checking code. The RTU version of Modbus<sup>®</sup> includes a 16 bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus<sup>®</sup> slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the CRC-16 ALGORITHM section for a description of how to calculate the CRC.

#### **DEAD TIME**

A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at 2400 bps, 2 ms at 19200 bps, and 300 µs at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.

В

**B.1.4 CRC-16 ALGORITHM** 

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (1100000000000101B). The 16 bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.

Note: A C programming language implementation of the CRC algorithm will be provided upon request.

Table B-2: CRC-16 ALGORITHM

| SYMBOLS:           | >     | data transfer                                                                                                                                          |                                           |  |
|--------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
|                    | Α     | 16 bit working register                                                                                                                                |                                           |  |
|                    | Alow  | low order byte of A                                                                                                                                    |                                           |  |
|                    | Ahigh | high order byte of A                                                                                                                                   |                                           |  |
|                    | CRC   | 16 bit CRC-16 result                                                                                                                                   |                                           |  |
|                    | i,j   | loop counters                                                                                                                                          |                                           |  |
|                    | (+)   | logical EXCLUSIVE-OF                                                                                                                                   | Roperator                                 |  |
|                    | N     | total number of data by                                                                                                                                | tes                                       |  |
|                    | Di    | i-th data byte (i = 0 to N                                                                                                                             | I-1)                                      |  |
|                    | G     | 16 bit characteristic polynomial = 1010000000000001 (binary) with MSbit dropped and bit order reversed                                                 |                                           |  |
| shr (x)            |       | right shift operator (th LSbit of x is shifted into a carry flag, a '0' is shifted into the MSbit of x, all other bits are shifted right one location) |                                           |  |
| ALGORITHM:         | 1.    | FFFF (hex)> A                                                                                                                                          |                                           |  |
| 2. 0> i<br>3. 0> j |       | ` '                                                                                                                                                    |                                           |  |
|                    |       |                                                                                                                                                        |                                           |  |
|                    | 4.    | Di (+) Alow> Alow                                                                                                                                      |                                           |  |
|                    | 5.    | j + 1> j shr (A)                                                                                                                                       |                                           |  |
|                    | 6.    |                                                                                                                                                        |                                           |  |
|                    | 7.    | Is there a carry?                                                                                                                                      | No: go to 8 Yes: G (+) A> A and continue. |  |
|                    | 8.    | Is j = 8?                                                                                                                                              | No: go to 5 Yes: continue                 |  |
|                    | 9.    | i+1>i                                                                                                                                                  |                                           |  |
|                    | 10.   | Is i = N?                                                                                                                                              | No: go to 3 Yes: continue                 |  |
|                    | 11.   | A> CRC                                                                                                                                                 |                                           |  |

#### **B.2.1 SUPPORTED FUNCTION CODES**

Modbus<sup>®</sup> officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

| FUNCTION CODE |     | MODBUS DEFINITION                           | GE POWER MANAGEMENT DEFINITION |
|---------------|-----|---------------------------------------------|--------------------------------|
| HEX           | DEC |                                             |                                |
| 03            | 3   | Read Holding Registers                      | Read Actual Values or Settings |
| 04            | 4   | Read Holding Registers                      | Read Actual Values or Settings |
| 05            | 5   | Force Single Coil                           | Execute Operation              |
| 06            | 6   | Preset Single Register Store Single Setting |                                |
| 10            | 16  | Preset Multiple Registers                   | Store Multiple Settings        |

## **B.2.2 FUNCTION CODE 03H/04H: READ ACTUAL VALUES OR SETTINGS**

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16 bit (two byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125. See the section MODBUS® MEMORY MAP for exact details on the data registers.

Since some PLC implementations of Modbus<sup>®</sup> only support one of function codes 03h and 04h, the relay interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.

The following table shows the format of the master and slave packets. The example shows a master device requesting 3 register values starting at address 4050h from slave device 11h (17 decimal); the slave device responds with the values 40, 300, and 0 from registers 4050h, 4051h, and 4052h, respectively.

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION        |               |  |
|----------------------------|---------------|--|
| PACKET FORMAT              | EXAMPLE (HEX) |  |
| SLAVE ADDRESS              | 11            |  |
| FUNCTION CODE              | 04            |  |
| DATA STARTING ADDRESS - hi | 40            |  |
| DATA STARTING ADDRESS - Io | 50            |  |
| NUMBER OF REGISTERS - hi   | 00            |  |
| NUMBER OF REGISTERS - lo   | 03            |  |
| CRC - Io                   | A7            |  |
| CRC - hi                   | 4A            |  |

| SLAVE RESPONSE |               |  |
|----------------|---------------|--|
| PACKET FORMAT  | EXAMPLE (HEX) |  |
| SLAVE ADDRESS  | 11            |  |
| FUNCTION CODE  | 04            |  |
| BYTE COUNT     | 06            |  |
| DATA #1 - hi   | 00            |  |
| DATA #1 - lo   | 28            |  |
| DATA #2 - hi   | 01            |  |
| DATA #2 - lo   | 2C            |  |
| DATA #3 - hi   | 00            |  |
| DATA #3 - lo   | 00            |  |
| CRC - lo       | 0D            |  |
| CRC - hi       | 60            |  |

### **B.2.3 FUNCTION CODE 05H: EXECUTE OPERATION**

This function code allows the master to perform various operations in the relay. Available operations are in the table SUM-MARY OF OPERATION CODES.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device 11H (17 dec) to perform a reset. The hi and lo CODE VALUE bytes always have the values 'FF' and '00' respectively and are a remnant of the original Modbus<sup>®</sup> definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION |               |  |
|---------------------|---------------|--|
| PACKET FORMAT       | EXAMPLE (HEX) |  |
| SLAVE ADDRESS       | 11            |  |
| FUNCTION CODE       | 05            |  |
| OPERATION CODE - hi | 00            |  |
| OPERATION CODE - Io | 01            |  |
| CODE VALUE - hi     | FF            |  |
| CODE VALUE - Io     | 00            |  |
| CRC - lo            | DF            |  |
| CRC - hi            | 6A            |  |

| SLAVE RESPONSE      |               |  |
|---------------------|---------------|--|
| PACKET FORMAT       | EXAMPLE (HEX) |  |
| SLAVE ADDRESS       | 11            |  |
| FUNCTION CODE       | 05            |  |
| OPERATION CODE - hi | 00            |  |
| OPERATION CODE - Io | 01            |  |
| CODE VALUE - hi     | FF            |  |
| CODE VALUE - Io     | 00            |  |
| CRC - lo            | DF            |  |
| CRC - hi            | 6A            |  |

Table B-5: SUMMARY OF OPERATION CODES (FUNCTION CODE 05H)

| OPERATION<br>CODE (HEX) | DEFINITION             | DESCRIPTION                                                                          |
|-------------------------|------------------------|--------------------------------------------------------------------------------------|
| 0000                    | NO OPERATION           | Does not do anything.                                                                |
| 0001                    | RESET                  | Performs the same function as the faceplate RESET key.                               |
| 0005                    | CLEAR EVENT RECORDS    | Performs the same function as the faceplate <b>CLEAR EVENT RECORDS</b> menu command. |
| 0006                    | CLEAR OSCILLOGRAPHY    | Clears all oscillography records.                                                    |
| 1000 to 101F            | VIRTUAL IN 1-32 ON/OFF | Sets the states of Virtual Inputs 1 to 32 either "ON" or "OFF".                      |

## **B.2.4 FUNCTION CODE 06H: STORE SINGLE SETTING**

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first.

The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION        |               |  |  |
|----------------------------|---------------|--|--|
| PACKET FORMAT              | EXAMPLE (HEX) |  |  |
| SLAVE ADDRESS              | 11            |  |  |
| FUNCTION CODE              | 06            |  |  |
| DATA STARTING ADDRESS - hi | 40            |  |  |
| DATA STARTING ADDRESS - Io | 51            |  |  |
| DATA - hi                  | 00            |  |  |
| DATA - Io                  | C8            |  |  |
| CRC - lo                   | CE            |  |  |
| CRC - hi                   | DD            |  |  |

| SLAVE RESPONSE             |               |  |  |
|----------------------------|---------------|--|--|
| PACKET FORMAT              | EXAMPLE (HEX) |  |  |
| SLAVE ADDRESS              | 11            |  |  |
| FUNCTION CODE              | 06            |  |  |
| DATA STARTING ADDRESS - hi | 40            |  |  |
| DATA STARTING ADDRESS - Io | 51            |  |  |
| DATA - hi                  | 00            |  |  |
| DATA - Io                  | C8            |  |  |
| CRC - Io                   | CE            |  |  |
| CRC - hi                   | DD            |  |  |

### **B.2.5 FUNCTION CODE 10H: STORE MULTIPLE SETTINGS**

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h, and the value 1 at memory map address 4052h to slave device 11h (17 dec).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION        |               |  |  |
|----------------------------|---------------|--|--|
| PACKET FORMAT              | EXAMPLE (HEX) |  |  |
| SLAVE ADDRESS              | 11            |  |  |
| FUNCTION CODE              | 10            |  |  |
| DATA STARTING ADDRESS - hi | 40            |  |  |
| DATA STARTING ADDRESS - Io | 51            |  |  |
| NUMBER OF SETTINGS - hi    | 00            |  |  |
| NUMBER OF SETTINGS - Io    | 02            |  |  |
| BYTE COUNT                 | 04            |  |  |
| DATA #1 - high order byte  | 00            |  |  |
| DATA #1 - low order byte   | C8            |  |  |
| DATA #2 - high order byte  | 00            |  |  |
| DATA #2 - low order byte   | 01            |  |  |
| CRC - low order byte       | 12            |  |  |
| CRC - high order byte      | 62            |  |  |

| SLAVE RESPONSE             |               |
|----------------------------|---------------|
| PACKET FORMAT              | EXMAPLE (HEX) |
| SLAVE ADDRESS              | 11            |
| FUNCTION CODE              | 10            |
| DATA STARTING ADDRESS - hi | 40            |
| DATA STARTING ADDRESS - Io | 51            |
| NUMBER OF SETTINGS - hi    | 00            |
| NUMBER OF SETTINGS - Io    | 02            |
| CRC - Io                   | 07            |
| CRC - hi                   | 64            |

## **B.2.6 EXCEPTION RESPONSES**

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1.

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39h to slave device 11.

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

| MASTER TRANSMISSION   |               |  |  |  |  |
|-----------------------|---------------|--|--|--|--|
| PACKET FORMAT         | EXAMPLE (HEX) |  |  |  |  |
| SLAVE ADDRESS         | 11            |  |  |  |  |
| FUNCTION CODE         | 39            |  |  |  |  |
| CRC - low order byte  | CD            |  |  |  |  |
| CRC - high order byte | F2            |  |  |  |  |

| SLAVE RESPONSE        |               |
|-----------------------|---------------|
| PACKET FORMAT         | EXAMPLE (HEX) |
| SLAVE ADDRESS         | 11            |
| FUNCTION CODE         | B9            |
| ERROR CODE            | 01            |
| CRC - low order byte  | 93            |
| CRC - high order byte | 95            |

## **B.3.1 OBTAINING UR FILES USING MODBUS® PROTOCOL**

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

- Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
- 2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
- 3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
- 4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).

The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

## a) OBTAINING FILES FROM THE UR USING OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

#### b) COMTRADE, OSCILLOGRAPHY AND DATA LOGGER FILES

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE PC37.111 Draft 7c (02 September 1997). The files may be obtained in either text or binary COMTRADE format.

## c) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. Refer to the OSCILLOGRA-PHY section in the SETTINGS chapter for additional details.

The Oscillography\_Number\_of\_Triggers register is incremented by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography\_Number\_of\_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.

The Oscillography\_Number\_of\_Records setting specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography\_Available\_Records register specifies the actual number of files that are stored and still available to be read out of the relay.

Writing 'Yes' (i.e. the value 1) to the Oscillography\_Clear\_Data register clears oscillography data files, clears both the Oscillography\_Number\_of\_Triggers and Oscillography\_Available\_Records registers to zero, and sets the Oscillography\_Last\_Cleared\_Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

- OSCnnnn.CFG
- OSCnnn.DAT

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names

- OSCAnnnn.CFG
- OSCAnnn.DAT

#### d) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the DATA LOGGER section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

- datalog.cfg
- datalog.dat

To read the entire data logger in ASCII COMTRADE format, read the following files.

- dataloga.cfg
- dataloga.dat

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

#### e) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:

• EVT.TXT

To read from a specific record to the end of the log, use the following filename:

EVTnnn.TXT (replace "nnn" with the desired starting record number)

#### f) READING FAULT REPORT FILES

Fault report data has been available via the UR file retrieval mechanism since firmware version 2.00. The file name is faultReport#####.htm. The ##### refers to the fault report record number. The fault report number is a counter that indicates how many fault reports have ever occurred. The counter rolls over at a value of 65535. Only the last ten fault reports are available for retrieval; a request for a non-existent fault report file will yield a null file. The current value fault report counter is available in "Number of Fault Reports" Modbus register at location 0x3020.

For example, if 14 fault reports have occurred then the files faultReport5.htm, faultReport6.htm, up to faultReport14.htm are available to be read. The expected use of this feature has an external master periodically polling the "Number of Fault Reports' register. If the value changes, then the master reads all the new files.

The contents of the file is in standard HTML notation and can be viewed via any commercial browser.

## **B.3.2 MODBUS® PASSWORD OPERATION**

The COMMAND password is set up at memory location 4000. Storing a value of "0" removes COMMAND password protection. When reading the password setting, the encrypted value (zero if no password is set) is returned. COMMAND security is required to change the COMMAND password. Similarly, the SETTING password is set up at memory location 4002. These are the same settings and encrypted values found in the SETTINGS  $\Rightarrow$  PRODUCT SETUP  $\Rightarrow \oplus$  PASSWORD SECURITY menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and vice-versa.

To gain COMMAND level security access, the COMMAND password must be entered at memory location 4008. To gain SETTING level security access, the SETTING password must be entered at memory location 400A. The entered SETTING password must match the current SETTING password setting, or must be zero, to change settings or download firmware.

COMMAND and SETTING passwords each have a 30-minute timer. Each timer starts when you enter the particular password, and is re-started whenever you "use" it. For example, writing a setting re-starts the SETTING password timer and writing a command register or forcing a coil re-starts the COMMAND password timer. The value read at memory location 4010 can be used to confirm whether a COMMAND password is enabled or disabled. The value read at memory location 4011 can be used to confirm whether a SETTING password is enabled or disabled.

COMMAND or SETTING password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

# B.4.1 MODBUS® MEMORY MAP

Table B-9: MODBUS MEMORY MAP (Sheet 1 of 37)

| ADDR        | REGISTER NAME                                         | RANGE           | UNITS | STEP | FORMAT | DEFAULT                              |
|-------------|-------------------------------------------------------|-----------------|-------|------|--------|--------------------------------------|
| Product I   | nformation (Read Only)                                |                 |       |      |        |                                      |
| 0000        | UR Product Type                                       | 0 to 65535      |       | 1    | F001   | 0                                    |
| 0002        | Product Version                                       | 0 to 655.35     |       | 0.01 | F001   | 1                                    |
| Product I   | nformation (Read Only Written by Factory)             |                 | •     |      | •      |                                      |
| 0010        | Serial Number                                         |                 |       |      | F203   | "0"                                  |
| 0020        | Manufacturing Date                                    | 0 to 4294967295 |       | 1    | F050   | 0                                    |
| 0022        | Modification Number                                   | 0 to 65535      |       | 1    | F001   | 0                                    |
| 0040        | Order Code                                            |                 |       |      | F204   | "Order Code x "                      |
| 0090        | Ethernet MAC Address                                  |                 |       |      | F072   | 0                                    |
| 0093        | Reserved (13 items)                                   |                 |       |      | F001   | 0                                    |
| 00A0        | CPU Module Serial Number                              |                 |       |      | F203   | (none)                               |
| 00B0        | CPU Supplier Serial Number                            |                 |       |      | F203   | (none)                               |
| 00C0        | Ethernet Sub Module Serial Number (8 items)           |                 |       |      | F203   | (none)                               |
| Self Test   | Targets (Read Only)                                   |                 |       |      |        |                                      |
| 0200        | Self Test States (2 items)                            | 0 to 4294967295 | 0     | 1    | F143   | 0                                    |
| Front Pan   | nel (Read Only)                                       |                 |       |      |        |                                      |
| 0204        | LED Column x State (9 items)                          | 0 to 65535      |       | 1    | F501   | 0                                    |
| 0220        | Display Message                                       |                 |       |      | F204   | (none)                               |
| Keypress    | Emulation (Read/Write)                                |                 |       |      |        |                                      |
| 0280        | Simulated keypress – write zero before each keystroke | 0 to 26         |       | 1    | F190   | 0 (No key – use<br>between real key) |
| Virtual Inp | out Commands (Read/Write Command) (32 modules)        |                 |       |      |        |                                      |
| 0400        | Virtual Input x State                                 | 0 to 1          |       | 1    | F108   | 0 (Off)                              |
| 0401        | Repeated for module number 2                          |                 |       |      |        |                                      |
| 0402        | Repeated for module number 3                          |                 |       |      |        |                                      |
| 0403        | Repeated for module number 4                          |                 |       |      |        |                                      |
| 0404        | Repeated for module number 5                          |                 |       |      |        |                                      |
| 0405        | Repeated for module number 6                          |                 |       |      |        |                                      |
| 0406        | Repeated for module number 7                          |                 |       |      |        |                                      |
| 0407        | Repeated for module number 8                          |                 |       |      |        |                                      |
| 0408        | Repeated for module number 9                          |                 |       |      |        |                                      |
| 0409        | Repeated for module number 10                         |                 |       |      |        |                                      |
| 040A        | Repeated for module number 11                         |                 |       |      |        |                                      |
| 040B        | Repeated for module number 12                         |                 |       |      |        |                                      |
| 040C        | Repeated for module number 13                         |                 |       |      |        |                                      |
| 040D        | Repeated for module number 14                         |                 |       |      |        |                                      |
| 040E        | Repeated for module number 15                         |                 |       |      |        |                                      |
| 040F        | Repeated for module number 16                         |                 |       |      |        |                                      |
| 0410        | Repeated for module number 17                         |                 |       |      |        |                                      |
| 0411        | Repeated for module number 18                         |                 |       |      |        |                                      |
| 0412        | Repeated for module number 19                         |                 |       |      |        |                                      |
| 0413        | Repeated for module number 20                         |                 |       |      |        |                                      |
| 0414        | Repeated for module number 21                         |                 |       |      |        |                                      |
| 0415        | Repeated for module number 22                         |                 |       |      |        |                                      |
| 0416        | Repeated for module number 23                         |                 |       |      |        |                                      |
| 0417        | Repeated for module number 24                         |                 |       |      |        |                                      |
| 0418        | Repeated for module number 25                         |                 |       |      |        |                                      |
| 0419        | Repeated for module number 26                         |                 |       |      |        |                                      |
| 041A        | Repeated for module number 27                         |                 |       |      |        |                                      |
| 041B        | Repeated for module number 28                         |                 |       |      |        |                                      |
| 041C        | Repeated for module number 29                         |                 |       |      |        |                                      |

# Table B-9: MODBUS MEMORY MAP (Sheet 2 of 37)

| ADDR        | REGISTER NAME                                      | RANGE                        | UNITS | STEP                                             | FORMAT       | DEFAULT |
|-------------|----------------------------------------------------|------------------------------|-------|--------------------------------------------------|--------------|---------|
| 041D        | Repeated for module number 30                      |                              |       |                                                  |              |         |
| 041E        | Repeated for module number 31                      |                              |       |                                                  |              |         |
| 041F        | Repeated for module number 32                      |                              |       |                                                  |              |         |
| Digital Co  | ounter States (Read Only Non-Volatile) (8 modules) |                              |       |                                                  |              |         |
| 0800        | Digital Counter x Value                            | -2147483647 to<br>2147483647 |       | 1                                                | F004         | 0       |
| 0802        | Digital Counter x Frozen                           | -2147483647 to<br>2147483647 |       | 1                                                | F004         | 0       |
| 0804        | Digital Counter x Frozen Time Stamp                | 0 to 4294967295              |       | 1                                                | F050         | 0       |
| 0806        | Digital Counter x Frozen Time Stamp us             | 0 to 4294967295              |       | 1                                                | F003         | 0       |
| 0808        | Repeated for module number 2                       |                              |       |                                                  |              |         |
| 0810        | Repeated for module number 3                       |                              |       |                                                  |              |         |
| 0818        | Repeated for module number 4                       |                              |       |                                                  |              |         |
| 0820        | Repeated for module number 5                       |                              |       |                                                  |              |         |
| 0828        | Repeated for module number 6                       |                              |       |                                                  |              |         |
| 0830        | Repeated for module number 7                       |                              |       |                                                  |              |         |
| 0838        | Repeated for module number 8                       |                              |       |                                                  |              |         |
| Flex State  | es (Read Only)                                     |                              |       |                                                  |              |         |
| 0900        | Flex State Bits (16 items)                         | 0 to 65535                   |       | 1                                                | F001         | 0       |
| Element     | States (Read Only)                                 |                              |       |                                                  |              |         |
| 1000        | Element Operate States (64 items)                  | 0 to 65535                   |       | 1                                                | F502         | 0       |
| User Dis    | plays Actuals (Read Only)                          |                              |       |                                                  |              |         |
| 1080        | Formatted user-definable displays (8 items)        |                              |       |                                                  | F200         | (none)  |
| Modbus I    | User Map Actuals (Read Only)                       |                              |       |                                                  |              |         |
| 1200        | User Map Values (256 items)                        | 0 to 65535                   |       | 1                                                | F001         | 0       |
| Element     | Targets (Read Only)                                |                              |       |                                                  |              |         |
| 14C0        | Target Sequence                                    | 0 to 65535                   |       | 1                                                | F001         | 0       |
| 14C1        | Number of Targets                                  | 0 to 65535                   |       | 1                                                | F001         | 0       |
| Element     | Targets (Read/Write)                               |                              |       |                                                  |              |         |
| 14C2        | Target to Read                                     | 0 to 65535                   |       | 1                                                | F001         | 0       |
| Element     | Targets (Read Only)                                | •                            | •     | •                                                |              |         |
| 14C3        | Target Message                                     |                              |       |                                                  | F200         | "."     |
| Digital I/O | O States (Read Only                                |                              |       |                                                  |              |         |
| 1500        | Contact Input States (6 items)                     | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1508        | Virtual Input States (2 items)                     | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1510        | Contact Output States (4 items)                    | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1518        | Contact Output Current States (4 items)            | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1520        | Contact Output Voltage States (4 items)            | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1528        | Virtual Output States (4 items)                    | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1530        | Contact Output Detectors (4 items)                 | 0 to 65535                   |       | 1                                                | F500         | 0       |
| Remote I    | /O States (Read Only)                              |                              |       |                                                  |              |         |
| 1540        | Remote Device x States                             | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1542        | Remote Input x States (2 items)                    | 0 to 65535                   |       | 1                                                | F500         | 0       |
| 1550        | Remote Devices Online                              | 0 to 1                       |       | 1                                                | F126         | 0 (No)  |
| Remote I    | Device Status (Read Only) (16 modules)             |                              |       |                                                  |              |         |
| 1551        | Remote Device x StNum                              | 0 to 4294967295              |       | 1                                                | F003         | 0       |
| 1553        | Remote Device x SqNum                              | 0 to 4294967295              |       | 1                                                | F003         | 0       |
| 1555        | Repeated for module number 2                       |                              |       |                                                  |              |         |
| 1559        | Repeated for module number 3                       |                              |       |                                                  |              |         |
| 155D        | Repeated for module number 4                       |                              |       |                                                  |              |         |
| 1561        | Repeated for module number 5                       |                              |       |                                                  |              |         |
| 1565        | Repeated for module number 6                       |                              |       |                                                  |              |         |
| 1569        | Repeated for module number 7                       |                              |       |                                                  |              |         |
| 156D        | Repeated for module number 8                       |                              |       |                                                  |              |         |
|             |                                                    | İ                            | 1     | <del>                                     </del> | <del> </del> |         |
| 1571        | Repeated for module number 9                       |                              |       |                                                  |              |         |

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 37)

| ADDR     | REGISTER NAME                           | RANGE           | UNITS   | STEP  | FORMAT | DEFAULT  |
|----------|-----------------------------------------|-----------------|---------|-------|--------|----------|
| 1575     | Repeated for module number 10           |                 |         |       |        |          |
| 1579     | Repeated for module number 11           |                 |         |       |        |          |
| 157D     | Repeated for module number 12           |                 |         |       |        |          |
| 1581     | Repeated for module number 13           |                 |         |       |        |          |
| 1585     | Repeated for module number 14           |                 |         |       |        |          |
| 1589     | Repeated for module number 15           |                 |         |       |        |          |
| 158D     | Repeated for module number 16           |                 |         |       |        |          |
| Ethernet | Fibre Channel Status (Read/Write)       | •               | •       |       |        |          |
| 1610     | Ethernet Primary Fibre Channel Status   | 0 to 2          |         | 1     | F134   | 0 (Fail) |
| 1611     | Ethernet Secondary Fibre Channel Status | 0 to 2          |         | 1     | F134   | 0 (Fail) |
| Data Log | ger Actuals (Read Only)                 |                 |         |       |        |          |
| 1618     | Data Logger Channel Count               | 0 to 16         | CHNL    | 1     | F001   | 0        |
| 1619     | Time of oldest available samples        | 0 to 4294967295 | seconds | 1     | F050   | 0        |
| 161B     | Time of newest available samples        | 0 to 4294967295 | seconds | 1     | F050   | 0        |
| 161D     | Data Logger Duration                    | 0 to 999.9      | DAYS    | 0.1   | F001   | 0        |
| Source C | current (Read Only) (6 modules)         |                 |         |       |        |          |
| 1800     | Phase A Current RMS                     | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1802     | Phase B Current RMS                     | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1804     | Phase C Current RMS                     | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1806     | Neutral Current RMS                     | 0 to 999999.999 | А       | 0.001 | F060   | 0        |
| 1808     | Phase A Current Magnitude               | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 180A     | Phase A Current Angle                   | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 180B     | Phase B Current Magnitude               | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 180D     | Phase B Current Angle                   | -359.9 to 0     | ٥       | 0.1   | F002   | 0        |
| 180E     | Phase C Current Magnitude               | 0 to 999999.999 | А       | 0.001 | F060   | 0        |
| 1810     | Phase C Current Angle                   | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 1811     | Neutral Current Magnitude               | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1813     | Neutral Current Angle                   | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 1814     | Ground Current RMS                      | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1816     | Ground Current Magnitude                | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1818     | Ground Current Angle                    | -359.9 to 0     | ٥       | 0.1   | F002   | 0        |
| 1819     | Zero Sequence Current Magnitude         | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 181B     | Zero Sequence Current Angle             | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 181C     | Positive Sequence Current Magnitude     | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 181E     | Positive Sequence Current Angle         | -359.9 to 0     | ٥       | 0.1   | F002   | 0        |
| 181F     | Negative Sequence Current Magnitude     | 0 to 999999.999 | Α       | 0.001 | F060   | 0        |
| 1821     | Negative Sequence Current Angle         | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 1822     | Differential Ground Current Magnitude   | 0 to 999999.999 | А       | 0.001 | F060   | 0        |
| 1824     | Differential Ground Current Angle       | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 1825     | Reserved (27 items)                     |                 |         |       | F001   | 0        |
| 1840     | Repeated for module number 2            |                 |         |       |        |          |
| 1880     | Repeated for module number 3            |                 |         |       |        |          |
| 18C0     | Repeated for module number 4            |                 |         |       |        |          |
| 1900     | Repeated for module number 5            |                 |         |       |        |          |
| 1940     | Repeated for module number 6            |                 |         |       |        |          |
| Source V | oltage (Read Only) (6 modules)          | •               |         |       |        |          |
| 1A00     | Phase AG Voltage RMS                    | 0 to 999999.999 | V       | 0.001 | F060   | 0        |
| 1A02     | Phase BG Voltage RMS                    | 0 to 999999.999 | V       | 0.001 | F060   | 0        |
| 1A04     | Phase CG Voltage RMS                    | 0 to 999999.999 | V       | 0.001 | F060   | 0        |
| 1A06     | Phase AG Voltage Magnitude              | 0 to 999999.999 | V       | 0.001 | F060   | 0        |
| 1A08     | Phase AG Voltage Angle                  | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 1A09     | Phase BG Voltage Magnitude              | 0 to 999999.999 | V       | 0.001 | F060   | 0        |
| 1A0B     | Phase BG Voltage Angle                  | -359.9 to 0     | 0       | 0.1   | F002   | 0        |
| 1A0C     | Phase CG Voltage Magnitude              | 0 to 999999.999 | V       | 0.001 | F060   | 0        |

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 37)

| ADDR     | REGISTER NAME                       | RANGE                              | UNITS | STEP  | FORMAT | DEFAULT |
|----------|-------------------------------------|------------------------------------|-------|-------|--------|---------|
| 1A0E     | Phase CG Voltage Angle              | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A0F     | Phase AB or AC Voltage RMS          | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A11     | Phase BC or BA Voltage RMS          | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A13     | Phase CA or CB Voltage RMS          | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A15     | Phase AB or AC Voltage Magnitude    | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A17     | Phase AB or AC Voltage Angle        | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A18     | Phase BC or BA Voltage Magnitude    | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A1A     | Phase BC or BA Voltage Angle        | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A1B     | Phase CA or CB Voltage Magnitude    | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A1D     | Phase CA or CB Voltage Angle        | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A1E     | Auxiliary Voltage RMS               | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A20     | Auxiliary Voltage Magnitude         | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A22     | Auxiliary Voltage Angle             | -359.9 to 0                        | ٥     | 0.1   | F002   | 0       |
| 1A23     | Zero Sequence Voltage Magnitude     | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A25     | Zero Sequence Voltage Angle         | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A26     | Positive Sequence Voltage Magnitude | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A28     | Positive Sequence Voltage Angle     | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A29     | Negative Sequence Voltage Magnitude | 0 to 999999.999                    | V     | 0.001 | F060   | 0       |
| 1A2B     | Negative Sequence Voltage Angle     | -359.9 to 0                        | 0     | 0.1   | F002   | 0       |
| 1A2C     | Reserved (20 items)                 |                                    |       |       | F001   | 0       |
| 1A40     | Repeated for module number 2        |                                    |       |       |        |         |
| 1A80     | Repeated for module number 3        |                                    |       |       |        |         |
| 1AC0     | Repeated for module number 4        |                                    |       |       |        |         |
| 1B00     | Repeated for module number 5        |                                    |       |       |        |         |
| 1B40     | Repeated for module number 6        |                                    |       |       |        |         |
| Source P | ower (Read Only) (6 modules)        |                                    |       |       |        |         |
| 1C00     | Three Phase Real Power              | -1000000000000 to<br>1000000000000 | W     | 0.001 | F060   | 0       |
| 1C02     | Phase A Real Power                  | -1000000000000 to<br>1000000000000 | W     | 0.001 | F060   | 0       |
| 1C04     | Phase B Real Power                  | -1000000000000 to<br>1000000000000 | W     | 0.001 | F060   | 0       |
| 1C06     | Phase C Real Power                  | -1000000000000 to<br>1000000000000 | W     | 0.001 | F060   | 0       |
| 1C08     | Three Phase Reactive Power          | -1000000000000 to<br>1000000000000 | var   | 0.001 | F060   | 0       |
| 1C0A     | Phase A Reactive Power              | -1000000000000 to<br>1000000000000 | var   | 0.001 | F060   | 0       |
| 1C0C     | Phase B Reactive Power              | -1000000000000 to<br>1000000000000 | var   | 0.001 | F060   | 0       |
| 1C0E     | Phase C Reactive Power              | -1000000000000 to<br>1000000000000 | var   | 0.001 | F060   | 0       |
| 1C10     | Three Phase Apparent Power          | -1000000000000 to<br>1000000000000 | VA    | 0.001 | F060   | 0       |
| 1C12     | Phase A Apparent Power              | -1000000000000 to<br>1000000000000 | VA    | 0.001 | F060   | 0       |
| 1C14     | Phase B Apparent Power              | -1000000000000 to<br>1000000000000 | VA    | 0.001 | F060   | 0       |
| 1C16     | Phase C Apparent Power              | -1000000000000 to<br>1000000000000 | VA    | 0.001 | F060   | 0       |
| 1C18     | Three Phase Power Factor            | -0.999 to 1                        |       | 0.001 | F013   | 0       |
| 1C19     | Phase A Power Factor                | -0.999 to 1                        |       | 0.001 | F013   | 0       |
| 1C1A     | Phase B Power Factor                | -0.999 to 1                        |       | 0.001 | F013   | 0       |
| 1C1B     | Phase C Power Factor                | -0.999 to 1                        |       | 0.001 | F013   | 0       |
| 1C1C     | Reserved (4 items)                  |                                    |       |       | F001   | 0       |
| 1C20     | Repeated for module number 2        |                                    |       |       |        |         |
| 1C40     | Repeated for module number 3        |                                    |       |       |        |         |
| 1C60     | Repeated for module number 4        |                                    |       |       |        |         |

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 37)

| ADDR                                                                                             | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RANGE                                            | UNITS   | STEP      | FORMAT                                       | DEFAULT                                                 |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|-----------|----------------------------------------------|---------------------------------------------------------|
| 1C80                                                                                             | Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 1CA0                                                                                             | Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| Source F                                                                                         | requency (Read Only) (6 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | •       |           |                                              |                                                         |
| 1D80                                                                                             | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 to 90                                          | Hz      | 0.01      | F001                                         | 0                                                       |
| 1D81                                                                                             | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 1D82                                                                                             | Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 1D83                                                                                             | Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 1D84                                                                                             | Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 1D85                                                                                             | Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| Breaker A                                                                                        | Arcing Current Actuals (Read Only Non-Volatile) (2 mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dules)                                           |         |           |                                              |                                                         |
| 2200                                                                                             | Breaker x Arcing Amp Phase A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 99999999                                    | kA2-cyc | 1         | F060                                         | 0                                                       |
| 2202                                                                                             | Breaker x Arcing Amp Phase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 99999999                                    | kA2-cyc | 1         | F060                                         | 0                                                       |
| 2204                                                                                             | Breaker x Arcing Amp Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 99999999                                    | kA2-cyc | 1         | F060                                         | 0                                                       |
| 2206                                                                                             | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| Breaker A                                                                                        | Arcing Current Commands (Read/Write Command) (2 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nodules)                                         | •       |           |                                              |                                                         |
| 220C                                                                                             | Breaker x Arcing Clear Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 to 1                                           |         | 1         | F126                                         | 0 (No)                                                  |
| 220D                                                                                             | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| Fault Loc                                                                                        | cation (Read Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | •       |           |                                              |                                                         |
| 2350                                                                                             | Prefault Phase A Current Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 2352                                                                                             | Prefault Phase B Current Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 2354                                                                                             | Prefault Phase C Current Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 2356                                                                                             | Prefault Zero Seq Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 2358                                                                                             | Prefault Pos Seq Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 235A                                                                                             | Prefault Neg Seq Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 235C                                                                                             | Prefault Phase A Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 235E                                                                                             | Prefault Phase B Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| 2360                                                                                             | Prefault Phase C Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 999999.999                                  |         | 0.001     | F060                                         | 0                                                       |
| Synchro                                                                                          | check Actuals (Read Only) (2 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |         |           | l.                                           |                                                         |
| 2400                                                                                             | Synchrocheck X Delta Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1000000000000 to<br>1000000000000               | V       | 1         | F060                                         | 0                                                       |
| 2402                                                                                             | Synchrocheck X Delta Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 to 655.35                                      | Hz      | 0.01      | F001                                         | 0                                                       |
| 2403                                                                                             | Synchrocheck X Delta Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 to 359.9                                       | 0       | 0.1       | F001                                         | 0                                                       |
| 2404                                                                                             | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| Autoreclo                                                                                        | ose Status (Read Only) (6 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | •       | •         |                                              |                                                         |
| 2410                                                                                             | Autoreclose Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 65535                                       |         | 1         | F001                                         | 0                                                       |
| 2411                                                                                             | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 2412                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |         |           |                                              |                                                         |
|                                                                                                  | Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 2413                                                                                             | Repeated for module number 3Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |         |           |                                              |                                                         |
| 2413<br>2414                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |         |           |                                              |                                                         |
|                                                                                                  | Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |         |           |                                              |                                                         |
| 2414<br>2415                                                                                     | Repeated for module number 4Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |         |           |                                              |                                                         |
| 2414<br>2415                                                                                     | Repeated for module number 4Repeated for module number 5Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 1                                           |         | 1         | F108                                         | 0 (Off)                                                 |
| 2414<br>2415<br><b>Expande</b><br>2B00                                                           | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only)                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 1                                           |         | 1         | F108                                         | 0 (Off)                                                 |
| 2414<br>2415<br><b>Expande</b><br>2B00                                                           | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items)                                                                                                                                                                                                                                                                                                                                                                                       | 0 to 1                                           |         | 1         | F108                                         | 0 (Off)                                                 |
| 2414<br>2415<br>Expanded<br>2B00<br>Expanded                                                     | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only)                                                                                                                                                                                                                                                                                                                                                      | l                                                |         |           |                                              |                                                         |
| 2414<br>2415<br><b>Expande</b><br>2B00<br><b>Expande</b><br>2D00                                 | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items)                                                                                                                                                                                                                                                                                                    | 0 to 1                                           |         | 1         | F108                                         | 0 (Off)                                                 |
| 2414<br>2415<br><b>Expande</b><br>2B00<br><b>Expande</b><br>2D00<br>2D80<br>2E00                 | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items)                                                                                                                                                                                                                                                 | 0 to 1<br>0 to 1                                 |         | 1 1       | F108<br>F108                                 | 0 (Off)<br>0 (Off)                                      |
| 2414<br>2415<br><b>Expande</b><br>2B00<br><b>Expande</b><br>2D00<br>2D80<br>2E00                 | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items) Virtual Output States, one per register (64 items)                                                                                                                                                                                              | 0 to 1<br>0 to 1                                 |         | 1 1       | F108<br>F108                                 | 0 (Off)<br>0 (Off)                                      |
| 2414<br>2415<br>Expanded<br>2B00<br>Expanded<br>2D00<br>2D80<br>2E00<br>Expanded                 | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items) Virtual Output States, one per register (64 items) d Remote I/O Status (Read Only)                                                                                                                                                              | 0 to 1<br>0 to 1<br>0 to 1                       |         | 1 1 1     | F108<br>F108<br>F108                         | 0 (Off)<br>0 (Off)<br>0 (Off)                           |
| 2414<br>2415<br>Expander<br>2B00<br>Expander<br>2D00<br>2D80<br>2E00<br>Expander<br>2F00<br>2F80 | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items) Virtual Output States, one per register (64 items) d Remote I/O Status (Read Only) Remote Device States, one per register (16 items)                                                                                                            | 0 to 1<br>0 to 1<br>0 to 1                       |         | 1 1 1     | F108<br>F108<br>F108                         | 0 (Off)<br>0 (Off)<br>0 (Off)<br>0 (Offline)            |
| 2414 2415 Expander 2B00 Expander 2D00 2D80 2E00 Expander 2F00 2F80                               | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items) Virtual Output States, one per register (64 items) d Remote I/O Status (Read Only) Remote Device States, one per register (16 items) Remote Input States, one per register (32 items)                                                           | 0 to 1<br>0 to 1<br>0 to 1                       |         | 1 1 1     | F108<br>F108<br>F108                         | 0 (Off)<br>0 (Off)<br>0 (Off)<br>0 (Offline)            |
| 2414 2415 Expander 2B00 Expander 2D00 2D80 2E00 Expander 2F00 2F80 Oscillogr 3000                | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items) Virtual Output States, one per register (64 items) d Remote I/O Status (Read Only) Remote Device States, one per register (16 items) Remote Input States, one per register (32 items) raphy Values (Read Only) Oscillography Number of Triggers | 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 0 to 1 |         | 1 1 1 1 1 | F108<br>F108<br>F108<br>F108                 | 0 (Off)<br>0 (Off)<br>0 (Off)<br>0 (Offline)<br>0 (Off) |
| 2414 2415 Expander 2B00 Expander 2D00 2D80 2E00 Expander 2F00 2F80 Oscillogr                     | Repeated for module number 4Repeated for module number 5Repeated for module number 6 d FlexStates (Read Only) FlexStates, one per register (256 items) d Digital I/O states (Read Only) Contact Input States, one per register (96 items) Contact Output States, one per register (64 items) Virtual Output States, one per register (64 items) d Remote I/O Status (Read Only) Remote Device States, one per register (16 items) Remote Input States, one per register (32 items)                                                           | 0 to 1<br>0 to 1<br>0 to 1<br>0 to 1             |         | 1 1 1 1   | F108<br>F108<br>F108<br>F108<br>F155<br>F108 | 0 (Off)<br>0 (Off)<br>0 (Off)<br>0 (Offline)<br>0 (Off) |

# Table B-9: MODBUS MEMORY MAP (Sheet 6 of 37)

| ADDR                                                                                                                                  | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RANGE           | UNITS | STEP  | FORMAT   | DEFAULT |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------|----------|---------|
| Oscillogr                                                                                                                             | raphy Commands (Read/Write Command)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>        | Į.    |       | <u> </u> |         |
| 3005                                                                                                                                  | Oscillography Force Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 to 1          |       | 1     | F126     | 0 (No)  |
| 3011                                                                                                                                  | Oscillography Clear Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 to 1          |       | 1     | F126     | 0 (No)  |
| Fault Rep                                                                                                                             | port Indexing (Read Only Non-Volatile)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |       | 1     |          | • •     |
| 3020                                                                                                                                  | Number Of Fault Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 65535      |       | 1     | F001     | 0       |
| Fault Rep                                                                                                                             | ports (Read Only Non-Volatile) (10 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -               |       |       |          |         |
| 3030                                                                                                                                  | Fault Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 to 4294967295 |       | 1     | F050     | 0       |
| 3032                                                                                                                                  | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 3034                                                                                                                                  | Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 3036                                                                                                                                  | Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 3038                                                                                                                                  | Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 303A                                                                                                                                  | Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 303C                                                                                                                                  | Repeated for module number 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 303E                                                                                                                                  | Repeated for module number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 3040                                                                                                                                  | Repeated for module number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       |       |          |         |
| 3042                                                                                                                                  | Repeated for module number 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |       |          |         |
| Modbus                                                                                                                                | File Transfer (Read/Write)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | •     | •     |          |         |
| 3100                                                                                                                                  | Name of file to read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |       |       | F204     | (none)  |
| Modbus                                                                                                                                | File Transfer (Read Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |       |       |          |         |
| 3200                                                                                                                                  | Character position of current block within file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 to 4294967295 |       | 1     | F003     | 0       |
| 3202                                                                                                                                  | Size of currently-available data block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 65535      |       | 1     | F001     | 0       |
| 3203                                                                                                                                  | Block of data from requested file (122 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 65535      |       | 1     | F001     | 0       |
| Event Re                                                                                                                              | corder (Read Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |       |          |         |
| 3400                                                                                                                                  | Events Since Last Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 4294967295 |       | 1     | F003     | 0       |
| 3402                                                                                                                                  | Number of Available Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 to 4294967295 |       | 1     | F003     | 0       |
| 3404                                                                                                                                  | Event Recorder Last Cleared Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 to 4294967295 |       | 1     | F050     | 0       |
|                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |       |       |          |         |
| Event Re                                                                                                                              | corder (Read/Write Command)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |       |       |          |         |
| Event Re<br>3406                                                                                                                      | corder (Read/Write Command) Event Recorder Clear Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 to 1          |       | 1     | F126     | 0 (No)  |
| 3406                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 1          |       | 1     | F126     | 0 (No)  |
| 3406<br><b>DCMA In</b><br>34C0                                                                                                        | Event Recorder Clear Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 to 1          |       | 0.001 | F126     | 0 (No)  |
| 3406<br>DCMA In<br>34C0<br>34C2                                                                                                       | Event Recorder Clear Command put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4                                                                                                       | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6                                                                                                 | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8                                                                                           | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA                                                                                     | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CA                                                                                            | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34CE                                                                         | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34CE  34D0                                                                   | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CA 34CC 34CE 34D0 34D2                                                                        | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10                                                                                                                                                                                                                                                                                                                                                                                                         |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CA 34CC 34CE 34D0 34D2 34D4                                                                   | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11                                                                                                                                                                                                                                                                                                                                                                           |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CA 34CC 34CE 34D0 34D2 34D4 34D6                                                              | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 9 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 11                                                                                                                                                                                                                                                                                                                                             |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34CE  34D0  34D2  34D4  34D6  34D8                                           | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13                                                                                                                                                                                                                                                                                                               |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34CE  34D0  34D2  34D4  34D6  34D8  34DA                                     | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 10 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 13 Repeated for module number 14                                                                                                                                                                                                                                                                               |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34CE  34D0  34D2  34D4  34D6  34D8  34DA  34DC                               | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 10 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 14 Repeated for module number 15                                                                                                                                                                                                                                                 |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CC 34CE 34D0 34D2 34D4 34D6 34D8 34DA 34DC 34DE                                               | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 15 Repeated for module number 16                                                                                                                                                                                                                    |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CA 34CC 34CE 34D0 34D2 34D4 34D6 34D8 34DA 34DC 34DE 34DE                                     | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 16 Repeated for module number 16 Repeated for module number 17                                                                                                                                                        |                 |       |       |          | , ,     |
| 3406 DCMA In 34C0 34C2 34C4 34C6 34C8 34CA 34CC 34CE 34D0 34D2 34D4 34D6 34D8 34DA 34DC 34DE 34E0 34E2                                | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 17 Repeated for module number 17 Repeated for module number 17                                                                                                                                                        |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34D0  34D2  34D4  34D6  34D8  34DA  34DC  34DE  34E0  34E2  34E4             | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 17 Repeated for module number 17 Repeated for module number 18 Repeated for module number 18 Repeated for module number 19                                                                                            |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34D0  34D2  34D4  34D6  34D8  34DA  34DC  34DE  34E0  34E2  34E4  34E6       | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 17 Repeated for module number 18 Repeated for module number 19 Repeated for module number 19 Repeated for module number 19 Repeated for module number 20                                                              |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34D0  34D2  34D4  34D6  34D8  34DA  34DC  34DE  34E0  34E2  34E4  34E6  34E8 | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 17 Repeated for module number 18 Repeated for module number 19 Repeated for module number 19 Repeated for module number 20 Repeated for module number 20 Repeated for module number 21                                                             |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34CE  34D0  34D2  34D4  34D6  34D8  34DA  34DC  34E2  34E4  34E6  34E8  34EA | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 17 Repeated for module number 19 Repeated for module number 19 Repeated for module number 19 Repeated for module number 19 Repeated for module number 20 Repeated for module number 21 Repeated for module number 21 Repeated for module number 21 |                 |       |       |          | , ,     |
| 3406  DCMA In  34C0  34C2  34C4  34C6  34C8  34CA  34CC  34D0  34D2  34D4  34D6  34D8  34DA  34DC  34DE  34E0  34E2  34E4  34E6  34E8 | Event Recorder Clear Command  put Values (Read Only) (24 modules)  DCMA Inputs x Value Repeated for module number 2 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 Repeated for module number 16 Repeated for module number 17 Repeated for module number 18 Repeated for module number 19 Repeated for module number 19 Repeated for module number 20 Repeated for module number 20 Repeated for module number 21                                                             |                 |       |       |          | , ,     |

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 37)

| ADDR         | REGISTER NAME                                              | RANGE           | UNITS | STEP     | FORMAT | DEFAULT |
|--------------|------------------------------------------------------------|-----------------|-------|----------|--------|---------|
| RTD Inpu     | t Values (Read Only) (48 modules)                          |                 |       |          |        |         |
| 34F0         | RTD Inputs x Value                                         | -32768 to 32767 | °C    | 1        | F002   | 0       |
| 34F1         | Repeated for module number 2                               |                 |       |          |        |         |
| 34F2         | Repeated for module number 3                               |                 |       |          |        |         |
| 34F3         | Repeated for module number 4                               |                 |       |          |        |         |
| 34F4         | Repeated for module number 5                               |                 |       |          |        |         |
| 34F5         | Repeated for module number 6                               |                 |       |          |        |         |
| 34F6         | Repeated for module number 7                               |                 |       |          |        |         |
| 34F7         | Repeated for module number 8                               |                 |       |          |        |         |
| 34F8         | Repeated for module number 9                               |                 |       |          |        |         |
| 34F9         | Repeated for module number 10                              |                 |       |          |        |         |
| 34FA         | Repeated for module number 11                              |                 |       |          |        |         |
| 34FB         | Repeated for module number 12                              |                 |       |          |        |         |
| 34FC         | Repeated for module number 13                              |                 |       |          |        |         |
| 34FD         | Repeated for module number 14                              |                 |       |          |        |         |
| 34FE         | Repeated for module number 15                              |                 |       |          |        |         |
| 34FF         | Repeated for module number 16                              |                 |       |          |        |         |
| 3500         | Repeated for module number 17                              |                 |       |          |        |         |
| 3501         | Repeated for module number 18                              |                 |       |          |        |         |
| 3502         | Repeated for module number 19                              |                 |       |          |        |         |
| 3503         | Repeated for module number 20                              |                 |       |          |        |         |
| 3504         | Repeated for module number 21                              |                 |       |          |        |         |
| 3505         | Repeated for module number 22                              |                 |       |          |        |         |
| 3506         | Repeated for module number 23                              |                 |       |          |        |         |
| 3507         | Repeated for module number 24                              |                 |       |          |        |         |
| 3508         | Repeated for module number 25                              |                 |       |          |        |         |
| 3509         | Repeated for module number 26                              |                 |       |          |        |         |
| 350A         | Repeated for module number 27                              |                 |       |          |        |         |
| 350B         | Repeated for module number 28                              |                 |       |          |        |         |
| 350C         | Repeated for module number 29                              |                 |       |          |        |         |
| 350D         | Repeated for module number 30                              |                 |       |          |        |         |
| 350E         | Repeated for module number 31                              |                 |       |          |        |         |
| 350F         | Repeated for module number 32                              |                 |       |          |        |         |
| 3510         | Repeated for module number 33                              |                 |       |          |        |         |
| 3510         | Repeated for module number 34                              |                 |       |          |        |         |
| 3512         | Repeated for module number 35                              |                 |       |          |        |         |
| 3512         | Repeated for module number 36                              |                 |       |          |        |         |
|              | ·                                                          |                 |       |          |        |         |
| 3514<br>3515 | Repeated for module number 37Repeated for module number 38 |                 |       | 1        |        |         |
| 3515         | Repeated for module number 39                              |                 |       | 1        |        |         |
| 3516         | Repeated for module number 39Repeated for module number 40 |                 |       |          |        |         |
|              | ·                                                          |                 | -     | 1        |        |         |
| 3518         | Repeated for module number 41                              |                 |       |          |        |         |
| 3519         | Repeated for module number 42Repeated for module number 43 |                 |       | 1        |        |         |
| 351A         |                                                            |                 | -     |          |        |         |
| 351B         | Repeated for module number 44                              |                 |       |          |        |         |
| 351C         | Repeated for module number 45                              |                 |       |          |        |         |
| 351D         | Repeated for module number 46                              |                 |       |          |        |         |
| 351E         | Repeated for module number 47                              |                 |       | <u> </u> |        |         |
| 351F         | Repeated for module number 48                              |                 |       |          |        |         |
|              | ut Values (Read Only) (2 modules)                          | 0.4- 05505      |       | 1 4      | F004   |         |
| 3520         | Ohm Inputs x Value                                         | 0 to 65535      | Ω     | 1        | F001   | 0       |
| 3521         | Repeated for module number 2                               |                 |       |          |        |         |
|              | ds (Read/Write Command)                                    | 0.4.400.400.700 |       |          | F0.00  |         |
| 4000         | Command Password Setting                                   | 0 to 4294967295 |       | 1        | F003   | 0       |

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 37)

| ADDR       | REGISTER NAME                                                                           | RANGE           | UNITS | STEP | FORMAT | DEFAULT         |
|------------|-----------------------------------------------------------------------------------------|-----------------|-------|------|--------|-----------------|
| Password   | ds (Read/Write Setting)                                                                 |                 |       |      |        |                 |
| 4002       | Setting Password Setting                                                                | 0 to 4294967295 |       | 1    | F003   | 0               |
| Password   | ds (Read/Write)                                                                         |                 |       |      |        |                 |
| 4008       | Command Password Entry                                                                  | 0 to 4294967295 |       | 1    | F003   | 0               |
| 400A       | Setting Password Entry                                                                  | 0 to 4294967295 |       | 1    | F003   | 0               |
| Password   | ds (Read Only)                                                                          |                 |       | 1    |        |                 |
| 4010       | Command Password Status                                                                 | 0 to 1          |       | 1    | F102   | 0 (Disabled)    |
| 4011       | Setting Password Status                                                                 | 0 to 1          |       | 1    | F102   | 0 (Disabled)    |
| Preference | ces (Read/Write Setting)                                                                |                 |       |      |        |                 |
| 4050       | Flash Message Time                                                                      | 0.5 to 10       | S     | 0.1  | F001   | 10              |
| 4051       | Default Message Timeout                                                                 | 10 to 900       | S     | 1    | F001   | 300             |
| 4052       | Default Message Intensity                                                               | 0 to 3          |       | 1    | F101   | 0 (25%)         |
| Commun     | ications (Read/Write Setting)                                                           |                 |       | ·    | ·      |                 |
| 407E       | COM1 minimum response time                                                              | 0 to 1000       | ms    | 10   | F001   | 0               |
| 407F       | COM2 minimum response time                                                              | 0 to 1000       | ms    | 10   | F001   | 0               |
| 4080       | Modbus Slave Address                                                                    | 1 to 254        |       | 1    | F001   | 254             |
| 4083       | RS485 Com1 Baud Rate                                                                    | 0 to 11         |       | 1    | F112   | 5 (19200)       |
| 4084       | RS485 Com1 Parity                                                                       | 0 to 2          |       | 1    | F113   | 0 (None)        |
| 4085       | RS485 Com2 Baud Rate                                                                    | 0 to 11         |       | 1    | F112   | 5 (19200)       |
| 4086       | RS485 Com2 Parity                                                                       | 0 to 2          |       | 1    | F113   | 0 (None)        |
| 4087       | IP Address                                                                              | 0 to 4294967295 |       | 1    | F003   | 56554706        |
| 4089       | IP Subnet Mask                                                                          | 0 to 4294967295 |       | 1    | F003   | 4294966272      |
| 408B       | Gateway IP Address                                                                      | 0 to 4294967295 |       | 1    | F003   | 56554497        |
| 408D       | Network Address NSAP                                                                    |                 |       |      | F074   | 0               |
| 4097       | Default GOOSE Update Time                                                               | 1 to 60         | S     | 1    | F001   | 60              |
| 4098       | Ethernet Primary Fibre Channel Link Monitor                                             | 0 to 1          |       | 1    | F102   | 0 (Disabled)    |
| 4099       | Ethernet Secondary Fibre Channel Link Monitor                                           | 0 to 1          |       | 1    | F102   | 0 (Disabled)    |
| 409A       | DNP Port                                                                                | 0 to 4          |       | 1    | F177   | 0 (NONE)        |
| 409B       | DNP Address                                                                             | 0 to 65519      |       | 1    | F001   | 255             |
| 409C       | DNP Client Addresses (2 items)                                                          | 0 to 4294967295 |       | 1    | F003   | 0               |
| 40A0       | TCP Port Number for the Modbus protocol                                                 | 1 to 65535      |       | 1    | F001   | 502             |
| 40A1       | TCP/UDP Port Number for the DNP Protocol                                                | 1 to 65535      |       | 1    | F001   | 20000           |
| 40A2       | TCP Port Number for the UCA/MMS Protocol                                                | 1 to 65535      |       | 1    | F001   | 102             |
| 40A3       | TCP Port No. for the HTTP (Web Server) Protocol                                         | 1 to 65535      |       | 1    | F001   | 80              |
| 40A4       | Main UDP Port Number for the TFTP Protocol                                              | 1 to 65535      |       | 1    | F001   | 69              |
| 40A5       | Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items) | 0 to 65535      |       | 1    | F001   | 0               |
| 40A7       | DNP Unsolicited Responses Function                                                      | 0 to 1          |       | 1    | F102   | 0 (Disabled)    |
| 40A8       | DNP Unsolicited Responses Timeout                                                       | 0 to 60         | S     | 1    | F001   | 5               |
| 40A9       | DNP Unsolicited Responses Max Retries                                                   | 1 to 255        |       | 1    | F001   | 10              |
| 40AA       | DNP Unsolicited Responses Destination Address                                           | 0 to 65519      |       | 1    | F001   | 1               |
| 40AB       | Ethernet Operation Mode                                                                 | 0 to 1          |       | 1    | F192   | 0 (Half-Duplex) |
| 40AC       | DNP User Map Function                                                                   | 0 to 1          |       | 1    | F102   | 0 (Disabled)    |
| 40AD       | DNP Number of Sources used in Analog points list                                        | 1 to 6          |       | 1    | F001   | 1               |
| 40AE       | DNP Current Scale Factor                                                                | 0 to 5          |       | 1    | F194   | 2 (1)           |
| 40AF       | DNP Voltage Scale Factor                                                                | 0 to 5          |       | 1    | F194   | 2 (1)           |
| 40B0       | DNP Power Scale Factor                                                                  | 0 to 5          |       | 1    | F194   | 2 (1)           |
| 40B1       | DNP Energy Scale Factor                                                                 | 0 to 5          |       | 1    | F194   | 2 (1)           |
| 40B2       | DNP Other Scale Factor                                                                  | 0 to 5          |       | 1    | F194   | 2 (1)           |
| 40B3       | DNP Current Default Deadband                                                            | 0 to 65535      |       | 1    | F001   | 30000           |
| 40B4       | DNP Voltage Default Deadband                                                            | 0 to 65535      |       | 1    | F001   | 30000           |
| 40B5       | DNP Power Default Deadband                                                              | 0 to 65535      |       | 1    | F001   | 30000           |
| 40B6       | DNP Energy Default Deadband                                                             | 0 to 65535      |       | 1    | F001   | 30000           |
| 40B7       | DNP Other Default Deadband                                                              | 0 to 65535      |       | 1    | F001   | 30000           |

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 37)

| ADDR      | REGISTER NAME                                    | RANGE           | UNITS | STEP | FORMAT | DEFAULT              |
|-----------|--------------------------------------------------|-----------------|-------|------|--------|----------------------|
| 40B8      | DNP IIN Time Sync Bit Period                     | 1 to 10080      | min   | 1    | F001   | 1440                 |
| 40B9      | DNP Message Fragment Size                        | 30 to 2048      |       | 1    | F001   | 240                  |
| 40BA      | DNP Client Address 3                             | 0 to 4294967295 |       | 1    | F003   | 0                    |
| 40BC      | DNP Client Address 4                             | 0 to 4294967295 |       | 1    | F003   | 0                    |
| 40BE      | DNP Client Address 5                             | 0 to 4294967295 |       | 1    | F003   | 0                    |
| 40C0      | DNP Communications Reserved (8 items)            | 0 to 1          |       | 1    | F001   | 0                    |
| 40C8      | UCA Logical Device Name                          |                 |       |      | F203   | "UCADevice"          |
| 40D0      | UCA Communications Reserved (16 items)           | 0 to 1          |       | 1    | F001   | 0                    |
| 40E0      | TCP Port Number for the IEC 60870-5-104 Protocol | 1 to 65535      |       | 1    | F001   | 2404                 |
| 40E1      | IEC 60870-5-104 Protocol Function                | 0 to 1          |       | 1    | F102   | 0 (Disabled)         |
| 40E2      | IEC 60870-5-104 Protocol Common Addr of ASDU     | 0 to 65535      |       | 1    | F001   | 0                    |
| 40E3      | IEC 60870-5-104 Protocol Cyclic Data Tx Period   | 1 to 65535      | S     | 1    | F001   | 60                   |
| 40E4      | IEC No. of Sources used in M_ME_NC_1 point list  | 1 to 6          |       | 1    | F001   | 1                    |
| 40E5      | IEC Current Default Threshold                    | 0 to 65535      |       | 1    | F001   | 30000                |
| 40E6      | IEC Voltage Default Threshold                    | 0 to 65535      |       | 1    | F001   | 30000                |
| 40E7      | IEC Power Default Threshold                      | 0 to 65535      |       | 1    | F001   | 30000                |
| 40E8      | IEC Energy Default Threshold                     | 0 to 65535      |       | 1    | F001   | 30000                |
| 40E9      | IEC Other Default Threshold                      | 0 to 65535      |       | 1    | F001   | 30000                |
| 40EA      | IEC Communications Reserved (22 items)           | 0 to 1          |       | 1    | F001   | 0                    |
| 4100      | DNP Binary Input Block of 16 Points (58 items)   | 0 to 58         |       | 1    | F197   | 0 (Not Used)         |
| Data Log  | ger Commands (Read/Write Command)                |                 |       |      |        |                      |
| 4170      | Clear Data Logger                                | 0 to 1          |       | 1    | F126   | 0 (No)               |
| Data Log  | ger (Read/Write Setting)                         |                 |       |      |        |                      |
| 4180      | Data Logger Rate                                 | 0 to 7          |       | 1    | F178   | 1 (1 min)            |
| 4181      | Data Logger Channel Settings (16 items)          |                 |       |      | F600   | 0                    |
| Clock (Re | ead/Write Command)                               |                 |       |      |        |                      |
| 41A0      | RTC Set Time                                     | 0 to 235959     |       | 1    | F003   | 0                    |
| Clock (Re | ead/Write Setting)                               |                 |       |      |        |                      |
| 41A2      | SR Date Format                                   | 0 to 4294967295 |       | 1    | F051   | 0                    |
| 41A4      | SR Time Format                                   | 0 to 4294967295 |       | 1    | F052   | 0                    |
| 41A6      | IRIG-B Signal Type                               | 0 to 2          |       | 1    | F114   | 0 (None)             |
|           | ort Settings and Commands (Read/Write Setting)   |                 |       |      |        |                      |
| 41B0      | Fault Report Source                              | 0 to 5          |       | 1    | F167   | 0 (SRC 1)            |
| 41B1      | Fault Report Trigger                             | 0 to 65535      |       | 1    | F300   | 0                    |
|           | ort Settings and Commands (Read/Write Command)   |                 |       |      |        |                      |
| 41B2      | Fault Reports Clear Data Command                 | 0 to 1          |       | 1    | F126   | 0 (No)               |
| •         | aphy (Read/Write Setting)                        |                 |       |      |        |                      |
|           | Oscillography Number of Records                  | 1 to 64         |       | 1    | F001   | 15                   |
| 41C1      | Oscillography Trigger Mode                       | 0 to 1          |       | 1    | F118   | 0 (Auto Overwrite)   |
| 41C2      | Oscillography Trigger Position                   | 0 to 100        | %     | 1    | F001   | 50                   |
| 41C3      | Oscillography Trigger Source                     | 0 to 65535      |       | 1    | F300   | 0                    |
| 41C4      | Oscillography AC Input Waveforms                 | 0 to 4          |       | 1    | F183   | 2 (16 samples/cycle) |
| 41D0      | Oscillography Analog Channel X (16 items)        | 0 to 65535      |       | 1    | F600   | 0                    |
| 4200      | Oscillography Digital Channel X (63 items)       | 0 to 65535      |       | 1    | F300   | 0                    |
| •         | Alarm LEDs (Read/Write Setting)                  | 0 : 05505       | i     |      | Food   |                      |
| 4260      | Trip LED Input FlexLogic Operand                 | 0 to 65535      |       | 1    | F300   | 0                    |
| 4261      | Alarm LED Input FlexLogic Operand                | 0 to 65535      |       | 1    | F300   | 0                    |
|           | grammable LEDs (Read/Write Setting) (48 modules) | 0.4- 05505      |       |      | F000   |                      |
| 4280      | FlexLogic Operand to Activate LED                | 0 to 65535      |       | 1    | F300   | 0                    |
| 4281      | User LED type (latched or self-resetting)        | 0 to 1          |       | 1    | F127   | 1 (Self-Reset)       |
| 4282      | Repeated for module number 2                     |                 |       |      |        |                      |
| 4284      | Repeated for module number 3                     |                 |       |      |        |                      |
| 4286      | Repeated for module number 4                     |                 |       |      |        |                      |
| 4288      | Repeated for module number 5                     |                 |       |      |        |                      |

# Table B-9: MODBUS MEMORY MAP (Sheet 10 of 37)

| ADDR                              | REGISTER NAME                       | RANGE      | UNITS | STEP | FORMAT | DEFAULT            |
|-----------------------------------|-------------------------------------|------------|-------|------|--------|--------------------|
| 428A                              | Repeated for module number 6        |            |       |      |        |                    |
| 428C                              | Repeated for module number 7        |            |       |      |        |                    |
| 428E                              | Repeated for module number 8        |            |       |      |        |                    |
| 4290                              | Repeated for module number 9        |            |       |      |        |                    |
| 4292                              | Repeated for module number 10       |            |       |      |        |                    |
| 4294                              | Repeated for module number 11       |            |       |      |        |                    |
| 4296                              | Repeated for module number 12       |            |       |      |        |                    |
| 4298                              | Repeated for module number 13       |            |       |      |        |                    |
| 429A                              | Repeated for module number 14       |            |       |      |        |                    |
| 429C                              | Repeated for module number 15       |            |       |      |        |                    |
| 429E                              | Repeated for module number 16       |            |       |      |        |                    |
| 42A0                              | Repeated for module number 17       |            |       |      |        |                    |
| 42A2                              | Repeated for module number 18       |            |       |      |        |                    |
| 42A4                              | Repeated for module number 19       |            |       |      |        |                    |
| 42A6                              | Repeated for module number 20       |            |       |      |        |                    |
| 42A8                              | Repeated for module number 21       |            |       |      |        |                    |
| 42AA                              | Repeated for module number 22       |            |       |      |        |                    |
| 42AC                              | Repeated for module number 23       |            |       |      |        |                    |
| 42AE                              | Repeated for module number 24       |            |       |      |        |                    |
| 42B0                              | Repeated for module number 25       |            |       |      |        |                    |
| 42B2                              | Repeated for module number 26       |            |       |      |        |                    |
| 42B4                              | Repeated for module number 27       |            |       |      |        |                    |
| 42B6                              | Repeated for module number 28       |            |       |      |        |                    |
| 42B8                              | Repeated for module number 29       |            |       |      |        |                    |
| 42BA                              | Repeated for module number 30       |            |       |      |        |                    |
| 42BC                              | Repeated for module number 31       |            |       |      |        |                    |
| 42BE                              | Repeated for module number 32       |            |       |      |        |                    |
| 42C0                              | Repeated for module number 33       |            |       |      |        |                    |
| 42C2                              | Repeated for module number 34       |            |       |      |        |                    |
| 42C4                              | Repeated for module number 35       |            |       |      |        |                    |
| 42C6                              | Repeated for module number 36       |            |       |      |        |                    |
| 42C8                              | Repeated for module number 37       |            |       |      |        |                    |
| 42CA                              | Repeated for module number 38       |            |       |      |        |                    |
| 42CC                              | Repeated for module number 39       |            |       |      |        |                    |
| 42CE                              | Repeated for module number 40       |            |       |      |        |                    |
| 42D0                              | Repeated for module number 41       |            |       |      |        |                    |
| 42D2                              | Repeated for module number 42       |            |       |      |        |                    |
| 42D4                              | Repeated for module number 43       |            |       |      |        |                    |
| 42D6                              | Repeated for module number 44       |            |       |      |        |                    |
| 42D8                              | Repeated for module number 45       |            |       |      |        |                    |
| 42DA                              | Repeated for module number 46       |            |       |      |        |                    |
| 42DC                              | Repeated for module number 47       |            |       |      |        |                    |
| 42DE                              | Repeated for module number 48       |            |       |      |        |                    |
| Installation (Read/Write Setting) |                                     |            |       |      |        |                    |
| 43E0                              | Relay Programmed State              | 0 to 1     |       | 1    | F133   | 0 (Not Programmed) |
| 43E1                              | Relay Name                          |            |       |      | F202   | "Relay-1"          |
| CT Settin                         | gs (Read/Write Setting) (6 modules) |            |       |      |        |                    |
| 4480                              | Phase CT Primary                    | 1 to 65000 | Α     | 1    | F001   | 1                  |
| 4481                              | Phase CT Secondary                  | 0 to 1     |       | 1    | F123   | 0 (1 A)            |
| 4482                              | Ground CT Primary                   | 1 to 65000 | Α     | 1    | F001   | 1                  |
| 4483                              | Ground CT Secondary                 | 0 to 1     |       | 1    | F123   | 0 (1 A)            |
| 4484                              | Repeated for module number 2        |            |       |      |        |                    |
| 4488                              | Repeated for module number 3        |            |       |      |        |                    |
| 448C                              | Repeated for module number 4        |            |       |      |        |                    |
| •                                 |                                     | <b>!</b>   |       | -    |        |                    |

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 37)

| ADDR         | REGISTER NAME                                  | RANGE        | UNITS | STEP  | FORMAT | DEFAULT      |
|--------------|------------------------------------------------|--------------|-------|-------|--------|--------------|
| 4490         | Repeated for module number 5                   |              |       |       |        |              |
| 4494         | Repeated for module number 6                   |              |       |       |        |              |
| VT Settin    | ngs (Read/Write Setting) (3 modules)           | •            | •     |       |        |              |
| 4500         | Phase VT Connection                            | 0 to 1       |       | 1     | F100   | 0 (Wye)      |
| 4501         | Phase VT Secondary                             | 50 to 240    | V     | 0.1   | F001   | 664          |
| 4502         | Phase VT Ratio                                 | 1 to 24000   | :1    | 1     | F060   | 1            |
| 4504         | Auxiliary VT Connection                        | 0 to 6       |       | 1     | F166   | 1 (Vag)      |
| 4505         | Auxiliary VT Secondary                         | 50 to 240    | V     | 0.1   | F001   | 664          |
| 4506         | Auxiliary VT Ratio                             | 1 to 24000   | :1    | 1     | F060   | 1            |
| 4508         | Repeated for module number 2                   |              |       |       |        |              |
| 4510         | Repeated for module number 3                   |              |       |       |        |              |
| Source S     | Settings (Read/Write Setting) (6 modules)      |              |       |       |        |              |
| 4580         | Source Name                                    |              |       |       | F206   | "SRC 1 "     |
| 4583         | Source Phase CT                                | 0 to 63      |       | 1     | F400   | 0            |
| 4584         | Source Ground CT                               | 0 to 63      |       | 1     | F400   | 0            |
| 4585         | Source Phase VT                                | 0 to 63      |       | 1     | F400   | 0            |
| 4586         | Source Auxiliary VT                            | 0 to 63      |       | 1     | F400   | 0            |
| 4587         | Repeated for module number 2                   |              |       |       |        |              |
| 458E         | Repeated for module number 3                   |              |       |       |        |              |
| 4595         | Repeated for module number 4                   |              |       |       |        |              |
| 459C         | Repeated for module number 5                   |              |       |       |        |              |
| 45A3         | Repeated for module number 6                   |              |       |       |        |              |
| Power Sy     | ystem (Read/Write Setting)                     |              |       |       |        |              |
| 4600         | Nominal Frequency                              | 25 to 60     | Hz    | 1     | F001   | 60           |
| 4601         | Phase Rotation                                 | 0 to 1       |       | 1     | F106   | 0 (ABC)      |
| 4602         | Frequency And Phase Reference                  | 0 to 5       |       | 1     | F167   | 0 (SRC 1)    |
| 4603         | Frequency Tracking                             | 0 to 1       |       | 1     | F102   | 1 (Enabled)  |
| Line (Rea    | ad/Write Setting)                              |              |       |       |        |              |
| 46D0         | Line Pos Seq Impedance                         | 0.01 to 250  | Þ     | 0.01  | F001   | 300          |
| 46D1         | Line Pos Seq Impedance Angle                   | 25 to 90     | 0     | 1     | F001   | 75           |
| 46D2         | Line Zero Seq Impedance                        | 0.01 to 650  | Þ     | 0.01  | F001   | 900          |
| 46D3         | Line Zero Seq Impedance Angle                  | 25 to 90     | 0     | 1     | F001   | 75           |
| 46D4         | Line Length Units                              | 0 to 1       |       | 1     | F147   | 0 (km)       |
| 46D5         | Line Length                                    | 0 to 2000    |       | 0.1   | F001   | 1000         |
| Breaker (    | Control Global Settings (Read/Write Setting)   |              |       |       |        |              |
| 46F0         | UCA XCBR x SelTimOut                           | 1 to 60      | S     | 1     | F001   | 30           |
|              | Control (Read/Write Setting) (2 modules)       |              |       | •     |        |              |
|              | Breaker x Function                             | 0 to 1       |       | 1     | F102   | 0 (Disabled) |
| 4701         | Breaker x Name                                 |              |       |       | F206   | "Bkr 1 "     |
| 4704         | Breaker x Mode                                 | 0 to 1       |       | 1     | F157   | 0 (3-Pole)   |
| 4705         | Breaker x Open                                 | 0 to 65535   |       | 1     | F300   | 0            |
| 4706         | Breaker x Close                                | 0 to 65535   |       | 1     | F300   | 0            |
| 4707         | Breaker x Phase A 3 Pole                       | 0 to 65535   |       | 1     | F300   | 0            |
| 4708         | Breaker x Phase B                              | 0 to 65535   |       | 1     | F300   | 0            |
| 4709         | Breaker x Phase C                              | 0 to 65535   |       | 1     | F300   | 0            |
| 470A         | Breaker x External Alarm                       | 0 to 65535   |       | 1     | F300   | 0            |
| 470B         | Breaker x Alarm Delay                          | 0 to 1000000 | S     | 0.001 | F003   | 0            |
| 470D         | Breaker x Push Button Control                  | 0 to 1       |       | 1     | F102   | 0 (Disabled) |
| 470E         | Breaker x Manual Close Recal Time              | 0 to 1000000 | S     | 0.001 | F003   | 0            |
| 4710         | Breaker x UCA XCBR x SBOClass                  | 1 to 2       |       | 1     | F001   | 1            |
| 4711         | Breaker x UCA XCBR x SBOEna                    | 0 to 1       |       | 1     | F102   | 0 (Disabled) |
| 4712         | Breaker x Out Of Service                       | 0 to 65535   |       | 1     | F300   | 0            |
|              |                                                |              |       |       |        |              |
| 4713<br>4718 | Reserved (5 items)Repeated for module number 2 | 0 to 65535   |       | 1     | F001   | 0            |

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 37)

| ADDR         REGISTER NAME         RANGE         UNITS         STEP         FORMAT           Synchrocheck (Read/Write Setting) (2 modules)           4780         Synchrocheck Function         0 to 1          1         F102           4781         Synchrocheck V1 Source         0 to 5          1         F167           4782         Synchrocheck V2 Source         0 to 5          1         F167           4783         Synchrocheck Max Volt Diff         0 to 1000000         V         1         F060           4785         Synchrocheck Max Angle Diff         0 to 100         °         1         F001           4786         Synchrocheck Max Freq Diff         0 to 2         Hz         0.01         F001           4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001           478C         Synchroche | 0 (Disabled) 0 (SRC 1) 1 (SRC 2) 10000 30    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 4780         Synchrocheck Function         0 to 1          1         F102           4781         Synchrocheck V1 Source         0 to 5          1         F167           4782         Synchrocheck V2 Source         0 to 5          1         F167           4783         Synchrocheck Max Volt Diff         0 to 1000000         V         1         F060           4785         Synchrocheck Max Angle Diff         0 to 100         °         1         F001           4786         Synchrocheck Max Freq Diff         0 to 2         Hz         0.01         F001           4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                        | 0 (SRC 1)<br>1 (SRC 2)<br>10000<br>30<br>100 |
| 4781         Synchrocheck V1 Source         0 to 5          1         F167           4782         Synchrocheck V2 Source         0 to 5          1         F167           4783         Synchrocheck Max Volt Diff         0 to 1000000         V         1         F060           4785         Synchrocheck Max Angle Diff         0 to 100         °         1         F001           4786         Synchrocheck Max Freq Diff         0 to 2         Hz         0.01         F001           4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                            | 0 (SRC 1)<br>1 (SRC 2)<br>10000<br>30<br>100 |
| 4783         Synchrocheck Max Volt Diff         0 to 100000         V         1         F060           4785         Synchrocheck Max Angle Diff         0 to 100         °         1         F001           4786         Synchrocheck Max Freq Diff         0 to 2         Hz         0.01         F001           4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           4789         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                           | 10000<br>30<br>100                           |
| 4783         Synchrocheck Max Volt Diff         0 to 100000         V         1         F060           4785         Synchrocheck Max Angle Diff         0 to 100         °         1         F001           4786         Synchrocheck Max Freq Diff         0 to 2         Hz         0.01         F001           4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           4789         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                           | 30<br>100                                    |
| 4786         Synchrocheck Max Freq Diff         0 to 2         Hz         0.01         F001           4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           4789         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                          |
| 4787         Synchrocheck Dead Source Select         0 to 5          1         F176           4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           4789         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |
| 4788         Synchrocheck Dead V1 Max Volt         0 to 1.25         pu         0.01         F001           4789         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 4789         Synchrocheck Dead V2 Max Volt         0 to 1.25         pu         0.01         F001           478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (LV1 and DV2)                              |
| 478A         Synchrocheck Live V1 Min Volt         0 to 1.25         pu         0.01         F001           478B         Synchrocheck Live V2 Min Volt         0 to 1.25         pu         0.01         F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                           |
| 478B Synchrocheck Live V2 Min Volt 0 to 1.25 pu 0.01 F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                           |
| 478C Synchrocheck Target 0 to 2 1 F109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (Self-reset)                               |
| 478D Synchrocheck Events 0 to 1 1 F102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 (Disabled)                                 |
| 478E Synchrocheck Block 0 to 65535 1 F300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                            |
| 478F Synchrocheck X Reserved 0 to 65535 1 F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                            |
| 4790Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Flexcurve A (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4800 FlexCurve A (120 items) 0 to 65535 ms 1 F011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                            |
| Flexcurve B (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 48F0 FlexCurve B (120 items) 0 to 65535 ms 1 F011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                            |
| Modbus User Map (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| 4A00   Modbus Address Settings for User Map (256 items)   0 to 65535     1   F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                            |
| User Displays Settings (Read/Write Setting) (8 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| 4C00 User display top line text F202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н н                                          |
| 4C0A User display bottom line text F202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н н                                          |
| 4C14 Modbus addresses of displayed items (5 items) 0 to 65535 1 F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                            |
| 4C19 Reserved (7 items) F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                            |
| 4C20Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4C40Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4C60Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4C80Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4CA0Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4CC0Repeated for module number 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 4CE0Repeated for module number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| FlexLogic™ (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |
| 5000 FlexLogic Entry (512 items) 0 to 65535 1 F300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16384                                        |
| FlexLogic™ Timers (Read/Write Setting) (32 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |
| 5800 Timer x Type 0 to 2 1 F129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (millisecond)                              |
| 5801 Timer x Pickup Delay 0 to 60000 1 F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                            |
| 5802 Timer x Dropout Delay 0 to 60000 1 F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                            |
| 5803 Timer x Reserved (5 items) 0 to 65535 1 F001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                            |
| 5808Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5810Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5818Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5820Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5828Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5830Repeated for module number 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5838Repeated for module number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5840Repeated for module number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5848Repeated for module number 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| 5850Repeated for module number 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| 5858Repeated for module number 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| 5860Repeated for module number 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 37)

| ADDR     | REGISTER NAME                               | RANGE      | UNITS | STEP  | FORMAT | DEFAULT           |
|----------|---------------------------------------------|------------|-------|-------|--------|-------------------|
| 5868     | Repeated for module number 14               |            |       |       |        |                   |
| 5870     | Repeated for module number 15               |            |       |       |        |                   |
| 5878     | Repeated for module number 16               |            |       |       |        |                   |
| 5880     | Repeated for module number 17               |            |       |       |        |                   |
| 5888     | Repeated for module number 18               |            |       |       |        |                   |
| 5890     | Repeated for module number 19               |            |       |       |        |                   |
| 5898     | Repeated for module number 20               |            |       |       |        |                   |
| 58A0     | Repeated for module number 21               |            |       |       |        |                   |
| 58A8     | Repeated for module number 22               |            |       |       |        |                   |
| 58B0     | Repeated for module number 23               |            |       |       |        |                   |
| 58B8     | Repeated for module number 24               |            |       |       |        |                   |
| 58C0     | Repeated for module number 25               |            |       |       |        |                   |
| 58C8     | Repeated for module number 26               |            |       |       |        |                   |
| 58D0     | Repeated for module number 27               |            |       |       |        |                   |
| 58D8     | Repeated for module number 28               |            |       |       |        |                   |
| 58E0     | Repeated for module number 29               |            |       |       |        |                   |
| 58E8     | Repeated for module number 30               |            |       |       |        |                   |
| 58F0     | Repeated for module number 31               |            |       |       |        |                   |
| 58F8     | Repeated for module number 32               |            |       |       |        |                   |
| Phase TC | C (Read/Write Grouped Setting) (6 modules)  |            | •     |       | •      |                   |
| 5900     | Phase TOC Function                          | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5901     | Phase TOC Signal Source                     | 0 to 5     |       | 1     | F167   | 0 (SRC 1)         |
| 5902     | Phase TOC Input                             | 0 to 1     |       | 1     | F122   | 0 (Phasor)        |
| 5903     | Phase TOC Pickup                            | 0 to 30    | pu    | 0.001 | F001   | 1000              |
| 5904     | Phase TOC Curve                             | 0 to 14    |       | 1     | F103   | 0 (IEEE Mod Inv)  |
| 5905     | Phase TOC Multiplier                        | 0 to 600   |       | 0.01  | F001   | 100               |
| 5906     | Phase TOC Reset                             | 0 to 1     |       | 1     | F104   | 0 (Instantaneous) |
| 5907     | Phase TOC Voltage Restraint                 | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5908     | Phase TOC Block For Each Phase (3 items)    | 0 to 65535 |       | 1     | F300   | 0                 |
| 590B     | Phase TOC Target                            | 0 to 2     |       | 1     | F109   | 0 (Self-reset)    |
| 590C     | Phase TOC Events                            | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 590D     | Reserved (3 items)                          | 0 to 1     |       | 1     | F001   | 0                 |
| 5910     | Repeated for module number 2                |            |       |       |        |                   |
| 5920     | Repeated for module number 3                |            |       |       |        |                   |
| 5930     | Repeated for module number 4                |            |       |       |        |                   |
| 5940     | Repeated for module number 5                |            |       |       |        |                   |
| 5950     | Repeated for module number 6                |            |       |       |        |                   |
| Phase IO | C (Read/Write Grouped Setting) (12 modules) | <u> </u>   |       | Į.    |        |                   |
| 5A00     | Phase IOC1 Function                         | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5A01     | Phase IOC1 Signal Source                    | 0 to 5     |       | 1     | F167   | 0 (SRC 1)         |
| 5A02     | Phase IOC1 Pickup                           | 0 to 30    | pu    | 0.001 | F001   | 1000              |
| 5A03     | Phase IOC1 Delay                            | 0 to 600   | S     | 0.01  | F001   | 0                 |
| 5A04     | Phase IOC1 Reset Delay                      | 0 to 600   | S     | 0.01  | F001   | 0                 |
| 5A05     | Phase IOC1 Block For Each Phase (3 items)   | 0 to 65535 |       | 1     | F300   | 0                 |
| 5A08     | Phase IOC1 Target                           | 0 to 2     |       | 1     | F109   | 0 (Self-reset)    |
| 5A09     | Phase IOC1 Events                           | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5A0A     | Reserved (6 items)                          | 0 to 1     |       | 1     | F001   | 0                 |
| 5A10     | Repeated for module number 2                |            |       |       |        |                   |
| 5A20     | Repeated for module number 3                |            |       |       |        |                   |
| 5A30     | Repeated for module number 4                |            |       |       |        |                   |
| 5A40     | Repeated for module number 5                |            |       |       |        |                   |
| 5A50     | Repeated for module number 6                |            |       |       |        |                   |
| 5A60     | Repeated for module number 7                |            |       |       |        |                   |
| 5A70     | Repeated for module number 8                |            | 1     |       |        |                   |
| 5, 1, 0  |                                             |            | 1     |       |        | i                 |

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 37)

| ADDR       | REGISTER NAME                                | RANGE      | UNITS | STEP  | FORMAT | DEFAULT           |
|------------|----------------------------------------------|------------|-------|-------|--------|-------------------|
| 5A80       | Repeated for module number 9                 |            |       |       |        |                   |
| 5A90       | Repeated for module number 10                |            |       |       |        |                   |
| 5AA0       | Repeated for module number 11                |            |       |       |        |                   |
| 5AB0       | Repeated for module number 12                |            |       |       |        |                   |
| Neutral T  | OC (Read/Write Grouped Setting) (6 modules)  |            |       |       |        |                   |
| 5B00       | Neutral TOC1 Function                        | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5B01       | Neutral TOC1 Signal Source                   | 0 to 5     |       | 1     | F167   | 0 (SRC 1)         |
| 5B02       | Neutral TOC1 Input                           | 0 to 1     |       | 1     | F122   | 0 (Phasor)        |
| 5B03       | Neutral TOC1 Pickup                          | 0 to 30    | pu    | 0.001 | F001   | 1000              |
| 5B04       | Neutral TOC1 Curve                           | 0 to 14    |       | 1     | F103   | 0 (IEEE Mod Inv)  |
| 5B05       | Neutral TOC1 Multiplier                      | 0 to 600   |       | 0.01  | F001   | 100               |
| 5B06       | Neutral TOC1 Reset                           | 0 to 1     |       | 1     | F104   | 0 (Instantaneous) |
| 5B07       | Neutral TOC1 Block                           | 0 to 65535 |       | 1     | F300   | 0                 |
| 5B08       | Neutral TOC1 Target                          | 0 to 2     |       | 1     | F109   | 0 (Self-reset)    |
| 5B09       | Neutral TOC1 Events                          | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5B0A       | Reserved (6 items)                           | 0 to 1     |       | 1     | F001   | 0                 |
| 5B10       | Repeated for module number 2                 |            |       |       |        |                   |
| 5B20       | Repeated for module number 3                 |            |       |       |        |                   |
| 5B30       | Repeated for module number 4                 |            |       |       |        |                   |
| 5B40       | Repeated for module number 5                 |            |       |       |        |                   |
| 5B50       | Repeated for module number 6                 |            |       |       |        |                   |
| Neutral IO | DC (Read/Write Grouped Setting) (12 modules) |            |       |       |        |                   |
| 5C00       | Neutral IOC1 Function                        | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5C01       | Neutral IOC1 Signal Source                   | 0 to 5     |       | 1     | F167   | 0 (SRC 1)         |
| 5C02       | Neutral IOC1 Pickup                          | 0 to 30    | pu    | 0.001 | F001   | 1000              |
| 5C03       | Neutral IOC1 Delay                           | 0 to 600   | S     | 0.01  | F001   | 0                 |
| 5C04       | Neutral IOC1 Reset Delay                     | 0 to 600   | S     | 0.01  | F001   | 0                 |
| 5C05       | Neutral IOC1 Block                           | 0 to 65535 |       | 1     | F300   | 0                 |
| 5C06       | Neutral IOC1 Target                          | 0 to 2     |       | 1     | F109   | 0 (Self-reset)    |
| 5C07       | Neutral IOC1 Events                          | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5C08       | Reserved (8 items)                           | 0 to 1     |       | 1     | F001   | 0                 |
| 5C10       | Repeated for module number 2                 |            |       |       |        |                   |
| 5C20       | Repeated for module number 3                 |            |       |       |        |                   |
| 5C30       | Repeated for module number 4                 |            |       |       |        |                   |
| 5C40       | Repeated for module number 5                 |            |       |       |        |                   |
| 5C50       | Repeated for module number 6                 |            |       |       |        |                   |
| 5C60       | Repeated for module number 7                 |            |       |       |        |                   |
| 5C70       | Repeated for module number 8                 |            |       |       |        |                   |
| 5C80       | Repeated for module number 9                 |            |       |       |        |                   |
| 5C90       | Repeated for module number 10                |            |       |       |        |                   |
| 5CA0       | Repeated for module number 11                |            |       |       |        |                   |
| 5CB0       | Repeated for module number 12                |            |       | L     |        |                   |
|            | OC (Read/Write Grouped Setting) (6 modules)  |            |       |       | F402   | 0 (5: 11 "        |
| 5D00       | Ground TOC1 Function                         | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5D01       | Ground TOC1 Signal Source                    | 0 to 5     |       | 1     | F167   | 0 (SRC 1)         |
| 5D02       | Ground TOC1 Input                            | 0 to 1     |       | 1     | F122   | 0 (Phasor)        |
| 5D03       | Ground TOC1 Pickup                           | 0 to 30    | pu    | 0.001 | F001   | 1000              |
| 5D04       | Ground TOC1 Curve                            | 0 to 14    |       | 1     | F103   | 0 (IEEE Mod Inv)  |
| 5D05       | Ground TOC1 Multiplier                       | 0 to 600   |       | 0.01  | F001   | 100               |
| 5D06       | Ground TOC1 Reset                            | 0 to 1     |       | 1     | F104   | 0 (Instantaneous) |
| 5D07       | Ground TOC1 Block                            | 0 to 65535 |       | 1     | F300   | 0                 |
| 5D08       | Ground TOC1 Target                           | 0 to 2     |       | 1     | F109   | 0 (Self-reset)    |
| 5D09       | Ground TOC1 Events                           | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| 5D0A       | Reserved (6 items)                           | 0 to 1     |       | 1     | F001   | 0                 |

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 37)

| ADDR                                                                                     | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                  | RANGE                                                                     | UNITS               | STEP                                      | FORMAT                                                               | DEFAULT                                                       |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|
| 5D10                                                                                     | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5D20                                                                                     | Repeated for module number 3                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5D30                                                                                     | Repeated for module number 4                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5D40                                                                                     | Repeated for module number 5                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5D50                                                                                     | Repeated for module number 6                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| Ground I                                                                                 | OC (Read/Write Grouped Setting) (12 modules)                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E00                                                                                     | Ground IOC1 Signal Source                                                                                                                                                                                                                                                                                                                                      | 0 to 5                                                                    |                     | 1                                         | F167                                                                 | 0 (SRC 1)                                                     |
| 5E01                                                                                     | Ground IOC1 Function                                                                                                                                                                                                                                                                                                                                           | 0 to 1                                                                    |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| 5E02                                                                                     | Ground IOC1 Pickup                                                                                                                                                                                                                                                                                                                                             | 0 to 30                                                                   | pu                  | 0.001                                     | F001                                                                 | 1000                                                          |
| 5E03                                                                                     | Ground IOC1 Delay                                                                                                                                                                                                                                                                                                                                              | 0 to 600                                                                  | s                   | 0.01                                      | F001                                                                 | 0                                                             |
| 5E04                                                                                     | Ground IOC1 Reset Delay                                                                                                                                                                                                                                                                                                                                        | 0 to 600                                                                  | s                   | 0.01                                      | F001                                                                 | 0                                                             |
| 5E05                                                                                     | Ground IOC1 Block                                                                                                                                                                                                                                                                                                                                              | 0 to 65535                                                                |                     | 1                                         | F300                                                                 | 0                                                             |
| 5E06                                                                                     | Ground IOC1 Target                                                                                                                                                                                                                                                                                                                                             | 0 to 2                                                                    |                     | 1                                         | F109                                                                 | 0 (Self-reset)                                                |
| 5E07                                                                                     | Ground IOC1 Events                                                                                                                                                                                                                                                                                                                                             | 0 to 1                                                                    |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| 5E08                                                                                     | Reserved (8 items)                                                                                                                                                                                                                                                                                                                                             | 0 to 1                                                                    |                     | 1                                         | F001                                                                 | 0                                                             |
| 5E10                                                                                     | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E20                                                                                     | Repeated for module number 3                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E30                                                                                     | Repeated for module number 4                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E40                                                                                     | Repeated for module number 5                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E50                                                                                     | Repeated for module number 6                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E60                                                                                     | Repeated for module number 7                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E70                                                                                     | Repeated for module number 8                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E80                                                                                     | Repeated for module number 9                                                                                                                                                                                                                                                                                                                                   |                                                                           |                     |                                           |                                                                      |                                                               |
| 5E90                                                                                     | Repeated for module number 10                                                                                                                                                                                                                                                                                                                                  |                                                                           |                     |                                           |                                                                      |                                                               |
| 5EA0                                                                                     | Repeated for module number 11                                                                                                                                                                                                                                                                                                                                  |                                                                           |                     |                                           |                                                                      |                                                               |
| 5EB0                                                                                     | Repeated for module number 12                                                                                                                                                                                                                                                                                                                                  |                                                                           |                     |                                           |                                                                      |                                                               |
|                                                                                          | nce Detector (Read/Write Grouped Setting)                                                                                                                                                                                                                                                                                                                      |                                                                           |                     |                                           |                                                                      | _                                                             |
| 5F20                                                                                     | DD Function                                                                                                                                                                                                                                                                                                                                                    | 0 to 1                                                                    |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| 5F21                                                                                     | DD Non Cur Supervision                                                                                                                                                                                                                                                                                                                                         | 0 to 65535                                                                |                     | 1                                         | F300                                                                 | 0                                                             |
| 5F22                                                                                     | DD Control Logic                                                                                                                                                                                                                                                                                                                                               | 0 to 65535                                                                |                     | 1                                         | F300                                                                 | 0                                                             |
| 5F23                                                                                     | DD Logic Seal In                                                                                                                                                                                                                                                                                                                                               | 0 to 65535                                                                |                     | 1                                         | F300                                                                 | 0                                                             |
| 5F24                                                                                     | DD Events                                                                                                                                                                                                                                                                                                                                                      | 0 to 1                                                                    |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| _                                                                                        | Sequence TOC (Read/Write Grouped Setting) (2 modul                                                                                                                                                                                                                                                                                                             |                                                                           | <u> </u>            | •                                         |                                                                      |                                                               |
| 6300                                                                                     | Negative Sequence TOC1 Function                                                                                                                                                                                                                                                                                                                                | 0 to 1                                                                    |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| 6301                                                                                     | Negative Sequence TOC1 Signal Source                                                                                                                                                                                                                                                                                                                           | 0 to 5                                                                    |                     | 1                                         | F167                                                                 | 0 (SRC 1)                                                     |
| 6302                                                                                     | Negative Sequence TOC1 Pickup                                                                                                                                                                                                                                                                                                                                  | 0 to 30                                                                   | pu                  | 0.001                                     | F001                                                                 | 1000                                                          |
| 6303                                                                                     | Negative Sequence TOC1 Curve                                                                                                                                                                                                                                                                                                                                   | 0 to 14                                                                   |                     | 1                                         | F103                                                                 | 0 (IEEE Mod Inv)                                              |
| 6304                                                                                     | Negative Sequence TOC1 Multiplier                                                                                                                                                                                                                                                                                                                              | 0 to 600                                                                  |                     | 0.01                                      | F001                                                                 | 100                                                           |
| 6305                                                                                     | Negative Sequence TOC1 Reset                                                                                                                                                                                                                                                                                                                                   | 0 to 1                                                                    |                     | 1                                         | F104                                                                 | 0 (Instantaneous)                                             |
| 6306                                                                                     | Negative Sequence TOC1 Block                                                                                                                                                                                                                                                                                                                                   | 0 to 65535                                                                |                     | 1                                         | F300                                                                 | 0                                                             |
|                                                                                          | N C TOOLT :                                                                                                                                                                                                                                                                                                                                                    | 0.1.0                                                                     |                     |                                           |                                                                      |                                                               |
| 6307                                                                                     | Negative Sequence TOC1 Target                                                                                                                                                                                                                                                                                                                                  | 0 to 2                                                                    |                     | 1                                         | F109                                                                 | 0 (Self-reset)                                                |
| 6308                                                                                     | Negative Sequence TOC1 Events                                                                                                                                                                                                                                                                                                                                  | 0 to 1                                                                    |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| 6308<br>6309                                                                             | Negative Sequence TOC1 Events Reserved (7 items)                                                                                                                                                                                                                                                                                                               |                                                                           |                     |                                           |                                                                      | ,                                                             |
| 6308<br>6309<br>6310                                                                     | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2                                                                                                                                                                                                                                                                                   | 0 to 1<br>0 to 1                                                          |                     | 1                                         | F102                                                                 | 0 (Disabled)                                                  |
| 6308<br>6309<br>6310<br><b>Negative</b>                                                  | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module                                                                                                                                                                                                                               | 0 to 1<br>0 to 1                                                          |                     | 1 1                                       | F102<br>F001                                                         | 0 (Disabled)                                                  |
| 6308<br>6309<br>6310<br><b>Negative</b><br>6400                                          | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function                                                                                                                                                                                               | 0 to 1<br>0 to 1                                                          |                     | 1 1                                       | F102<br>F001                                                         | 0 (Disabled) 0 0 (Disabled)                                   |
| 6308<br>6309<br>6310<br><b>Negative</b><br>6400                                          | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source                                                                                                                                                          | 0 to 1<br>0 to 1<br>es)<br>0 to 1<br>0 to 5                               |                     | 1 1 1 1                                   | F102<br>F001<br>F102<br>F167                                         | 0 (Disabled) 0 (Disabled) 0 (SRC 1)                           |
| 6308<br>6309<br>6310<br><b>Negative</b><br>6400<br>6401<br>6402                          | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source Negative Sequence IOC1 Pickup                                                                                                                            | 0 to 1<br>0 to 1<br>es)<br>0 to 1<br>0 to 5<br>0 to 30                    | <br><br><br>pu      | 1<br>1<br>1<br>1<br>1<br>0.001            | F102<br>F001<br>F102<br>F167<br>F001                                 | 0 (Disabled)<br>0<br>0 (Disabled)<br>0 (SRC 1)<br>1000        |
| 6308<br>6309<br>6310<br><b>Negative</b><br>6400<br>6401<br>6402<br>6403                  | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source Negative Sequence IOC1 Pickup Negative Sequence IOC1 Delay                                                                                               | 0 to 1 0 to 1  0 to 1  0 to 1  0 to 5 0 to 30 0 to 600                    | <br><br><br>pu<br>s | 1<br>1<br>1<br>1<br>0.001<br>0.01         | F102<br>F001<br>F102<br>F167<br>F001<br>F001                         | 0 (Disabled)<br>0<br>0 (Disabled)<br>0 (SRC 1)<br>1000<br>0   |
| 6308<br>6309<br>6310<br><b>Negative</b><br>6400<br>6401<br>6402<br>6403<br>6404          | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source Negative Sequence IOC1 Pickup Negative Sequence IOC1 Delay Negative Sequence IOC1 Reset Delay                                                            | 0 to 1 0 to 1  0 to 1  0 to 5 0 to 30 0 to 600 0 to 600                   | <br><br>pu<br>s     | 1<br>1<br>1<br>1<br>0.001<br>0.01<br>0.01 | F102<br>F001<br>F102<br>F167<br>F001<br>F001                         | 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 1000 0                  |
| 6308<br>6309<br>6310<br>Negative<br>6400<br>6401<br>6402<br>6403<br>6404<br>6405         | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source Negative Sequence IOC1 Pickup Negative Sequence IOC1 Delay Negative Sequence IOC1 Reset Delay Negative Sequence IOC1 Block                               | 0 to 1 0 to 1 0 to 1  0 to 1  0 to 5 0 to 30 0 to 600 0 to 600 0 to 65535 |                     | 1<br>1<br>1<br>1<br>0.001<br>0.01<br>0.01 | F102<br>F001<br>F102<br>F167<br>F001<br>F001<br>F300                 | 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 1000 0 0                |
| 6308<br>6309<br>6310<br>Negative<br>6400<br>6401<br>6402<br>6403<br>6404<br>6405<br>6406 | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source Negative Sequence IOC1 Pickup Negative Sequence IOC1 Delay Negative Sequence IOC1 Reset Delay Negative Sequence IOC1 Block Negative Sequence IOC1 Target | 0 to 1 0 to 1 0 to 1  0 to 1  0 to 5 0 to 30 0 to 600 0 to 65535 0 to 2   | pu s s              | 1<br>1<br>1<br>0.001<br>0.01<br>0.01<br>1 | F102<br>F001<br>F102<br>F167<br>F001<br>F001<br>F001<br>F300<br>F109 | 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 1000 0 0 0 (Self-reset) |
| 6308<br>6309<br>6310<br>Negative<br>6400<br>6401<br>6402<br>6403<br>6404<br>6405         | Negative Sequence TOC1 Events Reserved (7 items)Repeated for module number 2 Sequence IOC (Read/Write Grouped Setting) (2 module Negative Sequence IOC1 Function Negative Sequence IOC1 Signal Source Negative Sequence IOC1 Pickup Negative Sequence IOC1 Delay Negative Sequence IOC1 Reset Delay Negative Sequence IOC1 Block                               | 0 to 1 0 to 1 0 to 1  0 to 1  0 to 5 0 to 30 0 to 600 0 to 600 0 to 65535 |                     | 1<br>1<br>1<br>1<br>0.001<br>0.01<br>0.01 | F102<br>F001<br>F102<br>F167<br>F001<br>F001<br>F300                 | 0 (Disabled) 0 0 (Disabled) 0 (SRC 1) 1000 0 0                |

Table B-9: MODBUS MEMORY MAP (Sheet 16 of 37)

| Repaired Sequence Overvoltage Florida   Repaired Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADDR      | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RANGE      | UNITS    | STEP     | FORMAT | DEFAULT        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------|--------|----------------|
| BAA1   Negative Sequence Overvoltage Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6410      | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |          |        |                |
| B441   Negative Sequence Overotings Pickup   0.10   1.25   pu   0.001   F001   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   504   300   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500   500 | Negative  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 6442   Negative Sequence Overvotage Pickup   0 to 1.26   pu   0.001   F001   300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64A0      | Negative Sequence Overvoltage Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 1     |          | 1        | F102   | 0 (Disabled)   |
| 64A4   Negative Sequence Overvottage Pickup Delay   0 to 6000   s   0.01   F001   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64A1      | Negative Sequence Overvoltage Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 5     |          | 1        | F167   | 0 (SRC 1)      |
| 64AA   Negative Sequence Overvoltage Block   0 to 85535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | pu       | 0.001    |        |                |
| 64A5   Negative Sequence Overvoltage Block   0 to 65535     1   F300   0   G8F1reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64A3      | Negative Sequence Overvoltage Pickup Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 600   | S        | 0.01     | F001   |                |
| 64A6   Negative Sequence Overvoltage Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | S        |          |        |                |
| Foundary   Power Swing Surve   Foundary   Foundary Survey   Foundary Swing Detect (ReadWirte Grouped Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64A5      | Negative Sequence Overvoltage Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |          |        | <u> </u>       |
| Power Swing Detect (ReadWrite Grouped Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| SSCD   Power Swing Function   0 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 to 1     |          | 1        | F102   | 0 (Disabled)   |
| February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | 1        |        |                |
| February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February  |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |          |        | , ,            |
| February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February  |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |          |        |                |
| February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February   February  |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |          |        |                |
| 65C5   Power Swing Fwd Rca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | <u> </u> |          |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | , and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |            |          |          |        |                |
| 65C7   Power Swing Rev Rca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| SSCB   Outer Limit Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | , and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |            |          |          |        |                |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |          |        |                |
| SSCA   Inner Limit Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |          |        |                |
| SCSC   Delay 1 Pickup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 65CC   Delay 1 Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |          |        |                |
| 65CD   Delay 2 Pickup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 65CE         Delay 3 Pickup         0 to 65.535         s         0.001         F001         9           65CF         Delay 4 Pickup         0 to 65.535         s         0.001         F001         17           65D0         Seal In Delay         0 to 65.535         s         0.001         F001         400           65D1         Trip Mode         0 to 1          1         F514         0 (Delayed)           65D2         Power Swing Block         0 to 65:35          1         F300         0           65D3         Power Swing Target         0 to 2          1         F109         0 (Self-reset)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           Load Encroachment (Read/Write Grouped Setting)         6700         Load Encroachment Function         0 to 1          1         F102         0 (Disabled)           6701         Load Encroachment Function         0 to 5          1         F167         0 (SRC 1)           6702         Load Encroachment Reach         0.02 to 250         b         0.01         F001         250           6703         Load Encroachment Reach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 65CF         Delay 4 Pickup         0 to 65.535         s         0.001         F001         17           65D0         Seal In Delay         0 to 65.535         s         0.001         F001         400           65D1         Trip Mode         0 to 65.535         s         0.001         F014         0 (Delayed)           65D2         Power Swing Block         0 to 65.535         s         1         F514         0 (Delayed)           65D3         Power Swing Block         0 to 2         s         1         F109         0 (Self-reset)           65D4         Power Swing Event         0 to 1         s         1         F109         0 (Disabled)           65D4         Power Swing Event         0 to 1         s         1         F102         0 (Disabled)           65D4         Power Swing Event         0 to 1         s         1         F102         0 (Disabled)           65D4         Power Swing Event         0         to 1         s         1         F102         0 (Disabled)           65D4         Power Swing Event         0         to 1         s         1         F102         0 (Disabled)           6702         Load Encroachment Function         0 to 5         s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 65D0         Seal in Delay         0 to 65.535         s         0.001         F001         400           65D1         Trip Mode         0 to 1          1         F514         0 (Delayed)           65D2         Power Swing Block         0 to 65535          1         F300         0           65D3         Power Swing Target         0 to 2          1         F109         0 (Self-reset)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           6701         Load Encroachment Function         0 to 1          1         F162         0 (SRC 1)           6701         Load Encroachment Min Volt         0 to 3         pu         0.001         F001         250           6702         Load Encroachment Reach         0.02 to 250         b         D.01         F001         100           6704         Load Encroachment Reach         0.02 to 250         b         D.01         F001         10           6705         Load Encroachment Reach         0.0 65.355         s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 65D1         Trip Mode         0 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |          |        |                |
| 65D2         Power Swing Block         0 to 65535          1         F300         0           65D3         Power Swing Target         0 to 2          1         F109         0 (Self-reset)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           6704         Load Encroachment Reach         0 to 5          1         F167         0 (SRC 1)           6704         Load Encroachment Reach         0.02 to 250         b         0.01         F001         100           6705         Load Encroachment Reach         0.02 to 550         b         0.01         F001         10           6704         Load Encroachment Reach         0.02 to 65.335         s         0.001         F001         0           6705         Load Encroachment Rst Delay         0 to 65.335 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |          |        |                |
| 65D3         Power Swing Target         0 to 2          1         F109         0 (Self-reset)           65D4         Power Swing Event         0 to 1          1         F102         0 (Disabled)           Load Encroachment Read/Write Grouped Setting)           6700         Load Encroachment Function         0 to 1          1         F102         0 (Disabled)           6701         Load Encroachment Source         0 to 5          1         F167         0 (SRC 1)           6702         Load Encroachment Min Volt         0 to 3         pu         0.001         F001         250           6703         Load Encroachment Reach         0.02 to 250         b         0.01         F001         100           6704         Load Encroachment Reach         0.02 to 250         b         0.01         F001         10           6705         Load Encroachment Reach         0.02 to 2535         s         0.001         F001         0           6706         Load Encroachment Ryb Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Ridek         0 to 65535          1         F109         0 (Self-reset)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |          |        |                |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |          |        | ,              |
| Coad Encroachment (Read/Write Grouped Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |          |        | ,              |
| 6700         Load Encroachment Function         0 to 1          1         F102         0 (Disabled)           6701         Load Encroachment Source         0 to 5          1         F167         0 (SRC 1)           6702         Load Encroachment Min Volt         0 to 3         pu         0.001         F001         250           6703         Load Encroachment Reach         0.02 to 250         b         0.01         F001         100           6704         Load Encroachment Angle         5 to 50         °         1         F001         30           6705         Load Encroachment Pkp Delay         0 to 65.535         s         0.001         F001         0           6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535         s         0.001         F001         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items) </td <td></td> <td></td> <td>0 10 1</td> <td></td> <td><u>'</u></td> <td>1 102</td> <td>o (Disabled)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 10 1     |          | <u>'</u> | 1 102  | o (Disabled)   |
| 6701         Load Encroachment Source         0 to 5          1         F167         0 (SRC 1)           6702         Load Encroachment Min Volt         0 to 3         pu         0.001         F001         250           6703         Load Encroachment Reach         0.02 to 250         P         0.01         F001         100           6704         Load Encroachment Angle         5 to 50         °         1         F001         30           6705         Load Encroachment Pkp Delay         0 to 65.535         s         0.001         F001         0           6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535          1         F109         0 (Self-reset)           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           6800         Trip 3-Pole Input1         0 to 65535          1         F195         0 (Disabled) <td></td> <td></td> <td>0 to 1</td> <td></td> <td>1</td> <td>F102</td> <td>0 (Disabled)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 1     |          | 1        | F102   | 0 (Disabled)   |
| 6702         Load Encroachment Min Volt         0 to 3         pu         0.001         F001         250           6703         Load Encroachment Reach         0.02 to 250         b         0.01         F001         100           6704         Load Encroachment Angle         5 to 50         °         1         F001         30           6705         Load Encroachment Pkp Delay         0 to 65.535         s         0.001         F001         0           6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535          1         F300         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Reserved (6 items)         0 to 65535          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           Trip Mode         0 to 2          1         F195         0 (Disabled)      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        | ,              |
| 6703         Load Encroachment Reach         0.02 to 250         P         0.01         F001         100           6704         Load Encroachment Angle         5 to 50         °         1         F001         30           6705         Load Encroachment Pkp Delay         0 to 65.535         s         0.001         F001         0           6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535          1         F300         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Reserved (6 items)         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        | ,              |
| 6704         Load Encroachment Angle         5 to 50         °         1         F001         30           6705         Load Encroachment Pkp Delay         0 to 65.535         s         0.001         F001         0           6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535          1         F300         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | · ·      |          |        |                |
| 6705         Load Encroachment Pkp Delay         0 to 65.535         s         0.001         F001         0           6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535          1         F300         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        |                |
| 6706         Load Encroachment Rst Delay         0 to 65.535         s         0.001         F001         0           6707         Load Encroachment Block         0 to 65535          1         F300         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6803         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input5         0 to 65535          1         F300         0           6805 <td< td=""><td></td><td>-</td><td></td><td>S</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | S        |          |        |                |
| 6707         Load Encroachment Block         0 to 65535          1         F300         0           6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6804         Trip 3-Pole Input3         0 to 65535          1         F300         0           6805         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6706      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |        | 0              |
| 6708         Load Encroachment Target         0 to 2          1         F109         0 (Self-reset)           6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6804         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input4         0 to 65535          1         F300         0           6805         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole Inpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Load Encroachment Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |          |        | 0              |
| 6709         Load Encroachment Events         0 to 1          1         F102         0 (Disabled)           670A         Load Encroachment Reserved (6 items)         0 to 65535          1         F001         0           Trip Output (Read/Write Setting)           6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6803         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input4         0 to 65535          1         F300         0           6805         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole Input1         0 to 65535          1         F300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6708      | Load Encroachment Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          | 1        |        | 0 (Self-reset) |
| Trip Output (Read/Write Setting)           6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6803         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input4         0 to 65535          1         F300         0           6805         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole Input1         0 to 65535          1         F300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6709      | Load Encroachment Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 to 1     |          | 1        | F102   |                |
| 6800         Trip Mode         0 to 2          1         F195         0 (Disabled)           6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6803         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input4         0 to 65535          1         F300         0           6805         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole Input1         0 to 65535          1         F300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 670A      | Load Encroachment Reserved (6 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 65535 |          | 1        | F001   | 0              |
| 6801         Trip 3-Pole Input1         0 to 65535          1         F300         0           6802         Trip 3-Pole Input2         0 to 65535          1         F300         0           6803         Trip 3-Pole Input3         0 to 65535          1         F300         0           6804         Trip 3-Pole Input4         0 to 65535          1         F300         0           6805         Trip 3-Pole Input5         0 to 65535          1         F300         0           6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole Input1         0 to 65535          1         F300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trip Outp | ut (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |          |        |                |
| 6802       Trip 3-Pole Input2       0 to 65535        1       F300       0         6803       Trip 3-Pole Input3       0 to 65535        1       F300       0         6804       Trip 3-Pole Input4       0 to 65535        1       F300       0         6805       Trip 3-Pole Input5       0 to 65535        1       F300       0         6806       Trip 3-Pole Input6       0 to 65535        1       F300       0         6807       Trip 1-Pole Input1       0 to 65535        1       F300       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6800      | Trip Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 to 2     |          | 1        | F195   | 0 (Disabled)   |
| 6803       Trip 3-Pole Input3       0 to 65535        1       F300       0         6804       Trip 3-Pole Input4       0 to 65535        1       F300       0         6805       Trip 3-Pole Input5       0 to 65535        1       F300       0         6806       Trip 3-Pole Input6       0 to 65535        1       F300       0         6807       Trip 1-Pole Input1       0 to 65535        1       F300       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6801      | Trip 3-Pole Input1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
| 6804       Trip 3-Pole Input4       0 to 65535        1       F300       0         6805       Trip 3-Pole Input5       0 to 65535        1       F300       0         6806       Trip 3-Pole Input6       0 to 65535        1       F300       0         6807       Trip 1-Pole Input1       0 to 65535        1       F300       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6802      | Trip 3-Pole Input2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
| 6805     Trip 3-Pole Input5     0 to 65535      1     F300     0       6806     Trip 3-Pole Input6     0 to 65535      1     F300     0       6807     Trip 1-Pole Input1     0 to 65535      1     F300     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6803      | Trip 3-Pole Input3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
| 6806         Trip 3-Pole Input6         0 to 65535          1         F300         0           6807         Trip 1-Pole Input1         0 to 65535          1         F300         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6804      | Trip 3-Pole Input4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
| 6807 Trip 1-Pole Input1 0 to 65535 1 F300 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6805      | Trip 3-Pole Input5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6806      | Trip 3-Pole Input6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6807      | Trip 1-Pole Input1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |
| 6808 Trip 1-Pole Input2 0 to 65535 1 F300 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6808      | Trip 1-Pole Input2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |          | 1        | F300   | 0              |

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 37)

| ADDR      | REGISTER NAME                      | RANGE       | UNITS | STEP  | FORMAT | DEFAULT        |
|-----------|------------------------------------|-------------|-------|-------|--------|----------------|
| 6809      | Trip 1-Pole Input3                 | 0 to 65535  |       | 1     | F300   | 0              |
| 680A      | Trip 1-Pole Input4                 | 0 to 65535  |       | 1     | F300   | 0              |
| 680B      | Trip 1-Pole Input5                 | 0 to 65535  |       | 1     | F300   | 0              |
| 680C      | Trip 1-Pole Input6                 | 0 to 65535  |       | 1     | F300   | 0              |
| 680D      | Trip Reclose Input1                | 0 to 65535  |       | 1     | F300   | 0              |
| 680E      | Trip Reclose Input2                | 0 to 65535  |       | 1     | F300   | 0              |
| 680F      | Trip Reclose Input3                | 0 to 65535  |       | 1     | F300   | 0              |
| 6810      | Trip Reclose Input4                | 0 to 65535  |       | 1     | F300   | 0              |
| 6811      | Trip Reclose Input5                | 0 to 65535  |       | 1     | F300   | 0              |
| 6812      | Trip Reclose Input6                | 0 to 65535  |       | 1     | F300   | 0              |
| 6813      | Trip Force 3-Pole                  | 0 to 65535  |       | 1     | F300   | 0              |
| 6814      | Trip Pilot Priority                | 0 to 65.535 | S     | 0.001 | F001   | 0              |
| 6815      | BKR Phase A Open                   | 0 to 65535  |       | 1     | F300   | 0              |
| 6816      | BKR Phase B Open                   | 0 to 65535  |       | 1     | F300   | 0              |
| 6817      | BKR Phase C Open                   | 0 to 65535  |       | 1     | F300   | 0              |
| 6818      | Trip Events                        | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6819      | Reserved (7 items)                 | 0 to 1      |       | 1     | F001   | 0              |
| Open Pol  | e Detect (1P) (Read/Write Setting) |             | L     |       |        |                |
| 6820      | Open Pole Function                 | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6821      | Open Pole Block                    | 0 to 65535  |       | 1     | F300   | 0              |
| 6822      | Open Pole Voltage SUPV             | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6823      | Open Pole Current PKP              | 0 to 30     | pu    | 0.001 | F001   | 50             |
| 6824      | Open Pole Target                   | 0 to 2      |       | 1     | F109   | 0 (Self-reset) |
| 6825      | Open Pole Events                   | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6826      | Reserved (10 items)                | 0 to 1      |       | 1     | F001   | 0              |
| Pilot DUT | T (1P) (Read/Write Setting)        |             |       |       |        |                |
| 6830      | DUTT D60 Function                  | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6831      | DUTT D60 Seal In Delay             | 0 to 65.535 | s     | 0.001 | F001   | 0              |
| 6832      | DUTT 1P No of Comm Bits            | 0 to 2      |       | 1     | F198   | 0 (1)          |
| 6833      | DUTT D60 RX1                       | 0 to 65535  |       | 1     | F300   | 0              |
| 6834      | DUTT D60 RX2                       | 0 to 65535  |       | 1     | F300   | 0              |
| 6835      | DUTT D60 RX3                       | 0 to 65535  |       | 1     | F300   | 0              |
| 6836      | DUTT D60 RX4                       | 0 to 65535  |       | 1     | F300   | 0              |
| 6837      | DUTT 1P Target                     | 0 to 2      |       | 1     | F109   | 0 (Self-reset) |
| 6838      | DUTT 1P Event                      | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6839      | Reserved (7 items)                 | 0 to 1      |       | 1     | F001   | 0              |
| Pilot PUT | T (1P) (Read/Write Setting)        |             |       |       |        |                |
| 6840      | PUTT 1P Scheme Function            | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6841      | PUTT 1P Rx Pickup Delay            | 0 to 65.535 | s     | 0.001 | F001   | 0              |
| 6842      | PUTT 1P Seal In Delay              | 0 to 65.535 | s     | 0.001 | F001   | 0              |
| 6843      | PUTT 1P No of Comm Bits            | 0 to 2      |       | 1     | F198   | 0 (1)          |
| 6844      | PUTT 1P Rx1                        | 0 to 65535  |       | 1     | F300   | 0              |
| 6845      | PUTT 1P Rx2                        | 0 to 65535  |       | 1     | F300   | 0              |
| 6846      | PUTT 1P Rx3                        | 0 to 65535  |       | 1     | F300   | 0              |
| 6847      | PUTT 1P Rx4                        | 0 to 65535  |       | 1     | F300   | 0              |
| 6848      | PUTT 1P Target                     | 0 to 2      |       | 1     | F109   | 0 (Self-reset) |
| 6849      | PUTT 1P Event                      | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 684A      | Reserved (6 items)                 | 0 to 1      |       | 1     | F001   | 0              |
|           | T (1P) (Read/Write Setting)        | 1           | 1     | (     |        |                |
| 6850      | POTT 1P Scheme Function            | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6851      | POTT 1P Permissive Echo            | 0 to 1      |       | 1     | F102   | 0 (Disabled)   |
| 6852      | POTT 1P Rx Pickup Delay            | 0 to 65.535 | S     | 0.001 | F001   | 0              |
| 6853      | POTT 1P Trans Block Pickup Delay   | 0 to 65.535 | S     | 0.001 | F001   | 20             |
| 6854      | POTT 1P Trans Block Reset Delay    | 0 to 65.535 | S     | 0.001 | F001   | 90             |

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 37)

| ADDR         | REGISTER NAME                           | RANGE            | UNITS | STEP     | FORMAT       | DEFAULT           |
|--------------|-----------------------------------------|------------------|-------|----------|--------------|-------------------|
| 6855         | POTT 1P Echo Duration                   | 0 to 65.535      | S     | 0.001    | F001         | 100               |
| 6856         | POTT 1P Echo Lockout                    | 0 to 65.535      | S     | 0.001    | F001         | 250               |
| 6857         | POTT 1P Line End Open Pickup Delay      | 0 to 65.535      | S     | 0.001    | F001         | 50                |
| 6858         | POTT 1P Seal In Delay                   | 0 to 65.535      | S     | 0.001    | F001         | 0                 |
| 6859         | POTT 1P Gnd Dir OC Fwd                  | 0 to 65535       |       | 1        | F300         | 0                 |
| 685A         | POTT 1P No of Comm Bits                 | 0 to 2           |       | 1        | F198         | 0 (1)             |
| 685B         | POTT 1P Rx1                             | 0 to 65535       |       | 1        | F300         | 0                 |
| 685C         | POTT 1P Rx2                             | 0 to 65535       |       | 1        | F300         | 0                 |
| 685D         | POTT 1P Rx3                             | 0 to 65535       |       | 1        | F300         | 0                 |
| 685E         | POTT 1P Rx4                             | 0 to 65535       |       | 1        | F300         | 0                 |
| 685F         | POTT 1P Target                          | 0 to 2           |       | 1        | F109         | 0 (Self-reset)    |
| 6860         | POTT 1P Event                           | 0 to 1           |       | 1        | F102         | 0 (Disabled)      |
| 6861         | Reserved (7 items)                      | 0 to 1           |       | 1        | F001         | 0                 |
| Pilot Hyb    | rid POTT (1P) (Read/Write Setting)      |                  |       |          |              |                   |
| 6868         | Hybrid POTT 1P Scheme Function          | 0 to 1           |       | 1        | F102         | 0 (Disabled)      |
| 6869         | Hybrid POTT 1P Permissive Echo          | 0 to 1           |       | 1        | F102         | 0 (Disabled)      |
| 686A         | Hybrid POTT 1P Rx Pickup Delay          | 0 to 65.535      | S     | 0.001    | F001         | 0                 |
| 686B         | Hybrid POTT 1P Trans Block Pickup Delay | 0 to 65.535      | s     | 0.001    | F001         | 20                |
| 686C         | Hybrid POTT 1P Trans Block Reset Delay  | 0 to 65.535      | S     | 0.001    | F001         | 90                |
| 686D         | Hybrid POTT 1P Echo Duration            | 0 to 65.535      | S     | 0.001    | F001         | 100               |
| 686E         | Hybrid POTT 1P Echo Lockout             | 0 to 65.535      | s     | 0.001    | F001         | 250               |
| 686F         | Hybrid POTT 1P Seal In Delay            | 0 to 65.535      |       | 0.001    | F001         | 0                 |
| 6870         | Hybrid POTT 1P Gnd Dir OC Fwd           | 0 to 65535       |       | 1        | F300         | 0                 |
| 6871         | Hybrid POTT 1P Gnd Dir OC Rev           | 0 to 65535       |       | 1        | F300         | 0                 |
| 6872         | Hybrid POTT 1P No of Comm Bits          | 0 to 2           |       | 1        | F198         | 0 (1)             |
| 6873         | Hybrid POTT 1P Rx1                      | 0 to 65535       |       | 1        | F300         | 0                 |
| 6874         | Hybrid POTT 1P Rx2                      | 0 to 65535       |       | 1        | F300         | 0                 |
| 6875         | Hybrid POTT 1P Rx3                      | 0 to 65535       |       | 1        | F300         | 0                 |
| 6876         | Hybrid POTT 1P Rx4                      | 0 to 65535       |       | 1        | F300         | 0                 |
| 6877         | Hybrid POTT 1P Target                   | 0 to 2           |       | 1        | F109         | 0 (Self-reset)    |
| 6878         | Hybrid POTT 1P Event                    | 0 to 1           |       | 1        | F102         | 0 (Disabled)      |
| 6879         | Reserved (7 items)                      | 0 to 1           |       | 1        | F001         | 0                 |
|              | cking (1P) (Read/Write Setting)         |                  |       |          |              |                   |
| 6880         | Blocking Scheme 1P Function             | 0 to 1           |       | 1        | F102         | 0 (Disabled)      |
| 6881         | Block 1P Rx Coord Pickup Delay          | 0 to 65.535      | S     | 0.001    | F001         | 10                |
| 6882         | Block 1P Transient Block Pickup Delay   | 0 to 65.535      | S     | 0.001    | F001         | 30                |
| 6883         | Block 1P Transient Block Reset Delay    | 0 to 65.535      | S     | 0.001    | F001         | 90                |
| 6884         | Blocking Scheme 1P Seal In Delay        | 0 to 65.535      | S     | 0.001    | F001         | 0                 |
| 6885         | Blocking Scheme 1P Gnd Dir OC Fwd       | 0 to 65535       |       | 1        | F300         | 0                 |
| 6886         | Blocking Scheme 1P Gnd Dir OC Rev       | 0 to 65535       |       | 1        | F300         | 0                 |
| 6887         | Blocking Scheme 1P No of Comm Bits      | 0 to 2           |       | 1        | F198         | 0 (1)             |
| 6888         | Blocking Scheme 1P Rx1                  | 0 to 65535       |       | 1        | F300         | 0                 |
| 6889         | Blocking Scheme 1P Rx2                  | 0 to 65535       |       | 1        | F300         | 0                 |
| 688A         | Blocking Scheme 1P Rx3                  | 0 to 65535       |       | 1        | F300         | 0                 |
| 688B         | Blocking Scheme 1P Rx4                  | 0 to 65535       |       | 1        | F300         | 0 (Salf reset)    |
| 688C         | Blocking 1P Target                      | 0 to 2           |       | 1        | F109         | 0 (Self-reset)    |
| 688D<br>688E | Blocking 1P Event Reserved (2 items)    | 0 to 1<br>0 to 1 |       | 1        | F102<br>F001 | 0 (Disabled)<br>0 |
|              | pse 1P 3P (Read/Write Setting)          | 0.01             |       | <u>'</u> | 1 001        | U                 |
| 6890         | AR Mode                                 | 0 to 3           |       | 1        | F080         | 0 (1 & 3 Pole)    |
| 6891         | AR Max Num Shots                        | 1 to 2           |       | 1        | F000<br>F001 | 2                 |
| 6892         | AR Block BKR1                           | 0 to 65535       |       | 1        | F300         | 0                 |
| 6893         | AR Close Time BKR1                      | 0 to 655.35      | s     | 0.01     | F001         | 10                |
| 6894         | AR BKR Man Close                        | 0 to 65535       |       | 1        | F300         | 0                 |
| 0034         | ATT DIATE IVIAIT CIOSE                  | 0 10 00000       |       | <u> </u> | 1 300        | 0                 |

Table B-9: MODBUS MEMORY MAP (Sheet 19 of 37)

| ADDR     | REGISTER NAME                                        | RANGE       | UNITS | STEP  | FORMAT | DEFAULT             |
|----------|------------------------------------------------------|-------------|-------|-------|--------|---------------------|
| 6895     | AR Function                                          | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| 6896     | AR Blk Time Mnl Cls                                  | 0 to 655.35 | S     | 0.01  | F001   | 1000                |
| 6897     | AR 1P Init                                           | 0 to 65535  |       | 1     | F300   | 0                   |
| 6898     | AR 3P Init                                           | 0 to 65535  |       | 1     | F300   | 0                   |
| 6899     | AR 3P TD Init                                        | 0 to 65535  |       | 1     | F300   | 0                   |
| 689A     | AR Multi P Fault                                     | 0 to 65535  |       | 1     | F300   | 0                   |
| 689B     | AR BKR 1 Pole Open                                   | 0 to 65535  |       | 1     | F300   | 0                   |
| 689C     | AR BKR 3 Pole Open                                   | 0 to 65535  |       | 1     | F300   | 0                   |
| 689D     | AR 3P Dead Time 1                                    | 0 to 655.35 | S     | 0.01  | F001   | 50                  |
| 689E     | AR 3P Dead Time 2                                    | 0 to 655.35 | s     | 0.01  | F001   | 120                 |
| 689F     | AR Extend Dead T1                                    | 0 to 65535  |       | 1     | F300   | 0                   |
| 68A0     | AR Dead T1 Extension                                 | 0 to 655.35 | S     | 0.01  | F001   | 50                  |
| 68A1     | AR Reset                                             | 0 to 65535  |       | 1     | F300   | 0                   |
| 68A2     | AR Reset Time                                        | 0 to 655.35 | s     | 0.01  | F001   | 6000                |
| 68A3     | AR BKR Closed                                        | 0 to 65535  |       | 1     | F300   | 0                   |
| 68A4     | AR Block                                             | 0 to 65535  |       | 1     | F300   | 0                   |
| 68A5     | AR Pause                                             | 0 to 65535  |       | 1     | F300   | 0                   |
| 68A6     | AR Inc Seq Time                                      | 0 to 655.35 | S     | 0.01  | F001   | 500                 |
| 68A7     | AR Block BKR2                                        | 0 to 65535  |       | 1     | F300   | 0                   |
| 68A8     | AR Close Time BKR2                                   | 0 to 655.35 | S     | 0.01  | F001   | 10                  |
| 68A9     | AR Transfer 1 to 2                                   | 0 to 1      |       | 1     | F126   | 0 (No)              |
| 68AA     | AR Transfer 2 to 1                                   | 0 to 1      |       | 1     | F126   | 0 (No)              |
| 68AB     | AR BKR1 Fail Option                                  | 0 to 1      |       | 1     | F081   | 0 (Continue)        |
| 68AC     | AR BKR2 Fail Option                                  | 0 to 1      |       | 1     | F081   | 0 (Continue)        |
| 68AD     | AR 1P Dead Time                                      | 0 to 655.35 | s     | 0.01  | F001   | 100                 |
| 68AE     | AR BKR Sequence                                      | 0 to 4      |       | 1     | F082   | 3 (1 - 2)           |
| 68AF     | AR Transfer Time                                     | 0 to 655.35 | S     | 0.01  | F001   | 400                 |
| 68B0     | AR Event                                             | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| 68B1     | Reserved (16 items)                                  | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| Phase Un | ndervoltage (Read/Write Grouped Setting) (2 modules) |             | •     | l .   | l      | <u> </u>            |
| 7000     | Phase UV1 Function                                   | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| 7001     | Phase UV1 Signal Source                              | 0 to 5      |       | 1     | F167   | 0 (SRC 1)           |
| 7002     | Phase UV1 Pickup                                     | 0 to 3      | pu    | 0.001 | F001   | 1000                |
| 7003     | Phase UV1 Curve                                      | 0 to 1      |       | 1     | F111   | 0 (Definite Time)   |
| 7004     | Phase UV1 Delay                                      | 0 to 600    | s     | 0.01  | F001   | 100                 |
| 7005     | Phase UV1 Minimum Voltage                            | 0 to 3      | pu    | 0.001 | F001   | 100                 |
| 7006     | Phase UV1 Block                                      | 0 to 65535  |       | 1     | F300   | 0                   |
| 7007     | Phase UV1 Target                                     | 0 to 2      |       | 1     | F109   | 0 (Self-reset)      |
| 7008     | Phase UV1 Events                                     | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| 7009     | Phase UV Measurement Mode                            | 0 to 1      |       | 1     | F186   | 0 (Phase to Ground) |
| 700A     | Reserved (6 items)                                   | 0 to 1      |       | 1     | F001   | 0                   |
| 7010     | Repeated for module number 2                         |             |       |       |        |                     |
| Phase Ov | vervoltage (Read/Write Grouped Setting)              |             |       |       |        |                     |
| 7100     | Phase OV1 Function                                   | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| 7101     | Phase OV1 Source                                     | 0 to 5      |       | 1     | F167   | 0 (SRC 1)           |
| 7102     | Phase OV1 Pickup                                     | 0 to 3      | pu    | 0.001 | F001   | 1000                |
| 7103     | Phase OV1 Delay                                      | 0 to 600    | s     | 0.01  | F001   | 100                 |
| 7104     | Phase OV1 Reset Delay                                | 0 to 600    | S     | 0.01  | F001   | 100                 |
| 7105     | Phase OV1 Block                                      | 0 to 65535  |       | 1     | F300   | 0                   |
| 7106     | Phase OV1 Target                                     | 0 to 2      |       | 1     | F109   | 0 (Self-reset)      |
| 7107     | Phase OV1 Events                                     | 0 to 1      |       | 1     | F102   | 0 (Disabled)        |
| 7108     | Reserved (8 items)                                   | 0 to 1      |       | 1     | F001   | 0                   |
| Distance | (Read/Write Grouped Setting)                         |             |       |       |        |                     |
| 7120     | Distance Signal Source                               | 0 to 5      |       | 1     | F167   | 0 (SRC 1)           |
|          |                                                      | _           |       | _     |        |                     |

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 37)

| ADDR     | REGISTER NAME                                     | RANGE       | UNITS  | STEP  | FORMAT | DEFAULT        |
|----------|---------------------------------------------------|-------------|--------|-------|--------|----------------|
| 7121     | Memory Duration                                   | 5 to 25     | cycles | 1     | F001   | 10             |
| Phase Di | stance (Read/Write Grouped Setting) (4 modules)   |             |        |       |        |                |
| 7130     | Phase Distance Z x Function                       | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 7131     | Phase Distance Z x Current Supervision            | 0.05 to 30  | pu     | 0.001 | F001   | 200            |
| 7132     | Phase Distance Z x Reach                          | 0.02 to 250 | Þ      | 0.01  | F001   | 200            |
| 7133     | Phase Distance Z x Direction                      | 0 to 1      |        | 1     | F154   | 0 (Forward)    |
| 7134     | Phase Distance Z x Comparator Limit               | 30 to 90    | 0      | 1     | F001   | 90             |
| 7135     | Phase Distance Z x Delay                          | 0 to 65.535 | S      | 0.001 | F001   | 0              |
| 7136     | Phase Distance Z x Block                          | 0 to 65535  |        | 1     | F300   | 0              |
| 7137     | Phase Distance Z x Target                         | 0 to 2      |        | 1     | F109   | 0 (Self-reset) |
| 7138     | Phase Distance Z x Events                         | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 7139     | Phase Distance Z x Shape                          | 0 to 1      |        | 1     | F120   | 0 (Mho)        |
| 713A     | Phase Distance Z x RCA                            | 30 to 90    | 0      | 1     | F001   | 85             |
| 713B     | Phase Distance Z x DIR RCA                        | 30 to 90    | 0      | 1     | F001   | 85             |
| 713C     | Phase Distance Z x DIR Comp Limit                 | 30 to 90    | 0      | 1     | F001   | 90             |
| 713D     | Phase Distance Z x Quad Right Blinder             | 0.02 to 500 | Þ      | 0.01  | F001   | 1000           |
| 713E     | Phase Distance Z x Quad Right Blinder RCA         | 60 to 90    | 0      | 1     | F001   | 85             |
| 713F     | Phase Distance Z x Quad Left Blinder              | 0.02 to 500 | Þ      | 0.01  | F001   | 1000           |
| 7140     | Phase Distance Z x Quad Left Blinder RCA          | 60 to 90    | 0      | 1     | F001   | 85             |
| 7141     | Phase Distance Zx Volt Limit                      | 0 to 5      | pu     | 0.001 | F001   | 0              |
| 7142     | Phase Distance Z x Reserved (2 items)             |             |        |       | F001   | 0              |
| 7144     | Repeated for module number 2                      |             |        |       |        |                |
| 7158     | Repeated for module number 3                      |             |        |       |        |                |
| 716C     | Repeated for module number 4                      |             |        |       |        |                |
| Ground D | Distance (Read/Write Grouped Setting) (4 modules) |             |        |       |        |                |
| 7190     | Ground Distance Z x Function                      | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 7191     | Ground Distance Z x Current Supervision           | 0.05 to 30  | pu     | 0.001 | F001   | 200            |
| 7192     | Ground Distance Z x Reach                         | 0.02 to 250 | Þ      | 0.01  | F001   | 200            |
| 7193     | Ground Distance Z x Direction                     | 0 to 1      |        | 1     | F154   | 0 (Forward)    |
| 7194     | Ground Distance Z x Comparator Limit              | 30 to 90    | 0      | 1     | F001   | 90             |
| 7195     | Ground Distance Z x Delay                         | 0 to 65.535 | S      | 0.001 | F001   | 0              |
| 7196     | Ground Distance Z x Block                         | 0 to 65535  |        | 1     | F300   | 0              |
| 7197     | Ground Distance Z x Target                        | 0 to 2      |        | 1     | F109   | 0 (Self-reset) |
| 7198     | Ground Distance Z x Events                        | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 7199     | Ground Distance Z x Shape                         | 0 to 1      |        | 1     | F120   | 0 (Mho)        |
| 719A     | Ground Distance Z x Z0 Z1 Mag                     | 0.5 to 7    |        | 0.01  | F001   | 270            |
| 719B     | Ground Distance Z x Z0 Z1 Ang                     | -90 to 90   | 0      | 1     | F002   | 0              |
| 719C     | Ground Distance Z x RCA                           | 30 to 90    | ٥      | 1     | F001   | 85             |
| 719D     | Ground Distance Z x DIR RCA                       | 30 to 90    | 0      | 1     | F001   | 85             |
| 719E     | Ground Distance Z x DIR Comp Limit                | 30 to 90    | 0      | 1     | F001   | 90             |
| 719F     | Ground Distance Z x Quad Right Blinder            | 0.02 to 500 | Þ      | 0.01  | F001   | 1000           |
| 71A0     | Ground Distance Z x Quad Right Blinder RCA        | 60 to 90    | 0      | 1     | F001   | 85             |
| 71A1     | Ground Distance Z x Quad Left Blinder             | 0.02 to 500 | Þ      | 0.01  | F001   | 1000           |
| 71A2     | Ground Distance Z x Quad Left Blinder RCA         | 60 to 90    | 0      | 1     | F001   | 85             |
| 71A3     | Ground Distance Z x Z0M Z1 Mag                    | 0 to 7      |        | 0.01  | F001   | 0              |
| 71A4     | Ground Distance Z x Z0M Z1 Ang                    | -90 to 90   | 0      | 1     | F002   | 0              |
| 71A5     | Ground Distance Z x Volt Level                    | 0 to 5      | pu     | 0.001 | F001   | 0              |
| 71A6     | Ground Distance Z x Reserved                      |             |        |       | F001   | 0              |
| 71A7     | Repeated for module number 2                      |             |        |       |        |                |
| 71BE     | Repeated for module number 3                      |             |        |       |        |                |
| 71D5     | Repeated for module number 4                      |             |        |       |        |                |
|          | up (Read/Write Grouped Setting)                   |             |        |       |        |                |
| 71F0     | Line Pickup Function                              | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 71F1     | Line Pickup Signal Source                         | 0 to 5      |        | 1     | F167   | 0 (SRC 1)      |

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 37)

| ADDR         | REGISTER NAME                                      | RANGE       | UNITS  | STEP  | FORMAT | DEFAULT        |
|--------------|----------------------------------------------------|-------------|--------|-------|--------|----------------|
| 71F2         | Line Pickup Phase IOC Pickup                       | 0 to 30     | pu     | 0.001 | F001   | 1000           |
| 71F3         | Line Pickup Pos Seq UV Pickup                      | 0 to 3      | pu     | 0.001 | F001   | 700            |
| 71F4         | Line End Open Pickup Delay                         | 0 to 65.535 | S      | 0.001 | F001   | 150            |
| 71F5         | Line End Open Reset Delay                          | 0 to 65.535 | s      | 0.001 | F001   | 90             |
| 71F6         | Line Pickup Pos Seq OV Pickup Delay                | 0 to 65.535 | S      | 0.001 | F001   | 40             |
| 71F7         | Autoreclose Coordination Pickup Delay              | 0 to 65.535 | S      | 0.001 | F001   | 45             |
| 71F8         | Autoreclose Coordination Reset Delay               | 0 to 65.535 | S      | 0.001 | F001   | 5              |
| 71F9         | Autoreclose Coordination Bypass                    | 0 to 1      |        | 1     | F102   | 1 (Enabled)    |
| 71FA         | Line Pickup Block                                  | 0 to 65535  |        | 1     | F300   | 0              |
| 71FB         | Line Pickup Target                                 | 0 to 2      |        | 1     | F109   | 0 (Self-reset) |
| 71FC         | Line Pickup Events                                 | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| Breaker F    | Failure (Read/Write Grouped Setting) (2 modules)   |             | •      | •     |        |                |
| 7200         | Breaker Failure x Function                         | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 7201         | Breaker Failure x Mode                             | 0 to 1      |        | 1     | F157   | 0 (3-Pole)     |
| 7208         | Breaker Failure x Source                           | 0 to 5      |        | 1     | F167   | 0 (SRC 1)      |
| 7209         | Breaker Failure x Amp Supervision                  | 0 to 1      |        | 1     | F126   | 1 (Yes)        |
| 720A         | Breaker Failure x Use Seal-In                      | 0 to 1      |        | 1     | F126   | 1 (Yes)        |
| 720B         | Breaker Failure x Three Pole Initiate              | 0 to 65535  |        | 1     | F300   | 0              |
| 720C         | Breaker Failure x Block                            | 0 to 65535  |        | 1     | F300   | 0              |
| 720D         | Breaker Failure x Phase Amp Supv Pickup            | 0.001 to 30 | pu     | 0.001 | F001   | 1050           |
| 720E         | Breaker Failure x Neutral Amp Supv Pickup          | 0.001 to 30 | pu     | 0.001 | F001   | 1050           |
| 720F         | Breaker Failure x Use Timer 1                      | 0 to 1      |        | 1     | F126   | 1 (Yes)        |
| 7210         | Breaker Failure x Timer 1 Pickup                   | 0 to 65.535 | S      | 0.001 | F001   | 0              |
| 7211         | Breaker Failure x Use Timer 2                      | 0 to 1      |        | 1     | F126   | 1 (Yes)        |
| 7212         | Breaker Failure x Timer 2 Pickup                   | 0 to 65.535 | S      | 0.001 | F001   | 0              |
| 7213         | Breaker Failure x Use Timer 3                      | 0 to 1      |        | 1     | F126   | 1 (Yes)        |
| 7214         | Breaker Failure x Timer 3 Pickup                   | 0 to 65.535 | S      | 0.001 | F001   | 0              |
| 7215         | Breaker Failure x Breaker Status 1 Phase A/3P      | 0 to 65535  |        | 1     | F300   | 0              |
| 7216         | Breaker Failure x Breaker Status 2 Phase A/3P      | 0 to 65535  |        | 1     | F300   | 0              |
| 7217         | Breaker Failure x Breaker Test On                  | 0 to 65535  |        | 1     | F300   | 0              |
| 7218         | Breaker Failure x Phase Amp Hiset Pickup           | 0.001 to 30 | pu     | 0.001 | F001   | 1050           |
| 7219         | Breaker Failure x Neutral Amp Hiset Pickup         | 0.001 to 30 | pu     | 0.001 | F001   | 1050           |
| 721A         | Breaker Failure x Phase Amp Loset Pickup           | 0.001 to 30 | pu     | 0.001 | F001   | 1050           |
| 721B         | Breaker Failure x Neutral Amp Loset Pickup         | 0.001 to 30 | pu     | 0.001 | F001   | 1050           |
| 721C         | Breaker Failure x Loset Time                       | 0 to 65.535 | s      | 0.001 | F001   | 0              |
| 721D         | Breaker Failure x Trip Dropout Delay               | 0 to 65.535 | S      | 0.001 | F001   | 0              |
| 721E         | Breaker Failure x Target                           | 0 to 2      |        | 1     | F109   | 0 (Self-reset) |
| 721F         | Breaker Failure x Events                           | 0 to 1      |        | 1     | F102   | 0 (Disabled)   |
| 7220         | Breaker Failure x Phase A Initiate                 | 0 to 65535  |        | 1     | F300   | 0              |
| 7221         | Breaker Failure x Phase B Initiate                 | 0 to 65535  |        | 1     | F300   | 0              |
| 7222         | Breaker Failure x Phase C Initiate                 | 0 to 65535  |        | 1     | F300   | 0              |
| 7223         | Breaker Failure x Breaker Status 1 Phase B         | 0 to 65535  |        | 1     | F300   | 0              |
| 7224         | Breaker Failure x Breaker Status 1 Phase C         | 0 to 65535  |        | 1     | F300   | 0              |
| 7225         | Breaker Failure x Breaker Status 2 Phase B         | 0 to 65535  |        | 1     | F300   | 0              |
| 7226         | Breaker Failure x Breaker Status 2 Phase C         | 0 to 65535  |        | 1     | F300   | 0              |
| 7227         | Repeated for module number 2                       |             |        |       |        |                |
|              | rectional (Read/Write Grouped Setting) (2 modules) |             |        |       |        |                |
| 7260         | Phase DIR 1 Function                               | 0 to 1      | T      | 1     | F102   | 0 (Disabled)   |
| 7261         | Phase DIR 1 Source                                 | 0 to 5      |        | 1     | F167   | 0 (SRC 1)      |
| 7262         | Phase DIR 1 Block                                  | 0 to 65535  |        | 1     | F300   | 0              |
| 7263         | Phase DIR 1 ECA                                    | 0 to 359    |        | 1     | F001   | 30             |
|              |                                                    |             | - nu   |       | F001   | 50             |
| 7264         | Phase DIR 1 Pol V Threshold                        | 0 to 3      | bu     | 0.001 | FUUI   | 50             |
| 7264<br>7265 | Phase DIR 1 Pol V Threshold  Phase DIR 1 Block OC  | 0 to 1      | pu<br> | 0.001 | F126   | 0 (No)         |

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 37)

| ADDR         | REGISTER NAME                                                       | RANGE                 | UNITS   | STEP     | FORMAT       | DEFAULT            |
|--------------|---------------------------------------------------------------------|-----------------------|---------|----------|--------------|--------------------|
| 7267         | Phase DIR 1 Events                                                  | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 7268         | Reserved (8 items)                                                  | 0 to 1                |         | 1        | F001         | 0                  |
| 7270         | Repeated for module number 2                                        |                       |         |          |              |                    |
| Neutral D    | irectional OC (Read/Write Grouped Setting) (2 modules               | s)                    |         |          |              |                    |
| 7280         | Neutral DIR OC1 Function                                            | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 7281         | Neutral DIR OC1 Source                                              | 0 to 5                |         | 1        | F167         | 0 (SRC 1)          |
| 7282         | Neutral DIR OC1 Polarizing                                          | 0 to 2                |         | 1        | F230         | 0 (Voltage)        |
| 7283         | Neutral DIR OC1 Forward ECA                                         | -90 to 90             | ° Lag   | 1        | F002         | 75                 |
| 7284         | Neutral DIR OC1 Forward Limit Angle                                 | 40 to 90              | ٥       | 1        | F001         | 90                 |
| 7285         | Neutral DIR OC1 Forward Pickup                                      | 0.002 to 30           | pu      | 0.001    | F001         | 50                 |
| 7286         | Neutral DIR OC1 Reverse Limit Angle                                 | 40 to 90              | ٥       | 1        | F001         | 90                 |
| 7287         | Neutral DIR OC1 Reverse Pickup                                      | 0.002 to 30           | pu      | 0.001    | F001         | 50                 |
| 7288         | Neutral DIR OC1 Target                                              | 0 to 2                |         | 1        | F109         | 0 (Self-reset)     |
| 7289         | Neutral DIR OC1 Block                                               | 0 to 65535            |         | 1        | F300         | 0                  |
| 728A         | Neutral DIR OC1 Events                                              | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 728B         | Neutral DIR OC X Polarizing Voltage                                 | 0 to 1                |         | 1        | F231         | 0 (Calculated V0)  |
| 728C         | Neutral DIR OC X Op Current                                         | 0 to 1                |         | 1        | F196         | 0 (Calculated 3I0) |
| 728D         | Neutral DIR OC X Offset                                             | 0 to 250              | Þ       | 0.01     | F001         | 0                  |
| 728E         | Reserved (2 items)                                                  | 0 to 1                |         | 1        | F001         | 0                  |
| 7290         | Repeated for module number 2                                        |                       |         |          |              |                    |
| Negative     | Sequence Directional OC (Read/Write Grouped Setting                 | ) (2 modules)         |         |          |              |                    |
| 72A0         | Negative Sequence DIR OC1 Function                                  | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 72A1         | Negative Sequence DIR OC1 Source                                    | 0 to 5                |         | 1        | F167         | 0 (SRC 1)          |
| 72A2         | Negative Sequence DIR OC1 Type                                      | 0 to 1                |         | 1        | F179         | 0 (Neg Sequence)   |
| 72A3         | Negative Sequence DIR OC1 Forward ECA                               | 0 to 90               | ° Lag   | 1        | F002         | 75                 |
| 72A4         | Negative Sequence DIR OC1 Forward Limit Angle                       | 40 to 90              | ٥       | 1        | F001         | 90                 |
| 72A5         | Negative Sequence DIR OC1 Forward Pickup                            | 0.05 to 30            | pu      | 0.01     | F001         | 5                  |
| 72A6         | Negative Sequence DIR OC1 Reverse Limit Angle                       | 40 to 90              | ۰       | 1        | F001         | 90                 |
| 72A7         | Negative Sequence DIR OC1 Reverse Pickup                            | 0.05 to 30            | pu      | 0.01     | F001         | 5                  |
| 72A8         | Negative Sequence DIR OC1 Target                                    | 0 to 2                |         | 1        | F109         | 0 (Self-reset)     |
| 72A9         | Negative Sequence DIR OC1 Block                                     | 0 to 65535            |         | 1        | F300         | 0                  |
| 72AA         | Negative Sequence DIR OC1 Events                                    | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 72AB         | Negative Sequence DIR OC X Offset                                   | 0 to 250              | Þ       | 0.01     | F001         | 0                  |
| 72AC         | Reserved (4 items)                                                  | 0 to 1                |         | 1        | F001         | 0                  |
| 72B0         | Repeated for module number 2                                        |                       |         |          |              |                    |
|              | Arcing Current Settings (Read/Write Setting) (2 module              |                       | 1       |          |              | - (-)              |
| 72C0         | Breaker x Arcing Amp Function                                       | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 72C1         | Breaker x Arcing Amp Source                                         | 0 to 5                |         | 1        | F167         | 0 (SRC 1)          |
| 72C2         | Breaker x Arcing Amp Init                                           | 0 to 65535            |         | 1        | F300         | 0                  |
| 72C3         | Breaker x Arcing Amp Delay                                          | 0 to 65.535           | S       | 0.001    | F001         | 0                  |
| 72C4<br>72C5 | Breaker x Arcing Amp Limit Breaker x Arcing Amp Block               | 0 to 50000            | kA2-cyc | 1        | F001         | 1000               |
|              | 9 1                                                                 | 0 to 65535            |         | 1        | F300         | 0 (Salf reset)     |
| 72C6         | Breaker x Arcing Amp Target                                         | 0 to 2                |         |          | F109         | 0 (Self-reset)     |
| 72C7         | Breaker x Arcing Amp Events                                         | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 72C8         | Repeated for module number 2 puts (Read/Write Setting) (24 modules) |                       |         |          |              |                    |
| 7300         | DCMA Inputs x Function                                              | 0 to 1                |         | 1        | F102         | 0 (Disabled)       |
| 7300         | DCMA Inputs x Function  DCMA Inputs x ID                            |                       |         |          | F102<br>F205 | "DCMA Ip 1 "       |
| 7307         | DCMA Inputs x Reserved 1 (4 items)                                  | 0 to 65535            |         | 1        | F203<br>F001 | 0 DCWA IP 1        |
| 7307<br>730B | DCMA Inputs x Units                                                 |                       |         |          | F206         | "mA"               |
| 730E         | DCMA Inputs x Range                                                 | 0 to 6                |         | 1        | F173         | 6 (4 to 20 mA)     |
| 730F         | DCMA Inputs x Minimum Value                                         | -9999.999 to 9999.999 |         | 0.001    | F004         | 4000               |
| 7301         | DCMA Inputs x Maximum Value                                         | -9999.999 to 9999.999 |         | 0.001    | F004         | 20000              |
| 7311         | DCMA Inputs x Reserved (5 items)                                    | 0 to 65535            |         | 1        | F001         | 0                  |
| 7010         | 2 3 t inpute x trocerved (o items)                                  | 0 10 00000            |         | <u>'</u> | . 001        | Ū                  |

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 37)

| ADDR                                                                                                                 | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RANGE      | UNITS | STEP | FORMAT | DEFAULT            |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------|--------|--------------------|
| 7318                                                                                                                 | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 7330                                                                                                                 | Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 7348                                                                                                                 | Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 7360                                                                                                                 | Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 7378                                                                                                                 | Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 7390                                                                                                                 | Repeated for module number 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 73A8                                                                                                                 | Repeated for module number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 73C0                                                                                                                 | Repeated for module number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |        |                    |
| 73D8                                                                                                                 | Repeated for module number 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 73F0                                                                                                                 | Repeated for module number 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7408                                                                                                                 | Repeated for module number 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7420                                                                                                                 | Repeated for module number 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7438                                                                                                                 | Repeated for module number 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7450                                                                                                                 | Repeated for module number 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7468                                                                                                                 | Repeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7480                                                                                                                 | Repeated for module number 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7498                                                                                                                 | Repeated for module number 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 74B0                                                                                                                 | Repeated for module number 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 74C8                                                                                                                 | Repeated for module number 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 74E0                                                                                                                 | Repeated for module number 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 74F8                                                                                                                 | Repeated for module number 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7510                                                                                                                 | Repeated for module number 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| 7528                                                                                                                 | Repeated for module number 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |        |                    |
| RTD Inpu                                                                                                             | its (Read/Write Setting) (48 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |      |        |                    |
| 7540                                                                                                                 | RTD Inputs x Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 1     |       | 1    | F102   | 0 (Disabled)       |
| 7541                                                                                                                 | RTD Inputs x ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |      | F205   | "RTD lp 1 "        |
| 7547                                                                                                                 | RTD Inputs x Reserved 1 (4 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 65535 |       | 1    | F001   | 0                  |
| 754B                                                                                                                 | RTD Inputs x Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 3     |       | 1    | F174   | 0 (100 Ω Platinum) |
| 754C                                                                                                                 | RTD Inputs x Reserved 2 (4 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4 05505  |       |      | F001   | 0                  |
|                                                                                                                      | KTD Inputs x Reserved 2 (4 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 to 65535 |       | 1    | FUUT   | 0                  |
| 7550                                                                                                                 | Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 65535 |       | 1    | F001   | U                  |
| 7550<br>7560                                                                                                         | Repeated for module number 2Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 65535 |       | 1    | FUUT   | Ü                  |
| 7560<br>7570                                                                                                         | Repeated for module number 2Repeated for module number 3Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |       | 1    | F001   | 0                  |
| 7560<br>7570<br>7580                                                                                                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 65535 |       | 1    | FOOT   | 0                  |
| 7560<br>7570<br>7580<br>7590                                                                                         | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U to 65535 |       | 1    | P001   | 0                  |
| 7560<br>7570<br>7580<br>7590<br>75A0                                                                                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 65535 |       |      | P001   | 0                  |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0                                                                         | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |       |      | P001   | 0                  |
| 7560<br>7570<br>7580<br>7590<br>75A0                                                                                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0                                                         | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0                                                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0                                                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11                                                                                                                                                                                                                                                                                                                                                                                          | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>75F0                                         | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13                                                                                                                                                                                                                                                                                                                                                             | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>75F0<br>7600<br>7610                         | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 13                                                                                                                                                                                                                                                                                                                                | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>7600<br>7610                                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15                                                                                                                                                                                                                                                                      | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>75F0<br>7600<br>7610<br>7620                 | Repeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 15Repeated for module number 16                                                                                                                                                                                                                                         | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>76F0<br>7610<br>7620<br>7630<br>7640         | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17                                                                                                                                                                                                            | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>76F0<br>7600<br>7610<br>7620<br>7630<br>7640 | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 18                                                                                                                                                                               | 0 to 65535 |       |      | P001   |                    |
| 7560<br>7570<br>7580<br>7590<br>75A0<br>75B0<br>75C0<br>75D0<br>75E0<br>76F0<br>7610<br>7620<br>7630<br>7640<br>7650 | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 18Repeated for module number 18                                                                                                                                                  | 0 to 65535 |       |      | P001   |                    |
| 7560 7570 7580 7590 7580 7580 7580 75B0 75C0 75D0 75E0 75F0 7600 7610 7620 7630 7640 7650 7660                       | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 18Repeated for module number 19Repeated for module number 20                                                                                                                     | 0 to 65535 |       |      | P001   |                    |
| 7560 7570 7580 7590 7580 7590 7580 75B0 75C0 75D0 75E0 7660 7610 7620 7630 7640 7650 7660 7670 7680                  | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 18Repeated for module number 19Repeated for module number 20Repeated for module number 20Repeated for module number 21                                                                                        | 0 to 65535 |       |      | P001   |                    |
| 7560 7570 7580 7590 7580 7580 7580 75B0 75C0 75D0 75E0 7660 7610 7620 7630 7640 7650 7660 7670 7680 7690             | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 6Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 19Repeated for module number 20Repeated for module number 21Repeated for module number 21Repeated for module number 21                                                                                        | 0 to 65535 |       |      | P001   |                    |
| 7560 7570 7580 7590 7580 7590 7580 75B0 75C0 75D0 75E0 7660 7610 7620 7630 7640 7650 7660 7670 7680 7690             | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 17Repeated for module number 19Repeated for module number 20Repeated for module number 21Repeated for module number 22Repeated for module number 22                                                           | 0 to 65535 |       |      | P001   |                    |
| 7560 7570 7580 7590 7580 7590 7580 75B0 75C0 75D0 75E0 7600 7610 7620 7630 7640 7650 7660 7670 7680 7690 76A0        | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 17Repeated for module number 20Repeated for module number 20Repeated for module number 21Repeated for module number 22Repeated for module number 23Repeated for module number 23Repeated for module number 24 | 0 to 65535 |       |      | P001   |                    |
| 7560 7570 7580 7590 7580 7590 7580 75B0 75C0 75D0 75E0 7660 7610 7620 7630 7640 7650 7660 7670 7680 7690             | Repeated for module number 2Repeated for module number 4Repeated for module number 5Repeated for module number 6Repeated for module number 7Repeated for module number 7Repeated for module number 8Repeated for module number 9Repeated for module number 10Repeated for module number 11Repeated for module number 12Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16Repeated for module number 17Repeated for module number 17Repeated for module number 19Repeated for module number 20Repeated for module number 21Repeated for module number 22Repeated for module number 22                                                           | 0 to 65535 |       |      |        |                    |

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 37)

| ADDR                                                         | REGISTER NAME                                                                                                                                                                                                       | RANGE                                              | UNITS        | STEP                     | FORMAT                       | DEFAULT                  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|--------------------------|------------------------------|--------------------------|
| 76E0                                                         | Repeated for module number 27                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 76F0                                                         | Repeated for module number 28                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7700                                                         | Repeated for module number 29                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7710                                                         | Repeated for module number 30                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7720                                                         | Repeated for module number 31                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7730                                                         | Repeated for module number 32                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7740                                                         | Repeated for module number 33                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7750                                                         | Repeated for module number 34                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7760                                                         | Repeated for module number 35                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7770                                                         | Repeated for module number 36                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7780                                                         | Repeated for module number 37                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7790                                                         | Repeated for module number 38                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 77A0                                                         | Repeated for module number 39                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 77B0                                                         | Repeated for module number 40                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 77C0                                                         | Repeated for module number 41                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 77D0                                                         | Repeated for module number 42                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 77E0                                                         | Repeated for module number 43                                                                                                                                                                                       |                                                    | 1            |                          |                              |                          |
| 77F0                                                         | Repeated for module number 44                                                                                                                                                                                       |                                                    | +            |                          |                              |                          |
| 7800                                                         | Repeated for module number 45                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7810                                                         | Repeated for module number 46                                                                                                                                                                                       |                                                    | +            |                          |                              |                          |
| 7820                                                         | Repeated for module number 47                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
| 7830                                                         | Repeated for module number 48                                                                                                                                                                                       |                                                    |              |                          |                              |                          |
|                                                              | uts (Read/Write Setting) (2 modules)                                                                                                                                                                                | <u>l</u>                                           |              |                          |                              |                          |
| 7840                                                         | Ohm Inputs x Function                                                                                                                                                                                               | 0 to 1                                             |              | 1                        | F102                         | 0 (Disabled)             |
| 7841                                                         | Ohm Inputs x ID                                                                                                                                                                                                     |                                                    |              |                          | F205                         | "Ohm lp 1 "              |
| 7847                                                         | Ohm Inputs x Reserved (9 items)                                                                                                                                                                                     | 0 to 65535                                         |              | 1                        | F001                         | 0                        |
| 7850                                                         | Repeated for module number 2                                                                                                                                                                                        |                                                    |              |                          |                              | -                        |
| Frequenc                                                     | cy (Read Only)                                                                                                                                                                                                      |                                                    |              |                          |                              |                          |
| 8000                                                         | Tracking Frequency                                                                                                                                                                                                  | 2 to 90                                            | Hz           | 0.01                     | F001                         | 0                        |
| FlexState                                                    | e Settings (Read/Write Setting)                                                                                                                                                                                     |                                                    |              | l.                       |                              |                          |
| 8800                                                         | FlexState Parameters (256 items)                                                                                                                                                                                    |                                                    |              |                          | F300                         | 0                        |
| FlexElem                                                     | nent (Read/Write Setting) (16 modules)                                                                                                                                                                              |                                                    |              |                          |                              |                          |
| 9000                                                         | FlexElement Function                                                                                                                                                                                                | 0 to 1                                             |              | 1                        | F102                         | 0 (Disabled)             |
| 9001                                                         | FlexElement Name                                                                                                                                                                                                    |                                                    |              |                          | F206                         | "FxE \x040"              |
| 9004                                                         | FlexElement InputP                                                                                                                                                                                                  | 0 to 65535                                         |              | 1                        | F600                         | 0                        |
| 9005                                                         | FlexElement InputM                                                                                                                                                                                                  | 0 to 65535                                         |              | 1                        | F600                         | 0                        |
| 9006                                                         | FlexElement Compare                                                                                                                                                                                                 | 0 to 1                                             |              | 1                        | F516                         | 0 (LEVEL)                |
| 9007                                                         | FlexElement Input                                                                                                                                                                                                   | 0 to 1                                             |              | 1                        | F515                         | 0 (SIGNED)               |
| 9008                                                         | FlexElement Direction                                                                                                                                                                                               | 0 to 1                                             |              | 1                        | F517                         | 0 (OVER)                 |
| 9009                                                         | FlexElement Hysteresis                                                                                                                                                                                              | 0.1 to 50                                          | %            | 0.1                      | F001                         | 30                       |
| 900A                                                         | FlexElement Pickup                                                                                                                                                                                                  | -90 to 90                                          | pu           | 0.001                    | F004                         | 1000                     |
| 900C                                                         | FlexElement DeltaT Units                                                                                                                                                                                            | 0 to 2                                             |              | 1                        | F518                         | 0 (Milliseconds)         |
| 900D                                                         |                                                                                                                                                                                                                     |                                                    | +            | 1                        | F003                         | 20                       |
|                                                              | FlexElement DeltaT                                                                                                                                                                                                  | 20 to 86400                                        |              | 1                        | 1 000                        |                          |
| 900F                                                         | FlexElement DeltaT FlexElement Pkp Delay                                                                                                                                                                            | 20 to 86400<br>0 to 65.535                         | <br>S        | 0.001                    | F001                         | 0                        |
| 900F<br>9010                                                 |                                                                                                                                                                                                                     |                                                    | +            |                          |                              | 0                        |
|                                                              | FlexElement Pkp Delay                                                                                                                                                                                               | 0 to 65.535                                        | s            | 0.001                    | F001                         |                          |
| 9010                                                         | FlexElement Pkp Delay FlexElement Rst Delay                                                                                                                                                                         | 0 to 65.535<br>0 to 65.535                         | s<br>s       | 0.001<br>0.001           | F001<br>F001                 | 0                        |
| 9010<br>9011                                                 | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block                                                                                                                                                       | 0 to 65.535<br>0 to 65.535<br>0 to 65535           | \$<br>\$<br> | 0.001<br>0.001<br>1      | F001<br>F001<br>F300         | 0                        |
| 9010<br>9011<br>9012                                         | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block FlexElement Target                                                                                                                                    | 0 to 65.535<br>0 to 65.535<br>0 to 65535<br>0 to 2 | \$<br>\$<br> | 0.001<br>0.001<br>1<br>1 | F001<br>F001<br>F300<br>F109 | 0<br>0<br>0 (Self-reset) |
| 9010<br>9011<br>9012<br>9013                                 | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block FlexElement Target FlexElement Events                                                                                                                 | 0 to 65.535<br>0 to 65.535<br>0 to 65535<br>0 to 2 | \$<br>\$<br> | 0.001<br>0.001<br>1<br>1 | F001<br>F001<br>F300<br>F109 | 0<br>0<br>0 (Self-reset) |
| 9010<br>9011<br>9012<br>9013<br>9014                         | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block FlexElement Target FlexElement EventsRepeated for module number 2                                                                                     | 0 to 65.535<br>0 to 65.535<br>0 to 65535<br>0 to 2 | \$<br>\$<br> | 0.001<br>0.001<br>1<br>1 | F001<br>F001<br>F300<br>F109 | 0<br>0<br>0 (Self-reset) |
| 9010<br>9011<br>9012<br>9013<br>9014<br>9028                 | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block FlexElement Target FlexElement EventsRepeated for module number 2Repeated for module number 3                                                         | 0 to 65.535<br>0 to 65.535<br>0 to 65535<br>0 to 2 | \$<br>\$<br> | 0.001<br>0.001<br>1<br>1 | F001<br>F001<br>F300<br>F109 | 0<br>0<br>0 (Self-reset) |
| 9010<br>9011<br>9012<br>9013<br>9014<br>9028<br>903C         | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block FlexElement Target FlexElement EventsRepeated for module number 2Repeated for module number 3Repeated for module number 4                             | 0 to 65.535<br>0 to 65.535<br>0 to 65535<br>0 to 2 | \$<br>\$<br> | 0.001<br>0.001<br>1<br>1 | F001<br>F001<br>F300<br>F109 | 0<br>0<br>0 (Self-reset) |
| 9010<br>9011<br>9012<br>9013<br>9014<br>9028<br>903C<br>9050 | FlexElement Pkp Delay FlexElement Rst Delay FlexElement Block FlexElement Target FlexElement EventsRepeated for module number 2Repeated for module number 3Repeated for module number 4Repeated for module number 5 | 0 to 65.535<br>0 to 65.535<br>0 to 65535<br>0 to 2 | \$<br>\$<br> | 0.001<br>0.001<br>1<br>1 | F001<br>F001<br>F300<br>F109 | 0<br>0<br>0 (Self-reset) |

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 37)

| ADDR       | REGISTER NAME                                        | RANGE           | UNITS    | STEP  | FORMAT | DEFAULT          |
|------------|------------------------------------------------------|-----------------|----------|-------|--------|------------------|
| 908C       | Repeated for module number 8                         |                 |          |       |        |                  |
| 90A0       | Repeated for module number 9                         |                 |          |       |        |                  |
| 90B4       | Repeated for module number 10                        |                 |          |       |        |                  |
| 90C8       | Repeated for module number 11                        |                 |          |       |        |                  |
| 90DC       | Repeated for module number 12                        |                 |          |       |        |                  |
| 90F0       | Repeated for module number 13                        |                 |          |       |        |                  |
| 9104       | Repeated for module number 14                        |                 |          |       |        |                  |
| 9118       | Repeated for module number 15                        |                 |          |       |        |                  |
| 912C       | Repeated for module number 16                        |                 |          |       |        |                  |
| FlexElem   | nent Actuals (Read Only) (16 modules)                |                 | <u> </u> |       |        |                  |
| 9A01       | FlexElement Actual                                   | -2147483.647 to |          | 0.001 | F004   | 0                |
|            |                                                      | 2147483.647     |          |       |        |                  |
| 9A03       | Repeated for module number 2                         |                 |          |       |        |                  |
| 9A05       | Repeated for module number 3                         |                 |          |       |        |                  |
| 9A07       | Repeated for module number 4                         |                 |          |       |        |                  |
| 9A09       | Repeated for module number 5                         |                 |          |       |        |                  |
| 9A0B       | Repeated for module number 6                         |                 |          |       |        |                  |
| 9A0D       | Repeated for module number 7                         |                 |          |       |        |                  |
| 9A0F       | Repeated for module number 8                         |                 |          |       |        |                  |
| 9A11       | Repeated for module number 9                         |                 |          |       |        |                  |
| 9A13       | Repeated for module number 10                        |                 |          |       |        |                  |
| 9A15       | Repeated for module number 11                        |                 |          |       |        |                  |
| 9A17       | Repeated for module number 12                        |                 |          |       |        |                  |
| 9A19       | Repeated for module number 13                        |                 |          |       |        |                  |
| 9A1B       | Repeated for module number 14                        |                 |          |       |        |                  |
| 9A1D       | Repeated for module number 15                        |                 |          |       |        |                  |
| 9A1F       | Repeated for module number 16                        |                 |          |       |        |                  |
| Setting G  | Froups (Read/Write Setting)                          |                 |          |       |        |                  |
| A000       | Setting Group for Modbus Comm (0 means group 1)      | 0 to 7          |          | 1     | F001   | 0                |
| A001       | Setting Groups Block                                 | 0 to 65535      |          | 1     | F300   | 0                |
| A002       | FlexLogic Operands to Activate Grps 2 to 8 (7 items) | 0 to 65535      |          | 1     | F300   | 0                |
| A009       | Setting Group Function                               | 0 to 1          |          | 1     | F102   | 0 (Disabled)     |
| A00A       | Setting Group Events                                 | 0 to 1          |          | 1     | F102   | 0 (Disabled)     |
| Setting G  | Froups (Read Only)                                   |                 |          |       |        |                  |
| A00B       | Current Setting Group                                | 0 to 7          |          | 1     | F001   | 0                |
| VT Fuse    | Failure (Read/Write Setting) (6 modules)             |                 |          |       |        |                  |
| A040       | VT Fuse Failure Function                             | 0 to 1          |          | 1     | F102   | 0 (Disabled)     |
| A041       | Repeated for module number 2                         |                 |          |       |        |                  |
| A042       | Repeated for module number 3                         |                 |          |       |        |                  |
| A043       | Repeated for module number 4                         |                 |          |       |        |                  |
| A044       | Repeated for module number 5                         |                 |          |       |        |                  |
| A045       | Repeated for module number 6                         |                 |          |       |        |                  |
| Digital El | ements (Read/Write Setting) (16 modules)             |                 |          |       |        |                  |
| B000       | Digital Element x Function                           | 0 to 1          |          | 1     | F102   | 0 (Disabled)     |
| B001       | Digital Element x Name                               |                 |          |       | F203   | "Dig Element 1 " |
| B015       | Digital Element x Input                              | 0 to 65535      |          | 1     | F300   | 0                |
| B016       | Digital Element x Pickup Delay                       | 0 to 999999.999 | S        | 0.001 | F003   | 0                |
| B018       | Digital Element x Reset Delay                        | 0 to 999999.999 | S        | 0.001 | F003   | 0                |
| B01A       | Digital Element x Block                              | 0 to 65535      |          | 1     | F300   | 0                |
| B01B       | Digital Element x Target                             | 0 to 2          |          | 1     | F109   | 0 (Self-reset)   |
| B01C       | Digital Element x Events                             | 0 to 1          |          | 1     | F102   | 0 (Disabled)     |
| B01D       | Digital Element x Reserved (3 items)                 |                 |          |       | F001   | 0                |
| B020       | Repeated for module number 2                         |                 |          |       |        | -                |
| B040       | Repeated for module number 3                         |                 |          |       |        |                  |
| _ 5.0      | .,                                                   | l               | l        | i     | l      |                  |

# Table B-9: MODBUS MEMORY MAP (Sheet 26 of 37)

| ADDR       | REGISTER NAME                            | RANGE                        | UNITS    | STEP | FORMAT | DEFAULT      |
|------------|------------------------------------------|------------------------------|----------|------|--------|--------------|
| B060       | Repeated for module number 4             |                              |          |      |        |              |
| B080       | Repeated for module number 5             |                              |          |      |        |              |
| B0A0       | Repeated for module number 6             |                              |          |      |        |              |
| B0C0       | Repeated for module number 7             |                              |          |      |        |              |
| B0E0       | Repeated for module number 8             |                              |          |      |        |              |
| B100       | Repeated for module number 9             |                              |          |      |        |              |
| B120       | Repeated for module number 10            |                              |          |      |        |              |
| B140       | Repeated for module number 11            |                              |          |      |        |              |
| B160       | Repeated for module number 12            |                              |          |      |        |              |
| B180       | Repeated for module number 13            |                              |          |      |        |              |
| B1A0       | Repeated for module number 14            |                              |          |      |        |              |
| B1C0       | Repeated for module number 15            |                              |          |      |        |              |
| B1E0       | Repeated for module number 16            |                              |          |      |        |              |
| Digital Co | ounter (Read/Write Setting) (8 modules)  | <u> </u>                     | <u> </u> |      |        |              |
| B300       | Digital Counter x Function               | 0 to 1                       |          | 1    | F102   | 0 (Disabled) |
| B301       | Digital Counter x Name                   |                              |          |      | F205   | "Counter 1 " |
| B307       | Digital Counter x Units                  |                              |          |      | F206   | (none)       |
| B30A       | Digital Counter x Block                  | 0 to 65535                   |          | 1    | F300   | 0            |
| B30B       | Digital Counter x Up                     | 0 to 65535                   |          | 1    | F300   | 0            |
| B30C       | Digital Counter x Down                   | 0 to 65535                   |          | 1    | F300   | 0            |
| B30D       | Digital Counter x Preset                 | -2147483647 to<br>2147483647 |          | 1    | F004   | 0            |
| B30F       | Digital Counter x Compare                | -2147483647 to<br>2147483647 |          | 1    | F004   | 0            |
| B311       | Digital Counter x Reset                  | 0 to 65535                   |          | 1    | F300   | 0            |
| B312       | Digital Counter x Freeze/Reset           | 0 to 65535                   |          | 1    | F300   | 0            |
| B313       | Digital Counter x Freeze/Count           | 0 to 65535                   |          | 1    | F300   | 0            |
| B314       | Digital Counter Set To Preset            | 0 to 65535                   |          | 1    | F300   | 0            |
| B315       | Digital Counter x Reserved (11 items)    |                              |          |      | F001   | 0            |
| B320       | Repeated for module number 2             |                              |          |      |        |              |
| B340       | Repeated for module number 3             |                              |          |      |        |              |
| B360       | Repeated for module number 4             |                              |          |      |        |              |
| B380       | Repeated for module number 5             |                              |          |      |        |              |
| B3A0       | Repeated for module number 6             |                              |          |      |        |              |
| B3C0       | Repeated for module number 7             |                              |          |      |        |              |
| B3E0       | Repeated for module number 8             |                              |          |      |        |              |
| Contact I  | Inputs (Read/Write Setting) (96 modules) |                              |          |      |        |              |
| C000       | Contact Input x Name                     |                              |          |      | F205   | "Cont Ip 1 " |
| C006       | Contact Input x Events                   | 0 to 1                       |          | 1    | F102   | 0 (Disabled) |
| C007       | Contact Input x Debounce Time            | 0 to 16                      | ms       | 0.5  | F001   | 20           |
| C008       | Repeated for module number 2             |                              |          |      |        |              |
| C010       | Repeated for module number 3             |                              |          |      |        |              |
| C018       | Repeated for module number 4             |                              |          |      |        |              |
| C020       | Repeated for module number 5             |                              |          |      |        |              |
| C028       | Repeated for module number 6             |                              |          |      |        |              |
| C030       | Repeated for module number 7             |                              |          |      |        |              |
| C038       | Repeated for module number 8             |                              |          |      |        |              |
| C040       | Repeated for module number 9             |                              |          |      |        |              |
| C048       | Repeated for module number 10            |                              |          |      |        |              |
| C050       | Repeated for module number 11            |                              |          |      |        |              |
| C058       | Repeated for module number 12            |                              |          |      |        |              |
| C060       | Repeated for module number 13            |                              |          |      |        |              |
| C068       | Repeated for module number 14            |                              |          |      |        |              |
| C070       | Repeated for module number 15            |                              |          |      |        |              |
| C078       | Repeated for module number 16            |                              |          |      |        |              |

Table B-9: MODBUS MEMORY MAP (Sheet 27 of 37)

| ADDR | REGISTER NAME                 | RANGE | UNITS | STEP     | FORMAT | DEFAULT |
|------|-------------------------------|-------|-------|----------|--------|---------|
| C080 | Repeated for module number 17 |       |       |          |        |         |
| C088 | Repeated for module number 18 |       |       |          |        |         |
| C090 | Repeated for module number 19 |       |       |          |        |         |
| C098 | Repeated for module number 20 |       |       |          |        |         |
| C0A0 | Repeated for module number 21 |       |       |          |        |         |
| C0A8 | Repeated for module number 22 |       |       |          |        |         |
| C0B0 | Repeated for module number 23 |       |       |          |        |         |
| C0B8 | Repeated for module number 24 |       |       |          |        |         |
| C0C0 | Repeated for module number 25 |       |       |          |        |         |
| C0C8 | Repeated for module number 26 |       |       |          |        |         |
| C0D0 | Repeated for module number 27 |       |       |          |        |         |
| C0D8 | Repeated for module number 28 |       |       |          |        |         |
| C0E0 | Repeated for module number 29 |       |       |          |        |         |
| C0E8 | Repeated for module number 30 |       |       |          |        |         |
| C0F0 | Repeated for module number 31 |       |       |          |        |         |
| C0F8 | Repeated for module number 32 |       |       |          |        |         |
| C100 | Repeated for module number 33 |       |       |          |        |         |
| C108 | Repeated for module number 34 |       |       |          |        |         |
| C110 | Repeated for module number 35 |       |       |          |        |         |
| C118 | Repeated for module number 36 |       |       |          |        |         |
| C120 | Repeated for module number 37 |       |       |          |        |         |
| C128 | Repeated for module number 38 |       |       |          |        |         |
| C130 | Repeated for module number 39 |       |       |          |        |         |
| C138 | Repeated for module number 40 |       |       |          |        |         |
| C140 | Repeated for module number 41 |       |       |          |        |         |
| C148 | Repeated for module number 42 |       |       |          |        |         |
| C150 | Repeated for module number 43 |       |       |          |        |         |
| C158 | Repeated for module number 44 |       |       |          |        |         |
| C160 | Repeated for module number 45 |       |       |          |        |         |
| C168 | Repeated for module number 46 |       |       |          |        |         |
| C170 | Repeated for module number 47 |       |       |          |        |         |
| C178 | Repeated for module number 48 |       |       |          |        |         |
| C180 | Repeated for module number 49 |       |       |          |        |         |
| C188 | Repeated for module number 50 |       |       |          |        |         |
| C190 | Repeated for module number 51 |       |       |          |        |         |
| C198 | Repeated for module number 52 |       |       |          |        |         |
| C1A0 | Repeated for module number 53 |       |       |          |        |         |
| C1A8 | Repeated for module number 54 |       |       |          |        |         |
| C1B0 | Repeated for module number 55 |       |       |          |        |         |
| C1B8 | Repeated for module number 56 |       |       |          |        |         |
| C1C0 | Repeated for module number 57 |       |       |          |        |         |
| C1C8 | Repeated for module number 58 |       |       |          |        |         |
| C1D0 | Repeated for module number 59 |       |       |          |        |         |
| C1D8 | Repeated for module number 60 |       |       |          |        |         |
| C1E0 | Repeated for module number 61 |       |       |          |        |         |
| C1E8 | Repeated for module number 62 |       |       |          |        |         |
| C1F0 | Repeated for module number 63 |       |       |          |        |         |
| C1F8 | Repeated for module number 64 |       |       |          |        |         |
| C200 | Repeated for module number 65 |       |       |          |        |         |
| C208 | Repeated for module number 66 |       |       |          |        |         |
| C210 | Repeated for module number 67 |       |       |          |        |         |
| C218 | Repeated for module number 68 |       |       |          |        |         |
| C220 | Repeated for module number 69 |       |       |          |        |         |
| C228 | Repeated for module number 70 |       |       |          |        |         |
| 0220 |                               |       |       | <u> </u> |        |         |

# Table B-9: MODBUS MEMORY MAP (Sheet 28 of 37)

| ADDR                                                                                                                                          | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RANGE                                       | UNITS | STEP        | FORMAT                                       | DEFAULT                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------|-------------|----------------------------------------------|----------------------------------------------------------------------------|
| C230                                                                                                                                          | Repeated for module number 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C238                                                                                                                                          | Repeated for module number 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C240                                                                                                                                          | Repeated for module number 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C248                                                                                                                                          | Repeated for module number 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C250                                                                                                                                          | Repeated for module number 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C258                                                                                                                                          | Repeated for module number 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C260                                                                                                                                          | Repeated for module number 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C268                                                                                                                                          | Repeated for module number 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C270                                                                                                                                          | Repeated for module number 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C278                                                                                                                                          | Repeated for module number 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C280                                                                                                                                          | Repeated for module number 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C288                                                                                                                                          | Repeated for module number 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C290                                                                                                                                          | Repeated for module number 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C298                                                                                                                                          | Repeated for module number 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2A0                                                                                                                                          | Repeated for module number 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2A8                                                                                                                                          | Repeated for module number 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2B0                                                                                                                                          | Repeated for module number 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2B8                                                                                                                                          | Repeated for module number 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2C0                                                                                                                                          | Repeated for module number 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2C8                                                                                                                                          | Repeated for module number 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2D0                                                                                                                                          | Repeated for module number 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2D8                                                                                                                                          | Repeated for module number 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2E0                                                                                                                                          | Repeated for module number 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2E8                                                                                                                                          | Repeated for module number 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2F0                                                                                                                                          | Repeated for module number 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| C2F8                                                                                                                                          | Repeated for module number 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |       |             |                                              |                                                                            |
| 0210                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |       |             |                                              |                                                                            |
|                                                                                                                                               | nput Thresholds (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |       |             |                                              |                                                                            |
|                                                                                                                                               | nput Thresholds (Read/Write Setting)  Contact Input x Threshold (24 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 to 3                                      |       | 1           | F128                                         | 1 (33 Vdc)                                                                 |
| Contact I                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to 3                                      |       | 1           | F128                                         | 1 (33 Vdc)                                                                 |
| Contact I<br>C600<br>Virtual In<br>C680                                                                                                       | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 to 3                                      | <br>S | 1           | F128                                         | 1 (33 Vdc)                                                                 |
| Contact I<br>C600<br>Virtual In<br>C680                                                                                                       | Contact Input x Threshold (24 items) puts Global Settings (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | <br>S |             |                                              |                                                                            |
| Contact I<br>C600<br>Virtual In<br>C680                                                                                                       | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | s     |             |                                              | 30<br>0 (Disabled)                                                         |
| Contact I<br>C600<br>Virtual In<br>C680<br>Virtual In                                                                                         | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 to 60                                     |       | 1           | F001                                         | 30                                                                         |
| Contact I C600 Virtual In C680 Virtual In C690                                                                                                | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 to 60<br>0 to 1                           |       | 1           | F001                                         | 30<br>0 (Disabled)                                                         |
| Contact I C600 Virtual In C680 Virtual In C690 C691                                                                                           | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 to 60<br>0 to 1                           |       | 1 1         | F001<br>F102<br>F205                         | 30  0 (Disabled)  "Virt lp 1 "  0 (Latched)  0 (Disabled)                  |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B                                                                                      | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 to 60  0 to 1  0 to 1                     |       | 1 1         | F102<br>F205<br>F127                         | 30 0 (Disabled) "Virt lp 1 " 0 (Latched)                                   |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B                                                                                      | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 to 60  0 to 1  0 to 1  0 to 1             |       | 1 1 1 1 1   | F102<br>F205<br>F127<br>F102                 | 30  0 (Disabled)  "Virt lp 1 "  0 (Latched)  0 (Disabled)                  |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E C69F                                                                  | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 1 0 to 1 0 to 1 1 to 2                 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001         | 30  0 (Disabled)  "Virt lp 1 "  0 (Latched)  0 (Disabled)                  |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E                                                                       | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E C69F C6A0 C6B0                                                        | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E C69F C6A0 C6B0 C6C0                                                   | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                  | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E C69F C6A0 C6B0 C6C0 C6D0                                              | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                 | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C698 C69C C69D C69E C69F C6A0 C6B0 C6C0 C6D0                                              | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6                                                                                                                                                                                                                                                                                                                                        | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C698 C69C C69D C69E C69F C6A0 C6B0 C6C0 C6D0 C6E0                                         | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 6 Repeated for module number 7                                                                                                                                                                                                                                                                              | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E C69F C6A0 C6B0 C6C0 C6D0 C6E0 C6F0                                    | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 8                                                                                                                                                                                                                                                 | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69D C69E C69F C6A0 C6B0 C6C0 C6C0 C6F0 C700 C710                               | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9                                                                                                                                                                                                                                                 | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69C C69C C69C C69C C69C C6FO C6CO C6CO C6CO C6CO C6CO C6CO C6C                 | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 9 Repeated for module number 9 Repeated for module number 9 Repeated for module number 10                                                                                                                            | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69C C69E C69F C6A0 C6B0 C6C0 C6C0 C6C0 C6T0 C700 C720 C730                     | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 9 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11                                                                                                                                                                                | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C69B C69C C69P C69F C6A0 C6B0 C6C0 C6D0 C6F0 C700 C710 C720 C730 C740                     | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 9 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12                                                                                                                                                       | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C698 C69C C69P C69E C69C C69D C6E0 C6C0 C6D0 C6E0 C700 C710 C720 C730 C740 C750           | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 12 Repeated for module number 12 Repeated for module number 13                                                             | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C698 C69C C69D C69E C69C C69D C680 C6C0 C6C0 C6C0 C700 C710 C720 C730 C740 C750 C760      | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 13 Repeated for module number 13 Repeated for module number 14                               | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C698 C69C C69D C69E C69C C69C C6B0 C6C0 C6C0 C6C0 C700 C710 C720 C730 C740 C750 C760 C770 | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 13 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15 | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt lp 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |
| Contact I C600 Virtual In C680 Virtual In C690 C691 C698 C69C C69D C69E C69C C69D C6B0 C6C0 C6D0 C6E0 C700 C710 C720 C730 C740 C750 C760      | Contact Input x Threshold (24 items)  puts Global Settings (Read/Write Setting)  Virtual Inputs SBO Timeout  puts (Read/Write Setting) (32 modules)  Virtual Input x Function  Virtual Input x Name  Virtual Input x Programmed Type  Virtual Input x Events  Virtual Input x UCA SBOClass  Virtual Input x UCA SBOEna  Virtual Input x Reserved Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 13 Repeated for module number 13 Repeated for module number 14                               | 1 to 60  0 to 1 0 to 1 0 to 1 1 to 2 0 to 1 |       | 1 1 1 1 1 1 | F102<br>F205<br>F127<br>F102<br>F001<br>F102 | 30  0 (Disabled)  "Virt Ip 1 "  0 (Latched)  0 (Disabled)  1  0 (Disabled) |

Table B-9: MODBUS MEMORY MAP (Sheet 29 of 37)

| ADDR     | REGISTER NAME                                  | RANGE  | UNITS | STEP | FORMAT | DEFAULT      |
|----------|------------------------------------------------|--------|-------|------|--------|--------------|
| C7A0     | Repeated for module number 18                  | -      |       | -    | -      | -            |
| C7B0     | Repeated for module number 19                  |        |       |      |        |              |
| C7C0     | Repeated for module number 20                  |        |       |      |        |              |
| C7D0     | Repeated for module number 21                  |        |       |      |        |              |
| C7E0     | Repeated for module number 22                  |        |       |      |        |              |
| C7F0     | Repeated for module number 23                  |        |       |      |        |              |
| C800     | Repeated for module number 24                  |        |       |      |        |              |
| C810     | Repeated for module number 25                  |        |       |      |        |              |
| C820     | Repeated for module number 26                  |        |       |      |        |              |
| C830     | Repeated for module number 27                  |        |       |      |        |              |
| C840     | Repeated for module number 28                  |        |       |      |        |              |
| C850     | Repeated for module number 29                  |        |       |      |        |              |
| C860     | Repeated for module number 30                  |        |       |      |        |              |
| C870     | Repeated for module number 31                  |        |       |      |        |              |
| C880     | Repeated for module number 32                  |        |       |      |        |              |
| <u> </u> | utputs (Read/Write Setting) (64 modules)       |        |       |      |        |              |
| CC90     | Virtual Output x Name                          |        |       |      | F205   | "Virt Op 1 " |
| CC9A     | Virtual Output x Name  Virtual Output x Events | 0 to 1 |       | 1    | F102   | 0 (Disabled) |
| CC9A     | Virtual Output x Reserved (5 items)            |        |       |      | F001   | 0 (Disabled) |
| CC9B     | Repeated for module number 2                   |        | 1     |      |        |              |
| CCB0     | Repeated for module number 3                   |        |       |      |        |              |
| CCC0     | Repeated for module number 4                   |        |       |      |        |              |
| CCD0     | Repeated for module number 5                   |        |       |      |        |              |
| CCE0     | Repeated for module number 6                   |        |       |      |        |              |
| CCF0     | Repeated for module number 7                   |        |       |      |        |              |
| CD00     | Repeated for module number 8                   |        |       |      |        |              |
| CD00     | Repeated for module number 9                   |        |       |      |        |              |
| CD10     | Repeated for module number 10                  |        |       |      |        |              |
| CD20     | Repeated for module number 10                  |        |       |      |        |              |
| CD30     | Repeated for module number 12                  |        |       |      |        |              |
| CD40     | Repeated for module number 12                  |        |       |      |        |              |
| CD50     | Repeated for module number 14                  |        |       |      |        |              |
| CD60     | Repeated for module number 14                  |        |       |      |        |              |
| CD70     | Repeated for module number 16                  |        |       |      |        |              |
| CD80     | '                                              |        |       |      |        |              |
| CD90     | Repeated for module number 17                  |        |       |      |        |              |
|          | Repeated for module number 18                  |        |       |      |        |              |
| CDB0     | Repeated for module number 19                  |        | -     |      |        |              |
| CDC0     | Repeated for module number 20                  |        | -     |      |        |              |
| CDD0     | Repeated for module number 21                  |        |       |      |        |              |
| CDE0     | Repeated for module number 22                  |        |       |      |        |              |
| CDF0     | Repeated for module number 23                  |        |       |      |        |              |
| CE00     | Repeated for module number 24                  |        |       |      |        |              |
| CE10     | Repeated for module number 25                  |        |       |      |        |              |
| CE20     | Repeated for module number 26                  |        | 1     |      |        |              |
| CE30     | Repeated for module number 27                  |        |       |      |        |              |
| CE40     | Repeated for module number 28                  |        |       |      |        |              |
| CE50     | Repeated for module number 29                  |        | ļ     |      |        |              |
| CE60     | Repeated for module number 30                  |        |       |      |        |              |
| CE70     | Repeated for module number 31                  |        |       |      |        |              |
| CE80     | Repeated for module number 32                  |        |       |      |        |              |
| CE90     | Repeated for module number 33                  |        |       |      |        |              |
| CEA0     | Repeated for module number 34                  |        |       |      |        |              |
| CEB0     | Repeated for module number 35                  |        |       |      |        |              |
| CEC0     | Repeated for module number 36                  |        |       |      |        |              |

# Table B-9: MODBUS MEMORY MAP (Sheet 30 of 37)

| ADDR                                                                                                                  | REGISTER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RANGE                                      | UNITS | STEP             | FORMAT                               | DEFAULT                            |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|------------------|--------------------------------------|------------------------------------|
| CED0                                                                                                                  | Repeated for module number 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CEE0                                                                                                                  | Repeated for module number 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CEF0                                                                                                                  | Repeated for module number 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF00                                                                                                                  | Repeated for module number 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF10                                                                                                                  | Repeated for module number 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF20                                                                                                                  | Repeated for module number 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF30                                                                                                                  | Repeated for module number 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF40                                                                                                                  | Repeated for module number 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF50                                                                                                                  | Repeated for module number 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF60                                                                                                                  | Repeated for module number 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF70                                                                                                                  | Repeated for module number 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF80                                                                                                                  | Repeated for module number 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CF90                                                                                                                  | Repeated for module number 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CFA0                                                                                                                  | Repeated for module number 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CFB0                                                                                                                  | Repeated for module number 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CFC0                                                                                                                  | Repeated for module number 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CFD0                                                                                                                  | Repeated for module number 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CFE0                                                                                                                  | Repeated for module number 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| CFF0                                                                                                                  | Repeated for module number 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D000                                                                                                                  | Repeated for module number 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D010                                                                                                                  | Repeated for module number 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D020                                                                                                                  | Repeated for module number 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D030                                                                                                                  | Repeated for module number 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D040                                                                                                                  | Repeated for module number 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D050                                                                                                                  | Repeated for module number 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D060                                                                                                                  | Repeated for module number 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D070                                                                                                                  | Repeated for module number 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
| D080                                                                                                                  | Repeated for module number 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |       |                  |                                      |                                    |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |       |                  |                                      |                                    |
| Mandato                                                                                                               | ry (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |       | l.               |                                      |                                    |
| Mandato<br>D280                                                                                                       | ry (Read/Write Setting)  Test Mode Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 to 1                                     |       | 1                | F102                                 | 0 (Disabled)                       |
| D280                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 to 1                                     |       | 1                | F102                                 | 0 (Disabled)                       |
| D280                                                                                                                  | Test Mode Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 to 1                                     |       | 1                | F102                                 | 0 (Disabled) "Cont Op 1 "          |
| D280                                                                                                                  | Test Mode Function Outputs (Read/Write Setting) (64 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |       |                  |                                      | , ,                                |
| D280<br>Contact (                                                                                                     | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |       |                  | F205                                 | "Cont Op 1 "                       |
| D280<br>Contact (<br>D290<br>D29A                                                                                     | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>0 to 65535                             |       | 1                | F205<br>F300                         | "Cont Op 1 "                       |
| D280 Contact ( D290 D29A D29B                                                                                         | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 to 65535<br>0 to 65535                   |       | 1 1              | F205<br>F300<br>F300                 | "Cont Op 1 " 0 0                   |
| D280 Contact ( D290 D29A D29B D29C                                                                                    | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 to 65535<br>0 to 65535                   |       | 1<br>1<br>1      | F205<br>F300<br>F300<br>F001         | "Cont Op 1 " 0 0 0                 |
| D280  Contact ( D290  D29A  D29B  D29C  D29D                                                                          | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact ( D290 D29A D29B D29C D29D D29E                                                                          | Test Mode Function Outputs (Read/Write Setting) (64 modules) Contact Output x Name Contact Output x Operation Contact Output x Seal-In Reserved Contact Output x Events Reserved (2 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact ( D290 D29A D29B D29C D29D D29E D2A0                                                                     | Test Mode Function Outputs (Read/Write Setting) (64 modules) Contact Output x Name Contact Output x Operation Contact Output x Seal-In Reserved Contact Output x Events Reserved (2 items)Repeated for module number 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0                                                                  | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0                                                             | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0                                                        | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                    | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0                                                   | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6                                                                                                                                                                                                                                                                                                                                                                       | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0                                              | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7                                                                                                                                                                                                                                                                                                                                          | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact ( D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300                                       | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8                                                                                                                                                                                                                                                                                                             | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact ( D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300 D310                                  | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9                                                                                                                                                                                                                                                                                | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact ( D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300 D310 D320                             | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 8 Repeated for module number 9 Repeated for module number 9 Repeated for module number 10                                                                                                                                                                                                                                                  | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300 D310 D320 D330                          | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 9 Repeated for module number 10 Repeated for module number 10 Repeated for module number 11                                                                                                                                                                                                                                                | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300 D310 D320 D330 D340                     | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 7 Repeated for module number 10 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12                                                                                                                                                                                                                  | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D300 D310 D320 D330 D340 D350                     | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 9 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13                                                                                                                                                        | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact ( D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D300 D310 D320 D330 D340 D350 D360              | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 13 Repeated for module number 13 Repeated for module number 14                                                                                           | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300 D310 D320 D330 D340 D350 D360 D370      | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 13 Repeated for module number 13 Repeated for module number 14 Repeated for module number 15                                                             | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |
| D280 Contact D290 D29A D29B D29C D29D D29E D2A0 D2B0 D2C0 D2D0 D2E0 D2F0 D300 D310 D320 D330 D340 D350 D360 D370 D380 | Test Mode Function  Outputs (Read/Write Setting) (64 modules)  Contact Output x Name  Contact Output x Operation  Contact Output x Seal-In  Reserved  Contact Output x Events  Reserved (2 items) Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for module number 7 Repeated for module number 9 Repeated for module number 10 Repeated for module number 11 Repeated for module number 12 Repeated for module number 13 Repeated for module number 15 Repeated for module number 15 Repeated for module number 15 Repeated for module number 15 Repeated for module number 15 Repeated for module number 16 | <br>0 to 65535<br>0 to 65535<br><br>0 to 1 |       | 1<br>1<br>1<br>1 | F205<br>F300<br>F300<br>F001<br>F102 | "Cont Op 1 "  0  0  0  1 (Enabled) |

Table B-9: MODBUS MEMORY MAP (Sheet 31 of 37)

| D3C0                                                                  | Repeated for module number 19Repeated for module number 20Repeated for module number 21Repeated for module number 22Repeated for module number 23Repeated for module number 24Repeated for module number 24Repeated for module number 25Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 34Repeated for module number 35Repeated for module number 35Repeated for module number 36 |            |       |      |                    |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------|--------------------|
| D3D0                                                                  | Repeated for module number 21Repeated for module number 22Repeated for module number 23Repeated for module number 24Repeated for module number 24Repeated for module number 25Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                     |            |       |      |                    |
| D3E0 D3F0 D400 D410 D420 D430 D440 D450 D460 D470 D480 D490 D480 D480 | Repeated for module number 22Repeated for module number 23Repeated for module number 24Repeated for module number 25Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                                                                               |            |       |      |                    |
| D3F0 D400 D410 D420 D430 D440 D450 D460 D470 D480 D490 D480 D480      | Repeated for module number 23Repeated for module number 24Repeated for module number 25Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                                                                                                            |            |       |      |                    |
| D400 D410 D420 D430 D440 D450 D460 D470 D480 D490 D480 D480           | Repeated for module number 24Repeated for module number 25Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                                                                                                                                         |            |       |      |                    |
| D410 D420 D430 D440 D450 D460 D470 D480 D490 D480 D480                | Repeated for module number 25Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                                                                                                                                                                                                   |            |       |      |                    |
| D420 D430 D440 D450 D460 D470 D480 D490 D480 D480                     | Repeated for module number 26Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                                                                                                                                                                                                                                |            |       |      |                    |
| D430 D440 D450 D460 D470 D480 D490 D480 D480                          | Repeated for module number 27Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 34                                                                                                                                                                                                                                                                                                                                                             |            |       |      |                    |
| D440 D450 D460 D470 D480 D490 D4A0 D4B0                               | Repeated for module number 28Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                          |            |       |      |                    |
| D450 . D460 . D470 . D480 . D490 . D4A0 . D4B0 .                      | Repeated for module number 29Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |      |                    |
| D460 . D470 . D480 . D490 . D4A0 . D4B0 .                             | Repeated for module number 30Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |      |                    |
| D470 . D480 . D490 . D4A0 . D4B0 .                                    | Repeated for module number 31Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |      |                    |
| D480 . D490 . D4A0 . D4B0 .                                           | Repeated for module number 32Repeated for module number 33Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |       |      | 1                  |
| D490 . D4A0 . D4B0 .                                                  | Repeated for module number 33Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |       |      | 1                  |
| D4A0 .                                                                | Repeated for module number 34Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |      |                    |
| D4B0 .                                                                | Repeated for module number 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |      |                    |
| D 400                                                                 | Repeated for module number 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D4C0 .                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |      |                    |
| D4D0 .                                                                | Repeated for module number 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D4E0 .                                                                | Repeated for module number 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D4F0 .                                                                | Repeated for module number 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D500 .                                                                | Repeated for module number 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D510 .                                                                | Repeated for module number 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D520 .                                                                | Repeated for module number 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D530 .                                                                | Repeated for module number 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D540 .                                                                | Repeated for module number 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D550 .                                                                | Repeated for module number 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D560 .                                                                | Repeated for module number 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D570 .                                                                | Repeated for module number 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D580 .                                                                | Repeated for module number 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D590 .                                                                | Repeated for module number 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D5A0 .                                                                | Repeated for module number 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D5B0 .                                                                | Repeated for module number 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D5C0 .                                                                | Repeated for module number 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D5D0 .                                                                | Repeated for module number 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D5E0 .                                                                | Repeated for module number 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D5F0 .                                                                | Repeated for module number 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D600 .                                                                | Repeated for module number 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D610 .                                                                | Repeated for module number 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D620 .                                                                | Repeated for module number 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D630 .                                                                | Repeated for module number 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D640 .                                                                | Repeated for module number 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D650 .                                                                | Repeated for module number 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
|                                                                       | Repeated for module number 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D670 .                                                                | Repeated for module number 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| D680 .                                                                | Repeated for module number 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |      |                    |
| •                                                                     | d/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |      |                    |
|                                                                       | FlexLogic operand which initiates a reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 65535 | <br>1 | F300 | 0                  |
|                                                                       | tact Inputs (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |      |                    |
|                                                                       | Force Contact Input x State (96 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 2     | <br>1 | F144 | 0 (Disabled)       |
|                                                                       | tact Outputs (Read/Write Setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |      |                    |
|                                                                       | Force Contact Output x State (64 items)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 to 3     | <br>1 | F131 | 0 (Disabled)       |
|                                                                       | evices (Read/Write Setting) (16 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |      |                    |
| E000 I                                                                | Remote Device x ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <br>  | F202 | "Remote Device 1 " |

# Table B-9: MODBUS MEMORY MAP (Sheet 32 of 37)

| E102 Remote Input x Default State 0 to 1 1 F108 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| E01E  Repeated for module number 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| E028  Repeated for module number 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| E032  Repeated for module number 6   E03C  Repeated for module number 7   E046  Repeated for module number 8   E050  Repeated for module number 9   E05A  Repeated for module number 10   E064  Repeated for module number 11   E065  Repeated for module number 11   E066  Repeated for module number 12   E076  Repeated for module number 13   E082  Repeated for module number 14   E08C  Repeated for module number 15   E086  Repeated for module number 16   E08C  Repeated for module number 16   E08C  Repeated for module number 16   E08C  Repeated for module number 16   E08C  Repeated for module number 16   E08C  Repeated for module number 16   E08C  Repeated for module number 16   E08C  Repeated for module number 16   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C   E08C                                                                                                                                                                                                                                                                                                                                                            |          |
| E03C  Repeated for module number 7   E046  Repeated for module number 8   E050  Repeated for module number 9   E05A  Repeated for module number 10   E064  Repeated for module number 11   E06E  Repeated for module number 12   E078  Repeated for module number 13   E082  Repeated for module number 14   E06C  Repeated for module number 15   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E100   Remote Inputs (Read/Write Settling) (32 modules)   E100   Remote Input x Default State   0 to 1   1   F106   E102   Remote Input x Default State   0 to 1   1   F108   C0   E103   Remote Input x Events   0 to 1   1   F102   O (E104  Repeated for module number 2   E108  Repeated for module number 3   E10C  Repeated for module number 4   E110  Repeated for module number 6   E111  Repeated for module number 6   E118  Repeated for module number 7   E11C  Repeated for module number 8   E120  Repeated for module number 9   E124  Repeated for module number 10   E128  Repeated for module number 11   E12C  Repeated for module number 13   E136  Repeated for module number 14   E130  Repeated for module number 15   E130  Repeated for module number 16   E131  Repeated for module number 17   E120  Repeated for module number 19   E124  Repeated for module number 10   E128  Repeated for module number 11   E12C  Repeated for module number 12   E130  Repeated for module number 15   E130  Repeated for module number 15   E130  Repeated for module number 16   E131  Repeated for module number 15   E130  Repeated for module number 16   E131  Repeated for module number 15   E130  Repeated for module number 16   E131  Repeated for module number 16   E131  Repeated for module number 16   E131  Repeated for module number 16   E131  Repeated for module number 16   E131  Repeated for module number 16   E131 |          |
| E046  Repeated for module number 8   E050  Repeated for module number 9   E05A  Repeated for module number 10   E064  Repeated for module number 11   E06E  Repeated for module number 12   E078  Repeated for module number 13   E082  Repeated for module number 14   E08C  Repeated for module number 15   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E101   Remote Input x Device   1 to 16     1 F001   E101   Remote Input x Bit Pair   0 to 64     1 F156   0   E102   Remote Input x Device   1 to 16     1 F108   (0 to 10     1 F108   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109   (0 to 10     1 F109                                                                                        |          |
| E050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| E05A  Repeated for module number 10   E064  Repeated for module number 11   E06E  Repeated for module number 12   E078  Repeated for module number 13   E082  Repeated for module number 14   E08C  Repeated for module number 15   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E096  Repeated for module number 16   E100   Remote Inputs (Read/Write Setting) (32 modules)   E100   Remote Inputs X Device   1 to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| E064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| E06E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| E078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| E082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| E08C  Repeated for module number 15  Repeated for module number 16  Repeated for module number 16  Repeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| E096  Repeated for module number 16   Remote Inputs (Read/Write Setting) (32 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Remote Inputs (Read/Write Setting) (32 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| E100         Remote Input x Device         1 to 16          1 F001           E101         Remote Input x Bit Pair         0 to 64          1 F156         0           E102         Remote Input x Default State         0 to 1          1 F108         0           E103         Remote Input x Events         0 to 1          1 F102         0 (C           E104        Repeated for module number 2           1 F102         0 (C           E108        Repeated for module number 3           1 F102         0 (C           E108        Repeated for module number 4           1 F102         0 (C           E108        Repeated for module number 5            1 F102         0 (C           E110        Repeated for module number 5 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| E101 Remote Input x Bit Pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| E102 Remote Input x Default State 0 to 1 1 F108 0  E103 Remote Input x Events 0 to 1 1 F102 0 (E  E104Repeated for module number 2  E108Repeated for module number 3  E10CRepeated for module number 4  E110Repeated for module number 5  E114Repeated for module number 6  E118Repeated for module number 7  E11CRepeated for module number 8  E120Repeated for module number 9  E124Repeated for module number 10  E128Repeated for module number 11  E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| E103 Remote Input x Events 0 to 1 1 F102 0 (E E104Repeated for module number 2 E108Repeated for module number 3 E10CRepeated for module number 4 E110Repeated for module number 5 E114Repeated for module number 6 E118Repeated for module number 7 E11CRepeated for module number 8 E120Repeated for module number 9 E124Repeated for module number 10 E128Repeated for module number 11 E12CRepeated for module number 12 E130Repeated for module number 13 E134Repeated for module number 14 E138Repeated for module number 15 E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (None)   |
| E104Repeated for module number 2 E108Repeated for module number 3 E10CRepeated for module number 4 E110Repeated for module number 5 E114Repeated for module number 6 E118Repeated for module number 7 E11CRepeated for module number 8 E120Repeated for module number 9 E124Repeated for module number 10 E128Repeated for module number 11 E12CRepeated for module number 12 E130Repeated for module number 13 E134Repeated for module number 14 E138Repeated for module number 15 E13CRepeated for module number 15 E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Off)    |
| E108Repeated for module number 3 E10CRepeated for module number 4 E110Repeated for module number 5 E114Repeated for module number 6 E118Repeated for module number 7 E11CRepeated for module number 8 E120Repeated for module number 9 E124Repeated for module number 10 E128Repeated for module number 11 E12CRepeated for module number 12 E130Repeated for module number 13 E134Repeated for module number 14 E138Repeated for module number 15 E130Repeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | isabled) |
| E10CRepeated for module number 4  E110Repeated for module number 5  E114Repeated for module number 6  E118Repeated for module number 7  E11CRepeated for module number 8  E120Repeated for module number 9  E124Repeated for module number 10  E128Repeated for module number 11  E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E130Repeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| E110Repeated for module number 5 E114Repeated for module number 6 E118Repeated for module number 7 E11CRepeated for module number 8 E120Repeated for module number 9 E124Repeated for module number 10 E128Repeated for module number 11 E12CRepeated for module number 12 E130Repeated for module number 13 E134Repeated for module number 14 E138Repeated for module number 15 E130Repeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| E114Repeated for module number 6 E118Repeated for module number 7 E11CRepeated for module number 8 E120Repeated for module number 9 E124Repeated for module number 10 E128Repeated for module number 11 E12CRepeated for module number 12 E130Repeated for module number 13 E134Repeated for module number 14 E138Repeated for module number 15 E130Repeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E118Repeated for module number 7  E11CRepeated for module number 8  E120Repeated for module number 9  E124Repeated for module number 10  E128Repeated for module number 11  E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| E11CRepeated for module number 8  E120Repeated for module number 9  E124Repeated for module number 10  E128Repeated for module number 11  E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| E120Repeated for module number 9  E124Repeated for module number 10  E128Repeated for module number 11  E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| E124Repeated for module number 10 E128Repeated for module number 11 E12CRepeated for module number 12 E130Repeated for module number 13 E134Repeated for module number 14 E138Repeated for module number 15 E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| E128Repeated for module number 11  E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| E12CRepeated for module number 12  E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| E130Repeated for module number 13  E134Repeated for module number 14  E138Repeated for module number 15  E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| E134Repeated for module number 14 E138Repeated for module number 15 E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| E138Repeated for module number 15 E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| E13CRepeated for module number 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E140Repeated for module number 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| E144Repeated for module number 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E148Repeated for module number 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E14CRepeated for module number 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E150Repeated for module number 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E154Repeated for module number 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E158Repeated for module number 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E15CRepeated for module number 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E160Repeated for module number 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E164Repeated for module number 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E168Repeated for module number 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E16CRepeated for module number 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E170Repeated for module number 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E174Repeated for module number 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E178Repeated for module number 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| E17CRepeated for module number 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Remote Output DNA Pairs (Read/Write Setting) (32 modules)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| E600         Remote Output DNA x Operand         0 to 65535          1         F300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •        |
| E601         Remote Output DNA x Events         0 to 1          1         F102         0 (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0        |

Table B-9: MODBUS MEMORY MAP (Sheet 33 of 37)

| ADDR                         | REGISTER NAME                                                                                                        | RANGE      | UNITS | STEP | FORMAT | DEFAULT      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|-------|------|--------|--------------|
| E602                         | Remote Output DNA x Reserved (2 items)                                                                               | 0 to 1     |       | 1    | F001   | 0            |
| E604                         | Repeated for module number 2                                                                                         | 0 10 1     |       |      | 1001   |              |
| E608                         | Repeated for module number 3                                                                                         |            |       |      |        |              |
| E60C                         | Repeated for module number 4                                                                                         |            |       |      |        |              |
| E610                         | Repeated for module number 5                                                                                         |            |       |      |        |              |
| E614                         | Repeated for module number 6                                                                                         |            |       |      |        |              |
| E618                         | Repeated for module number 7                                                                                         |            |       |      |        |              |
| E61C                         | Repeated for module number 8                                                                                         |            |       |      |        |              |
| E620                         | Repeated for module number 9                                                                                         |            |       |      |        |              |
| E624                         | Repeated for module number 10                                                                                        |            |       |      |        |              |
| E628                         | Repeated for module number 10                                                                                        |            |       |      |        |              |
| E62C                         | Repeated for module number 12                                                                                        |            |       |      |        |              |
|                              | · · · · · · · · · · · · · · · · · · ·                                                                                |            |       |      |        |              |
| E630                         | Repeated for module number 13                                                                                        |            |       |      |        |              |
| E634                         | Repeated for module number 14                                                                                        |            |       |      |        |              |
| E638                         | Repeated for module number 15                                                                                        |            |       |      |        |              |
| E63C                         | Repeated for module number 16                                                                                        |            |       |      |        |              |
| E640                         | Repeated for module number 17                                                                                        |            |       |      |        |              |
| E644                         | Repeated for module number 18                                                                                        |            |       |      |        |              |
| E648                         | Repeated for module number 19                                                                                        |            |       |      |        |              |
| E64C                         | Repeated for module number 20                                                                                        |            |       |      |        |              |
| E650                         | Repeated for module number 21                                                                                        |            |       |      |        |              |
| E654                         | Repeated for module number 22                                                                                        |            |       |      |        |              |
| E658                         | Repeated for module number 23                                                                                        |            |       |      |        |              |
| E65C                         | Repeated for module number 24                                                                                        |            |       |      |        |              |
| E660                         | Repeated for module number 25                                                                                        |            |       |      |        |              |
| E664                         | Repeated for module number 26                                                                                        |            |       |      |        |              |
| E668                         | Repeated for module number 27                                                                                        |            |       |      |        |              |
| E66C                         | Repeated for module number 28                                                                                        |            |       |      |        |              |
| E670                         | Repeated for module number 29                                                                                        |            |       |      |        |              |
| E674                         | Repeated for module number 30                                                                                        |            |       |      |        |              |
| E678                         | Repeated for module number 31                                                                                        |            |       |      |        |              |
| E67C                         | Repeated for module number 32                                                                                        |            |       |      |        |              |
|                              | Output UserSt Pairs (Read/Write Setting) (32 modules)                                                                |            |       |      | -      |              |
| E680                         | Remote Output UserSt x Operand                                                                                       | 0 to 65535 |       | 1    | F300   | 0            |
| E681                         | Remote Output UserSt x Events                                                                                        | 0 to 1     |       | 1    | F102   | 0 (Disabled) |
| E682                         | Remote Output UserSt x Reserved (2 items)                                                                            | 0 to 1     |       | 1    | F001   | 0            |
| E684                         | Repeated for module number 2                                                                                         |            |       |      |        |              |
| E688                         | Repeated for module number 3                                                                                         |            |       |      |        |              |
| E68C                         | Repeated for module number 4                                                                                         |            |       |      |        |              |
| E690                         | Repeated for module number 5                                                                                         |            |       |      |        |              |
| E694                         | Repeated for module number 6                                                                                         |            |       |      |        |              |
| E698                         | Repeated for module number 7                                                                                         |            |       |      |        |              |
| E69C                         | Repeated for module number 8                                                                                         |            |       |      |        |              |
| E6A0                         | Repeated for module number 9                                                                                         |            |       |      |        |              |
| E6A4                         | Repeated for module number 10                                                                                        |            |       |      |        |              |
| E6A8                         | Repeated for module number 11                                                                                        |            |       |      |        |              |
| E6AC                         |                                                                                                                      |            |       |      |        |              |
| 20/10                        | Repeated for module number 12                                                                                        |            |       |      |        |              |
| E6B0                         | Repeated for module number 12Repeated for module number 13                                                           |            |       |      |        |              |
|                              | •                                                                                                                    |            |       |      |        |              |
| E6B0                         | Repeated for module number 13                                                                                        |            |       |      |        |              |
| E6B0<br>E6B4                 | Repeated for module number 13Repeated for module number 14                                                           |            |       |      |        |              |
| E6B0<br>E6B4<br>E6B8         | Repeated for module number 13Repeated for module number 14Repeated for module number 15                              |            |       |      |        |              |
| E6B0<br>E6B4<br>E6B8<br>E6BC | Repeated for module number 13Repeated for module number 14Repeated for module number 15Repeated for module number 16 |            |       |      |        |              |

# Table B-9: MODBUS MEMORY MAP (Sheet 34 of 37)

| ADDR         | REGISTER NAME                                                                    | RANGE             | UNITS | STEP   | FORMAT       | DEFAULT                |
|--------------|----------------------------------------------------------------------------------|-------------------|-------|--------|--------------|------------------------|
| E6CC         | Repeated for module number 20                                                    |                   |       |        |              |                        |
| E6D0         | Repeated for module number 21                                                    |                   |       |        |              |                        |
| E6D4         | Repeated for module number 22                                                    |                   |       |        |              |                        |
| E6D8         | Repeated for module number 23                                                    |                   |       |        |              |                        |
| E6DC         | Repeated for module number 24                                                    |                   |       |        |              |                        |
| E6E0         | Repeated for module number 25                                                    |                   |       |        |              |                        |
| E6E4         | Repeated for module number 26                                                    |                   |       |        |              |                        |
| E6E8         | Repeated for module number 27                                                    |                   |       |        |              |                        |
| E6EC         | Repeated for module number 28                                                    |                   |       |        |              |                        |
| E6F0         | Repeated for module number 29                                                    |                   |       |        |              |                        |
| E6F4         | Repeated for module number 30                                                    |                   |       |        |              |                        |
| E6F8         | Repeated for module number 31                                                    |                   |       |        |              |                        |
| E6FC         | Repeated for module number 32                                                    |                   |       |        |              |                        |
| Factory S    | ervice Password Protection (Read/Write)                                          |                   |       |        |              |                        |
| F000         | Modbus Factory Password                                                          | 0 to 4294967295   |       | 1      | F003         | 0                      |
| Factory S    | ervice Password Protection (Read Only)                                           |                   |       |        |              |                        |
| F002         | Factory Service Password Status                                                  | 0 to 1            |       | 1      | F102         | 0 (Disabled)           |
| Factory S    | ervice - Initialization (Read Only Written by Factory)                           |                   |       |        |              |                        |
| F008         | Load Default Settings                                                            | 0 to 1            |       | 1      | F126         | 0 (No)                 |
| F009         | Reboot Relay                                                                     | 0 to 1            |       | 1      | F126         | 0 (No)                 |
| Factory S    | ervice - Calibration (Read Only Written by Factory)                              |                   |       |        |              |                        |
| F010         | Calibration                                                                      | 0 to 1            |       | 1      | F102         | 0 (Disabled)           |
| F011         | DSP Card to Calibrate                                                            | 0 to 15           |       | 1      | F172         | 0 (F)                  |
| F012         | Channel to Calibrate                                                             | 0 to 7            |       | 1      | F001         | 0                      |
| F013         | Channel Type                                                                     | 0 to 6            |       | 1      | F140         | 0 (Disabled)           |
| F014         | Channel Name                                                                     |                   |       |        | F201         | "0"                    |
| Factory S    | ervice - Calibration (Read Only)                                                 |                   |       |        |              |                        |
| F018         | A/D Counts                                                                       | -32767 to 32767   |       | 1      | F002         | 0                      |
| Factory S    | ervice - Calibration (Read Only Written by Factory)                              |                   |       |        |              |                        |
| F019         | Offset                                                                           | -32767 to 32767   |       | 1      | F002         | 0                      |
| F01B         | Gain Stage                                                                       | 0 to 1            |       | 1      | F135         | 0 (x1)                 |
| F01C         | CT Winding                                                                       | 0 to 1            |       | 1      | F123         | 0 (1 A)                |
| Factory S    | ervice - Calibration (Read Only)                                                 |                   |       | -      |              |                        |
| F01D         | Measured Input                                                                   | 0 to 300          |       | 0.0001 | F060         | 0                      |
| Factory S    | ervice - Calibration (Read Only Written by Factory)                              |                   |       |        |              |                        |
| F01F         | Gain Parameter                                                                   | 0.8 to 1.2        |       | 0.0001 | F060         | 1                      |
| Factory S    | ervice - Calibration (Read Only)                                                 |                   |       |        |              |                        |
| F02A         | DSP Calibration Date                                                             | 0 to 4294967295   |       | 1      | F050         | 0                      |
| Factory S    | ervice - Debug Data (Read Only Written by Factory)                               |                   |       |        |              |                        |
| F040         | Debug Data 16 (16 items)                                                         | -32767 to 32767   |       | 1      | F002         | 0                      |
| F050         | Debug Data 32 (16 items)                                                         | -2147483647 to    |       | 1      | F004         | 0                      |
| Transdus     | er Calibration (Read Only Written by Factory)                                    | 2147483647        |       |        |              |                        |
|              | Transducer Calibration Function                                                  | 0 to 1            | 1     | 4      | F102         | O (Disablad)           |
| F0A0<br>F0A1 | Transducer Calibration Function  Transducer Card to Calibrate                    | 0 to 1<br>0 to 15 |       | 1      | F102<br>F172 | 0 (Disabled)           |
|              |                                                                                  |                   |       | 1      |              | 0 (F)                  |
| F0A2<br>F0A3 | Transducer Channel to Calibrate                                                  | 0 to 7            |       | 1      | F001<br>F171 |                        |
| F0A3         | Transducer Channel to Calibrate Type  Transducer Channel to Calibrate Gain Stage | 0 to 3<br>0 to 1  |       | 1      | F171<br>F170 | 0 (dcmA IN)<br>0 (LOW) |
|              | er Calibration (Read Only)                                                       | 0 10 1            |       | _ '    | 1170         | U (LUVV)               |
|              |                                                                                  | 0 to 4095         | 1     | 4      | E004         | 0                      |
| F0A5         | Transducer Channel to Calibrate Counts                                           | U IU 4090         |       | 1      | F001         | U                      |
|              | er Calibration (Read Only Written by Factory)                                    | 4006 to 4005      | 1     | 1 4    | E002         | 0                      |
| F0A6         | Transducer Channel to Calibrate Offset                                           | -4096 to 4095     |       | 1      | F002         | 0                      |
| F0A7<br>F0A9 | Transducer Channel to Calibrate Value                                            | -1.1 to 366.5     |       | 0.001  | F004         | 0                      |
| FUAS         | Transducer Channel to Calibrate Gain                                             | 0.8 to 1.2        |       | 0.0001 | F060         | 1                      |

Table B-9: MODBUS MEMORY MAP (Sheet 35 of 37)

| ADDR         | REGISTER NAME                                       | RANGE                                 | UNITS | STEP | FORMAT       | DEFAULT      |
|--------------|-----------------------------------------------------|---------------------------------------|-------|------|--------------|--------------|
| F0AB         | Transducer Calibration Date                         | 0 to 4294967295                       |       | 1    | F050         | 0            |
| Transduc     | er Calibration (Read Only)                          |                                       |       |      |              |              |
| F0AD         | Transducer Channel to Calibrate Units               |                                       |       |      | F206         | (none)       |
| Factory S    | Service Software Revisions (Read Only)              |                                       |       |      |              |              |
| F0F0         | Compile Date                                        | 0 to 4294967295                       |       | 1    | F050         | 0            |
| F0F3         | Boot Version                                        | 0 to 655.35                           |       | 0.01 | F001         | 1            |
| F0F4         | Front Panel Version                                 | 0 to 655.35                           |       | 0.01 | F001         | 1            |
| F0F5         | Boot Date                                           | 0 to 4294967295                       |       | 1    | F050         | 0            |
| Factory S    | Service - Serial EEPROM (Read Only Written by Facto | ry)                                   |       |      |              |              |
| F100         | Serial EEPROM Enable                                | 0 to 1                                |       | 1    | F102         | 0 (Disabled) |
| F101         | Serial EEPROM Slot                                  | 0 to 15                               |       | 1    | F172         | 0 (F)        |
| F102         | Serial EEPROM Load Factory Defaults                 | 0 to 1                                |       | 1    | F126         | 0 (No)       |
| F110         | Serial EEPROM Module Serial Number                  |                                       |       |      | F203         | (none)       |
| F120         | Serial EEPROM Supplier Serial Number                |                                       |       |      | F203         | (none)       |
| F130         | Serial EEPROM Sub Module Serial Number (8 items)    |                                       |       |      | F203         | (none)       |
|              | Service CPU Diagnostics (Read Only Non-Volatile)    |                                       |       |      |              |              |
| F200         | Operating Hours                                     | 0 to 4294967295                       |       | 1    | F050         | 0            |
|              | Service CPU Diagnostics (Read Only)                 |                                       |       |      |              |              |
| F210         | DSP Spurious Interrupt Counter                      | 0 to 4294967295                       |       | 1    | F003         | 0            |
|              | Service CPU Diagnostics (Read Only Written by Facto |                                       |       |      |              |              |
| F220         | Real Time Profiling                                 | 0 to 1                                |       | 1    | F102         | 0 (Disabled) |
| F221         | Enable Windview                                     | 0 to 1                                |       | 1    | F102         | 0 (Disabled) |
| F222         | Factory Reload Cause                                |                                       |       |      | F200         | (none)       |
| F236         | Clear Diagnostics                                   | 0 to 1                                |       | 1    | F126         | 0 (No)       |
|              | Service CPU Performance (Read Only)                 |                                       |       |      |              |              |
| F300         | CPU Utilization                                     | 0 to 100                              | %     | 0.1  | F001         | 0            |
|              | Service CPU Performance (Read/Write)                | · · · · · · · · · · · · · · · · · · · |       |      |              | _            |
| F301         | CPU Overload                                        | 0 to 6553.5                           | %     | 0.1  | F001         | 0            |
| _            | Service CPU Performance (Read Only)                 |                                       | 1     |      | F = 0.4      |              |
| F302         | Protection Pass Time                                | 0 to 65535                            | us    | 1    | F001         | 0            |
| •            | Service CPU Performance (Read/Write)                | 0.4.05505                             | ı     |      | F004         | 0            |
| F303         | Protection Pass Worst Time                          | 0 to 65535                            | us    | 1    | F001         | 0            |
| •            | Service DSP Diagnostics (Read Only) (3 modules)     | 0 to 4204067205                       | i     | 1 1  | F002         | 0            |
| F380         | DSP Checksum Error Counter                          | 0 to 4294967295<br>0 to 4294967295    |       | 1    | F003         | 0            |
| F382<br>F384 | DSP Corrupt Settings Counter                        |                                       |       | 1    | F003<br>F003 | 0            |
| F386         | DSP Out Of Sequence Error Counter                   | 0 to 4294967295                       |       | 1    | F003         | 0            |
|              | DSP Flags Error Counter                             | 0 to 4294967295                       |       |      |              | 0            |
| F38D<br>F38E | DSP Error Flags DSP Error Code                      | 0 to 65535<br>0 to 65535              |       | 1    | F001<br>F001 | 0            |
| F38F         | DSP Usage                                           | 0 to 100                              |       | 0.1  | F001         | 0            |
| F390         | Repeated for module number 2                        | 0 10 100                              |       | 0.1  | 1 001        | J J          |
| F3A0         | Repeated for module number 3                        |                                       |       |      |              |              |
|              | Service FlexAnalog Distance (Read Only)             |                                       |       |      |              |              |
| F800         | Distance lab Magnitude                              | 0 to 999999.999                       | pu    | 1    | F060         | 0            |
| F802         | Distance lab Angle                                  | -180 to 180                           | ο     | 0.01 | F002         | 0            |
| F803         | Distance lbc Magnitude                              | 0 to 999999.999                       | pu    | 1    | F060         | 0            |
| F805         | Distance lbc Angle                                  | -180 to 180                           | О     | 0.01 | F002         | 0            |
| F806         | Distance Ica Magnitude                              | 0 to 999999.999                       | pu    | 1    | F060         | 0            |
| F808         | Distance Ica Angle                                  | -180 to 180                           | 0     | 0.01 | F002         | 0            |
| F809         | Distance labZ Vab Angle (4 items)                   | -180 to 180                           | 0     | 0.01 | F002         | 0            |
| F80D         | Distance lbcZ Vbc Angle (4 items)                   | -180 to 180                           | 0     | 0.01 | F002         | 0            |
| F811         | Distance IcaZ Vca Angle (4 items)                   | -180 to 180                           | 0     | 0.01 | F002         | 0            |
| F815         | Distance lagZ Vag Angle (4 items)                   | -180 to 180                           | 0     | 0.01 | F002         | 0            |
| F819         | Distance lbgZ Vbg Angle (4 items)                   | -180 to 180                           | 0     | 0.01 | F002         | 0            |
| . 0.0        |                                                     | .00 10 100                            | I     | 5.01 | . 002        | Ÿ            |

Table B-9: MODBUS MEMORY MAP (Sheet 36 of 37)

| ADDR | REGISTER NAME                                        | RANGE           | UNITS | STEP     | FORMAT | DEFAULT                               |
|------|------------------------------------------------------|-----------------|-------|----------|--------|---------------------------------------|
| F81D | Distance IcgZ Vcg Angle (4 items)                    | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F821 | Distance I2Za Angle                                  | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F822 | Distance I2Zb Angle                                  | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F823 | Distance I2Zc Angle                                  | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F824 | Distance Alpha labZ Vab Angle                        | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F825 | Distance Alpha IbcZ Vbc Angle                        | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F826 | Distance Alpha IcaZ Vca Angle                        | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F827 | Distance Alpha lagZ Vag Angle                        | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F828 | Distance Alpha IbgZ Vbg Angle                        | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F829 | Distance Alpha IcgZ Vcg Angle                        | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F82A | Distance labZR Vab labZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F82E | Distance IbcZR Vbc IbcZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F832 | UNDEFINED (4 items)                                  | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F836 | Distance labZR Vab labZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F83A | Distance IbcZR Vbc IbcZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F83E | Distance IcaZR Vca IcaZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F842 | Distance lagZR Vag lagZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F846 | Distance IbgZR Vbg IbgZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F84A | Distance IcgZR Vcg IcgZR Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F84E | Distance lagZL Vag lagZL Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F852 | Distance lbgZL Vbg lbgZL Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
| F856 | Distance IcgZL Vcg IcgZL Angle (4 items)             | -180 to 180     | 0     | 0.01     | F002   | 0                                     |
|      | File Transfer Area 2 (Read/Write)                    |                 |       |          |        | •                                     |
| FA00 | Name of file to read                                 |                 |       |          | F204   | (none)                                |
|      | File Transfer Area 2 (Read Only)                     |                 |       |          | . = .  | ()                                    |
| FB00 | Character position of current block within file      | 0 to 4294967295 |       | 1        | F003   | 0                                     |
| FB02 | Size of currently-available data block               | 0 to 65535      |       | 1        | F001   | 0                                     |
| FB03 | Block of data from requested file (122 items)        | 0 to 65535      |       | 1        | F001   | 0                                     |
|      | overvoltage (Read/Write Grouped Setting) (3 modules) |                 | L     | <u> </u> |        |                                       |
| FC00 | Neutral OV X Function                                | 0 to 1          |       | 1        | F102   | 0 (Disabled)                          |
| FC01 | Neutral OV X Signal Source                           | 0 to 5          |       | 1        | F167   | 0 (SRC 1)                             |
| FC02 | Neutral OV X Pickup                                  | 0 to 1.25       | pu    | 0.001    | F001   | 300                                   |
| FC03 | Neutral OV X Pickup Delay                            | 0 to 600        | s     | 0.01     | F001   | 100                                   |
| FC04 | Neutral OV X Reset Delay                             | 0 to 600        | s     | 0.01     | F001   | 100                                   |
| FC05 | Neutral OV X Block                                   | 0 to 65535      |       | 1        | F300   | 0                                     |
| FC06 | Neutral OV X Target                                  | 0 to 2          |       | 1        | F109   | 0 (Self-reset)                        |
| FC07 | Neutral OV X Events                                  | 0 to 1          |       | 1        | F102   | 0 (Disabled)                          |
| FC08 | Neutral OV Reserved (8 items)                        | 0 to 65535      |       | 1        | F001   | 0                                     |
| FC10 | Repeated for module number 2                         |                 |       | -        |        |                                       |
| FC20 | Repeated for module number 3                         |                 | 1     |          |        |                                       |
|      | Overvoltage (Read/Write Grouped Setting) (3 modules) |                 |       | l        |        |                                       |
| FC30 | Auxiliary OV X Function                              | 0 to 1          |       | 1        | F102   | 0 (Disabled)                          |
| FC31 | Auxiliary OV X Signal Source                         | 0 to 5          |       | 1        | F167   | 0 (SRC 1)                             |
| FC32 | Auxiliary OV X Pickup                                | 0 to 3          | pu    | 0.001    | F001   | 300                                   |
| FC33 | Auxiliary OV X Pickup Delay                          | 0 to 600        | s s   | 0.001    | F001   | 100                                   |
| FC34 | Auxiliary OV X Reset Delay                           | 0 to 600        | S     | 0.01     | F001   | 100                                   |
| FC35 | Auxiliary OV X Reset Delay  Auxiliary OV X Block     | 0 to 65535      |       | 1        | F300   | 0                                     |
| FC35 | Auxiliary OV X Block Auxiliary OV X Target           | 0 to 2          |       | 1        | F109   | 0 (Self-reset)                        |
|      |                                                      |                 |       |          |        | · · · · · · · · · · · · · · · · · · · |
| FC37 | Auxiliary OV X Events                                | 0 to 1          |       | 1        | F102   | 0 (Disabled)                          |
| FC38 | Auxiliary OV X Reserved (8 items)                    | 0 to 65535      |       | 1        | F001   | 0                                     |
| FC40 | Repeated for module number 2                         |                 |       |          |        |                                       |
| FC50 | Repeated for module number 3                         |                 |       |          |        |                                       |
| _    | Undervoltage (Read/Write Grouped Setting) (3 module  | <u> </u>        | ,     | ı        |        |                                       |
| FC60 | Auxiliary UV X Function                              | 0 to 1          |       | 1        | F102   | 0 (Disabled)                          |

Table B-9: MODBUS MEMORY MAP (Sheet 37 of 37)

| ADDR | REGISTER NAME                     | RANGE      | UNITS | STEP  | FORMAT | DEFAULT           |
|------|-----------------------------------|------------|-------|-------|--------|-------------------|
| FC61 | Auxiliary UV X Signal Source      | 0 to 5     |       | 1     | F167   | 0 (SRC 1)         |
| FC62 | Auxiliary UV X Pickup             | 0 to 3     | pu    | 0.001 | F001   | 700               |
| FC63 | Auxiliary UV X Delay              | 0 to 600   | s     | 0.01  | F001   | 100               |
| FC64 | Auxiliary UV X Curve              | 0 to 1     |       | 1     | F111   | 0 (Definite Time) |
| FC65 | Auxiliary UV X Minimum Voltage    | 0 to 3     | pu    | 0.001 | F001   | 100               |
| FC66 | Auxiliary UV X Block              | 0 to 65535 |       | 1     | F300   | 0                 |
| FC67 | Auxiliary UV X Target             | 0 to 2     |       | 1     | F109   | 0 (Self-reset)    |
| FC68 | Auxiliary UV X Events             | 0 to 1     |       | 1     | F102   | 0 (Disabled)      |
| FC69 | Auxiliary UV X Reserved (7 items) | 0 to 65535 |       | 1     | F001   | 0                 |
| FC70 | Repeated for module number 2      |            |       |       |        |                   |
| FC80 | Repeated for module number 3      |            |       |       |        |                   |

# **UR\_UINT16 UNSIGNED 16 BIT INTEGER**

#### F002

### UR\_SINT16 SIGNED 16 BIT INTEGER

#### F003

### UR\_UINT32 UNSIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register. Low order word is stored in the second register.

#### F004

# UR\_SINT32 SIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register/ Low order word is stored in the second register.

#### F005

### **UR\_UINT8 UNSIGNED 8 BIT INTEGER**

#### F006

### **UR\_SINT8 SIGNED 8 BIT INTEGER**

#### F011

## UR\_UINT16 FLEXCURVE DATA (120 points)

A FlexCurve is an array of 120 consecutive data points (x, y) which are interpolated to generate a smooth curve. The y-axis is the user defined trip or operation time setting; the x-axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.

#### F012

# DISPLAY\_SCALE DISPLAY SCALING (unsigned 16-bit integer)

MSB indicates the SI units as a power of ten. LSB indicates the number of decimal points to display.

Example: Current values are stored as 32 bit numbers with three decimal places and base units in Amps. If the retrieved value is 12345.678 A and the display scale equals 0x0302 then the displayed value on the unit is 12.35 kA.

#### F013

# POWER\_FACTOR PWR FACTOR (SIGNED 16 BIT INTEGER)

Positive values indicate lagging power factor; negative values indicate leading.

#### F040

# UR\_UINT48 48-BIT UNSIGNED INTEGER

#### F050

### UR\_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)

Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

#### F051

### UR\_UINT32 DATE in SR format (alternate format for F050)

First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

#### F052

#### UR\_UINT32 TIME in SR format (alternate format for F050)

First 16 bits are Hours/Minutes (HH:MM:xx.xxx). Hours: 0=12am, 1=1am,...,12=12pm,...23=11pm; Minutes: 0 to 59 in steps of 1

Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s, 1=00.001,...,59999=59.999s)

#### F060

# FLOATING\_POINT IEE FLOATING POINT (32 bits)

### F070

HEX2 2 BYTES - 4 ASCII DIGITS

#### F071

**HEX4 4 BYTES - 8 ASCII DIGITS** 

### F072

HEX6 6 BYTES - 12 ASCII DIGITS

#### F073

HEX8 8 BYTES - 16 ASCII DIGITS

## F074

**HEX20 20 BYTES - 40 ASCII DIGITS** 

#### F100

## **ENUMERATION: VT CONNECTION TYPE**

0 = Wye; 1 = Delta

**ENUMERATION: MESSAGE DISPLAY INTENSITY** 

0 = 25%, 1 = 50%, 2 = 75%, 3 = 100%

F102

**ENUMERATION: DISABLED/ENABLED** 

0 = Disabled; 1 = Enabled

F103

**ENUMERATION: CURVE SHAPES** 

| bitmask | curve shape   |
|---------|---------------|
| 0       | IEEE Mod Inv  |
| 1       | IEEE Very Inv |
| 2       | IEEE Ext Inv  |
| 3       | IEC Curve A   |
| 4       | IEC Curve B   |
| 5       | IEC Curve C   |
| 6       | IEC Short Inv |
| 7       | IAC Ext Inv   |

| bitmask | curve shape   |
|---------|---------------|
| 8       | IAC Very Inv  |
| 9       | IAC Inverse   |
| 10      | IAC Short Inv |
| 11      | I2t           |
| 12      | Definite Time |
| 13      | Flexcurve A   |
| 14      | Flexcurve B   |
|         |               |

F104

**ENUMERATION: RESET TYPE** 

0 = Instantaneous, 1 = Timed, 2 = Linear

F105

**ENUMERATION: LOGIC INPUT** 

0 = Disabled, 1 = Input 1, 2 = Input 2

F106

**ENUMERATION: PHASE ROTATION** 

0 = ABC, 1 = ACB

F108

**ENUMERATION: OFF/ON** 

0 = Off, 1 = On

F109

**ENUMERATION: CONTACT OUTPUT OPERATION** 

0 = Self-reset, 1 = Latched, 2 = Disabled

F110

**ENUMERATION: CONTACT OUTPUT LED CONTROL** 

0 = Trip, 1 = Alarm, 2 = None

F111

**ENUMERATION: UNDERVOLTAGE CURVE SHAPES** 

0 = Definite Time, 1 = Inverse Time

F112

**ENUMERATION: RS485 BAUD RATES** 

| bitmask | value |
|---------|-------|
| 0       | 300   |
| 1       | 1200  |
| 2       | 2400  |
| 3       | 4800  |

| bitmask | value |
|---------|-------|
| 4       | 9600  |
| 5       | 19200 |
| 6       | 38400 |
| 7       | 57600 |

| bitmask | value  |
|---------|--------|
| 8       | 115200 |
| 9       | 14400  |
| 10      | 28800  |
| 11      | 33600  |

F113

**ENUMERATION: PARITY** 

0 = None, 1 = Odd, 2 = Even

F114

**ENUMERATION: IRIG-B SIGNAL TYPE** 

0 = None, 1 = DC Shift, 2 = Amplitude Modulated

F115

**ENUMERATION: BREAKER STATUS** 

0 = Auxiliary A, 1 = Auxiliary B

F117

**ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS** 

 $0 = 1 \times 72$  cycles,  $1 = 3 \times 36$  cycles,  $2 = 7 \times 18$  cycles,  $3 = 15 \times 9$  cycles

F118

**ENUMERATION: OSCILLOGRAPHY MODE** 

0 = Automatic Overwrite, 1 = Protected

F119
ENUMERATION: FLEXCURVE PICKUP RATIOS

| mask | value | mask | value | mask | value | mask | value |
|------|-------|------|-------|------|-------|------|-------|
| 0    | 0.00  | 30   | 0.88  | 60   | 2.90  | 90   | 5.90  |
| 1    | 0.05  | 31   | 0.90  | 61   | 3.00  | 91   | 6.00  |
| 2    | 0.10  | 32   | 0.91  | 62   | 3.10  | 92   | 6.50  |
| 3    | 0.15  | 33   | 0.92  | 63   | 3.20  | 93   | 7.00  |
| 4    | 0.20  | 34   | 0.93  | 64   | 3.30  | 94   | 7.50  |
| 5    | 0.25  | 35   | 0.94  | 65   | 3.40  | 95   | 8.00  |
| 6    | 0.30  | 36   | 0.95  | 66   | 3.50  | 96   | 8.50  |
| 7    | 0.35  | 37   | 0.96  | 67   | 3.60  | 97   | 9.00  |
| 8    | 0.40  | 38   | 0.97  | 68   | 3.70  | 98   | 9.50  |
| 9    | 0.45  | 39   | 0.98  | 69   | 3.80  | 99   | 10.00 |
| 10   | 0.48  | 40   | 1.03  | 70   | 3.90  | 100  | 10.50 |
| 11   | 0.50  | 41   | 1.05  | 71   | 4.00  | 101  | 11.00 |
| 12   | 0.52  | 42   | 1.10  | 72   | 4.10  | 102  | 11.50 |
| 13   | 0.54  | 43   | 1.20  | 73   | 4.20  | 103  | 12.00 |
| 14   | 0.56  | 44   | 1.30  | 74   | 4.30  | 104  | 12.50 |
| 15   | 0.58  | 45   | 1.40  | 75   | 4.40  | 105  | 13.00 |
| 16   | 0.60  | 46   | 1.50  | 76   | 4.50  | 106  | 13.50 |
| 17   | 0.62  | 47   | 1.60  | 77   | 4.60  | 107  | 14.00 |
| 18   | 0.64  | 48   | 1.70  | 78   | 4.70  | 108  | 14.50 |
| 19   | 0.66  | 49   | 1.80  | 79   | 4.80  | 109  | 15.00 |
| 20   | 0.68  | 50   | 1.90  | 80   | 4.90  | 110  | 15.50 |
| 21   | 0.70  | 51   | 2.00  | 81   | 5.00  | 111  | 16.00 |
| 22   | 0.72  | 52   | 2.10  | 82   | 5.10  | 112  | 16.50 |
| 23   | 0.74  | 53   | 2.20  | 83   | 5.20  | 113  | 17.00 |
| 24   | 0.76  | 54   | 2.30  | 84   | 5.30  | 114  | 17.50 |
| 25   | 0.78  | 55   | 2.40  | 85   | 5.40  | 115  | 18.00 |
| 26   | 0.80  | 56   | 2.50  | 86   | 5.50  | 116  | 18.50 |
| 27   | 0.82  | 57   | 2.60  | 87   | 5.60  | 117  | 19.00 |
| 28   | 0.84  | 58   | 2.70  | 88   | 5.70  | 118  | 19.50 |
| 29   | 0.86  | 59   | 2.80  | 89   | 5.80  | 119  | 20.00 |

F120 ENUMERATION: DISTANCE SHAPE

0 = Mho, 1 = Quad

F122
ENUMERATION: ELEMENT INPUT SIGNAL TYPE

0 = Phasor, 1 = RMS

ENUMERATION: CT SECONDARY

0 = 1 A, 1 = 5 A

F124
ENUMERATION: LIST OF ELEMENTS

| bitmask | element      |
|---------|--------------|
| 0       | PHASE IOC1   |
| 1       | PHASE IOC2   |
| 16      | PHASE TOC1   |
| 17      | PHASE TOC2   |
| 24      | PH DIR1      |
| 25      | PH DIR2      |
| 32      | NEUTRAL IOC1 |
| 33      | NEUTRAL IOC2 |
| 48      | NEUTRAL TOC1 |
| 49      | NEUTRAL TOC2 |
| 56      | NTRL DIR     |
| 57      | NTRL DIR     |
| 60      | NEG SEQ      |
| 61      | NEG SEQ      |
| 64      | GROUND IOC1  |
| 65      | GROUND IOC2  |
| 80      | GROUND TOC1  |
| 81      | GROUND TOC2  |
| 96      | NEG SEQ      |
| 97      | NEG SEQ      |
| 112     | NEG SEQ      |
| 113     | NEG SEQ      |
| 120     | NEG SEQ      |
| 140     | AUX UV1      |
| 144     | PHASE UV1    |
| 145     | PHASE UV2    |
| 148     | AUX OV1      |
| 152     | PHASE OV1    |
| 156     | NEUTRAL OV1  |
| 160     | PH DIST 1    |
| 161     | PH DIST 2    |
| 162     | PH DIST 3    |
| 163     | PH DIST 4    |
| 168     | LINE PICKUP  |
| 176     | GND DIST 1   |
| 177     | GND DIST 2   |
| 178     | GND DIST 3   |
| 179     | GND DIST 4   |
| 180     | LOAD ENCHR   |
| 184     | DUTT         |
| 185     | PUTT         |
| 186     | POTT         |
| 187     | HYBRID POTT  |
| 188     | BLOCK SCHEME |
| 190     | POWER SWING  |

APPENDIX B B.4 MEMORY MAPPING

| bitmask | element       |
|---------|---------------|
| 224     | SRC1 VT       |
| 225     | SRC2 VT       |
| 226     | SRC3 VT       |
| 227     | SRC4 VT       |
| 228     | SRC5 VT       |
| 229     | SRC6 VT       |
| 232     | SRC1 50DD     |
| 233     | SRC2 50DD     |
| 234     | SRC3 50DD     |
| 235     | SRC4 50DD     |
| 236     | SRC5 50DD     |
| 237     | SRC6 50DD     |
| 242     | OPEN POLE     |
| 244     | 50DD          |
| 245     | CONT MONITOR  |
| 246     | CT FAIL       |
| 247     | CT TROUBLE1   |
| 248     | CT TROUBLE2   |
| 265     | STATOR DIFF   |
| 272     | BREAKER 1     |
| 273     | BREAKER 2     |
| 280     | BKR FAIL      |
| 281     | BKR FAIL      |
| 288     | BKR ARC       |
| 289     | BKR ARC       |
| 296     | ACCDNT ENRG   |
| 300     | LOSS EXCIT    |
| 304     | AR 1          |
| 305     | AR 2          |
| 306     | AR 3          |
| 307     | AR 4          |
| 308     | AR 5          |
| 309     | AR 6          |
| 312     | SYNC 1        |
| 313     | SYNC 2        |
| 320     | COLD LOAD     |
| 321     | COLD LOAD     |
| 324     | AMP UNBALANCE |
| 325     | AMP UNBALANCE |
| 330     | 3RD HARM      |
| 336     | SETTING GROUP |
| 337     | RESET         |
| 344     | OVERFREQ 1    |
| 345     | OVERFREQ 2    |
| 346     | OVERFREQ 3    |
| 347     | OVERFREQ 4    |
| 352     | UNDERFREQ 1   |
| 353     | UNDERFREQ 2   |
| 300     |               |

| bitmask | element         |
|---------|-----------------|
| 354     | UNDERFREQ 3     |
| 355     | UNDERFREQ 4     |
| 356     | UNDERFREQ 5     |
| 357     | UNDERFREQ 6     |
| 400     | FLEX ELEMENT 1  |
| 401     | FLEX ELEMENT 2  |
| 402     | FLEX ELEMENT 3  |
| 403     | FLEX ELEMENT 4  |
| 404     | FLEX ELEMENT 5  |
| 405     | FLEX ELEMENT 6  |
| 406     | FLEX ELEMENT 7  |
| 407     | FLEX ELEMENT 8  |
| 408     | FLEX ELEMENT 9  |
| 409     | FLEX ELEMENT 10 |
| 410     | FLEX ELEMENT 11 |
| 411     | FLEX ELEMENT 12 |
| 412     | FLEX ELEMENT 13 |
| 413     | FLEX ELEMENT 14 |
| 414     | FLEX ELEMENT 15 |
| 415     | FLEX ELEMENT 16 |
| 512     | DIG ELEM 1      |
| 513     | DIG ELEM 2      |
| 514     | DIG ELEM 3      |
| 515     | DIG ELEM 4      |
| 516     | DIG ELEM 5      |
| 517     | DIG ELEM 6      |
| 518     | DIG ELEM 7      |
| 519     | DIG ELEM 8      |
| 520     | DIG ELEM 9      |
| 521     | DIG ELEM 10     |
| 522     | DIG ELEM 11     |
| 523     | DIG ELEM 12     |
| 524     | DIG ELEM 13     |
| 525     | DIG ELEM 14     |
| 526     | DIG ELEM 15     |
| 527     | DIG ELEM 16     |
| 544     | COUNTER 1       |
| 545     | COUNTER 2       |
| 546     | COUNTER 3       |
| 547     | COUNTER 4       |
| 548     | COUNTER 5       |
| 549     | COUNTER 6       |
| 550     | COUNTER 7       |
| 551     | COUNTER 8       |

F125 ENUMERATION: ACCESS LEVEL

0 = Restricted; 1 = Command, 2 = Setting, 3 = Factory Service

**ENUMERATION: NO/YES CHOICE** 

0 = No, 1 = Yes

F127

**ENUMERATION: LATCHED OR SELF-RESETTING** 

0 = Latched, 1 = Self-Reset

F128

**ENUMERATION: CONTACT INPUT THRESHOLD** 

0 = 16 Vdc, 1 = 30 Vdc, 2 = 80 Vdc, 3 = 140 Vdc

F129

**ENUMERATION: FLEXLOGIC TIMER TYPE** 

0 = millisecond, 1 = second, 2 = minute

F130

**ENUMERATION: SIMULATION MODE** 

0 = Off. 1 = Pre-Fault, 2 = Fault, 3 = Post-Fault

F131

**ENUMERATION: FORCED CONTACT OUTPUT STATE** 

0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

F133

**ENUMERATION: PROGRAM STATE** 

0 = Not Programmed, 1 = Programmed

F134

**ENUMERATION: PASS/FAIL** 

0 = Fail, 1 = OK, 2 = n/a

F135

**ENUMERATION: GAIN CALIBRATION** 

0 = 0x1, 1 = 1x16

F136

**ENUMERATION: NUMBER OF OSCILLOGRAPHY RECORDS** 

 $0 = 31 \times 8$  cycles,  $1 = 15 \times 16$  cycles,  $2 = 7 \times 32$  cycles  $3 = 3 \times 64$  cycles,  $4 = 1 \times 128$  cycles

F138

**ENUMERATION: OSCILLOGRAPHY FILE TYPE** 

0 = Data File, 1 = Configuration File, 2 = Header File

F140

ENUMERATION: CURRENT, SENS CURRENT, VOLTAGE, DISABLED

0 = Disabled, 1 = Current 46A, 2 = Voltage 280V, 3 = Current 4.6A 4 = Current 2A, 5 = Notched 4.6A, 6 = Notched 2A

F141

**ENUMERATION: SELF TEST ERROR** 

| bitmask | error               |
|---------|---------------------|
| 0       | ANY SELF TESTS      |
| 1       | IRIG-B FAILURE      |
| 2       | DSP ERROR           |
| 4       | NO DSP INTERRUPTS   |
| 5       | UNIT NOT CALIBRATED |
| 9       | PROTOTYPE FIRMWARE  |
| 10      | FLEXLOGIC ERR TOKEN |
| 11      | EQUIPMENT MISMATCH  |
| 13      | UNIT NOT PROGRAMMED |
| 14      | SYSTEM EXCEPTION    |
| 19      | BATTERY FAIL        |
| 20      | PRI ETHERNET FAIL   |
| 21      | SEC ETHERNET FAIL   |
| 22      | EEPROM DATA ERROR   |
| 23      | SRAM DATA ERROR     |
| 24      | PROGRAM MEMORY      |
| 25      | WATCHDOG ERROR      |
| 26      | LOW ON MEMORY       |
| 27      | REMOTE DEVICE OFF   |
| 30      | ANY MINOR ERROR     |
| 31      | ANY MAJOR ERROR     |

F142

**ENUMERATION: EVENT RECORDER ACCESS FILE TYPE** 

0 = All Record Data, 1 = Headers Only, 2 = Numeric Event Cause

F143

UR\_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)

A bit value of 0 = no error, 1 = error

F144

**ENUMERATION: FORCED CONTACT INPUT STATE** 

0 = Disabled, 1 = Open, 2 = Closed

APPENDIX B B.4 MEMORY MAPPING

## F145 ENUMERATION: ALPHABET LETTER

| bitmask | type | bitmask | type | bitmask | type | bitmask | type |
|---------|------|---------|------|---------|------|---------|------|
| 0       | null | 7       | G    | 14      | N    | 21      | U    |
| 1       | Α    | 8       | Н    | 15      | 0    | 22      | V    |
| 2       | В    | 9       | I    | 16      | Р    | 23      | W    |
| 3       | С    | 10      | J    | 17      | Q    | 24      | Χ    |
| 4       | D    | 11      | K    | 18      | R    | 25      | Υ    |
| 5       | Е    | 12      | L    | 19      | S    | 26      | Z    |
| 6       | F    | 13      | М    | 20      | Т    |         |      |

F146 ENUMERATION: MISC. EVENT CAUSES

| bitmask | definition              |
|---------|-------------------------|
| 0       | EVENTS CLEARED          |
| 1       | OSCILLOGRAPHY TRIGGERED |
| 2       | DATE/TIME CHANGED       |
| 3       | DEF SETTINGS LOADED     |
| 4       | TEST MODE ON            |
| 5       | TEST MODE OFF           |
| 6       | POWER ON                |
| 7       | POWER OFF               |
| 8       | RELAY IN SERVICE        |
| 9       | RELAY OUT OF SERVICE    |
| 10      | WATCHDOG RESET          |
| 11      | OSCILLOGRAPHY CLEAR     |
| 12      | REBOOT COMMAND          |

# F147 ENUMERATION: LINE LENGTH UNITS

0 = km, 1 = miles

ENUMERATION: FAULT TYPE

| bitmask | fault type |
|---------|------------|
| 0       | NA         |
| 1       | AG         |
| 2       | BG         |
| 3       | CG         |
| 4       | AB         |
| 5       | BC         |

| bitmask | fault type |
|---------|------------|
| 6       | AC         |
| 7       | ABG        |
| 8       | BCG        |
| 9       | ACG        |
| 10      | ABC        |
| 11      | ABCG       |

F151
ENUMERATION: RTD SELECTION

| bitmask | RTD#   | bitmask | RTD#   | bitmask | RTD#     |
|---------|--------|---------|--------|---------|----------|
| 0       | NONE   | 17      | RTD 17 | 33      | RTD 33   |
| 1       | RTD 1  | 18      | RTD 18 | 34      | RTD 34   |
| 2       | RTD 2  | 19      | RTD 19 | 35      | RTD 35   |
| 3       | RTD 3  | 20      | RTD 20 | 36      | RTD 36   |
| 4       | RTD 4  | 21      | RTD 21 | 37      | RTD 37   |
| 5       | RTD 5  | 22      | RTD 22 | 38      | RTD 38   |
| 6       | RTD 6  | 23      | RTD 23 | 39      | RTD 39   |
| 7       | RTD 7  | 24      | RTD 24 | 40      | RTD 40   |
| 8       | RTD 8  | 25      | RTD 25 | 41      | RTD 41   |
| 9       | RTD 9  | 26      | RTD 26 | 42      | RTD 42   |
| 10      | RTD 10 | 27      | RTD 27 | 43      | RTD 43   |
| 11      | RTD 11 | 28      | RTD 28 | 44      | RTD 44   |
| 12      | RTD 12 | 29      | RTD 29 | 45      | RTD 45   |
| 13      | RTD 13 | 30      | RTD 30 | 46      | RTD 46   |
| 14      | RTD 14 | 31      | RTD 31 | 47      | RTD 47   |
| 15      | RTD 15 | 32      | RTD 32 | 48      | RTD 48   |
| 16      | RTD 16 |         |        |         | <u>.</u> |

# F152 ENUMERATION: SETTING GROUP

0 = Active Group, 1 = Group 1, 2 = Group 2, 3 = Group 3 4 = Group 4, 5 = Group 5, 6 = Group 6, 7 = Group 7, 8 = Group 8

# F154 ENUMERATION: DISTANCE DIRECTION

0 = Forward, 1 = Reverse

# F155 ENUMERATION: REMOTE DEVICE STATE

0 = Offline, 1 = Online

# F156 ENUMERATION: REMOTE INPUT BIT PAIRS

| bitmask | RTD#   | bitmask | RTD#      | bitmask | RTD#      |
|---------|--------|---------|-----------|---------|-----------|
| 0       | NONE   | 22      | DNA-22    | 44      | UserSt-12 |
| 1       | DNA-1  | 23      | DNA-23    | 45      | UserSt-13 |
| 2       | DNA-2  | 24      | DNA-24    | 46      | UserSt-14 |
| 3       | DNA-3  | 25      | DNA-25    | 47      | UserSt-15 |
| 4       | DNA-4  | 26      | DNA-26    | 48      | UserSt-16 |
| 5       | DNA-5  | 27      | DNA-27    | 49      | UserSt-17 |
| 6       | DNA-6  | 28      | DNA-28    | 50      | UserSt-18 |
| 7       | DNA-7  | 29      | DNA-29    | 51      | UserSt-19 |
| 8       | DNA-8  | 30      | DNA-30    | 52      | UserSt-20 |
| 9       | DNA-9  | 31      | DNA-31    | 53      | UserSt-21 |
| 10      | DNA-10 | 32      | DNA-32    | 54      | UserSt-22 |
| 11      | DNA-11 | 33      | UserSt-1  | 55      | UserSt-23 |
| 12      | DNA-12 | 34      | UserSt-2  | 56      | UserSt-24 |
| 13      | DNA-13 | 35      | UserSt-3  | 57      | UserSt-25 |
| 14      | DNA-14 | 36      | UserSt-4  | 58      | UserSt-26 |
| 15      | DNA-15 | 37      | UserSt-5  | 59      | UserSt-27 |
| 16      | DNA-16 | 38      | UserSt-6  | 60      | UserSt-28 |
| 17      | DNA-17 | 39      | UserSt-7  | 61      | UserSt-29 |
| 18      | DNA-18 | 40      | UserSt-8  | 62      | UserSt-30 |
| 19      | DNA-19 | 41      | UserSt-9  | 63      | UserSt-31 |
| 20      | DNA-20 | 42      | UserSt-10 | 64      | UserSt-32 |
| 21      | DNA-21 | 43      | UserSt-11 |         |           |

# F157 ENUMERATION: BREAKER MODE

0 = 3-Pole, 1 = 1-Pole

# F158

# **ENUMERATION: SCHEME CALIBRATION TEST**

0 = Normal, 1 = Symmetry 1, 2 = Symmetry 2, 3 = Delay 1 4 = Delay 2

## F159

# **ENUMERATION: BREAKER AUX CONTACT KEYING**

0 = 52a, 1 = 52b, 2 = None

# F166

### **ENUMERATION: AUXILIARY VT CONNECTION TYPE**

0 = Vn, 1 = Vag, 2 = Vbg, 3 = Vcg, 4 = Vab, 5 = Vbc, 6 = Vca

#### F167

## **ENUMERATION: SIGNAL SOURCE**

0 = SRC 1, 1 = SRC 2, 2 = SRC 3, 3 = SRC 4, 4 = SRC 5, 5 = SRC 6

#### F168

# **ENUMERATION: INRUSH INHIBIT FUNCTION**

0 = Disabled, 1 = 2nd

#### F169

### **ENUMERATION: OVEREXCITATION INHIBIT FUNCTION**

0 = Disabled, 1 = 5th

#### F170

# ENUMERATION: LOW/HIGH OFFSET & GAIN TRANSDUCER I/O SELECTION

0 = LOW, 1 = HIGH

#### F171

#### **ENUMERATION: TRANSDUCER CHANNEL INPUT TYPE**

0 = dcmA IN, 1 = OHMS IN, 2 = RTD IN, 3 = dcmA OUT

# F172

## **ENUMERATION: SLOT LETTERS**

| oitmask | slot | bitmask | slot | bi |
|---------|------|---------|------|----|
| 0       | F    | 4       | K    |    |
| 1       | G    | 5       | L    |    |
| 2       | Н    | 6       | М    |    |
| 3       | J    | 7       | N    |    |

| bitmask | slot |
|---------|------|
| 8       | Р    |
| 9       | R    |
| 10      | S    |
| 11      | Т    |

| bitmask | slot |
|---------|------|
| 12      | U    |
| 13      | ٧    |
| 14      | W    |
| 15      | Χ    |

## F173

### **ENUMERATION: TRANSDUCER DCMA I/O RANGE**

| bitmask | dcmA I/O range |
|---------|----------------|
| 0       | 0 to -1 mA     |
| 1       | 0 to 1 mA      |
| 2       | –1 to 1 mA     |
| 3       | 0 to 5 mA      |
| 4       | 0 to 10 mA     |
| 5       | 0 to 20 mA     |
| 6       | 4 to 20 mA     |

# F174

#### **ENUMERATION: TRANSDUCER RTD INPUT TYPE**

0 = 100 Ohm Platinum, 1 = 120 Ohm Nickel, 2 = 100 Ohm Nickel, 3 = 10 Ohm Copper

# **ENUMERATION: PHASE LETTERS**

0 = A, 1 = B, 2 = C

### F176

# **ENUMERATION: SYNCHROCHECK DEAD SOURCE SELECT**

| bitmask | synchrocheck dead source |
|---------|--------------------------|
| 0       | None                     |
| 1       | LV1 and DV2              |
| 2       | DV1 and LV2              |
| 3       | DV1 or DV2               |
| 4       | DV1 Xor DV2              |
| 5       | DV1 and DV2              |

#### F177

#### **ENUMERATION: COMMUNICATION PORT**

0 = NONE, 1 = COM1-RS485, 2 = COM2-RS485, 3 = FRONT PANEL-RS232, 4 = NETWORK

### F178

## **ENUMERATION: DATA LOGGER RATES**

 $0 = 1 \text{ sec}, \ 1 = 1 \text{ min}, \ 2 = 5 \text{ min}, \ 3 = 10 \text{ min}, \ 4 = 15 \text{ min}, \ 5 = 20 \text{ min}, \ 6 = 30 \text{ min}, \ 7 = 60 \text{ min}$ 

# F179

# **ENUMERATION: NEGATIVE SEQUENCE DIR OC TYPE**

0 = Neg Sequence, 1 = Zero Sequence

#### F180

# **ENUMERATION: PHASE/GROUND**

0 = PHASE, 1 = GROUND

## F181

# **ENUMERATION: ODD/EVEN/NONE**

0 = ODD, 1 = EVEN, 2 = NONE

# F183 ENUMERATION AC INPUT WAVEFORMS

| bitmask | definition       |
|---------|------------------|
| 0       | Off              |
| 1       | 8 samples/cycle  |
| 2       | 16 samples/cycle |
| 3       | 32 samples/cycle |
| 4       | 64 samples/cycle |

#### F185

## **ENUMERATION PHASE A,B,C, GROUND SELECTOR**

0 = A, 1 = B, 2 = C, 3 = G

#### F186

#### **ENUMERATION MEASUREMENT MODE**

0 = Phase to Ground, 1 = Phase to Phase

# F190 ENUMERATION Simulated Keypress

| bitmask | keypress              |
|---------|-----------------------|
| 0       | use between real keys |
| 1       | 1                     |
| 2       | 2                     |
| 3       | 3                     |
| 4       | 4                     |
| 5       | 5                     |
| 6       | 6                     |
| 7       | 7                     |
| 8       | 8                     |
| 9       | 9                     |
| 10      | 0                     |
| 11      | Decimal Pt            |
| 12      | Plus/Minus            |

| bitmask | keypress      |
|---------|---------------|
| 13      | Value Up      |
| 14      | Value Down    |
| 15      | Message Up    |
| 16      | Message Down  |
| 17      | Message Left  |
| 18      | Message Right |
| 19      | Menu          |
| 20      | Help          |
| 21      | Escape        |
| 22      | Enter         |
| 23      | Reset         |
| 24      | User 1        |
| 25      | User 2        |
| 26      | User 3        |
|         |               |

#### F192

## **ENUMERATION ETHERNET OPERATION MODE**

0 = Half-Duplex, 1 = Full-Duplex

# F194

# **ENUMERATION DNP SCALE**

A bitmask of 0 = 0.01, 1 = 0.1, 2 = 1, 3 = 10, 4 = 100, 5 = 1000

# F195 ENUMERATION SINGLE POLE TRIP MODE

A bitmask of 0 = Disabled, 1 = 3 Pole Only, 2 = 3 Pole & 1 Pole

# F196 ENUMERATION NEUTRAL DIR OC OPERATE CURRENT

0 = Calculated 3I0, 1 = Measured IG

# F197 ENUMERATION DNP BINARY INPUT POINT BLOCK

| bitmask | Input Point Block        |
|---------|--------------------------|
| 0       | Not Used                 |
| 1       | Virtual Inputs 1 to 16   |
| 2       | Virtual Inputs 17 to 32  |
| 3       | Virtual Outputs 1 to 16  |
| 4       | Virtual Outputs 17 to 32 |
| 5       | Virtual Outputs 33 to 48 |
| 6       | Virtual Outputs 49 to 64 |
| 7       | Contact Inputs 1 to 16   |
| 8       | Contact Inputs 17 to 32  |
| 9       | Contact Inputs 33 to 48  |
| 10      | Contact Inputs 49 to 64  |
| 11      | Contact Inputs 65 to 80  |
| 12      | Contact Inputs 81 to 96  |
| 13      | Contact Outputs 1 to 16  |
| 14      | Contact Outputs 17 to 32 |
| 15      | Contact Outputs 33 to 48 |
| 16      | Contact Outputs 49 to 64 |
| 17      | Remote Inputs 1 to 16    |
| 18      | Remote Inputs 17 to 32   |
| 19      | Remote Devs 1 to 16      |
| 20      | Elements 1 to 16         |
| 21      | Elements 17 to 32        |
| 22      | Elements 33 to 48        |
| 23      | Elements 49 to 64        |
| 24      | Elements 65 to 80        |
| 25      | Elements 81 to 96        |
| 26      | Elements 97 to 112       |
| 27      | Elements 113 to 128      |
| 28      | Elements 129 to 144      |
| 29      | Elements 145 to 160      |
| 30      | Elements 161 to 176      |
| 31      | Elements 177 to 192      |
| 32      | Elements 193 to 208      |
| 33      | Elements 209 to 224      |
| 34      | Elements 225 to 240      |

| bitmask | Input Point Block   |
|---------|---------------------|
| 35      | Elements 241 to 256 |
| 36      | Elements 257 to 272 |
| 37      | Elements 273 to 288 |
| 38      | Elements 289 to 304 |
| 39      | Elements 305 to 320 |
| 40      | Elements 321 to 336 |
| 41      | Elements 337 to 352 |
| 42      | Elements 353 to 368 |
| 43      | Elements 369 to 384 |
| 44      | Elements 385 to 400 |
| 45      | Elements 401 to 406 |
| 46      | Elements 417 to 432 |
| 47      | Elements 433 to 448 |
| 48      | Elements 449 to 464 |
| 49      | Elements 465 to 480 |
| 50      | Elements 481 to 496 |
| 51      | Elements 497 to 512 |
| 52      | Elements 513 to 528 |
| 53      | Elements 529 to 544 |
| 54      | Elements 545 to 560 |
| 55      | LED States 1 to 16  |
| 56      | LED States 17 to 32 |
| 57      | Self Tests 1 to 16  |
| 58      | Self Tests 17 to 32 |

# F200 TEXT40 40 CHARACTER ASCII TEXT

20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

# F201 TEXT8 8 CHARACTER ASCII PASSCODE

4 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

# F202 TEXT20 20 CHARACTER ASCII TEXT

10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

# F203 TEXT16 16 CHARACTER ASCII TEXT

# F204 TEXT80 80 CHARACTER ASCII TEXT

# F205 TEXT12 12 CHARACTER ASCII TEXT

APPENDIX B B.4 MEMORY MAPPING

#### F206

#### **TEXT6 6 CHARACTER ASCII TEXT**

#### F207

**TEXT4 4 CHARACTER ASCII TEXT** 

#### F208

#### **TEXT2 2 CHARACTER ASCII TEXT**

#### F222

#### **ENUMERATION TEST ENUMERATION**

0 = Test Enumeration 0, 1 = Test Enumeration 1

#### F230

#### **ENUMERATION DIRECTIONAL POLARIZING**

0 = Voltage, 1 = Current, 2 = Dual

#### F231

#### **ENUMERATION POLARIZING VOLTAGE**

0 = Calculated V0, 1 = Measured VX

#### F300

# UR\_UINT16 FLEXLOGIC BASE TYPE (6 bit type)

The FlexLogic<sup>™</sup> BASE type is 6 bits and is combined with a 9 bit descriptor and 1 bit for protection element to form a 16 bit value. The combined bits are of the form: PTTTTTTDDDDDDDDD, where P bit if set, indicates that the FlexLogic<sup>™</sup> type is associated with a protection element state and T represents bits for the BASE type, and D represents bits for the descriptor.

The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range.

- [0] Off(0) this is boolean FALSE value
- [0] On (1)This is boolean TRUE value
- [2] CONTACT INPUTS (1 96)
- [3] CONTACT INPUTS OFF (1-96)
- [4] VIRTUAL INPUTS (1-64)
- [6] VIRTUAL OUTPUTS (1-64)
- [10] CONTACT OUTPUTS VOLTAGE DETECTED (1-64)
- [11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1-64)
- [12] CONTACT OUTPUTS CURRENT DETECTED (1-64)
- [13] CONTACT OUTPUTS CURRENT OFF DETECTED (1-64)
- [14] REMOTE INPUTS (1-32)
- [28] INSERT (Via Keypad only)
- [32] END
- [34] NOT (1 INPUT)
- [36] 2 INPUT XOR (0)
- [38] LATCH SET/RESET (2 INPUTS)
- [40] OR (2-16 INPUTS)
- [42] AND (2-16 INPUTS)
- [44] NOR (2-16 INPUTS)
- [46] NAND (2-16 INPUTS)
- [48] TIMER (1-32)

- [50] ASSIGN VIRTUAL OUTPUT (1 64)
- [52] SELF-TEST ERROR (See F141 for range)
- [56] ACTIVE SETTING GROUP (1-8)
- [62] MISCELLANEOUS EVENTS (See F146 for range)
- [64-127] ELEMENT STATES

(Refer to Memory Map Element States Section)

# F400

#### **UR\_UINT16 CT/VT BANK SELECTION**

| bitmask | bank selection        |  |  |  |
|---------|-----------------------|--|--|--|
| 0       | Card 1 Contact 1 to 4 |  |  |  |
| 1       | Card 1 Contact 5 to 8 |  |  |  |
| 2       | Card 2 Contact 1 to 4 |  |  |  |
| 3       | Card 2 Contact 5 to 8 |  |  |  |
| 4       | Card 3 Contact 1 to 4 |  |  |  |
| 5       | Card 3 Contact 5 to 8 |  |  |  |

#### F500

## **UR\_UINT16 PACKED BITFIELD**

First register indicates I/O state with bits 0(MSB)-15(LSB) corresponding to I/O state 1-16. The second register indicates I/O state with bits 0-15 corresponding to I/O state 17-32 (if required) The third register indicates I/O state with bits 0-15 corresponding to I/O state 33-48 (if required). The fourth register indicates I/O state with bits 0-15 corresponding to I/O state 49-64 (if required).

The number of registers required is determined by the specific data item. A bit value of 0 = Off, 1 = On

#### F501

#### **UR\_UINT16 LED STATUS**

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

#### F502

#### **BITFIELD ELEMENT OPERATE STATES**

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID X is bit [X mod 16] in register [X/16].

# F504

#### **BITFIELD 3 PHASE ELEMENT STATE**

| bitmask | element state   |  |
|---------|-----------------|--|
| 0       | Pickup          |  |
| 1       | Operate         |  |
| 2       | Pickup Phase A  |  |
| 3       | Pickup Phase B  |  |
| 4       | Pickup Phase C  |  |
| 5       | Operate Phase A |  |
| 6       | Operate Phase B |  |

| bitmask | element state   |  |
|---------|-----------------|--|
| 7       | Operate Phase C |  |

# F505

#### **BITFIELD CONTACT OUTPUT STATE**

0 = Contact State, 1 = Voltage Detected, 2 = Current Detected

# F506|

#### BITFIELD 1 PHASE ELEMENT STATE

0 = Pickup, 1 = Operate

#### F507

#### **BITFIELD COUNTER ELEMENT STATE**

0 = Count Greater Than, 1 = Count Equal To, 2 = Count Less Than

# F508

## **BITFIELD DISTANCE ELEMENT STATE**

| bitmask | distance element state |  |
|---------|------------------------|--|
| 0       | Pickup                 |  |
| 1       | Operate                |  |
| 2       | Pickup AB              |  |
| 3       | Pickup BC              |  |
| 4       | Pickup CA              |  |
| 5       | Operate AB             |  |
| 6       | Operate BC             |  |
| 7       | Operate CA             |  |
| 8       | Timed                  |  |
| 9       | Operate IAB            |  |
| 10      | Operate IBC            |  |
| 11      | Operate ICA            |  |

#### F509

# **BITFIELD SIMPLE ELEMENT STATE**

0 = Operate

# F511

# **BITFIELD 3 PHASE SIMPLE ELEMENT STATE**

0 = Operate, 1 = Operate A, 2 = Operate B, 3 = Operate C

# F513

#### **ENUMERATION POWER SWING MODE**

0 = Two Step, 1 = Three Step

#### F514

#### **ENUMERATION POWER SWING TRIP MODE**

0 = Delayed, 1 = Early

#### F515

## **ENUMERATION ELEMENT INPUT MODE**

0 = SIGNED, 1 = ABSOLUTE

#### F516

## **ENUMERATION ELEMENT COMPARE MODE**

0 = LEVEL, 1 = DELTA

#### F517

#### **ENUMERATION ELEMENT DIRECTION OPERATION**

0 = OVER, 1 = UNDER

#### F518

#### **ENUMERATION FlexElement Units**

0 = Milliseconds, 1 = Seconds, 2 = Minutes

#### F600

## **UR\_UINT16 FlexAnalog Parameter**

The 16-bit value corresponds to the modbus address of the value to be used when this parameter is selected. Only certain values may be used as FlexAnalogs (basically all the metering quantities used in protection)

#### MMI\_FLASH ENUMERATION

# Flash message definitions for Front-panel MMI

| bitmask | Flash Message                      |  |  |  |
|---------|------------------------------------|--|--|--|
| 1       | ADJUSTED VALUE HAS BEEN STORED     |  |  |  |
| 2       | ENTERED PASSCODE IS INVALID        |  |  |  |
| 3       | COMMAND EXECUTED                   |  |  |  |
| 4       | DEFAULT MESSAGE HAS BEEN ADDED     |  |  |  |
| 5       | DEFAULT MESSAGE HAS BEEN REMOVED   |  |  |  |
| 6       | INPUT FUNCTION IS ALREADY ASSIGNED |  |  |  |
| 7       | PRESS [ENTER] TO ADD AS DEFAULT    |  |  |  |
| 8       | PRESS [ENTER] TO REMOVE MESSAGE    |  |  |  |
| 9       | PRESS [ENTER] TO BEGIN TEXT EDIT   |  |  |  |
| 10      | ENTRY MISMATCH - CODE NOT STORED   |  |  |  |
| 11      | PRESSED KEY IS INVALID HERE        |  |  |  |
| 12      | INVALID KEY: MUST BE IN LOCAL MODE |  |  |  |
| 13      | NEW PASSWORD HAS BEEN STORED       |  |  |  |
| 14      | PLEASE ENTER A NON-ZERO PASSCODE   |  |  |  |
| 15      | NO ACTIVE TARGETS (TESTING LEDS)   |  |  |  |
| 16      | OUT OF RANGE - VALUE NOT STORED    |  |  |  |

| bitmask | Flash Message                          |  |  |  |
|---------|----------------------------------------|--|--|--|
| 17      | RESETTING LATCHED CONDITIONS           |  |  |  |
| 18      | SETPOINT ACCESS IS NOW ALLOWED         |  |  |  |
| 19      | SETPOINT ACCESS DENIED (PASSCODE)      |  |  |  |
| 20      | SETPOINT ACCESS IS NOW RESTRICTED      |  |  |  |
| 21      | NEW SETTING HAS BEEN STORED            |  |  |  |
| 22      | SETPOINT ACCESS DENIED (SWITCH)        |  |  |  |
| 23      | DATA NOT ACCEPTED                      |  |  |  |
| 24      | NOT ALL CONDITIONS HAVE BEEN RESET     |  |  |  |
| 25      | DATE NOT ACCEPTED IRIGB IS ENABLED     |  |  |  |
| 26      | NOT EXECUTED                           |  |  |  |
| 27      | DISPLAY ADDED TO USER DISPLAY LIST     |  |  |  |
| 28      | DISPLAY NOT ADDED TO USER DISPLAY LIST |  |  |  |
| 29      | DISPLAY REMOVED FROM USER DISPLAY LIST |  |  |  |

# MMI\_PASSWORD\_TYPE ENUMERATION Password types for display in password prompts

| bitmask | password type |  |
|---------|---------------|--|
| 0       | No            |  |
| 1       | MASTER        |  |
| 2       | SETTING       |  |
| 3       | COMMAND       |  |
| 4       | FACTORY       |  |

# MMI\_SETTING\_TYPE ENUMERATION Setting types for display in web pages

| bitmask | Setting Type            |  |  |  |
|---------|-------------------------|--|--|--|
| 0       | Unrestricted Setting    |  |  |  |
| 1       | Master-accessed Setting |  |  |  |
| 2       | Setting                 |  |  |  |
| 3       | Command                 |  |  |  |
| 4       | Factory Setting         |  |  |  |

B

**C.1.1 UCA** 

The **Utility Communications Architecture** (UCA) version 2 represents an attempt by utilities and vendors of electronic equipment to produce standardized communications systems. There is a set of reference documents available from the Electric Power Research Institute (EPRI) and vendors of UCA/MMS software libraries that describe the complete capabilities of the UCA. Following, is a description of the subset of UCA/MMS features that are supported by the UR relay. The reference document set includes:

- Introduction to UCA version 2
- Generic Object Models for Substation & Feeder Equipment (GOMSFE)
- Common Application Service Models (CASM) and Mapping to MMS
- UCA Version 2 Profiles

These documents can be obtained from <a href="ftp://www.sisconet.com/epri/subdemo/uca2.0">ftp://www.sisconet.com/epri/subdemo/uca2.0</a>. It is strongly recommended that all those involved with any UCA implementation obtain this document set.

#### **COMMUNICATION PROFILES:**

The UCA specifies a number of possibilities for communicating with electronic devices based on the OSI Reference Model. The UR relay uses the seven layer OSI stack (TP4/CLNP and TCP/IP profiles). Refer to the "UCA Version 2 Profiles" reference document for details.

The TP4/CLNP profile requires the UR relay to have a network address or Network Service Access Point (NSAP) in order to establish a communication link. The TCP/IP profile requires the UR relay to have an IP address in order to establish a communication link. These addresses are set in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK menu. Note that the UR relay supports UCA operation over the TP4/CLNP or the TCP/IP stacks and also supports operation over both stacks simultaneously. It is possible to have up to two simultaneous connections. This is in addition to DNP and Modbus/TCP (non-UCA) connections.

**C.1.2 MMS** 

The UCA specifies the use of the **Manufacturing Message Specification** (MMS) at the upper (Application) layer for transfer of real-time data. This protocol has been in existence for a number of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Data can be grouped to form objects and be mapped to MMS services. Refer to the "GOMSFE" and "CASM" reference documents for details.

# **SUPPORTED OBJECTS:**

The "GOMSFE" document describes a number of communication objects. Within these objects are items, some of which are mandatory and some of which are optional, depending on the implementation. The UR relay supports the following GOMSFE objects:

| DI (device identity)               | PHIZ (high impedance ground detector)           |
|------------------------------------|-------------------------------------------------|
| GCTL (generic control)             | PIOC (instantaneous overcurrent relay)          |
| GIND (generic indicator)           | POVR (overvoltage relay)                        |
| GLOBE (global data)                | PTOC (time overcurrent relay)                   |
| MMXU (polyphase measurement unit)  | PUVR (under voltage relay)                      |
| PBRL (phase balance current relay) | PVPH (volts per hertz relay)                    |
| PBRO (basic relay object)          | ctRATO (CT ratio information)                   |
| PDIF (differential relay)          | vtRATO (VT ratio information)                   |
| PDIS (distance)                    | RREC (reclosing relay)                          |
| PDOC (directional overcurrent)     | RSYN (synchronizing or synchronism-check relay) |
| PFRQ (frequency relay)             | XCBR (circuit breaker)                          |

UCA data can be accessed through the "UCADevice" MMS domain.

#### PEER-TO-PEER COMMUNICATION:

Peer-to-peer communication of digital state information, using the UCA GOOSE data object, is supported via the use of the UR Remote Inputs/Outputs feature. This feature allows digital points to be transferred between any UCA conforming devices.

#### **FILE SERVICES:**

MMS file services are supported to allow transfer of Oscillography, Event Record, or other files from a UR relay.

## **COMMUNICATION SOFTWARE UTILITIES:**

The exact structure and values of the implemented objects implemented can be seen by connecting to a UR relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS DDE/OPC" server from Sisco Inc.

#### **NON-UCA DATA:**

The UR relay makes available a number of non-UCA data items. These data items can be accessed through the "UR" MMS domain. UCA data can be accessed through the "UCADevice" MMS domain.

# a) PROTOCOL IMPLEMENTATION AND CONFORMANCE STATEMENT (PICS)



The UR relay functions as a server only; a UR relay cannot be configured as a client. Thus, the following list of supported services is for server operation only:

The MMS supported services are as follows:

#### **CONNECTION MANAGEMENT SERVICES:**

- Initiate
- Conclude
- Cancel
- Abort
- Reject

# VMD SUPPORT SERVICES:

- Status
- GetNameList
- Identify

#### **VARIABLE ACCESS SERVICES:**

- Read
- Write
- InformationReport
- GetVariableAccessAttributes
- GetNamedVariableListAttributes

# **OPERATOR COMMUNICATION SERVICES:**

(none)

#### **SEMAPHORE MANAGEMENT SERVICES:**

(none)

## **DOMAIN MANAGEMENT SERVICES:**

GetDomainAttributes

# PROGRAM INVOCATION MANAGEMENT SERVICES:

(none)

#### **EVENT MANAGEMENT SERVICES:**

(none)

# C

## **JOURNAL MANAGEMENT SERVICES:**

(none)

## **FILE MANAGEMENT SERVICES:**

- ObtainFile
- FileOpen
- FileRead
- FileClose
- FileDirectory

The following MMS parameters are supported:

- STR1 (Arrays)
- STR2 (Structures)
- NEST (Nesting Levels of STR1 and STR2) 1
- VNAM (Named Variables)
- VADR (Unnamed Variables)
- VALT (Alternate Access Variables)
- VLIS (Named Variable Lists)
- REAL (ASN.1 REAL Type)

# b) MODEL IMPLEMENTATION CONFORMANCE (MIC)

This section provides details of the UCA object models supported by the UR relay. Note that not all of the protective device functions are applicable to all UR relays.

Table C-1: DEVICE IDENTITY - DI

| NAME   | M/O | RWEC |
|--------|-----|------|
| Name   | m   | rw   |
| Class  | 0   | rw   |
| d      | 0   | rw   |
| Own    | 0   | rw   |
| Loc    | 0   | rw   |
| VndID  | m   | r    |
| CommID | 0   | rw   |

# Table C-2: GENERIC CONTROL - GCTL

| FC | NAME       | CLASS | RWECS | DESCRIPTION                     |
|----|------------|-------|-------|---------------------------------|
| ST | BO <n></n> | SI    | rw    | Generic Single Point Indication |
| CO | BO <n></n> | SI    | rw    | Generic Binary Output           |
| CF | BO <n></n> | SBOCF | rw    | SBO Configuration               |
| DC | LN         | d     | rw    | Description for brick           |
|    | BO <n></n> | d     | rw    | Description for each point      |



Actual instantiation of GCTL objects is as follows:

GCTL1 = Virtual Inputs (32 total points - SI1 to SI32); includes SBO functionality.

## Table C-3: GENERIC INDICATOR - GIND

| FC | NAME        | CLASS  | RWECS | DESCRIPTION                      |
|----|-------------|--------|-------|----------------------------------|
| ST | SIG <n></n> | SIG    | r     | Generic Indication (block of 16) |
| DC | LN          | d      | rw    | Description for brick            |
| RP | BrcbST      | BasRCB | rw    | Controls reporting of STATUS     |



Actual instantiation of GIND objects is as follows:

GIND1 = Contact Inputs (96 total points – SIG1 to SIG6)

GIND2 = Contact Outputs (64 total points - SIG1 to SIG4)

GIND3 = Virtual Inputs (32 total points – SIG1 to SIG2)

GIND4 = Virtual Outputs (64 total points – SIG1 to SIG4)

GIND5 = Remote Inputs (32 total points – SIG1 to SIG2)

GIND6 = Flexstates (16 total points – SIG1 representing Flexstates 1 to 16)

#### Table C-4: GLOBAL DATA - GLOBE

| FC | OBJECT NAME | CLASS | RWECS | DESCRIPTION                                           |
|----|-------------|-------|-------|-------------------------------------------------------|
| ST | ModeDS      | SIT   | r     | Device is: in test, off-line, available, or unhealthy |
|    | LocRemDS    | SIT   | r     | The mode of control, local or remote (DevST)          |
|    | ActSG       | INT8U | r     | Active Settings Group                                 |
|    | EditSG      | INT8u | r     | Settings Group selected for read/write operation      |
| CO | CopySG      | INT8U | W     | Selects Settings Group for read/writer operation      |
|    | IndRs       | BOOL  | W     | Resets ALL targets                                    |
| CF | ClockTOD    | BTIME | rw    | Date and time                                         |
| RP | GOOSE       | PACT  | rw    | Reports IED Inputs and Ouputs                         |

# Table C-5: MEASUREMENT UNIT (POLYPHASE) - MMXU

| OBJECT NAME | CLASS  | RWECS | DESCRIPTION                               |
|-------------|--------|-------|-------------------------------------------|
| V           | WYE    | rw    | Voltage on phase A, B, C to G             |
| PPV         | DELTA  | rw    | Voltage on AB, BC, CA                     |
| A           | WYE    | rw    | Current in phase A, B, C, and N           |
| W           | WYE    | rw    | Watts in phase A, B, C                    |
| TotW        | Al     | rw    | Total watts in all three phases           |
| Var         | WYE    | rw    | Vars in phase A, B, C                     |
| TotVar      | Al     | rw    | Total vars in all three phases            |
| VA          | WYE    | rw    | VA in phase A, B, C                       |
| TotVA       | Al     | rw    | Total VA in all 3 phases                  |
| PF          | WYE    | rw    | Power Factor for phase A, B, C            |
| AvgPF       | Al     | rw    | Average Power Factor for all three phases |
| Hz          | Al     | rw    | Power system frequency                    |
| All MMXU.MX | ACF    | rw    | Configuration of ALL included MMXU.MX     |
| LN          | d      | rw    | Description for brick                     |
| All MMXU.MX | d      | rw    | Description of ALL included MMXU.MX       |
| BrcbMX      | BasRCB | rw    | Controls reporting of measurements        |



Actual instantiation of MMXU objects is as follows:

1 MMXU per Source (as determined from the 'product order code')

# Table C-6: PROTECTIVE ELEMENTS

| FC | OBJECT NAME | CLASS  | RWECS | DESCRIPTION                                    |
|----|-------------|--------|-------|------------------------------------------------|
| ST | Out         | BOOL   | r     | 1 = Element operated, 2 = Element not operated |
|    | Tar         | PhsTar | r     | Targets since last reset                       |
|    | FctDS       | SIT    | r     | Function is enabled/disabled                   |
|    | PuGrp       | INT8U  | r     | Settings group selected for use                |
| СО | EnaDisFct   | DCO    | W     | 1 = Element function enabled, 0 = disabled     |
|    | RsTar       | ВО     | w     | Reset ALL Elements/Targets                     |
|    | RsLat       | ВО     | W     | Reset ALL Elements/Targets                     |
| DC | LN          | d      | rw    | Description for brick                          |
| ĺ  | ElementSt   | d      | r     | Element state string                           |

The following GOMSFE objects are defined by the object model described via the above table:

- PBRO (basic relay object)
- PDIF (differential relay)
- PDIS (distance)
- PDOC (directional overcurrent)
- PFRQ (frequency relay)
- PHIZ (high impedance ground detector)
- PIOC (instantaneous overcurrent relay)
- POVR (over voltage relay)
- PTOC (time overcurrent relay)
- PUVR (under voltage relay)
- RSYN (synchronizing or synchronism-check relay)
- POVR (overvoltage)
- PVPH (volts per hertz relay)
- PBRL (phase balance current relay)



Actual instantiation of these objects is determined by the number of the corresponding elements present in the UR as per the 'product order code'.

#### Table C-7: CT RATIO INFORMATION - ctRATO

| OBJECT NAME | CLASS | RWECS | DESCRIPTION                     |
|-------------|-------|-------|---------------------------------|
| PhsARat     | RATIO | rw    | Primary/secondary winding ratio |
| NeutARat    | RATIO | rw    | Primary/secondary winding ratio |
| LN          | d     | rw    | Description for brick           |



Actual instantiation of ctRATO objects is as follows:

1 ctRATO per Source (as determined from the 'product order code').

# Table C-8: VT RATIO INFORMATION - vtRATO

| OBJECT NAME | CLASS | RWECS | DESCRIPTION                     |
|-------------|-------|-------|---------------------------------|
| PhsVRat     | RATIO | rw    | Primary/secondary winding ratio |
| LN          | d     | rw    | Description for brick           |



Actual instantiation of vtRATO objects is as follows:

1 vtRATO per Source (as determined from the 'product order code').

Table C-9: RECLOSING RELAY - RREC

| FC | OBJECT NAME | CLASS | RWECS | DESCRIPTION                                    |
|----|-------------|-------|-------|------------------------------------------------|
| ST | Out         | BOOL  | r     | 1 = Element operated, 2 = Element not operated |
|    | FctDS       | SIT   | r     | Function is enabled/disabled                   |
|    | PuGrp       | INT8U | r     | Settings group selected for use                |
| SG | ReclSeq     | SHOTS | rw    | Reclosing Sequence                             |
| СО | EnaDisFct   | DCO   | W     | 1 = Element function enabled, 0 = disabled     |
|    | RsTar       | ВО    | w     | Reset ALL Elements/Targets                     |
|    | RsLat       | ВО    | W     | Reset ALL Elements/Targets                     |
| CF | ReclSeq     | ACF   | rw    | Configuration for RREC.SG                      |
| DC | LN          | d     | rw    | Description for brick                          |
|    | ElementSt   | d     | r     | Element state string                           |



Actual instantiation of RREC objects is determined by the number of autoreclose elements present in the UR as per the 'product order code'.

Also note that the SHOTS class data (i.e. Tmr1, Tmr2, Tmr3, Tmr4, RsTmr) is specified to be of type INT16S (16 bit signed integer); this data type is not large enough to properly display the full range of these settings from the UR. Numbers larger than 32768 will be displayed incorrectly.

Table C-10: RECLOSING RELAY - XCBR

| FC | OBJECT NAME | CLASS  | RWECS | DESCRIPTION                                       |
|----|-------------|--------|-------|---------------------------------------------------|
| ST | SwDS        | SIT    | rw    | Switch Device Status                              |
|    | SwPoleDS    | BSTR8  | rw    | Switch Pole Device Status                         |
|    | PoleDiscSt  | SI     | rw    | All CB poles did not operate within time interval |
| CO | ODSw        | DCO    | rw    | The command to open/close the switch              |
| CF | ODSwSBO     | SBOCF  | rw    | Configuration for all included XCBR.CO            |
| DC | LN          | d      | rw    | Description for brick                             |
| RP | brcbST      | BasRCB | rw    | Controls reporting of Status Points               |

**C.1.3 UCA REPORTING** 

A built-in TCP/IP connection timeout of two minutes is employed by the UR to detect "dead" connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the UR. This frees up the connection to be used by other clients. Therefore, when using UCA reporting, clients should configure BasRCB objects such that an integrity report will be issued at least every 2 minutes (120000 ms). This ensures that the UR will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.

# **D.1.1 INTEROPERABILITY DOCUMENT**

This document is adapted from the IEC 60870-5-104 standard. For ths section the boxes indicate the following: **▼** – used in standard direction; **¬** – not used; **■** – cannot be selected in IEC 60870-5-104 standard.

# 1. SYSTEM OR DEVICE:

- System Definition
- ☐ Controlling Station Definition (Master)
- Controlled Station Definition (Slave)

# 2. NETWORK CONFIGURATION:

- Point-to-Point

  Multiple Point-to-Point
- MultipointMultipoint Star

# 3. PHYSICAL LAYER

## Transmission Speed (control direction):

| Unbalanced Interchange<br>Circuit V.24/V.28 Standard: | Unbalanced Interchange<br>Circuit V.24/V.28 Recommended<br>if >1200 bits/s: | Balanced Interchange Circuit<br>X.24/X.27: |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|--|
| 100 bits/sec.                                         | 2400 bits/sec.                                                              | 2400 bits/sec.                             |  |
| 200 bits/sec.                                         | 4800 bits/sec.                                                              | 4800 bits/sec.                             |  |
| 300 bits/sec.                                         | 9600 bits/sec.                                                              | 9600 bits/sec.                             |  |
| 600 bits/sec.                                         |                                                                             | 19200 bits/sec.                            |  |
| 1200 bits/sec.                                        |                                                                             | 38400 bits/sec.                            |  |
|                                                       |                                                                             | 56000 bits/sec.                            |  |
|                                                       |                                                                             | 64000 bits/sec.                            |  |

# **Transmission Speed (monitor direction):**

| Unbalanced Interchange<br>Circuit V.24/V.28 Standard: | Unbalanced Interchange<br>Circuit V.24/V.28 Recommended<br>if >1200 bits/s: | Balanced Interchange Circuit X.24/X.27: |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|--|
| 100 bits/sec.                                         | 2400 bits/sec.                                                              | 2400 bits/sec.                          |  |
| 200 bits/sec.                                         | 4800 bits/sec.                                                              | 4800 bits/sec.                          |  |
| 300 bits/sec.                                         | 9600 bits/sec.                                                              | 9600 bits/sec.                          |  |
| 600 bits/sec.                                         |                                                                             | 19200 bits/sec.                         |  |
| 1200 bits/sec.                                        |                                                                             | 38400 bits/sec.                         |  |
|                                                       |                                                                             | 56000 bits/sec.                         |  |
|                                                       |                                                                             | 64000 bits/sec.                         |  |

# 4. LINK LAYER

| Link Transmission Procedure:                                                                          | Address Field of the Link:               |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Balanced Transmision                                                                                  | Not Present (Balanced Transmission Only) |  |
| Unbalanced Transmission                                                                               | One Octet                                |  |
|                                                                                                       | Two Octets                               |  |
|                                                                                                       | Structured                               |  |
|                                                                                                       | Unstructured                             |  |
| Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard |                                          |  |

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

- The standard assignment of ADSUs to class 2 messages is used as follows:
- A special assignment of ADSUs to class 2 messages is used as follows:

#### 5. APPLICATION LAYER

## **Transmission Mode for Application Data:**

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion standard.

## **Common Address of ADSU:**

- One Octet
- Two Octets

# **Information Object Address:**

- One Octet
- Structured
- Two Octets
  ☑ Unstructured
- Three Octets

#### **Cause of Transmission:**

- One Octet
- Two Octets (with originator address). Originator address is set to zero if not used.

Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

## Selection of standard ASDUs:

For the following lists, the boxes indicate the following: 🗖 – used in standard direction; 🗖 – not used; 🔳 – cannot be selected in IEC 60870-5-104 standard.

# Process information in monitor direction

|                                                                             | M_SP_NA_1 |
|-----------------------------------------------------------------------------|-----------|
| - <del>■ &lt;2&gt; := Single-point information with time tag</del>          | M_SP_TA_1 |
| <3> := Double-point information                                             | M_DP_NA_1 |
| - <del></del>                                                               | M_DP_TA_1 |
| <5> := Step position information                                            | M_ST_NA_1 |
| · <del>■ &lt;6&gt; := Step position information with time tag</del>         | M_ST_TA_1 |
| <7> := Bitstring of 32 bits                                                 | M_BO_NA_1 |
| - <del>■ &lt;8&gt; := Bitstring of 32 bits with time tag</del>              | M_BO_TA_1 |
| <9> := Measured value, normalized value                                     | M_ME_NA_1 |
| - <del>■ &lt;10&gt; := Measured value, normalized value with time tag</del> | M_NE_TA_1 |
| <11> := Measured value, scaled value                                        | M_ME_NB_1 |
| - <del>12&gt; := Measured value, scaled value with time tag</del>           | M_NE_TB_1 |
| ▼ <13> := Measured value, short floating point value                        | M_ME_NC_1 |
| -= -<14> := Measured value, short floating point value with time tag        | M_NE_TC_1 |
|                                                                             | M_IT_NA_1 |
| - <del>■ &lt;16&gt; := Integrated totals with time tag</del>                | M_IT_TA_1 |
| - <del>17&gt; := Event of protection equipment with time tag</del>          | M_EP_TA_1 |
| -=                                                                          | M_EP_TB_1 |
| -=                                                                          | M_EP_TC_1 |
| <20> := Packed single-point information with status change detection        | M_SP_NA_1 |

| <21> := Measured value, normalized value without quantity descriptor                       | M_ME_ND_1 |
|--------------------------------------------------------------------------------------------|-----------|
| <30> := Single-point information with time tag CP56Time2a                                  | M_SP_TB_1 |
| <31> := Double-point information with time tag CP56Time2a                                  | M_DP_TB_1 |
| <32> := Step position information with time tag CP56Time2a                                 | M_ST_TB_1 |
| <33> := Bitstring of 32 bits with time tag CP56Time2a                                      | M_BO_TB_1 |
| <34> := Measured value, normalized value with time tag CP56Time2a                          | M_ME_TD_1 |
| <35> := Measured value, scaled value with time tag CP56Time2a                              | M_ME_TE_1 |
| <36> := Measured value, short floating point value with time tag CP56Time2a                | M_ME_TF_1 |
| <37> := Integrated totals with time tag CP56Time2a                                         | M_IT_TB_1 |
| <38> := Event of protection equipment with time tag CP56Time2a                             | M_EP_TD_1 |
| <39> := Packed start events of protection equipment with time tag CP56Time2a               | M_EP_TE_1 |
| <40> := Packed output circuit information of protection equipment with time tag CP56Time2a | M_EP_TF_1 |

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set <30> to <40> are used.

# Process information in control direction

| <45> := Single command                                                         | C_SC_NA_1 |
|--------------------------------------------------------------------------------|-----------|
| <46> := Double command                                                         | C_DC_NA_1 |
| <47> := Regulating step command                                                | C_RC_NA_1 |
| <48> := Set point command, normalized value                                    | C_SE_NA_1 |
| <49> := Set point command, scaled value                                        | C_SE_NB_1 |
| <50> := Set point command, short floating point value                          | C_SE_NC_1 |
| <51> := Bitstring of 32 bits                                                   | C_BO_NA_1 |
| <58> := Single command with time tag CP56Time2a                                | C_SC_TA_1 |
| <59> := Double command with time tag CP56Time2a                                | C_DC_TA_1 |
| <60> := Regulating step command with time tag CP56Time2a                       | C_RC_TA_1 |
| <61> := Set point command, normalized value with time tag CP56Time2a           | C_SE_TA_1 |
| <62> := Set point command, scaled value with time tag CP56Time2a               | C_SE_TB_1 |
| <63> := Set point command, short floating point value with time tag CP56Time2a | C_SE_TC_1 |
| <64> := Bitstring of 32 bits with time tag CP56Time2a                          | C_BO_TA_1 |

Either the ASDUs of the set <45> to <51> or of the set <58> to <64> are used.

# System information in monitor direction

| <70> := End of initialization | M_EI_NA_1 |
|-------------------------------|-----------|
|-------------------------------|-----------|

# System information in control direction

| <100> := Interrogation command                                      | C_IC_NA_1 |
|---------------------------------------------------------------------|-----------|
| <101> := Counter interrogation command                              | C_CI_NA_1 |
|                                                                     | C_RD_NA_1 |
| <103> := Clock synchronization command (see Clause 7.6 in standard) | C_CS_NA_1 |
| - <del>104&gt; := Test command</del>                                | C_TS_NA_1 |
| <105> := Reset process command                                      | C_RP_NA_1 |
| <106> := Delay acquisition command                                  | C_CD_NA_1 |
| <107> := Test command with time tag CP56Time2a                      | C_TS_TA_1 |

C\_CD\_NA\_1

## Parameter in control direction

| <110> := Parameter of measured value, normalized value           | PE_ME_NA_1 |
|------------------------------------------------------------------|------------|
| <111> := Parameter of measured value, scaled value               | PE_ME_NB_1 |
| <112> := Parameter of measured value, short floating point value | PE_ME_NC_1 |
| <113> := Parameter activation                                    | PE_AC_NA_1 |
| File transfer                                                    |            |
| <120> := File Ready                                              | F_FR_NA_1  |
| <121> := Section Ready                                           | F_SR_NA_1  |
| <122> := Call directory, select file, call file, call section    | F_SC_NA_1  |
| <123> := Last section, last segment                              | F_LS_NA_1  |
| <124> := Ack file, ack section                                   | F_AF_NA_1  |
| <125> := Segment                                                 | F_SG_NA_1  |

# Type identifier and cause of transmission assignments

<126> := Directory (blank or X, available only in monitor [standard] direction)

(station-specific parameters)

In the following table:

- Shaded boxes are not required.
- Black boxes are not permitted in this companion standard.
- Blank boxes indicate functions or ASDU not used.
- 'X' if only used in the standard direction

| TYPE | IDENTIFICATION |                  | CAUSE OF TRANSMISSION |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
|------|----------------|------------------|-----------------------|-------------|-------------|----------------------|------------|-------------------------|--------------|---------------------------|------------------------|---------------------------------|---------------|-----------------------------------------|--------------------------------------|-----------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|
|      |                | PERIODIC, CYCLIC | BACKGROUND SCAN       | SPONTANEOUS | INITIALIZED | REQUEST OR REQUESTED | ACTIVATION | ACTIVATION CONFIRMATION | DEACTIVATION | DEACTIVATION CONFIRMATION | ACTIVATION TERMINATION | RETURN INFO CAUSED BY LOCAL CMD | FILE TRANSFER | INTERROGATED BY GROUP <number></number> | REQUEST BY GROUP <n> COUNTER REQ</n> | UNKNOWN TYPE IDENTIFICATION | UNKNOWN CAUSE OF TRANSMISSION | UNKNOWN COMMON ADDRESS OF ADSU | UNKNOWN INFORMATION OBJECT ADDR | UNKNOWN INFORMATION OBJECT ADDR |
| NO.  | MNEMONIC       | 1                | 2                     | 3           | 4           | 5                    | 6          | 7                       | 8            | 9                         | 10                     | 11                              | 12            | 13                                      | 20<br>to<br>36                       | 37<br>to<br>41              | 44                            | 45                             | 46                              | 47                              |
| <1>  | M_SP_NA_1      |                  |                       | Х           |             | Х                    |            |                         |              |                           |                        | Х                               | Х             |                                         | Х                                    |                             |                               |                                |                                 |                                 |
| <2>  | M_SP_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <3>  | M_DP_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <4>  | M_DP_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <5>  | M_ST_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <6>  | M_ST_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <7>  | M_BO_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <8>  | M_BO_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |

D-5

| TYPE | IDENTIFICATION |                  | CAUSE OF TRANSMISSION |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
|------|----------------|------------------|-----------------------|-------------|-------------|----------------------|------------|-------------------------|--------------|---------------------------|------------------------|---------------------------------|---------------|-----------------------------------------|--------------------------------------|-----------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|
|      |                | PERIODIC, CYCLIC | BACKGROUND SCAN       | SPONTANEOUS | INITIALIZED | REQUEST OR REQUESTED | ACTIVATION | ACTIVATION CONFIRMATION | DEACTIVATION | DEACTIVATION CONFIRMATION | ACTIVATION TERMINATION | RETURN INFO CAUSED BY LOCAL CMD | FILE TRANSFER | INTERROGATED BY GROUP <number></number> | REQUEST BY GROUP <n> COUNTER REQ</n> | UNKNOWN TYPE IDENTIFICATION | UNKNOWN CAUSE OF TRANSMISSION | UNKNOWN COMMON ADDRESS OF ADSU | UNKNOWN INFORMATION OBJECT ADDR | UNKNOWN INFORMATION OBJECT ADDR |
| NO.  | MNEMONIC       | 1                | 2                     | 3           | 4           | 5                    | 6          | 7                       | 8            | 9                         | 10                     | 11                              | 12            | 13                                      | 20<br>to<br>36                       | 37<br>to<br>41              | 44                            | 45                             | 46                              | 47                              |
| <9>  | M_ME_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <10> | M_ME_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <11> | M_ME_NB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <12> | M_ME_TB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <13> | M_ME_NC_1      | Х                |                       | Х           |             | Х                    |            |                         |              |                           |                        |                                 |               |                                         | Х                                    |                             |                               |                                |                                 |                                 |
| <14> | M_ME_TC_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <15> | M_IT_NA_1      |                  |                       | Х           |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      | Х                           |                               |                                |                                 |                                 |
| <16> | M_IT_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <17> | M_EP_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <18> | M_EP_TB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <19> | M_EP_TC_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <20> | M_PS_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <21> | M_ME_ND_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <30> | M_SP_TB_1      |                  |                       | Х           |             |                      |            |                         |              |                           |                        | Х                               | Х             |                                         |                                      |                             |                               |                                |                                 |                                 |
| <31> | M_DP_TB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <32> | M_ST_TB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <33> | M_BO_TB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <34> | M_ME_TD_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <35> | M_ME_TE_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <36> | M_ME_TF_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <37> | M_IT_TB_1      |                  |                       | Х           |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      | Х                           |                               |                                |                                 |                                 |
| <38> | M_EP_TD_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <39> | M_EP_TE_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <40> | M_EP_TF_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <45> | C_SC_NA_1      |                  |                       |             |             |                      | Х          | Х                       | Х            | Х                         | Х                      |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <46> | C_DC_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <47> | C_RC_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <48> | C_SE_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <49> | C_SE_NB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |

| TYPE  | IDENTIFICATION |                  | CAUSE OF TRANSMISSION |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
|-------|----------------|------------------|-----------------------|-------------|-------------|----------------------|------------|-------------------------|--------------|---------------------------|------------------------|---------------------------------|---------------|-----------------------------------------|--------------------------------------|-----------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|
|       |                | PERIODIC, CYCLIC | BACKGROUND SCAN       | SPONTANEOUS | INITIALIZED | REQUEST OR REQUESTED | ACTIVATION | ACTIVATION CONFIRMATION | DEACTIVATION | DEACTIVATION CONFIRMATION | ACTIVATION TERMINATION | RETURN INFO CAUSED BY LOCAL CMD | FILE TRANSFER | INTERROGATED BY GROUP <number></number> | REQUEST BY GROUP <n> COUNTER REQ</n> | UNKNOWN TYPE IDENTIFICATION | UNKNOWN CAUSE OF TRANSMISSION | UNKNOWN COMMON ADDRESS OF ADSU | UNKNOWN INFORMATION OBJECT ADDR | UNKNOWN INFORMATION OBJECT ADDR |
| NO.   | MNEMONIC       | 1                | 2                     | 3           | 4           | 5                    | 6          | 7                       | 8            | 9                         | 10                     | 11                              | 12            | 13                                      | 20<br>to<br>36                       | 37<br>to<br>41              | 44                            | 45                             | 46                              | 47                              |
| <50>  | C_SE_NC_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <51>  | C_BO_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <58>  | C_SC_TA_1      |                  |                       |             |             |                      | Х          | Х                       | Х            | Х                         | Х                      |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <59>  | C_DC_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <60>  | C_RC_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <61>  | C_SE_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <62>  | C_SE_TB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <63>  | C_SE_TC_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <64>  | C_BO_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <70>  | M_EI_NA_1*)    |                  |                       |             | Х           |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <100> | C_IC_NA_1      |                  |                       |             |             |                      | Х          | X                       | X            | Х                         | Х                      |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <101> | C_CI_NA_1      |                  |                       |             |             |                      | Х          | X                       |              |                           | Х                      |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <102> | C_RD_NA_1      |                  |                       |             |             | Х                    |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <103> | C_CS_NA_1      |                  |                       | Х           |             |                      | Х          | X                       |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <104> | C_TS_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <105> | C_RP_NA_1      |                  |                       |             |             |                      | Х          | X                       |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <106> | C_CD_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <107> | C_TS_TA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <110> | P_ME_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <111> | P_ME_NB_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <112> | P_ME_NC_1      |                  |                       |             |             |                      | Х          | X                       |              |                           |                        |                                 |               |                                         | Х                                    |                             |                               |                                |                                 |                                 |
| <113> | P_AC_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <120> | F_FR_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <121> | F_SR_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <122> | F_SC_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <123> | F_LS_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <124> | F_AF_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <125> | F_SG_NA_1      |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |
| <126> | F_DR_TA_1*)    |                  |                       |             |             |                      |            |                         |              |                           |                        |                                 |               |                                         |                                      |                             |                               |                                |                                 |                                 |

#### 6. BASIC APPLICATION FUNCTIONS

#### **Station Initialization:**

Remote initialization

#### **Cyclic Data Transmission:**

Cyclic data transmission

#### **Read Procedure:**

Read procedure

## **Spontaneous Transmission:**

Spontaneous transmission

# Double transmission of information objects with cause of transmission spontaneous:

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a project-specific list.

|        | Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1                                                                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
|        | Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1                                                                           |
|        | Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1                                                                          |
|        | Bitstring of 32 bits: M_BO_NA_1, M_BO_TA_1, and M_BO_TB_1 (if defined for a specific project)                                           |
|        | $\label{eq:measured_model} \mbox{Measured value, normalized value: $M\_ME\_NA\_1$, $M\_ME\_TA\_1$, $M\_ME\_ND\_1$, and $M\_ME\_TD\_1$}$ |
|        | Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1                                                                       |
|        | Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1                                                        |
| Statio | on interrogation:                                                                                                                       |
| X      | Global                                                                                                                                  |

| X | Group 1 |
|---|---------|
| X | Group 2 |

Group 5

Group 9
Group 10

☐ Group 13 ☐ Group 14

Group 3
Group 4

Group 6
Group 7
Group 8

Group 11
Group 12

Group 15
Group 16

# **Clock synchronization:**

Clock synchronization (optional, see Clause 7.6)

#### **Command transmission:**

□ Direct command transmission

Direct setpoint command transmission

Select and execute command

Select and execute setpoint command

C\_SE ACTTERM used

No additional definition

Short pulse duration (duration determined by a system parameter in the outstation)

Long pulse duration (duration determined by a system parameter in the outstation)

Persistent output

Supervision of maximum delay in command direction of commands and setpoint commands

Maximum allowable delay of commands and setpoint commands: 10 s

# Transmission of integrated totals:

- Mode A: Local freeze with spontaneous transmission
- Mode B: Local freeze with counter interrogation
- Mode C: Freeze and transmit by counter-interrogation commands
- Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously
- Counter read
- ▼ Counter freeze without reset
- Counter freeze with reset
- Counter reset
- General request counter
- Request counter group 1
- Request counter group 2
- Request counter group 3
- Request counter group 4

# Parameter loading:

- Threshold value
- ☐ Smoothing factor
- ☐ Low limit for transmission of measured values
- ☐ High limit for transmission of measured values

# Parameter activation:

Activation/deactivation of persistent cyclic or periodic transmission of the addressed object

#### Test procedure:

Test procedure

#### File transfer:

File transfer in monitor direction:

- Transparent file
- Transmission of disturbance data of protection equipment
- ☐ Transmission of sequences of events
- Transmission of sequences of recorded analog values

File transfer in control direction:

Transparent file

# Background scan:

→ Background scan

## Acquisition of transmission delay:

Acquisition of transmission delay

# D

#### **Definition of time outs:**

| PARAMETER             | DEFAULT<br>VALUE | REMARKS                                                             | SELECTED<br>VALUE |
|-----------------------|------------------|---------------------------------------------------------------------|-------------------|
| $t_{\mathrm{O}}$      | 30 s             | Timeout of connection establishment                                 | 120 s             |
| <i>t</i> <sub>1</sub> | 15 s             | Timeout of send or test APDUs                                       | 15 s              |
| $t_2$                 | 10 s             | Timeout for acknowlegements in case of no data messages $t_2 < t_1$ | 10 s              |
| <i>t</i> <sub>3</sub> | 20 s             | Timeout for sending test frames in case of a long idle state        | 20 s              |

Maximum range of values for all time outs: 1 to 255 s, accuracy 1 s

# Maximum number of outstanding I-format APDUs k and latest acknowledge APDUs (w):

| PARAMETER | DEFAULT<br>VALUE | REMARKS                                                           | SELECTED<br>VALUE |
|-----------|------------------|-------------------------------------------------------------------|-------------------|
| k         | 12 APDUs         | Maximum difference receive sequence number to send state variable | 12 APDUs          |
| W         | 8 APDUs          | Latest acknowledge after receiving w I-format APDUs               | 8 APDUs           |

Maximum range of values k: 1 to 32767 ( $2^{15} - 1$ ) APDUs, accuracy 1 APDU

Maximum range of values w: 1 to 32767 APDUs, accuracy 1 APDU

Recommendation: w should not exceed two-thirds of k.

# Portnumber:

| PARAMETER  | VALUE | REMARKS      |
|------------|-------|--------------|
| Portnumber | 2404  | In all cases |

## RFC 2200 suite:

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

Ethernet 802.3

¬ Serial X.21 interface

Other selection(s) from RFC 2200 (list below if selected)

Table D-1: IEC 60870-5-104 POINTS (Sheet 1 of 3)

| M_ME_NC_1 Points         2000       SRC 1 Phase A Current RMS         2001       SRC 1 Phase B Current RMS         2002       SRC 1 Phase C Current RMS         2003       SRC 1 Neutral Current RMS         2004       SRC 1 Phase A Current Magnitude         2005       SRC 1 Phase A Current Angle         2006       SRC 1 Phase B Current Magnitude         2007       SRC 1 Phase B Current Angle         2008       SRC 1 Phase C Current Magnitude         2009       SRC 1 Phase C Current Angle         2010       SRC 1 Neutral Current Magnitude         2011       SRC 1 Neutral Current Angle         2012       SRC 1 Ground Current RMS         2013       SRC 1 Ground Current Magnitude         2014       SRC 1 Ground Current Angle         2015       SRC 1 Ground Current Angle         2016       SRC 1 Zero Sequence Current Magnitude         2017       SRC 1 Positive Seq Current Magnitude         2018       SRC 1 Positive Sequence Current Angle         2019       SRC 1 Negative Sequence Current Angle         2020       SRC 1 Negative Sequence Current Angle         2021       SRC 1 Differential Gnd Current Magnitude         2022       SRC 1 Differential Ground Current Angle <t< th=""><th>rees</th></t<> | rees                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2000 SRC 1 Phase A Current RMS 2001 SRC 1 Phase B Current RMS 2002 SRC 1 Phase C Current RMS 2003 SRC 1 Neutral Current RMS 2004 SRC 1 Phase A Current Magnitude 2005 SRC 1 Phase A Current Magnitude 2006 SRC 1 Phase B Current Magnitude 2007 SRC 1 Phase B Current Magnitude 2008 SRC 1 Phase B Current Magnitude 2009 SRC 1 Phase C Current Magnitude 2010 SRC 1 Neutral Current Magnitude 2011 SRC 1 Neutral Current Magnitude 2012 SRC 1 Round Current RMS 2013 SRC 1 Ground Current Magnitude 2014 SRC 1 Ground Current Magnitude 2015 SRC 1 Zero Sequence Current Magnitude 2016 SRC 1 Positive Seq Current Magnitude 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Negative Seq Current Magnitude 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Seq Current Magnitude 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                       | A<br>A<br>A<br>rees<br>A |
| 2001 SRC 1 Phase B Current RMS 2002 SRC 1 Phase C Current RMS 2003 SRC 1 Neutral Current RMS 2004 SRC 1 Phase A Current Magnitude 2005 SRC 1 Phase A Current Magnitude 2006 SRC 1 Phase B Current Magnitude 2007 SRC 1 Phase B Current Magnitude 2008 SRC 1 Phase B Current Magnitude 2009 SRC 1 Phase C Current Magnitude 2010 SRC 1 Phase C Current Magnitude 2010 SRC 1 Neutral Current Magnitude 2011 SRC 1 Neutral Current Angle 2012 SRC 1 Ground Current RMS 2013 SRC 1 Ground Current Magnitude 2014 SRC 1 Ground Current Angle 2015 SRC 1 Zero Sequence Current Magnitude 2016 SRC 1 Zero Sequence Current Magnitude 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Positive Seq Current Magnitude 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Sequence Current Angle 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                      | A<br>A<br>A<br>rees<br>A |
| 2002 SRC 1 Phase C Current RMS  2003 SRC 1 Neutral Current RMS  2004 SRC 1 Phase A Current Magnitude  2005 SRC 1 Phase A Current Magnitude  2006 SRC 1 Phase B Current Magnitude  2007 SRC 1 Phase B Current Magnitude  2008 SRC 1 Phase C Current Magnitude  2009 SRC 1 Phase C Current Magnitude  2010 SRC 1 Neutral Current Magnitude  2011 SRC 1 Neutral Current Magnitude  2012 SRC 1 Ground Current RMS  2013 SRC 1 Ground Current Magnitude  2014 SRC 1 Ground Current Magnitude  2015 SRC 1 Zero Sequence Current Magnitude  2016 SRC 1 Zero Sequence Current Magnitude  2017 SRC 1 Positive Seq Current Magnitude  2018 SRC 1 Positive Seq Current Magnitude  2019 SRC 1 Negative Seq Current Magnitude  2020 SRC 1 Negative Sequence Current Angle  2021 SRC 1 Differential Gnd Current Magnitude  2022 SRC 1 Differential Ground Current Angle  2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                             | rees                     |
| SRC 1 Phase A Current Magnitude  SRC 1 Phase A Current Magnitude  SRC 1 Phase A Current Angle  SRC 1 Phase B Current Magnitude  SRC 1 Phase B Current Magnitude  SRC 1 Phase B Current Magnitude  SRC 1 Phase B Current Magnitude  SRC 1 Phase C Current Magnitude  SRC 1 Phase C Current Magnitude  SRC 1 Phase C Current Magnitude  SRC 1 Phase C Current Angle  SRC 1 Neutral Current Magnitude  SRC 1 Neutral Current Magnitude  SRC 1 SRC 1 Ground Current Magnitude  SRC 1 Ground Current Magnitude  SRC 1 Ground Current Magnitude  SRC 1 Ground Current Angle  SRC 1 Ground Current Angle  SRC 1 SRC 1 Zero Sequence Current Magnitude  SRC 1 Positive Seq Current Magnitude  SRC 1 Positive Seq Current Magnitude  SRC 1 Positive Seq Current Magnitude  SRC 1 Positive Seq Current Magnitude  SRC 1 Negative Seq Current Magnitude  SRC 1 Negative Seq Current Magnitude  SRC 1 SRC 1 Differential Gnd Current Magnitude  SRC 1 SRC 1 Differential Gnd Current Angle  SRC 1 Differential Gnd Current Magnitude  SRC 1 Differential Ground Current Angle  SRC 1 Phase AG Voltage RMS                                                                                                                                                          | rees                     |
| 2004 SRC 1 Phase A Current Magnitude 2005 SRC 1 Phase A Current Angle 2006 SRC 1 Phase B Current Magnitude 2007 SRC 1 Phase B Current Magnitude 2008 SRC 1 Phase C Current Magnitude 2009 SRC 1 Phase C Current Magnitude 2010 SRC 1 Phase C Current Magnitude 2011 SRC 1 Neutral Current Magnitude 2012 SRC 1 Neutral Current Angle 2013 SRC 1 Ground Current RMS 2014 SRC 1 Ground Current Magnitude 2015 SRC 1 Ground Current Angle 2016 SRC 1 Zero Sequence Current Magnitude 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Positive Seq Current Magnitude 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Seq Current Magnitude 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2033 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rees<br>A<br>rees        |
| 2005 SRC 1 Phase A Current Angle degrill 2006 SRC 1 Phase B Current Magnitude A 2007 SRC 1 Phase B Current Angle degrill 2008 SRC 1 Phase C Current Magnitude A 2009 SRC 1 Phase C Current Angle degrill 2010 SRC 1 Phase C Current Angle degrill 2010 SRC 1 Neutral Current Magnitude A 2011 SRC 1 Neutral Current Angle degrill 2012 SRC 1 Ground Current RMS A 2013 SRC 1 Ground Current Magnitude A 2014 SRC 1 Ground Current Angle degrill 2015 SRC 1 Ground Current Angle degrill 2015 SRC 1 Zero Sequence Current Magnitude A 2016 SRC 1 Zero Sequence Current Angle degrill 2017 SRC 1 Positive Seq Current Magnitude A 2018 SRC 1 Positive Seq Current Magnitude A 2019 SRC 1 Negative Seq Current Magnitude A 2020 SRC 1 Negative Seq Current Magnitude A 2020 SRC 1 Differential Gnd Current Magnitude A 2021 SRC 1 Differential Gnd Current Magnitude A 2022 SRC 1 Differential Ground Current Angle degrill 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                               | rees<br>rees             |
| 2006 SRC 1 Phase B Current Magnitude  2007 SRC 1 Phase B Current Angle  2008 SRC 1 Phase C Current Magnitude  2009 SRC 1 Phase C Current Magnitude  2010 SRC 1 Neutral Current Magnitude  2011 SRC 1 Neutral Current Angle  2012 SRC 1 Ground Current RMS  2013 SRC 1 Ground Current Magnitude  2014 SRC 1 Ground Current Magnitude  2015 SRC 1 Ground Current Angle  2016 SRC 1 Zero Sequence Current Magnitude  2017 SRC 1 Positive Seq Current Magnitude  2018 SRC 1 Positive Seq Current Magnitude  2019 SRC 1 Negative Seq Current Magnitude  2020 SRC 1 Negative Sequence Current Angle  2021 SRC 1 Differential Gnd Current Magnitude  2022 SRC 1 Differential Ground Current Angle  2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rees                     |
| 2007 SRC 1 Phase B Current Angle degree 2008 SRC 1 Phase C Current Magnitude According to the SRC 1 Phase C Current Angle degree 2010 SRC 1 Phase C Current Angle degree 2010 SRC 1 Neutral Current Magnitude According to the SRC 1 Reutral Current Angle degree 2012 SRC 1 Ground Current RMS According to the SRC 1 Ground Current Magnitude According to the SRC 1 Ground Current Angle degree 2014 SRC 1 Ground Current Angle degree 2015 SRC 1 Zero Sequence Current Magnitude According to the SRC 1 Zero Sequence Current Angle degree 2017 SRC 1 Positive Seq Current Magnitude According to the SRC 1 Positive Sequence Current Angle degree 2019 SRC 1 Negative Sequence Current Angle degree 2020 SRC 1 Negative Sequence Current Angle degree 2021 SRC 1 Differential Gnd Current Magnitude According to the SRC 1 Differential Ground Current Angle degree 2022 SRC 1 Differential Ground Current Angle degree 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                           | rees                     |
| 2008 SRC 1 Phase C Current Magnitude 2009 SRC 1 Phase C Current Angle 2010 SRC 1 Neutral Current Magnitude 2011 SRC 1 Neutral Current Angle 2012 SRC 1 Ground Current RMS 2013 SRC 1 Ground Current Magnitude 2014 SRC 1 Ground Current Magnitude 2015 SRC 1 Ground Current Angle 2016 SRC 1 Zero Sequence Current Magnitude 2016 SRC 1 Zero Sequence Current Angle 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Positive Sequence Current Angle 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Sequence Current Angle 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                        |
| 2010 SRC 1 Phase C Current Angle degrill SRC 1 Neutral Current Magnitude ADDITION SRC 1 Neutral Current Magnitude degrill SRC 1 Neutral Current Angle degrill SRC 1 Ground Current RMS ADDITION SRC 1 Ground Current Magnitude ADDITION SRC 1 Ground Current Angle degrill SRC 1 Ground Current Angle degrill SRC 1 Zero Sequence Current Magnitude ADDITION SRC 1 Positive Seq Current Magnitude ADDITION SRC 1 Positive Sequence Current Angle degrill SRC 1 Negative Seq Current Magnitude ADDITION SRC 1 Negative Seq Current Magnitude ADDITION SRC 1 Negative Sequence Current Angle degrill SRC 1 Negative Sequence Current Angle degrill SRC 1 Differential Gnd Current Magnitude ADDITION SRC 1 Differential Ground Current Angle degrill SRC 1 Differential Ground Current Angle degrill SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 2010 SRC 1 Neutral Current Magnitude 2011 SRC 1 Neutral Current Angle 2012 SRC 1 Ground Current RMS 2013 SRC 1 Ground Current Magnitude 2014 SRC 1 Ground Current Magnitude 2015 SRC 1 Zero Sequence Current Magnitude 2016 SRC 1 Zero Sequence Current Angle 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Positive Seq Current Magnitude 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Seq Current Magnitude 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rees                     |
| 2011 SRC 1 Neutral Current Angle degr 2012 SRC 1 Ground Current RMS A 2013 SRC 1 Ground Current Magnitude A 2014 SRC 1 Ground Current Angle degr 2015 SRC 1 Zero Sequence Current Magnitude A 2016 SRC 1 Zero Sequence Current Angle degr 2017 SRC 1 Positive Seq Current Magnitude A 2018 SRC 1 Positive Seq Current Magnitude A 2019 SRC 1 Negative Seq Current Magnitude A 2020 SRC 1 Negative Seq Current Magnitude A 2021 SRC 1 Differential Gnd Current Angle degr 2022 SRC 1 Differential Ground Current Angle degr 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| 2012 SRC 1 Ground Current RMS  2013 SRC 1 Ground Current Magnitude  2014 SRC 1 Ground Current Angle  2015 SRC 1 Zero Sequence Current Magnitude  2016 SRC 1 Zero Sequence Current Angle  2017 SRC 1 Positive Seq Current Magnitude  2018 SRC 1 Positive Sequence Current Angle  2019 SRC 1 Negative Seq Current Magnitude  2020 SRC 1 Negative Sequence Current Angle  2021 SRC 1 Differential Gnd Current Magnitude  2022 SRC 1 Differential Ground Current Angle  2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                        |
| 2013 SRC 1 Ground Current Magnitude  2014 SRC 1 Ground Current Angle  2015 SRC 1 Zero Sequence Current Magnitude  2016 SRC 1 Zero Sequence Current Angle  2017 SRC 1 Positive Seq Current Magnitude  2018 SRC 1 Positive Sequence Current Angle  2019 SRC 1 Negative Seq Current Magnitude  2020 SRC 1 Negative Seq Current Magnitude  2021 SRC 1 Differential Gnd Current Magnitude  2022 SRC 1 Differential Ground Current Angle  2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rees                     |
| 2014 SRC 1 Ground Current Angle degrill SRC 1 Zero Sequence Current Magnitude Action SRC 1 Zero Sequence Current Angle degrill SRC 1 Zero Sequence Current Angle degrill SRC 1 Positive Seq Current Magnitude Action SRC 1 Positive Sequence Current Angle degrill SRC 1 Negative Seq Current Magnitude Action SRC 1 Negative Seq Current Magnitude Action SRC 1 Negative Sequence Current Angle degrill SRC 1 Differential Gnd Current Magnitude Action SRC 1 Differential Ground Current Angle degrill SRC 1 Differential Ground Current Angle degrill SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                        |
| 2015 SRC 1 Zero Sequence Current Magnitude 2016 SRC 1 Zero Sequence Current Angle 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Positive Sequence Current Angle 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Sequence Current Angle 2020 SRC 1 Negative Sequence Current Angle 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ą                        |
| 2016 SRC 1 Zero Sequence Current Angle degr. 2017 SRC 1 Positive Seq Current Magnitude A 2018 SRC 1 Positive Sequence Current Angle degr. 2019 SRC 1 Negative Sequence Current Magnitude A 2020 SRC 1 Negative Sequence Current Angle degr. 2021 SRC 1 Differential Gnd Current Magnitude A 2022 SRC 1 Differential Ground Current Angle degr. 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rees                     |
| 2017 SRC 1 Positive Seq Current Magnitude 2018 SRC 1 Positive Sequence Current Angle 2019 SRC 1 Negative Seq Current Magnitude 2020 SRC 1 Negative Sequence Current Angle 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                        |
| 2018 SRC 1 Positive Sequence Current Angle degree SRC 1 Negative Seq Current Magnitude Acceptable SRC 1 Negative Seq Current Magnitude Acceptable SRC 1 Negative Sequence Current Angle degree SRC 1 Differential Gnd Current Magnitude Acceptable SRC 1 Differential Ground Current Angle degree SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rees                     |
| 2019 SRC 1 Negative Seq Current Magnitude  2020 SRC 1 Negative Sequence Current Angle degr  2021 SRC 1 Differential Gnd Current Magnitude  2022 SRC 1 Differential Ground Current Angle degr  2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                        |
| 2020 SRC 1 Negative Sequence Current Angle degr<br>2021 SRC 1 Differential Gnd Current Magnitude A<br>2022 SRC 1 Differential Ground Current Angle degr<br>2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rees                     |
| 2021 SRC 1 Differential Gnd Current Magnitude 2022 SRC 1 Differential Ground Current Angle degr 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ą                        |
| 2022 SRC 1 Differential Ground Current Angle degr<br>2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rees                     |
| 2023 SRC 1 Phase AG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rees                     |
| 2024 SPC 1 Phono PC Voltage PMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                        |
| 2024 SRC 1 Phase BG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                        |
| 2025 SRC 1 Phase CG Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                        |
| 2026 SRC 1 Phase AG Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                        |
| 2027 SRC 1 Phase AG Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees                     |
| 2028 SRC 1 Phase BG Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                        |
| 2029 SRC 1 Phase BG Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees                     |
| 2030 SRC 1 Phase CG Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                        |
| 2031 SRC 1 Phase CG Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees                     |
| 2032 SRC 1 Phase AB Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                        |
| 2033 SRC 1 Phase BC Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                        |
| 2034 SRC 1 Phase CA Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                        |
| 2035 SRC 1 Phase AB Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                        |
| 2036 SRC 1 Phase AB Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees                     |
| 2037 SRC 1 Phase BC Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                        |
| 2038 SRC 1 Phase BC Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees                     |
| 2039 SRC 1 Phase CA Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                        |
| 2040 SRC 1 Phase CA Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rees                     |
| 2041 SRC 1 Auxiliary Voltage RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| 2042 SRC 1 Auxiliary Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                        |
| 2043 SRC 1 Auxiliary Voltage Angle degr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 2044 SRC 1 Zero Sequence Voltage Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                        |

Table D-1: IEC 60870-5-104 POINTS (Sheet 2 of 3)

| POINT   | DESCRIPTION                                    | LIMITE  |
|---------|------------------------------------------------|---------|
|         | DESCRIPTION  CDC 4 Zara Services Valence Angle | UNITS   |
| 2045    | SRC 1 Zero Sequence Voltage Angle              | degrees |
| 2046    | SRC 1 Positive Seq Voltage Magnitude           | V       |
| 2047    | SRC 1 Positive Sequence Voltage Angle          | degrees |
| 2048    | SRC 1 Negative Seq Voltage Magnitude           | V       |
| 2049    | SRC 1 Negative Sequence Voltage Angle          | degrees |
| 2050    | SRC 1 Three Phase Real Power                   | W       |
| 2051    | SRC 1 Phase A Real Power                       | W       |
| 2052    | SRC 1 Phase B Real Power                       | W       |
| 2053    | SRC 1 Phase C Real Power                       | W       |
| 2054    | SRC 1 Three Phase Reactive Power               | var     |
| 2055    | SRC 1 Phase A Reactive Power                   | var     |
| 2056    | SRC 1 Phase B Reactive Power                   | var     |
| 2057    | SRC 1 Phase C Reactive Power                   | var     |
| 2058    | SRC 1 Three Phase Apparent Power               | VA      |
| 2059    | SRC 1 Phase A Apparent Power                   | VA      |
| 2060    | SRC 1 Phase B Apparent Power                   | VA      |
| 2061    | SRC 1 Phase C Apparent Power                   | VA      |
| 2062    | SRC 1 Three Phase Power Factor                 | none    |
| 2063    | SRC 1 Phase A Power Factor                     | none    |
| 2064    | SRC 1 Phase B Power Factor                     | none    |
| 2065    | SRC 1 Phase C Power Factor                     | none    |
| 2066    | SRC 1 Frequency                                | Hz      |
| 2067    | Breaker 1 Arcing Amp Phase A                   | kA2-cyc |
| 2068    | Breaker 1 Arcing Amp Phase B                   | kA2-cyc |
| 2069    | Breaker 1 Arcing Amp Phase C                   | kA2-cyc |
| 2070    | Breaker 2 Arcing Amp Phase A                   | kA2-cyc |
| 2071    | Breaker 2 Arcing Amp Phase B                   | kA2-cyc |
| 2072    | Breaker 2 Arcing Amp Phase C                   | kA2-cyc |
| 2073    | Synchrocheck 1 Delta Voltage                   | V       |
| 2074    | Synchrocheck 1 Delta Frequency                 | Hz      |
| 2075    | Synchrocheck 1 Delta Phase                     | degrees |
| 2076    | Synchrocheck 2 Delta Voltage                   | V       |
| 2077    | Synchrocheck 2 Delta Frequency                 | Hz      |
| 2078    | Synchrocheck 2 Delta Phase                     | degrees |
| 2079    | Tracking Frequency                             | Hz      |
| 2080    | FlexElement 1 Actual                           | none    |
| 2081    | FlexElement 2 Actual                           | none    |
| 2082    | FlexElement 3 Actual                           | none    |
| 2083    | FlexElement 4 Actual                           | none    |
| 2084    | FlexElement 5 Actual                           | none    |
| 2085    | FlexElement 6 Actual                           | none    |
| 2086    | FlexElement 7 Actual                           | none    |
| 2087    | FlexElement 8 Actual                           | none    |
| 2088    | FlexElement 9 Actual                           | none    |
| 2089    | FlexElement 10 Actual                          | none    |
| 2090    | FlexElement 11 Actual                          | none    |
| <b></b> |                                                | 1       |

Table D-1: IEC 60870-5-104 POINTS (Sheet 3 of 3)

| POINT          | DESCRIPTION                                  | UNITS |
|----------------|----------------------------------------------|-------|
| 2091           | FlexElement 12 Actual                        | none  |
| 2092           | FlexElement 13 Actual                        | none  |
| 2093           | FlexElement 14 Actual                        | none  |
| 2094           | FlexElement 15 Actual                        | none  |
| 2095           | FlexElement 16 Actual                        | none  |
| 2096           | Current Setting Group                        | none  |
| P_ME_NC        | _1 Points                                    |       |
| 5000 -<br>5096 | Threshold values for M_ME_NC_1 points        | -     |
| M_SP_NA        | A_1 Points                                   | •     |
| 100 - 115      | Virtual Input States[0]                      | -     |
| 116 - 131      | Virtual Input States[1]                      | -     |
| 132 - 147      | Virtual Output States[0]                     | -     |
| 148 - 163      | Virtual Output States[1]                     | -     |
| 164 - 179      | Virtual Output States[2]                     | -     |
| 180 - 195      | Virtual Output States[3]                     | -     |
| 196 - 211      | Contact Input States[0]                      | -     |
| 212 - 227      | Contact Input States[1]                      | -     |
| 228 - 243      | Contact Input States[2]                      | -     |
| 244 - 259      | Contact Input States[3]                      | -     |
| 260 - 275      | Contact Input States[4]                      | -     |
| 276 - 291      | Contact Input States[5]                      | -     |
| 292 - 307      | Contact Output States[0]                     | -     |
| 308 - 323      | Contact Output States[1]                     | -     |
| 324 - 339      | Contact Output States[2]                     | -     |
| 340 - 355      | Contact Output States[3]                     | -     |
| 356 - 371      | Remote Input x States[0]                     | -     |
| 372 - 387      | Remote Input x States[1]                     | -     |
| 388 - 403      | Remote Device x States                       | -     |
| 404 - 419      | LED Column x State[0]                        | -     |
| 420 - 435      | LED Column x State[1]                        | -     |
| C_SC_NA        | 1 Points                                     |       |
| 1100 -<br>1115 | Virtual Input States[0] - No Select Required | -     |
| 1116 -<br>1131 | Virtual Input States[1] - Select Required    | -     |
| M_IT_NA        | _1 Points                                    |       |
| Point          | Description                                  | -     |
| 4000           | Digital Counter 1 Value                      | -     |
| 4001           | Digital Counter 2 Value                      | -     |
| 4002           | Digital Counter 3 Value                      | -     |
| 4003           | Digital Counter 4 Value                      | -     |
| 4004           | Digital Counter 5 Value                      | -     |
| 4005           | Digital Counter 6 Value                      | -     |
| 4006           | Digital Counter 7 Value                      | -     |
| 4007           | Digital Counter 8 Value                      | -     |

D

Е

The following table provides a "Device Profile Document" in the standard format defined in the DNP 3.0 Subset Definitions Document.

# Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

| (Also see the IMPLEMENTATION TABLE in the following section)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Vendor Name: General Electric Power Management                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Device Name: UR Series Relay                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Highest DNP Level Supported:                                                                                                                                    | Device Function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| For Requests: Level 2                                                                                                                                           | ☐ Master                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| For Responses: Level 2                                                                                                                                          | <b>⊠</b> Slave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Binary Inputs (Object 1)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Binary Input Changes (Object 2)                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Binary Outputs (Object 10)                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Binary Counters (Object 20)                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Frozen Counters (Object 21)                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Counter Change Event (Object 22)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Frozen Counter Event (Object 23)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Analog Inputs (Object 30)                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Analog Input Changes (Object 32)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Analog Deadbands (Object 34)                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Maximum Data Link Frame Size (octets):                                                                                                                          | Maximum Application Fragment Size (octets):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Transmitted: 292                                                                                                                                                | Transmitted: 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Received: 292                                                                                                                                                   | Received: 2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Maximum Data Link Re-tries:                                                                                                                                     | Maximum Application Layer Re-tries:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| ☐ None                                                                                                                                                          | None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     None     Non |  |  |  |  |
| Fixed at 2 Configurable                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Configurable                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Requires Data Link Layer Confirmation:                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Never                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| ☐ Always<br>☐ Sometimes                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Configurable                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

# Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)

| Requires Application Layer C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onfirmation:   |                                      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|--|--|
| Never                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                      |  |  |
| ☐ Always ☑ When reporting Event D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ata            |                                      |  |  |
| When sending multi-frag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | es ·                                 |  |  |
| Sometimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                      |  |  |
| Configurable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                      |  |  |
| Timeouts while waiting for:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                      |  |  |
| Data Link Confirm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ None         | Fixed at 3 s                         |  |  |
| Complete Appl. Fragment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None None      | ☐ Fixed at ☐ Variable ☐ Configurable |  |  |
| Application Confirm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | None           | Fixed at 4 s                         |  |  |
| Complete Appl. Response:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None None      | ☐ Fixed at ☐ Variable ☐ Configurable |  |  |
| Others:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                      |  |  |
| Transmission Delay:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | No intentional delay                 |  |  |
| Inter-character Timeout:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 50 ms                                |  |  |
| Need Time Delay:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Configurable (default = 24 hrs.)     |  |  |
| Select/Operate Arm Timeout:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 10 s                                 |  |  |
| Binary input change scanning p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 8 times per power system cycle 1 s   |  |  |
| Packed binary change process  Analog input change scanning page 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -              | 500 ms                               |  |  |
| Counter change scanning perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 500 ms                               |  |  |
| Frozen counter event scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 500 ms                               |  |  |
| Unsolicited response notification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n delay:       | 500 ms                               |  |  |
| Unsolicited response retry delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y              | configurable 0 to 60 sec.            |  |  |
| Sends/Executes Control Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rations:       |                                      |  |  |
| WRITE Binary Outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>⊠</b> Never | ☐ Always ☐ Sometimes ☐ Configurable  |  |  |
| SELECT/OPERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Never          | ■ Always □ Sometimes □ Configurable  |  |  |
| DIRECT OPERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ Never        | ★ Always ☐ Sometimes ☐ Configurable  |  |  |
| DIRECT OPERATE – NO ACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ Never        |                                      |  |  |
| Count > 1 Never                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ☐ Always       | ☐ Sometimes ☐ Configurable           |  |  |
| Pulse On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Always         | Sometimes Configurable               |  |  |
| Pulse Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Always         | <b>Sometimes</b> ☐ Configurable      |  |  |
| Latch On Never                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Always         | Sometimes Configurable               |  |  |
| Latch Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Always         | Sometimes Configurable               |  |  |
| Queue 🔀 Never                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Always         | ☐ Sometimes ☐ Configurable           |  |  |
| Clear Queue Never                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Always         | Sometimes Configurable               |  |  |
| Explanation of 'Sometimes': Object 12 points are mapped to UR Virtual Inputs. The persistence of Virtual Inputs is determined by the VIRTUAL INPUT X TYPE settings. Both "Pulse On" and "Latch On" operations perform the same function in the UR; that is, the appropriate Virtual Input is put into the "On" state. If the Virtual Input is set to "Self-Reset", it will reset after one pass of FlexLogic™. The On/Off times and Count value are ignored. "Pulse Off" and "Latch Off" operations put the appropriate Virtual Input into the "Off" state. "Trip" and "Close" operations both put the appropriate Virtual Input into the "On" state. |                |                                      |  |  |

APPENDIX E E.1 DNP DEVICE PROFILE

# Table E-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

| Reports Binary Input Change Events when no specific variation requested:                                                                                                            | Reports time-tagged Binary Input Change Events when no specific variation requested:                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Never</li><li>Only time-tagged</li><li>Only non-time-tagged</li><li>Configurable</li></ul>                                                                                  | <ul> <li>□ Never</li> <li>☑ Binary Input Change With Time</li> <li>□ Binary Input Change With Relative Time</li> <li>□ Configurable (attach explanation)</li> </ul>                                                |
| Sends Unsolicited Responses:                                                                                                                                                        | Sends Static Data in Unsolicited Responses:                                                                                                                                                                        |
| <ul> <li>Never</li> <li>Configurable</li> <li>Only certain objects</li> <li>Sometimes (attach explanation)</li> <li>ENABLE/DISABLE unsolicited Function codes supported</li> </ul>  | Never  When Device Restarts  When Status Flags Change  No other options are permitted.                                                                                                                             |
| Default Counter Object/Variation:                                                                                                                                                   | Counters Roll Over at:                                                                                                                                                                                             |
| <ul> <li>No Counters Reported</li> <li>Configurable (attach explanation)</li> <li>Default Object: 20</li> <li>Default Variation: 1</li> <li>Point-by-point list attached</li> </ul> | <ul> <li>No Counters Reported</li> <li>Configurable (attach explanation)</li> <li>16 Bits (Counter 8)</li> <li>32 Bits (Counters 0 to 7, 9)</li> <li>Other Value:</li> <li>Point-by-point list attached</li> </ul> |
| Sends Multi-Fragment Responses:                                                                                                                                                     |                                                                                                                                                                                                                    |
| <b>⊠ Yes</b><br>☐ No                                                                                                                                                                |                                                                                                                                                                                                                    |

F

## **E.2.1 IMPLEMENTATION TABLE**

The following table identifies the variations, function codes, and qualifiers supported by the UR in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01. Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table E-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

| OBJECT        |                  |                                                                         | REQUEST                                                                                     |                                                                                        | RESPONSE                             |                                                       |
|---------------|------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|
| OBJECT<br>NO. | VARIATION<br>NO. | DESCRIPTION                                                             | FUNCTION<br>CODES (DEC)                                                                     | QUALIFIER<br>CODES (HEX)                                                               | FUNCTION<br>CODES (DEC)              | QUALIFIER<br>CODES (HEX)                              |
| 1             | 0                | Binary Input (Variation 0 is used to request default variation)         | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)                   |                                      |                                                       |
|               | 1                | Binary Input                                                            | 1 (read)                                                                                    | 17, 28 (index) 00, 01 (start-stop)                                                     | 129 (response)                       | 00, 01 (start-stop)                                   |
|               | ľ                | Dinary input                                                            | 22 (assign class)                                                                           | 06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index)                        | 123 (response)                       | 17, 28 (index)<br>(see Note 2)                        |
|               | 2                | Binary Input with Status (default – see Note 1)                         | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 2             | 0                | Binary Input Change (Variation 0 is used to request default variation)  | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          |                                      |                                                       |
|               | 1                | Binary Input Change without Time                                        | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 2                | Binary Input Change with Time (default – see Note 1)                    | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response<br>130 (unsol. resp.)  | 17, 28 (index)                                        |
| 10            | 0                | Binary Output Status (Variation 0 is used to request default variation) | 1 (read)                                                                                    | 00, 01(start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index)  |                                      |                                                       |
|               | 2                | Binary Output Status<br>(default – see Note 1)                          | 1 (read)                                                                                    | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 12            | 1                | Control Relay Output Block                                              | 3 (select) 4 (operate) 5 (direct op) 6 (dir. op, noack)                                     | 00, 01 (start-stop)<br>07, 08 (limited qty)<br>17, 28 (index)                          | 129 (response)                       | echo of request                                       |
| 20            | 0                | Binary Counter<br>(Variation 0 is used to request default<br>variation) | 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class) | 00, 01(start-stop)<br>06(no range, or all)<br>07, 08(limited qty)<br>17, 28(index)     |                                      |                                                       |
|               | 1                | 32-Bit Binary Counter<br>(default – see Note 1)                         | 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |

- Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
- Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)
- Note 3: Cold restarts are implemented the same as warm restarts the UR is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

| OBJECT        |                  |                                                                         | REQUEST                                                                                     |                                                                                        | RESPONSE                             |                                                       |
|---------------|------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|
| OBJECT<br>NO. | VARIATION<br>NO. | DESCRIPTION                                                             | FUNCTION<br>CODES (DEC)                                                                     | QUALIFIER<br>CODES (HEX)                                                               | FUNCTION<br>CODES (DEC)              | QUALIFIER<br>CODES (HEX)                              |
| 20<br>con't   | 2                | 16-Bit Binary Counter                                                   | 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 5                | 32-Bit Binary Counter without Flag                                      | 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 6                | 16-Bit Binary Counter without Flag                                      | 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 21            | 0                | Frozen Counter<br>(Variation 0 is used to request default<br>variation) | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) |                                      |                                                       |
|               | 1                | 32-Bit Frozen Counter<br>(default – see Note 1)                         | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 2                | 16-Bit Frozen Counter                                                   | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 9                | 32-Bit Frozen Counter without Flag                                      | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 10               | 16-Bit Frozen Counter without Flag                                      | 1 (read)<br>22 (assign class)                                                               | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 22            | 0                | Counter Change Event (Variation 0 is used to request default variation) | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          |                                      |                                                       |
|               | 1                | 32-Bit Counter Change Event (default – see Note 1)                      | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 5                | 32-Bit Counter Change Event with Time                                   | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
| 23            | 0                | Frozen Counter Event (Variation 0 is used to request default variation) | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          |                                      |                                                       |
|               | 1                | 32-Bit Frozen Counter Event (default – see Note 1)                      | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 5                | 32-Bit Frozen Counter Event with Time                                   | 1 (read)                                                                                    | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the UR is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 3 of 4)

| OBJECT        |                  |                                                                                          | REQUEST                       |                                                                                        | RESPONSE                             |                                                       |
|---------------|------------------|------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|
| OBJECT<br>NO. | VARIATION<br>NO. | DESCRIPTION                                                                              | FUNCTION<br>CODES (DEC)       | QUALIFIER<br>CODES (HEX)                                                               | FUNCTION<br>CODES (DEC)              | QUALIFIER<br>CODES (HEX)                              |
| 30            | 0                | Analog Input (Variation 0 is used to request default variation)                          | 1 (read)<br>22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) |                                      |                                                       |
|               | 1                | 32-Bit Analog Input<br>(default – see Note 1)                                            | 1 (read)<br>22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 2                | 16-Bit Analog Input                                                                      | 1 (read)<br>22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 3                | 32-Bit Analog Input without Flag                                                         | 1 (read)<br>22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 4                | 16-Bit Analog Input without Flag                                                         | 1 (read)<br>22 (assign class) | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 5                | short floating point                                                                     | 1 (read)<br>22 (assign class) | 00, 01 (start-stop)<br>06(no range, or all)<br>07, 08(limited qty)<br>17, 28(index)    | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 32            | 0                | Analog Change Event (Variation 0 is used to request default variation)                   | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          |                                      |                                                       |
|               | 1                | 32-Bit Analog Change Event without Time (default - see Note 1)                           | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 2                | 16-Bit Analog Change Event without Time                                                  | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 3                | 32-Bit Analog Change Event with Time                                                     | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 4                | 16-Bit Analog Change Event with Time                                                     | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 5                | short floating point Analog Change Event without Time                                    | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
|               | 7                | short floating point Analog Change Event with Time                                       | 1 (read)                      | 06 (no range, or all)<br>07, 08 (limited qty)                                          | 129 (response)<br>130 (unsol. resp.) | 17, 28 (index)                                        |
| 34            | 0                | Analog Input Reporting Deadband<br>(Variation 0 is used to request default<br>variation) | 1 (read)                      | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) |                                      |                                                       |
|               | 1                | 16-bit Analog Input Reporting Deadband (default – see Note 1)                            | 1 (read)                      | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index) | 129 (response)                       | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               |                  |                                                                                          | 2 (write)                     | 00, 01 (start-stop)<br>07, 08 (limited qty)<br>17, 28 (index)                          |                                      |                                                       |

- Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.
- Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)
- Note 3: Cold restarts are implemented the same as warm restarts the UR is not restarted, but the DNP process is restarted.

Table E-2: IMPLEMENTATION TABLE (Sheet 4 of 4)

| OBJECT        |     |                                                               | REQUEST                                                         |                                                                                                          | RESPONSE                |                                                       |
|---------------|-----|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| OBJECT<br>NO. | NO. | DESCRIPTION                                                   | FUNCTION<br>CODES (DEC)                                         | QUALIFIER<br>CODES (HEX)                                                                                 | FUNCTION<br>CODES (DEC) | QUALIFIER<br>CODES (HEX)                              |
| 34<br>con't   | 2   | 32-bit Analog Input Reporting Deadband (default – see Note 1) | 1 (read)                                                        | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index)                   | 129 (response)          | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               |     |                                                               | 2 (write)                                                       | 00, 01 (start-stop)<br>07, 08 (limited qty)<br>17, 28 (index)                                            |                         |                                                       |
|               | 3   | Short floating point Analog Input Reporting Deadband          | 1 (read)                                                        | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index)                   | 129 (response)          | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 50            | 0   | Time and Date                                                 | 1 (read)                                                        | 00, 01 (start-stop)<br>06 (no range, or all)<br>07, 08 (limited qty)<br>17, 28 (index)                   | 129 (response)          | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
|               | 1   | Time and Date<br>(default – see Note 1)                       | 1 (read)<br>2 (write)                                           | 00, 01 (start-stop)<br>06 (no range, or all)<br>07 (limited qty=1)<br>08 (limited qty)<br>17, 28 (index) | 129 (response)          | 00, 01 (start-stop)<br>17, 28 (index)<br>(see Note 2) |
| 52            | 2   | Time Delay Fine                                               |                                                                 |                                                                                                          | 129 (response)          | 07 (limited qty)<br>(qty = 1)                         |
| 60            | 0   | Class 0, 1, 2, and 3 Data                                     | 1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class) | 06 (no range, or all)                                                                                    |                         |                                                       |
|               | 1   | Class 0 Data                                                  | 1 (read)<br>22 (assign class)                                   | 06 (no range, or all)                                                                                    |                         |                                                       |
|               | 2   | Class 1 Data                                                  | 1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class) | 06 (no range, or all)<br>07, 08 (limited qty)                                                            |                         |                                                       |
|               | 3   | Class 2 Data                                                  | 1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class) | 06 (no range, or all)<br>07, 08 (limited qty)                                                            |                         |                                                       |
|               | 4   | Class 3 Data                                                  | 1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class) | 06 (no range, or all)<br>07, 08 (limited qty)                                                            |                         |                                                       |
| 80            | 1   | Internal Indications                                          | 2 (write)                                                       | 00 (start-stop)<br>(index must =7)                                                                       |                         |                                                       |
|               |     | No Object (function code only) see Note 3                     | 13 (cold restart)                                               |                                                                                                          |                         |                                                       |
|               |     | No Object (function code only)                                | 14 (warm restart)                                               |                                                                                                          |                         |                                                       |
|               |     | No Object (function code only)                                | 23 (delay meas.)                                                |                                                                                                          |                         |                                                       |

Note 1: A Default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. Type 30 (Analog Input) data is limited to data that is actually possible to be used in the UR, based on the product order code. For example, Signal Source data from source numbers that cannot be used is not included. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the UR is not restarted, but the DNP process is restarted.

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

# **BINARY INPUT POINTS**

Static (Steady-State) Object Number: 1

Change Event Object Number: 2

Request Function Codes supported: 1 (read), 22 (assign class)

Static Variation reported when variation 0 requested: 2 (Binary Input with status)

Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time)

Change Event Scan Rate: 8 times per power system cycle

Change Event Buffer Size: 1000

Table E-3: BINARY INPUTS (Sheet 1 of 10)

| Table E-3: BINARY INPUTS (Sheet 1 of 10) |                  |                                    |  |  |
|------------------------------------------|------------------|------------------------------------|--|--|
| POINT<br>INDEX                           | NAME/DESCRIPTION | CHANGE EVENT<br>CLASS (1/2/3/NONE) |  |  |
| 0                                        | Virtual Input 1  | 2                                  |  |  |
| 1                                        | Virtual Input 2  | 2                                  |  |  |
| 2                                        | Virtual Input 3  | 2                                  |  |  |
| 3                                        | Virtual Input 4  | 2                                  |  |  |
| 4                                        | Virtual Input 5  | 2                                  |  |  |
| 5                                        | Virtual Input 6  | 2                                  |  |  |
| 6                                        | Virtual Input 7  | 2                                  |  |  |
| 7                                        | Virtual Input 8  | 2                                  |  |  |
| 8                                        | Virtual Input 9  | 2                                  |  |  |
| 9                                        | Virtual Input 10 | 2                                  |  |  |
| 10                                       | Virtual Input 11 | 2                                  |  |  |
| 11                                       | Virtual Input 12 | 2                                  |  |  |
| 12                                       | Virtual Input 13 | 2                                  |  |  |
| 13                                       | Virtual Input 14 | 2                                  |  |  |
| 14                                       | Virtual Input 15 | 2                                  |  |  |
| 15                                       | Virtual Input 16 | 2                                  |  |  |
| 16                                       | Virtual Input 17 | 2                                  |  |  |
| 17                                       | Virtual Input 18 | 2                                  |  |  |
| 18                                       | Virtual Input 19 | 2                                  |  |  |
| 19                                       | Virtual Input 20 | 2                                  |  |  |
| 20                                       | Virtual Input 21 | 2                                  |  |  |
| 21                                       | Virtual Input 22 | 2                                  |  |  |
| 22                                       | Virtual Input 23 | 2                                  |  |  |
| 23                                       | Virtual Input 24 | 2                                  |  |  |
| 24                                       | Virtual Input 25 | 2                                  |  |  |
| 25                                       | Virtual Input 26 | 2                                  |  |  |
| 26                                       | Virtual Input 27 | 2                                  |  |  |
| 27                                       | Virtual Input 28 | 2                                  |  |  |
| 28                                       | Virtual Input 29 | 2                                  |  |  |
| 29                                       | Virtual Input 30 | 2                                  |  |  |
| 30                                       | Virtual Input 31 | 2                                  |  |  |
| 31                                       | Virtual Input 32 | 2                                  |  |  |

Table E-3: BINARY INPUTS (Sheet 2 of 10)

| POINT INDEX | NAME/DESCRIPTION  | CHANGE EVENT<br>CLASS (1/2/3/NONE) |
|-------------|-------------------|------------------------------------|
| 32          | Virtual Output 1  | 2                                  |
| 33          | Virtual Output 2  | 2                                  |
| 34          | Virtual Output 3  | 2                                  |
| 35          | Virtual Output 4  | 2                                  |
| 36          | Virtual Output 5  | 2                                  |
| 37          | Virtual Output 6  | 2                                  |
| 38          | Virtual Output 7  | 2                                  |
| 39          | Virtual Output 8  | 2                                  |
| 40          | Virtual Output 9  | 2                                  |
| 41          | Virtual Output 10 | 2                                  |
| 42          | Virtual Output 11 | 2                                  |
| 43          | Virtual Output 12 | 2                                  |
| 44          | Virtual Output 13 | 2                                  |
| 45          | Virtual Output 14 | 2                                  |
| 46          | Virtual Output 15 | 2                                  |
| 47          | Virtual Output 16 | 2                                  |
| 48          | Virtual Output 17 | 2                                  |
| 49          | Virtual Output 18 | 2                                  |
| 50          | Virtual Output 19 | 2                                  |
| 51          | Virtual Output 20 | 2                                  |
| 52          | Virtual Output 21 | 2                                  |
| 53          | Virtual Output 22 | 2                                  |
| 54          | Virtual Output 23 | 2                                  |
| 55          | Virtual Output 24 | 2                                  |
| 56          | Virtual Output 25 | 2                                  |
| 57          | Virtual Output 26 | 2                                  |
| 58          | Virtual Output 27 | 2                                  |
| 59          | Virtual Output 28 | 2                                  |
| 60          | Virtual Output 29 | 2                                  |
| 61          | Virtual Output 30 | 2                                  |
| 62          | Virtual Output 31 | 2                                  |
| 63          | Virtual Output 32 | 2                                  |

Е

APPENDIX E E.3 DNP POINT LISTS

Table E-3: BINARY INPUTS (Sheet 3 of 10)

| POINT INDEX | NAME/DESCRIPTION  | CHANGE EVENT<br>CLASS (1/2/3/NONE) |
|-------------|-------------------|------------------------------------|
| 64          | Virtual Output 33 | 2                                  |
| 65          | Virtual Output 34 | 2                                  |
| 66          | Virtual Output 35 | 2                                  |
| 67          | Virtual Output 36 | 2                                  |
| 68          | Virtual Output 37 | 2                                  |
| 69          | Virtual Output 38 | 2                                  |
| 70          | Virtual Output 39 | 2                                  |
| 71          | Virtual Output 40 | 2                                  |
| 72          | Virtual Output 41 | 2                                  |
| 73          | Virtual Output 42 | 2                                  |
| 74          | Virtual Output 43 | 2                                  |
| 75          | Virtual Output 44 | 2                                  |
| 76          | Virtual Output 45 | 2                                  |
| 77          | Virtual Output 46 | 2                                  |
| 78          | Virtual Output 47 | 2                                  |
| 79          | Virtual Output 48 | 2                                  |
| 80          | Virtual Output 49 | 2                                  |
| 81          | Virtual Output 50 | 2                                  |
| 82          | Virtual Output 51 | 2                                  |
| 83          | Virtual Output 52 | 2                                  |
| 84          | Virtual Output 53 | 2                                  |
| 85          | Virtual Output 54 | 2                                  |
| 86          | Virtual Output 55 | 2                                  |
| 87          | Virtual Output 56 | 2                                  |
| 88          | Virtual Output 57 | 2                                  |
| 89          | Virtual Output 58 | 2                                  |
| 90          | Virtual Output 59 | 2                                  |
| 91          | Virtual Output 60 | 2                                  |
| 92          | Virtual Output 61 | 2                                  |
| 93          | Virtual Output 62 | 2                                  |
| 94          | Virtual Output 63 | 2                                  |
| 95          | Virtual Output 64 | 2                                  |
| 96          | Contact Input 1   | 1                                  |
| 97          | Contact Input 2   | 1                                  |
| 98          | Contact Input 3   | 1                                  |
| 99          | Contact Input 4   | 1                                  |
| 100         | Contact Input 5   | 1                                  |
| 101         | Contact Input 6   | 1                                  |
| 102         | Contact Input 7   | 1                                  |
| 103         | Contact Input 8   | 1                                  |
| 104         | Contact Input 9   | 1                                  |
| 105         | Contact Input 10  | 1                                  |
| 106         | Contact Input 11  | 1                                  |
| 107         | Contact Input 12  | 1                                  |
| 108         | Contact Input 13  | 1                                  |
| 109         | Contact Input 14  | 1                                  |
| 110         | Contact Input 15  | 1                                  |
| 111         | Contact Input 16  | 1                                  |
| 112         | Contact Input 17  | 1                                  |
| 113         | Contact Input 18  | 1                                  |
| 114         | Contact Input 19  | 1                                  |
|             |                   | ·                                  |

Table E-3: BINARY INPUTS (Sheet 4 of 10)

|       | POINT   NAME/DESCRIPTION   CHANGE EVENT |                    |  |
|-------|-----------------------------------------|--------------------|--|
| INDEX |                                         | CLASS (1/2/3/NONE) |  |
| 115   | Contact Input 20                        | 1                  |  |
| 116   | Contact Input 21                        | 1                  |  |
| 117   | Contact Input 22                        | 1                  |  |
| 118   | Contact Input 23                        | 1                  |  |
| 119   | Contact Input 24                        | 1                  |  |
| 120   | Contact Input 25                        | 1                  |  |
| 121   | Contact Input 26                        | 1                  |  |
| 122   | Contact Input 27                        | 1                  |  |
| 123   | Contact Input 28                        | 1                  |  |
| 124   | Contact Input 29                        | 1                  |  |
| 125   | Contact Input 30                        | 1                  |  |
| 126   | Contact Input 31                        | 1                  |  |
| 127   | Contact Input 32                        | 1                  |  |
| 128   | Contact Input 33                        | 1                  |  |
| 129   | Contact Input 34                        | 1                  |  |
| 130   | Contact Input 35                        | 1                  |  |
| 131   | Contact Input 36                        | 1                  |  |
| 132   | Contact Input 37                        | 1                  |  |
| 133   | Contact Input 38                        | 1                  |  |
| 134   | Contact Input 39                        | 1                  |  |
| 135   | Contact Input 40                        | 1                  |  |
| 136   | Contact Input 41                        | 1                  |  |
| 137   | Contact Input 42                        | 1                  |  |
| 138   | Contact Input 43                        | 1                  |  |
| 139   | Contact Input 44                        | 1                  |  |
| 140   | Contact Input 45                        | 1                  |  |
| 141   | Contact Input 46                        | 1                  |  |
| 142   | Contact Input 47                        | 1                  |  |
| 143   | Contact Input 48                        | 1                  |  |
| 144   | Contact Input 49                        | 1                  |  |
| 145   | Contact Input 50                        | 1                  |  |
| 146   | Contact Input 51                        | 1                  |  |
| 147   | Contact Input 52                        | 1                  |  |
| 148   | Contact Input 53                        | 1                  |  |
| 149   | Contact Input 54                        | 1                  |  |
| 150   | Contact Input 55                        | 1                  |  |
| 151   | Contact Input 56                        | 1                  |  |
| 152   | Contact Input 57                        | 1                  |  |
| 153   | Contact Input 58                        | 1                  |  |
| 154   | Contact Input 59                        | 1                  |  |
| 155   | Contact Input 60                        | 1                  |  |
| 156   | Contact Input 61                        | 1                  |  |
| 157   | Contact Input 62                        | 1                  |  |
| 158   | Contact Input 63                        | 1                  |  |
| 159   | Contact Input 64                        | 1                  |  |
| 160   | Contact Input 65                        | 1                  |  |
| 161   | Contact Input 66                        | 1                  |  |
| 162   | Contact Input 67                        | 1                  |  |
| 163   | Contact Input 68                        | 1                  |  |
| 164   | Contact Input 69                        | 1                  |  |
| 165   | Contact Input 70                        | 1                  |  |

Table E-3: BINARY INPUTS (Sheet 5 of 10)

POINT INDEX CHANGE EVENT CLASS (1/2/3/NONE) NAME/DESCRIPTION Contact Input 71 Contact Input 72 Contact Input 73 Contact Input 74 Contact Input 75 Contact Input 76 Contact Input 77 Contact Input 78 Contact Input 79 Contact Input 80 Contact Input 81 Contact Input 82 Contact Input 83 Contact Input 84 Contact Input 85 Contact Input 86 Contact Input 87 Contact Input 88 Contact Input 89 Contact Input 90 Contact Input 91 Contact Input 92 Contact Input 93 Contact Input 94 Contact Input 95 Contact Input 96 Contact Output 1 Contact Output 2 Contact Output 3 Contact Output 4 Contact Output 5 Contact Output 6 Contact Output 7 Contact Output 8 Contact Output 9 Contact Output 10 Contact Output 11 Contact Output 12 Contact Output 13 Contact Output 14 Contact Output 15 Contact Output 16 Contact Output 17 Contact Output 18 Contact Output 19 Contact Output 20 Contact Output 21 Contact Output 22 Contact Output 23 Contact Output 24 Contact Output 25 

Table E-3: BINARY INPUTS (Sheet 6 of 10)

| POINT<br>INDEX | NAME/DESCRIPTION                     | CHANGE EVENT<br>CLASS (1/2/3/NONE) |
|----------------|--------------------------------------|------------------------------------|
| 217            | Contact Output 26                    | 1                                  |
| 218            | Contact Output 27                    | 1                                  |
| 219            | Contact Output 28                    | 1                                  |
| 220            | Contact Output 29                    | 1                                  |
| 221            | Contact Output 30                    | 1                                  |
| 222            | Contact Output 31                    | 1                                  |
| 223            | Contact Output 32                    | 1                                  |
| 224            | Contact Output 33                    | 1                                  |
| 225            | Contact Output 34                    | 1                                  |
| 226            | Contact Output 35                    | 1                                  |
| 227            | Contact Output 36                    | 1                                  |
| 228            | Contact Output 37                    | 1                                  |
| 229            | Contact Output 38                    | 1                                  |
| 230            | Contact Output 39                    | 1                                  |
| 231            | Contact Output 40                    | 1                                  |
| 232            | Contact Output 41                    | 1                                  |
| 233            | Contact Output 42                    | 1                                  |
| 234            |                                      | 1                                  |
| 235            | Contact Output 43 Contact Output 44  | 1                                  |
|                | Contact Output 44  Contact Output 45 | 1                                  |
| 236            | <u>'</u>                             |                                    |
| 237            | Contact Output 46                    | 1                                  |
| 238            | Contact Output 47                    | 1                                  |
| 239            | Contact Output 48                    | 1                                  |
| 240            | Contact Output 49                    | 1                                  |
| 241            | Contact Output 50                    | 1                                  |
| 242            | Contact Output 51                    | 1                                  |
| 243            | Contact Output 52                    | 1                                  |
| 244            | Contact Output 53                    | 1                                  |
| 245            | Contact Output 54                    | 1                                  |
| 246            | Contact Output 55                    | 1                                  |
| 247            | Contact Output 56                    | 1                                  |
| 248            | Contact Output 57                    | 1                                  |
| 249            | Contact Output 58                    | 1                                  |
| 250            | Contact Output 59                    | 1                                  |
| 251            | Contact Output 60                    | 1                                  |
| 252            | Contact Output 61                    | 1                                  |
| 253            | Contact Output 62                    | 1                                  |
| 254            | Contact Output 63                    | 1                                  |
| 255            | Contact Output 64                    | 1                                  |
| 256            | Remote Input 1                       | 1                                  |
| 257            | Remote Input 2                       | 1                                  |
| 258            | Remote Input 3                       | 1                                  |
| 259            | Remote Input 4                       | 1                                  |
| 260            | Remote Input 5                       | 1                                  |
| 261            | Remote Input 6                       | 1                                  |
| 262            | Remote Input 7                       | 1                                  |
| 263            | Remote Input 8                       | 1                                  |
| 264            | Remote Input 9                       | 1                                  |
| 265            | Remote Input 10                      | 1                                  |
| 266            | Remote Input 11                      | 1                                  |
| 267            | Remote Input 12                      | 1                                  |

APPENDIX E E.3 DNP POINT LISTS

Table E-3: BINARY INPUTS (Sheet 7 of 10)

| POINT<br>INDEX | NAME/DESCRIPTION         | CHANGE EVENT<br>CLASS (1/2/3/NONE) |
|----------------|--------------------------|------------------------------------|
| 268            | Remote Input 13          | 1                                  |
| 269            | Remote Input 14          | 1                                  |
| 270            | Remote Input 15          | 1                                  |
| 271            | Remote Input 16          | 1                                  |
| 272            | Remote Input 17          | 1                                  |
| 273            | Remote Input 18          | 1                                  |
| 274            | Remote Input 19          | 1                                  |
| 275            | Remote Input 20          | 1                                  |
| 276            | Remote Input 21          | 1                                  |
| 277            | Remote Input 22          | 1                                  |
| 278            | Remote Input 23          | 1                                  |
| 279            | Remote Input 24          | 1                                  |
| 280            | Remote Input 25          | 1                                  |
| 281            | Remote Input 26          | 1                                  |
| 282            | Remote Input 27          | 1                                  |
| 283            | Remote Input 28          | 1                                  |
| 284            | Remote Input 29          | 1                                  |
| 285            | Remote Input 30          | 1                                  |
| 286            | Remote Input 31          | 1                                  |
| 287            | Remote Input 32          | 1                                  |
| 288            | Remote Device 1          | 1                                  |
| 289            | Remote Device 2          | 1                                  |
| 290            | Remote Device 3          | 1                                  |
| 291            | Remote Device 4          | 1                                  |
| 292            | Remote Device 5          | 1                                  |
| 293            | Remote Device 6          | 1                                  |
| 294            | Remote Device 7          | 1                                  |
| 295            | Remote Device 8          | 1                                  |
| 296            | Remote Device 9          | 1                                  |
| 297            | Remote Device 10         | 1                                  |
| 298            | Remote Device 11         | 1                                  |
| 299            | Remote Device 12         | 1                                  |
| 300            | Remote Device 13         | 1                                  |
| 301            | Remote Device 14         | 1                                  |
| 302            | Remote Device 15         | 1                                  |
| 303            | Remote Device 16         | 1                                  |
| 304            | PHASE IOC1 Element OP    | 1                                  |
| 305            | PHASE IOC2 Element OP    | 1                                  |
| 320            | PHASE TOC1 Element OP    | 1                                  |
| 321            | PHASE TOC2 Element OP    | 1                                  |
| 328            | PH DIR1 Element OP       | 1                                  |
| 329            | PH DIR2 Element OP       | 1                                  |
| 336            | NEUTRAL IOC1 Element OP  | 1                                  |
| 337            | NEUTRAL IOC2 Element OP  | 1                                  |
| 352            | NEUTRAL TOC1 Element OP  | 1                                  |
| 353            | NEUTRAL TOC2 Element OP  | 1                                  |
| 360            | NTRL DIR OC1 Element OP  | 1                                  |
| 361            | NTRL DIR OC2 Element OP  | 1                                  |
| 364            | NEG SEQ DIR OC1 Elem. OP | 1                                  |
| 365            | NEG SEQ DIR OC2 Elem OP  | 1                                  |
| 368            | GROUND IOC1 Element OP   | 1                                  |

Table E-3: BINARY INPUTS (Sheet 8 of 10)

| POINT INDEX | NAME/DESCRIPTION          | CHANGE EVENT<br>CLASS (1/2/3/NONE) |  |
|-------------|---------------------------|------------------------------------|--|
| 369         | GROUND IOC2 Element OP    | 1                                  |  |
| 384         | GROUND TOC1 Element OP 1  |                                    |  |
| 385         | GROUND TOC2 Element OP 1  |                                    |  |
| 400         | NEG SEQ IOC1 Element OP   | 1                                  |  |
| 401         | NEG SEQ IOC2 Element OP   | 1                                  |  |
| 416         | NEG SEQ TOC1 Element OP   | 1                                  |  |
| 417         | NEG SEQ TOC2 Element OP   | 1                                  |  |
| 444         | AUX UV1 Element OP        | 1                                  |  |
| 448         | PHASE UV1 Element OP      | 1                                  |  |
| 449         | PHASE UV2 Element OP      | 1                                  |  |
| 452         | AUX OV1 Element OP        | 1                                  |  |
| 456         | PHASE OV1 Element OP      | 1                                  |  |
| 460         | NEUTRAL OV1 Element OP    | 1                                  |  |
| 464         | PH DIST Z1 Element OP     | 1                                  |  |
| 465         | PH DIST Z2 Element OP     | 1                                  |  |
| 466         | PH DIST Z3 Element OP     | 1                                  |  |
| 467         | PH DIST Z4 Element OP     | 1                                  |  |
| 472         | LINE PICKUP Element OP    | 1                                  |  |
| 480         | GND DIST Z1 Element OP    | 1                                  |  |
| 481         | GND DIST Z2 Element OP    | 1                                  |  |
| 482         | GND DIST Z3 Element OP 1  |                                    |  |
| 483         |                           |                                    |  |
| 484         |                           |                                    |  |
| 488         |                           |                                    |  |
| 489         | PUTT Element OP           | 1                                  |  |
| 490         | POTT Element OP           | 1                                  |  |
| 491         | HYBRID POTT Element OP    | 1                                  |  |
| 492         | BLOCK SCHEME Element OP   | 1                                  |  |
| 494         | POWER SWING Element OP    | 1                                  |  |
| 528         | SRC1 VT FUSE FAIL Elem OP | 1                                  |  |
| 529         | SRC2 VT FUSE FAIL Elem OP | 1                                  |  |
| 530         | SRC3 VT FUSE FAIL Elem OP | 1                                  |  |
| 531         | SRC4 VT FUSE FAIL Elem OP | 1                                  |  |
| 532         | SRC5 VT FUSE FAIL Elem OP | 1                                  |  |
| 533         | SRC6 VT FUSE FAIL Elem OP | 1                                  |  |
| 536         | SRC1 50DD Element OP      | 1                                  |  |
| 537         | SRC2 50DD Element OP      | 1                                  |  |
| 538         | SRC3 50DD Element OP      | 1                                  |  |
| 539         | SRC4 50DD Element OP      | 1                                  |  |
| 540         | SRC5 50DD Element OP      | 1                                  |  |
| 541         | SRC6 50DD Element OP      | 1                                  |  |
| 548         | 50DD Element OP           | 1                                  |  |
| 554         | STUB BUS Element OP       | 1                                  |  |
| 576         | BREAKER 1 Element OP      | 1                                  |  |
| 577         | BREAKER 2 Element OP      | 1                                  |  |
| 584         | BKR FAIL 1 Element OP     | 1                                  |  |
| 585         | BKR FAIL 2 Element OP     | 1                                  |  |
| 592         | BKR ARC 1 Element OP      | 1                                  |  |
| 593         | BKR ARC 2 Element OP      | 1                                  |  |
| 608         | AR 1 Element OP           | 1                                  |  |
| 609         | AR 2 Element OP           | 1                                  |  |

Table E-3: BINARY INPUTS (Sheet 9 of 10)

| POINT INDEX | NAME/DESCRIPTION         | CHANGE EVENT<br>CLASS (1/2/3/NONE) |
|-------------|--------------------------|------------------------------------|
| 610         | AR 3 Element OP          | 1                                  |
| 611         | AR 4 Element OP 1        |                                    |
| 612         | AR 5 Element OP 1        |                                    |
| 613         | AR 6 Element OP          | 1                                  |
| 616         | SYNC 1 Element OP        | 1                                  |
| 617         | SYNC 2 Element OP        | 1                                  |
| 640         | SETTING GROUP Element OP | 1                                  |
| 641         | RESET Element OP         | 1                                  |
| 704         | FLEXELEMENT 1 Element OP | 1                                  |
| 705         | FLEXELEMENT 2 Element OP | 1                                  |
| 706         | FLEXELEMENT 3 Element OP | 1                                  |
| 707         | FLEXELEMENT 4 Element OP | 1                                  |
| 708         | FLEXELEMENT 5 Element OP | 1                                  |
| 709         | FLEXELEMENT 6 Element OP | 1                                  |
| 710         | FLEXELEMENT 7 Element OP | 1                                  |
| 711         | FLEXELEMENT 8 Element OP | 1                                  |
| 816         | DIG ELEM 1 Element OP    | 1                                  |
| 817         | DIG ELEM 2 Element OP    | 1                                  |
| 818         | DIG ELEM 3 Element OP    | 1                                  |
| 819         | DIG ELEM 4 Element OP    | 1                                  |
| 820         | DIG ELEM 5 Element OP 1  |                                    |
| 821         | DIG ELEM 6 Element OP    | 1                                  |
| 822         | DIG ELEM 7 Element OP    | 1                                  |
| 823         | DIG ELEM 8 Element OP 1  |                                    |
| 824         | DIG ELEM 9 Element OP    | 1                                  |
| 825         | DIG ELEM 10 Element OP   | 1                                  |
| 826         | DIG ELEM 11 Element OP   | 1                                  |
| 827         | DIG ELEM 12 Element OP   | 1                                  |
| 828         | DIG ELEM 13 Element OP   | 1                                  |
| 829         | DIG ELEM 14 Element OP   | 1                                  |
| 830         | DIG ELEM 15 Element OP   | 1                                  |
| 831         | DIG ELEM 16 Element OP   | 1                                  |
| 848         | COUNTER 1 Element OP     | 1                                  |
| 849         | COUNTER 2 Element OP     | 1                                  |
| 850         | COUNTER 3 Element OP     | 1                                  |
| 851         | COUNTER 4 Element OP     | 1                                  |
| 852         | COUNTER 5 Element OP     | 1                                  |
| 853         | COUNTER 6 Element OP     | 1                                  |
| 854         | COUNTER 7 Element OP     | 1                                  |
| 855         | COUNTER 8 Element OP     | 1                                  |
| 864         | LED State 1 (IN SERVICE) | 1                                  |
| 865         | LED State 2 (TROUBLE)    | 1                                  |
| 866         | LED State 3 (TEST MODE)  | 1                                  |
| 867         | LED State 4 (TRIP)       | 1                                  |
| 868         | LED State 5 (ALARM)      | 1                                  |
| 869         | LED State 6(PICKUP)      | 1                                  |
| 880         | LED State 9 (VOLTAGE)    | 1                                  |
| 881         | LED State 10 (CURRENT)   | 1                                  |
| 882         | LED State 11 (FREQUENCY) | 1                                  |
| 883         | LED State 12 (OTHER)     | 1                                  |
| 884         | LED State 13 (PHASE A)   | 1                                  |
|             |                          |                                    |

Table E-3: BINARY INPUTS (Sheet 10 of 10)

|                | •                         | •                                  |  |
|----------------|---------------------------|------------------------------------|--|
| POINT<br>INDEX | NAME/DESCRIPTION          | CHANGE EVENT<br>CLASS (1/2/3/NONE) |  |
| 885            | LED State 14 (PHASE B)    | 1                                  |  |
| 886            | LED State 15 (PHASE C)    | 1                                  |  |
| 887            | LED State 16 (NTL/GROUND) | 1                                  |  |
| 899            | BATTERY FAIL              | 1                                  |  |
| 900            | PRI ETHERNET FAIL         | 1                                  |  |
| 901            | SEC ETHERNET FAIL         | 1                                  |  |
| 902            | EPROM DATA ERROR          | 1                                  |  |
| 903            | SRAM DATA ERROR           | 1                                  |  |
| 904            | PROGRAM MEMORY            | 1                                  |  |
| 905            | WATCHDOG ERROR 1          |                                    |  |
| 906            | LOW ON MEMORY             | 1                                  |  |
| 907            | REMOTE DEVICE OFF         | 1                                  |  |
| 910            | Any Major Error           | 1                                  |  |
| 911            | Any Minor Error           | 1                                  |  |
| 912            | Any Self-Tests            | 1                                  |  |
| 913            | IRIG-B FAILURE            | 1                                  |  |
| 914            | DSP ERROR                 | 1                                  |  |
| 915            | Not Used                  |                                    |  |
| 916            | NO DSP INTERUPTS          | 1                                  |  |
| 917            | UNIT NOT CALIBRATED       | 1                                  |  |
| 921            | PROTOTYPE FIRMWARE        | 1                                  |  |
| 922            | FLEXLOGIC ERR TOKEN       | 1                                  |  |
| 923            | EQUIPMENT MISMATCH        | 1                                  |  |
| 925            | UNIT NOT PROGRAMMED       | 1                                  |  |
| 926            | SYSTEM EXCEPTION          | 1                                  |  |

# **E.3.2 BINARY OUTPUT AND CONTROL RELAY OUTPUT**

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

# **BINARY OUTPUT STATUS POINTS**

Object Number: 10

Request Function Codes supported: 1 (read)

Default Variation reported when variation 0 requested: 2 (Binary Output Status)

**CONTROL RELAY OUTPUT BLOCKS** 

Object Number: 12

Request Function Codes supported: 3 (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table E-4: BINARY/CONTROL OUTPUT POINT LIST

| DOINT          | NAME/DECORPTION  |
|----------------|------------------|
| POINT<br>INDEX | NAME/DESCRIPTION |
| 0              | Virtual Input 1  |
| 1              | Virtual Input 2  |
| 2              | Virtual Input 3  |
| 3              | Virtual Input 4  |
| 4              | Virtual Input 5  |
| 5              | Virtual Input 6  |
| 6              | Virtual Input 7  |
| 7              | Virtual Input 8  |
| 8              | Virtual Input 9  |
| 9              | Virtual Input 10 |
| 10             | Virtual Input 11 |
| 11             | Virtual Input 12 |
| 12             | Virtual Input 13 |
| 13             | Virtual Input 14 |
| 14             | Virtual Input 15 |
| 15             | Virtual Input 16 |
| 16             | Virtual Input 17 |
| 17             | Virtual Input 18 |
| 18             | Virtual Input 19 |
| 19             | Virtual Input 20 |
| 20             | Virtual Input 21 |
| 21             | Virtual Input 22 |
| 22             | Virtual Input 23 |
| 23             | Virtual Input 24 |
| 24             | Virtual Input 25 |
| 25             | Virtual Input 26 |
| 26             | Virtual Input 27 |
| 27             | Virtual Input 28 |
| 28             | Virtual Input 29 |
| 29             | Virtual Input 30 |
| 30             | Virtual Input 31 |
| 31             | Virtual Input 32 |

**E.3.3 COUNTERS** 

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

## **BINARY COUNTERS**

Static (Steady-State) Object Number: 20

Change Event Object Number: 22

Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear),

10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)

Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Change Event without time)

Change Event Buffer Size: 10
Default Class for all points: 2

# **FROZEN COUNTERS**

Static (Steady-State) Object Number: 21

Change Event Object Number: 23

Request Function Codes supported: 1 (read)

Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)

Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)

Change Event Buffer Size: **10**Default Class for all points: **2** 

# Table E-5: BINARY and FROZEN COUNTERS

| POINT<br>INDEX | NAME/DESCRIPTION            |
|----------------|-----------------------------|
| 0              | Digital Counter 1           |
| 1              | Digital Counter 2           |
| 2              | Digital Counter 3           |
| 3              | Digital Counter 4           |
| 4              | Digital Counter 5           |
| 5              | Digital Counter 6           |
| 6              | Digital Counter 7           |
| 7              | Digital Counter 8           |
| 8              | Oscillography Trigger Count |
| 9              | Events Since Last Clear     |

Note that a counter freeze command has no meaning for counters 8 and 9.

APPENDIX E E.3 DNP POINT LISTS

**E.3.4 ANALOG INPUTS** 

The following table lists Analog Inputs (Object 30). It is important to note that 16-bit and 32-bit variations of Analog Inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767. This is a DNP requirement.

The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001 Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.

When using the UR in DNP systems with limited memory, the ANALOG INPUT POINTS LIST below may be replaced with a user-definable list. This user-definable list uses the same settings as the Modbus User Map and can be configured with the MODBUS USER MAP settings. When used with DNP, each entry in the Modbus User Map represents the starting Modbus address of a data item available as a DNP Analog Input point. To enable use of the Modbus User Map for DNP Analog Input points, set the USER MAP FOR DNP ANALOGS setting to Enabled (this setting is in the PRODUCT SETUP STORMUNICATIONS DNP PROTOCOL menu). The new DNP Analog points list can be checked via the "DNP Analog Input Points List" webpage, accessible from the "Device Information menu" webpage.



After changing the **USER MAP FOR DNP ANALOGS** setting, the relay must be powered off and then back on for the setting to take effect.

Only Source 1 data points are shown in the following table. If the **NUMBER OF SOURCES IN ANALOG LIST** setting is increased, data points for subsequent sources will be added to the list immediately following the Source 1 data points.

Units for Analog Input points are as follows:

Current: A

Voltage:

Real Power: W

Reactive Power: var

Apparent Power: VA

• Energy Wh, varh

• Frequency: Hz

Angle: degrees

• Ohm Input: Ohms

RTD Input: degrees C

Static (Steady-State) Object Number: 30

Change Event Object Number: 32

Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)

Change Event Variation reported when variation 0 requested: 1 (Analog Change Event w/o Time)

Change Event Scan Rate: defaults to 500 ms.

Change Event Buffer Size: **800**Default Class for all Points: **1** 

Table E-6: ANALOG INPUT POINTS (Sheet 1 of 4)

| POINT | DESCRIPTION                     |
|-------|---------------------------------|
| 0     | SRC 1 Phase A Current RMS       |
| 1     | SRC 1 Phase B Current RMS       |
| 2     | SRC 1 Phase C Current RMS       |
| 3     | SRC 1 Neutral Current RMS       |
| 4     | SRC 1 Phase A Current Magnitude |

Table E-6: ANALOG INPUT POINTS (Sheet 2 of 4)

| POINT | DESCRIPTION                     |
|-------|---------------------------------|
| 5     | SRC 1 Phase A Current Angle     |
| 6     | SRC 1 Phase B Current Magnitude |
| 7     | SRC 1 Phase B Current Angle     |
| 8     | SRC 1 Phase C Current Magnitude |
| 9     | SRC 1 Phase C Current Angle     |

E.3 DNP POINT LISTS APPENDIX E

## Table E-6: ANALOG INPUT POINTS (Sheet 3 of 4)

| POINT | DESCRIPTION                                 |
|-------|---------------------------------------------|
| 10    | SRC 1 Neutral Current Magnitude             |
| 11    | <u> </u>                                    |
|       | SRC 1 Neutral Current Angle                 |
| 12    | SRC 1 Ground Current RMS                    |
| 13    | SRC 1 Ground Current Magnitude              |
| 14    | SRC 1 Ground Current Angle                  |
| 15    | SRC 1 Zero Sequence Current Magnitude       |
| 16    | SRC 1 Zero Sequence Current Angle           |
| 17    | SRC 1 Positive Sequence Current Magnitude   |
| 18    | SRC 1 Positive Sequence Current Angle       |
| 19    | SRC 1 Negative Sequence Current Magnitude   |
| 20    | SRC 1 Negative Sequence Current Angle       |
| 21    | SRC 1 Differential Ground Current Magnitude |
| 22    | SRC 1 Differential Ground Current Angle     |
| 23    | SRC 1 Phase AG Voltage RMS                  |
| 24    | SRC 1 Phase BG Voltage RMS                  |
| 25    | SRC 1 Phase CG Voltage RMS                  |
| 26    | SRC 1 Phase AG Voltage Magnitude            |
| 27    | SRC 1 Phase AG Voltage Angle                |
| 28    | SRC 1 Phase BG Voltage Magnitude            |
| 29    | SRC 1 Phase BG Voltage Angle                |
| 30    | SRC 1 Phase CG Voltage Magnitude            |
| 31    | SRC 1 Phase CG Voltage Angle                |
| 32    | SRC 1 Phase AB Voltage RMS                  |
| 33    | SRC 1 Phase BC Voltage RMS                  |
| 34    | SRC 1 Phase CA Voltage RMS                  |
| 35    | SRC 1 Phase AB Voltage Magnitude            |
| 36    | SRC 1 Phase AB Voltage Angle                |
| 37    | SRC 1 Phase BC Voltage Magnitude            |
| 38    | SRC 1 Phase BC Voltage Angle                |
| 39    | SRC 1 Phase CA Voltage Magnitude            |
| 40    | SRC 1 Phase CA Voltage Angle                |
| 41    | SRC 1 Auxiliary Voltage RMS                 |
| 42    | SRC 1 Auxiliary Voltage Magnitude           |
| 43    | SRC 1 Auxiliary Voltage Angle               |
| 44    | SRC 1 Zero Sequence Voltage Magnitude       |
| 45    | SRC 1 Zero Sequence Voltage Angle           |
| 46    | SRC 1 Positive Sequence Voltage Magnitude   |
| 47    | SRC 1 Positive Sequence Voltage Angle       |
| 48    | SRC 1 Negative Sequence Voltage Magnitude   |
| 49    | SRC 1 Negative Sequence Voltage Angle       |
| 50    | SRC 1 Three Phase Real Power                |
| 51    | SRC 1 Phase A Real Power                    |
| 52    | SRC 1 Phase B Real Power                    |
| 53    | SRC 1 Phase C Real Power                    |
| 54    | SRC 1 Three Phase Reactive Power            |
| 55    | SRC 1 Phase A Reactive Power                |
| 56    | SRC 1 Phase B Reactive Power                |
|       |                                             |

Table E-6: ANALOG INPUT POINTS (Sheet 4 of 4)

| POINT | DESCRIPTION                      |
|-------|----------------------------------|
| 57    | SRC 1 Phase C Reactive Power     |
| 58    | SRC 1 Three Phase Apparent Power |
|       | ''                               |
| 59    | SRC 1 Phase A Apparent Power     |
| 60    | SRC 1 Phase B Apparent Power     |
| 61    | SRC 1 Phase C Apparent Power     |
| 62    | SRC 1 Three Phase Power Factor   |
| 63    | SRC 1 Phase A Power Factor       |
| 64    | SRC 1 Phase B Power Factor       |
| 65    | SRC 1 Phase C Power Factor       |
| 66    | SRC 1 Frequency                  |
| 67    | Breaker 1 Arcing Amp Phase A     |
| 68    | Breaker 1 Arcing Amp Phase B     |
| 69    | Breaker 1 Arcing Amp Phase C     |
| 70    | Breaker 2 Arcing Amp Phase A     |
| 71    | Breaker 2 Arcing Amp Phase B     |
| 72    | Breaker 2 Arcing Amp Phase C     |
| 73    | Synchrocheck 1 Delta Voltage     |
| 74    | Synchrocheck 1 Delta Frequency   |
| 75    | Synchrocheck 1 Delta Phase       |
| 76    | Synchrocheck 2 Delta Voltage     |
| 77    | Synchrocheck 2 Delta Frequency   |
| 78    | Synchrocheck 2 Delta Phase       |
| 79    | Tracking Frequency               |
| 80    | FlexElement 1 Actual             |
| 81    | FlexElement 2 Actual             |
| 82    | FlexElement 3 Actual             |
| 83    | FlexElement 4 Actual             |
| 84    | FlexElement 5 Actual             |
| 85    | FlexElement 6 Actual             |
| 86    | FlexElement 7 Actual             |
| 87    | FlexElement 8 Actual             |
| 88    | FlexElement 9 Actual             |
| 89    | FlexElement 10 Actual            |
| 90    | FlexElement 11 Actual            |
| 91    | FlexElement 12 Actual            |
| 92    | FlexElement 13 Actual            |
| 93    | FlexElement 14 Actual            |
| 94    | FlexElement 15 Actual            |
| 95    | FlexElement 16 Actual            |
| 96    | Current Setting Group            |

#### F.1.1 REVISION HISTORY

#### Table F-1: REVISION HISTORY

| MANUAL P/N    | D60 REVISION | RELEASE DATE      | ECO      |
|---------------|--------------|-------------------|----------|
| 1601-0089-0.1 | 1.5X (BETA)  | 23 August 1999    | N/A      |
| 1601-0089-A1  | 2.0X         | 17 December 1999  | N/A      |
| 1601-0089-A2  | 2.0X         | 14 January 2000   | URD-001  |
| 1601-0089-A3  | 2.2X         | 12 May 2000       | URD-002  |
| 1601-0089-A4  | 2.2X         | 14 June 2000      | URD-003  |
| 1601-0089-A4a | 2.2X         | 28 June 2000      | URD-003a |
| 1601-0089-B1  | 2.4X         | 08 September 2000 | URD-004  |
| 1601-0089-B2  | 2.4X         | 03 November 2000  | URD-005  |
| 1601-0089-B3  | 2.6X         | 08 March 2001     | URD-006  |
| 1601-0089-B4  | 2.8X         | 27 September 2001 | URD-007  |
| 1601-0089-B5  | 2.9X         | 03 December 2001  | URD-008  |
| 1601-0089-B6  | 2.9X         | 07 January 2002   | URD-009  |
| 1601-0089-B7  | 2.9X         | 15 March 2002     | URD-010  |

F.1.2 CHANGES TO D60 MANUAL

#### Table F-2: MAJOR UPDATES FOR D60 MANUAL REVISION B7

| PAGES (B5) | CHANGE | DESCRIPTION                                                                   |
|------------|--------|-------------------------------------------------------------------------------|
| Title      | Update | Manual part number from B6 to B7                                              |
| 5-119      | Add    | Added BKR ΦA, ΦB, and ΦC OPEN settings and description to TRIP OUTPUT section |
| 10-28      | Update | Updated CONTROL ELEMENTS table to reflect changes to TRIP OUTPUT settings     |

#### Table F-3: MAJOR UPDATES FOR D60 MANUAL REVISION B6

| PAGES (B5) | CHANGE | DESCRIPTION                                                                         |
|------------|--------|-------------------------------------------------------------------------------------|
| Title      | Update | Manual part number from B5 to B6                                                    |
|            |        |                                                                                     |
| 2-2        | Update | Updated DEVICE NUMBERS AND FUNCTIONS table to include Negative Sequence Overvoltage |
| 2-8        | Add    | Added specifications for NEGATIVE SEQUENCE OVERVOLTAGE                              |
|            |        |                                                                                     |
| 5-36       | Add    | Added FlexLogic™ operands for Negative Sequence Overvoltage                         |
| 5-112      | Update | Updated VOLTAGE ELEMENTS section                                                    |
| 5-115      | Add    | Added NEGATIVE SEQUENCE VOLTAGE section                                             |

F.1 CHANGE NOTES APPENDIX F

#### Table F-4: MAJOR UPDATES FOR D60 MANUAL REVISION B5

| PAGES (B4) | CHANGE | DESCRIPTION                                                                              |
|------------|--------|------------------------------------------------------------------------------------------|
| Title      | Update | Manual part number from B4 to B5                                                         |
|            |        |                                                                                          |
| 2-1        | Update | Updated SINGLE LINE DIAGRAM to 837709AE                                                  |
| 2-2        | Update | Updated OTHER DEVICE FUNCTIONS table to include IEC 60870-5-104 communications           |
| 2-8        | Update | Updated AUTORECLOSURE specifications                                                     |
| 5-24       | Update | Updated description for POWER SYSTEM settings                                            |
| 5-34       | Update | Updated FLEXLOGIC™ OPERANDS table to reflect new 2.9X operands                           |
| 5-53       | Update | Updated FLEXLOGIC™ EQUATION EDITOR section                                               |
| 5-54       | Update | Updated PHASE DISTANCE section to reflect updates to settings and scheme logic           |
| 5-61       | Update | Updated GROUND DISTANCE section to reflect updates to settings and scheme logic          |
| 5-103      | Update | Updated BREAKER FAILURE section to reflect Auxiliary UV/OV and Neutral OV elements       |
| 5-123      | Update | Updated AUTORECLOSE section to reflect updates to settings and scheme logic              |
| 5-138      | Update | Updated PILOT SCHEMES section to reflect updates to settings and scheme logic            |
| 8-14       | Add    | Added SINGLE POLE TRIPPING theory of operation section                                   |
| 10-        | Update | Chapter 10: COMMISSIONING updated to reflect settings changes for revision 2.9X firmware |
| B-11       | Update | MODBUS MEMORY MAP updated for version 2.9X firmware                                      |
| D-1        | Add    | Added IEC 60870-5-104 INTEROPERABILITY DOCUMENT section                                  |
| E-1        | Update | Updated DNP 3.0 DEVICE PROFILE DOCUMENT table                                            |
| E-4        | Update | Updated DNP 3.0 IMPLEMENTATION table                                                     |

F

#### F.2.1 LIST OF FIGURES

| Figure 1–1: REAR NAME-PLATE (EXAMPLE)                                                | 1-1          |
|--------------------------------------------------------------------------------------|--------------|
| Figure 1–2: UR CONCEPT BLOCK DIAGRAM                                                 | 1-3          |
| Figure 1-3: UR SCAN OPERATION                                                        | 1-4          |
| Figure 1-4: RELAY COMMUNICATIONS OPTIONS                                             | 1-8          |
| Figure 2-1: SINGLE LINE DIAGRAM                                                      |              |
| Figure 3-1: UR VERTICAL MOUNTING AND DIMENSIONS                                      |              |
| Figure 3–2: UR VERTICAL SIDE MOUNTING INSTALLATION                                   | 3-2          |
| Figure 3–3: UR VERTICAL SIDE MOUNTING REAR DIMENSIONS                                |              |
| Figure 3-4: UR HORIZONTAL MOUNTING AND DIMENSIONS                                    |              |
| Figure 3–5: UR MODULE WITHDRAWAL/INSERTION                                           |              |
| Figure 3–6: REAR TERMINAL VIEW                                                       |              |
| Figure 3-7: EXAMPLE OF MODULES IN F & H SLOTS                                        |              |
| Figure 3–8: TYPICAL WIRING DIAGRAM                                                   |              |
| Figure 3–9: CONTROL POWER CONNECTION                                                 |              |
| Figure 3–10: CT/VT MODULE WIRING                                                     |              |
| Figure 3–11: CT MODULE WIRING                                                        |              |
| Figure 3–12: FORM-A CONTACT FUNCTIONS                                                |              |
| Figure 3-13: DIGITAL I/O MODULE WIRING (SHEET 1 OF 2)                                |              |
| Figure 3-14: DIGITAL I/O MODULE WIRING (SHEET 2 OF 2)                                |              |
| Figure 3-15: DRY AND WET CONTACT INPUT CONNECTIONS                                   |              |
| Figure 3-16: TRANSDUCER I/O MODULE WIRING                                            |              |
| Figure 3-17: RS232 FACEPLATE PORT CONNECTION                                         |              |
| Figure 3–18: CPU MODULE COMMUNICATIONS WIRING                                        |              |
| Figure 3-19: RS485 SERIAL CONNECTION                                                 |              |
| Figure 3–20: IRIG-B CONNECTION                                                       |              |
| Figure 4–1: URPC SOFTWARE MAIN WINDOW                                                |              |
| Figure 4–2: UR HORIZONTAL FACEPLATE PANELS                                           | 4-4          |
| Figure 4–3: UR VERTICAL FACEPLATE PANELS                                             |              |
| Figure 4–4: LED PANEL 1                                                              |              |
| Figure 4–5: LED PANELS 2 AND 3 (INDEX TEMPLATE)                                      |              |
| Figure 4–6: LED PANEL 2 (DEFAULT LABELS)                                             |              |
| Figure 4–7: LED PANEL CUSTOMIZATION TEMPLATES (EXAMPLE)                              |              |
| Figure 5–1: BREAKER-AND-A-HALF SCHEME                                                | 5-5          |
| Figure 5–2: DISTURBANCE DETECTOR LOGIC DIAGRAM                                       | 5-26         |
| Figure 5–3: EXAMPLE USE OF SOURCES                                                   |              |
| Figure 5–4: DUAL BREAKER CONTROL SCHEME LOGIC                                        |              |
| Figure 5–6: EXAMPLE LOGIC SCHEME                                                     |              |
|                                                                                      |              |
| Figure 5–7: LOGIC EXAMPLE WITH VIRTUAL OUTPUTSFigure 5–8: LOGIC FOR VIRTUAL OUTPUT 3 | 5.42         |
| Figure 5–9: LOGIC FOR VIRTUAL OUTPUT 4                                               | 5.42         |
| Figure 5–9. LOGIC FOR VIRTUAL OUTFUT 4                                               |              |
| Figure 5–10. PLEXLOGIC™ WORKSTILE 1                                                  |              |
| Figure 5–11: FLEXLOGIC™ EQUATION & LOGIC FOR VIRTUAL OUTPUT 4                        |              |
| Figure 5–13: FLEXELEMENT™ SCHEME LOGIC                                               |              |
| Figure 5–13. PLEXELEMENT™ SCITEME LOGIC                                              | 5-40<br>5-40 |
| Figure 5–15: FLEXELEMENT™ INPUT MODE SETTING                                         | 5-49         |
| Figure 5–16: LINE PICKUP LOGIC                                                       |              |
| Figure 5–17: MEMORY VOLTAGE LOGIC                                                    |              |
| Figure 5–18: MHO DISTANCE CHARACTERISTIC                                             |              |
| Figure 5–19: QUAD DISTANCE CHARACTERISTIC                                            |              |
| Figure 5-20: MHO DISTANCE CHARACTERISTIC SAMPLE SHAPES                               |              |
| Figure 5–21: QUAD DISTANCE CHARACTERISTIC SAMPLE SHAPES                              | 5-57         |
| Figure 5–22: PHASE DISTANCE Z1 OP SCHEME                                             |              |
| Figure 5–23: PHASE DISTANCE Z2 TO Z4 OP SCHEME                                       |              |
| Figure 5-24: PHASE DISTANCE Z1 TO Z4 SCHEME LOGIC                                    |              |
| Figure 5–25: GROUND DISTANCE Z1 SCHEME LOGIC                                         |              |
| Figure 5–26: GROUND DISTANCE Z2 TO Z4 SCHEME LOGIC                                   |              |
| Figure 5–27: GROUND DISTANCE Z1 OP SCHEME                                            |              |
| Figure 5–28: GROUND DISTANCE Z2 TO Z4 OP SCHEME                                      |              |
| Figure 5-29: GROUND DIRECTIONAL SUPERVISION SCHEME LOGIC - Z2, Z3, Z4                |              |
| Figure 5-30: POWER SWING DETECT ELEMENT OPERATING CHARACTERISTICS                    |              |

| Figure 5–31: POWER SWING DETECT LOGIC (1 of 2)                                  |       |
|---------------------------------------------------------------------------------|-------|
| Figure 5–32: POWER SWING DETECT LOGIC (2 of 2)                                  | 5-71  |
| Figure 5-33: LOAD ENCROACHMENT CHARACTERISTIC                                   |       |
| Figure 5-34: LOAD ENCROACHMENT APPLIED TO DISTANCE ELEMENT                      |       |
| Figure 5–35: LOAD ENCROACHMENT SCHEME LOGIC                                     |       |
| Figure 5–36: VOLTAGE RESTRAINT CHARACTERISTIC FOR PHASE TOC                     |       |
|                                                                                 |       |
| Figure 5–37: PHASE TOC1 SCHEME LOGIC                                            |       |
| Figure 5–38: PHASE IOC1 SCHEME LOGIC                                            |       |
| Figure 5–39: PHASE A DIRECTIONAL POLARIZATION                                   |       |
| Figure 5-40: PHASE DIRECTIONAL SCHEME LOGIC                                     | 5-87  |
| Figure 5-41: NEUTRAL TOC1 SCHEME LOGIC                                          | 5-88  |
| Figure 5-42: NEUTRAL IOC1 SCHEME LOGIC                                          |       |
| Figure 5–43: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS              |       |
| Figure 5–44: NEUTRAL DIRECTIONAL OC1 SCHEME LOGIC                               |       |
| Figure 5–45: GROUND TOC1 SCHEME LOGIC                                           |       |
|                                                                                 |       |
| Figure 5–46: GROUND IOC1 SCHEME LOGIC                                           |       |
| Figure 5-47: NEGATIVE SEQUENCE TOC1 SCHEME LOGIC                                |       |
| Figure 5-48: NEGATIVE SEQUENCE IOC1 SCHEME LOGIC                                | 5-98  |
| Figure 5-49: NEG SEQ DIRECTIONAL CHARACTERISTICS                                | 5-100 |
| Figure 5-50: NEG SEQ DIRECTIONAL OC1 SCHEME LOGIC                               | 5-102 |
| Figure 5-51: BREAKER FAILURE MAIN PATH SEQUENCE                                 |       |
| Figure 5–52: BREAKER FAILURE 1-POLE [INITIATE] (Sheet 1 of 2)                   |       |
| Figure 5–53: BREAKER FAILURE 1-POLE (TIMERS) [Sheet 2 of 2]                     |       |
|                                                                                 |       |
| Figure 5–54: BREAKER FAILURE 3-POLE [INITIATE] (Sheet 1 of 2)                   |       |
| Figure 5–55: BREAKER FAILURE 3-POLE [TIMERS] (Sheet 2 of 2)                     |       |
| Figure 5–56: INVERSE TIME UNDERVOLTAGE CURVES                                   |       |
| Figure 5-57: PHASE UV1 SCHEME LOGIC                                             | 5-113 |
| Figure 5-58: PHASE OV1 SCHEME LOGIC                                             | 5-114 |
| Figure 5-59: NEUTRAL OVERVOLTAGE SCHEME LOGIC                                   | 5-115 |
| Figure 5-60: NEG SEQ OV SCHEME LOGIC                                            |       |
| Figure 5-61: AUXILIARY UNDERVOLTAGE SCHEME LOGIC                                |       |
| Figure 5–62: AUXILIARY OVERVOLTAGE SCHEME LOGIC                                 |       |
| Figure 5–63: EXAMPLE FLEXLOGIC™ CONTROL OF A SETTINGS GROUP                     |       |
|                                                                                 |       |
| Figure 5–64: TRIP OUTPUT SCHEME LOGIC                                           |       |
| Figure 5–65: SYNCHROCHECK SCHEME LOGIC                                          |       |
| Figure 5-66: SINGLE-POLE AUTORECLOSE LOGIC (SHEET 1 OF 3)                       |       |
| Figure 5-67: SINGLE-POLE AUTORECLOSE LOGIC (SHEET 2 OF 3)                       |       |
| Figure 5-68: SINGLE-POLE AUTORECLOSE LOGIC (SHEET 3 OF 3)                       | 5-136 |
| Figure 5-69: EXAMPLE RECLOSING SEQUENCE                                         | 5-137 |
| Figure 5–70: DIGITAL ELEMENT SCHEME LOGIC                                       |       |
| Figure 5–71: TRIP CIRCUIT EXAMPLE 1                                             |       |
| Figure 5–72: TRIP CIRCUIT EXAMPLE 2                                             |       |
|                                                                                 |       |
| Figure 5–73: DIGITAL COUNTER SCHEME LOGIC                                       |       |
| Figure 5–74: ARCING CURRENT MEASUREMENT                                         |       |
| Figure 5–75: BREAKER ARCING CURRENT SCHEME LOGIC                                |       |
| Figure 5-76: VT FUSE FAIL SCHEME LOGIC                                          |       |
| Figure 5–77: OPEN POLE DETECTOR LOGIC                                           | 5-147 |
| Figure 5–78: DUTT SCHEME LOGIC                                                  | 5-149 |
| Figure 5–79: PUTT SCHEME LOGIC                                                  |       |
| Figure 5–80: POTT SCHEME LOGIC                                                  |       |
| Figure 5–81: HYBRID POTT SCHEME                                                 |       |
|                                                                                 |       |
| Figure 5–82: DIRECTIONAL COMPARISON BLOCKING SCHEME LOGIC                       |       |
| Figure 5-83: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING |       |
| Figure 5-84: VIRTUAL INPUTS SCHEME LOGIC                                        |       |
| Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS                  |       |
| Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION                               | 6-7   |
| Figure 6-3: ILLUSTRATION OF THE UR CONVENTION FOR SYMMETRICAL COMPONENTS        |       |
| Figure 6–4: EQUIVALENT SYSTEM FOR FAULT LOCATION                                |       |
| Figure 6–5: FAULT LOCATOR SCHEME                                                |       |
| Figure 8–1: MHO AND LENS CHARACTERISTICS                                        |       |
|                                                                                 |       |
| Figure 8–2: DYNAMIC SHIFT OF THE MHO CHARACTERISTIC                             |       |
| Figure 8–3: DYNAMIC SHIFT OF THE MEMORY-POLARIZED DIRECTIONAL CHARACTERISTIC    |       |
| Figure 8–4: OFFSET IMPEDANCE AUGMENTATION                                       |       |
| Figure 8-5: DYNAMIC REACH CONTROL                                               |       |
| Figure 8-6: DYNAMIC REACH FOR EXTERNAL AND INTERNAL FAULTS                      | 8-13  |

# APPENDIX F F.2 FIGURES AND TABLES

| Figure 8–7: SINGLE-POLE OPERATION                          | 8-14 |
|------------------------------------------------------------|------|
| Figure 8-8: PHASE SELECTION PRINCIPLE (ABC PHASE ROTATION) |      |
| Figure 8–9: PHASE SELECTOR LOGIC                           | 8-17 |
| Figure 9-1: SAMPLE SERIES COMPENSATED SYSTEM               |      |
| 3                                                          |      |

#### **F.2.2 LIST OF TABLES**

| Table: 2–1 DEVICE NUMBERS AND FUNCTIONS                                                        |       |
|------------------------------------------------------------------------------------------------|-------|
| Table: 2–2 OTHER DEVICE FUNCTIONS                                                              |       |
| Table: 2–3 ORDER CODES                                                                         |       |
| Table: 2–4 ORDER CODES FOR REPLACEMENT MODULES                                                 |       |
| Table: 3–1 DIELECTRIC STRENGTH OF UR MODULE HARDWARE<br>Table: 3–2 CONTROL POWER VOLTAGE RANGE |       |
| Table: 3–2 CONTROL POWER VOLTAGE RANGE                                                         |       |
| Table: 3–3 DIGITAL I/O MODULE ASSIGNMENTS                                                      |       |
| Table: 5–1 OSCILLOGRAPHY CYCLES/RECORD EXAMPLE                                                 |       |
| Table: 5-3 RECOMMENDED SETTINGS FOR LED PANEL 2 LABELS)                                        |       |
| Table: 5–9 FLEXCURVETM TABLE                                                                   |       |
| Table: 5–10 UR FLEXLOGIC™ OPERAND TYPES                                                        |       |
| Table: 5–11 UR FLEXLOGIC™ OPERANDS                                                             |       |
| Table: 5–12 FLEXLOGIC™ GATE CHARACTERISTICS                                                    |       |
| Table: 5–13 FLEXLOGIC™ OPERATORS                                                               |       |
| Table: 5–14 FLEXELEMENT™ BASE UNITS                                                            |       |
| Table: 5-15 OVERCURRENT CURVE TYPES                                                            |       |
| Table: 5-16 IEEE INVERSE TIME CURVE CONSTANTS                                                  |       |
| Table: 5-17 IEEE CURVE TRIP TIMES (IN SECONDS)                                                 | 5-78  |
| Table: 5-18 IEC (BS) INVERSE TIME CURVE CONSTANTS                                              |       |
| Table: 5-19 IEC CURVE TRIP TIMES (IN SECONDS)                                                  | 5-79  |
| Table: 5-20 GE TYPE IAC INVERSE TIME CURVE CONSTANTS                                           | 5-80  |
| Table: 5-21 IAC CURVE TRIP TIMES                                                               | 5-80  |
| Table: 5–22 I <sup>2</sup> t CURVE TRIP TIMES                                                  | 5-81  |
| Table: 5–23 QUANTITIES FOR "CALCULATED 310" CONFIGURATION                                      |       |
| Table: 5–24 QUANTITIES FOR "MEASURED IG" CONFIGURATION                                         |       |
| Table: 5-25 AUTORECLOSE OPERATION                                                              |       |
| Table: 5–26 AR PROGRAMS                                                                        |       |
| Table: 5–27 VALUES OF RESISTOR 'R'                                                             |       |
| Table: 5-28 UCA DNA2 ASSIGNMENTS                                                               |       |
| Table: 6-1 CALCULATING VOLTAGE SYMMETRICAL COMPONENTS EXAMPLE                                  |       |
| Table: 6–2 FLEXELEMENT™ BASE UNITS                                                             |       |
| Table: 7–1 TARGET MESSAGE PRIORITY STATUS                                                      |       |
| Table: 7–2 MAJOR SELF-TEST ERROR MESSAGES                                                      |       |
| Table: 7–3 MINOR SELF-TEST ERROR MESSAGES                                                      |       |
| Table: 8–1 MHO PHASE DISTANCE FUNCTIONS                                                        |       |
| Table: 8–2 MHO GROUND DISTANCE FUNCTIONS                                                       |       |
| Table: 8–3 QUAD PHASE DISTANCE FUNCTIONS                                                       |       |
| Table: 8–4 QUAD GROUND DISTANCE FUNCTIONS                                                      |       |
| Table: 8–6 BLOCKING SCHEME TRANSIT CODES FOR 1-BIT CHANNELS                                    |       |
| Table: 8-7 PERMISSIVE SCHEME TRIP TABLE FOR 1-BIT CHANNELS                                     |       |
| Table: 8–8 BLOCKING SCHEME TRIP TABLE FOR 1-BIT CHANNELS                                       |       |
| Table: 8-9 PERMISSIVE SCHEME TRANSMIT CODES FOR TWO-BIT CHANNELS                               |       |
| Table: 8-10 BLOCKING SCHEME TRANSMIT CODES FOR TWO-BIT CHANNELS                                |       |
| Table: 8-11 PERMISSIVE SCHEME TRIP TABLE FOR TWO-BIT CHANNELS                                  |       |
| Table: 8–12 BLOCKING SCHEME TRIP TABLE FOR TWO-BIT CHANNELS                                    |       |
| Table: 8–13 PERMISSIVE SCHEME TRANSMIT CODES FOR 4-BIT CHANNELS                                |       |
| Table: 8–14 BLOCKING SCHEME TRANSMIT CODES FOR 4-BIT CHANNELS                                  |       |
| Table: 8–15 PERMISSIVE SCHEME TRIP TABLE FOR 4-BIT CHANNELS                                    |       |
| Table: 8–16 BLOCKING SCHEME TRIP TABLE FOR FOUR-BIT CHANNELS                                   |       |
| Table: 8–17 ECHO TABLE FOR 2-BIT CHANNELS                                                      |       |
| Table: 8–18 ECHO TABLE FOR 4-BIT CHANNELS                                                      |       |
| Table: 10-1 PRODUCT SETUP                                                                      | 10-1  |
| Table: 10-2 SYSTEM SETUP                                                                       |       |
| Table: 10-3 FLEXCURVE™ TABLE                                                                   | 10-10 |
| Table: 10–4 FLEXCURVE™ TABLE                                                                   | 10-11 |

# F.2 FIGURES AND TABLES APPENDIX F

| Table: 10–5 FLEXLOGIC™                                         | 10-12 |
|----------------------------------------------------------------|-------|
| Table: 10-6 GROUPED ELEMENTS                                   | 10-21 |
| Table: 10-7 CONTROL ELEMENTS                                   | 10-28 |
| Table: 10-8 CONTACT INPUTS                                     | 10-33 |
| Table: 10-9 VIRTUAL INPUTS                                     | 10-34 |
| Table: 10-10 UCA SBO TIMER                                     | 10-34 |
| Table: 10-11 CONTACT OUTPUTS                                   | 10-35 |
| Table: 10-12 VIRTUAL OUTPUTS                                   | 10-36 |
| Table: 10-13 REMOTE DEVICES                                    | 10-37 |
| Table: 10-14 REMOTE INPUTS                                     | 10-38 |
| Table: 10-15 REMOTE OUTPUTS                                    | 10-39 |
| Table: 10-16 DCMA INPUTS                                       | 10-40 |
| Table: 10-17 RTD INPUTS                                        | 10-41 |
| Table: 10-18 FORCE CONTACT INPUTS                              | 10-42 |
| Table: 10-19 FORCE CONTACT OUTPUTS                             | 10-42 |
| Table: A-1 FLEXANALOG PARAMETERS                               | A-1   |
| Table: B-1 MODBUS PACKET FORMAT                                | B-1   |
| Table: B-2 CRC-16 ALGORITHM                                    | B-3   |
| Table: B-3 MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE | B-4   |
| Table: B-4 MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE | B-5   |
| Table: B-5 SUMMARY OF OPERATION CODES (FUNCTION CODE 05H)      | B-5   |
| Table: B-6 MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE | B-5   |
| Table: B-7 MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE | B-6   |
| Table: B-8 MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE |       |
| Table: B-9 MODBUS MEMORY MAP                                   | B-9   |
| Table: C-1 DEVICE IDENTITY - DI                                |       |
| Table: C-2 GENERIC CONTROL - GCTL                              |       |
| Table: C-3 GENERIC INDICATOR - GIND                            |       |
| Table: C-4 GLOBAL DATA - GLOBE                                 |       |
| Table: C-5 MEASUREMENT UNIT (POLYPHASE) - MMXU                 |       |
| Table: C-6 PROTECTIVE ELEMENTS                                 |       |
| Table: C-7 CT RATIO INFORMATION - ctRATO                       |       |
| Table: C-8 VT RATIO INFORMATION - vtRATO                       |       |
| Table: C-9 RECLOSING RELAY - RREC                              |       |
| Table: C-10 RECLOSING RELAY - XCBR                             |       |
| Table: D-1 IEC 60870-5-104 POINTS                              |       |
| Table: E-1 DNP V3.00 DEVICE PROFILE                            |       |
| Table: E-2 IMPLEMENTATION TABLE                                |       |
| Table: E-3 BINARY INPUTS                                       |       |
| Table: E-4 BINARY/CONTROL OUTPUT POINT LIST                    |       |
| Table: E-5 BINARY and FROZEN COUNTERS                          |       |
| Table: E-6 ANALOG INPUT POINTS                                 |       |
| Table: F-1 REVISION HISTORY                                    |       |
| Table: F-2 MAJOR UPDATES FOR UR MANUAL REVISION B6             |       |
| Table: F-3 MAJOR UPDATES FOR UR MANUAL REVISION B5             | F-2   |

APPENDIX F F.3 ABBREVIATIONS

#### F.3.1 STANDARD ABBREVIATIONS

| A         | amnere                                       | GOOSE      | general object oriented substation event       |
|-----------|----------------------------------------------|------------|------------------------------------------------|
|           | alternating current                          | 00002      | gonorar object onemed substation event         |
|           | analog to digital                            | НАРМ       | harmonic / harmonics                           |
|           |                                              |            | high-impedance ground fault (CT)               |
|           | accidental energization                      | 1101       | high impedance ground adult (O1)               |
|           | application entity                           | ∏IZ<br>UMI | high-impedance & arcing ground                 |
| AMP       |                                              |            | human-machine interface                        |
|           | American National Standards Institute        | HYB        | nybria                                         |
|           | automatic reclosure                          |            |                                                |
| AUTO      | automatic                                    |            | instantaneous                                  |
| AUX       | auxiliary                                    | I_0        | zero sequence current                          |
| AVG       |                                              | I 1        | positive sequence current                      |
|           | J                                            |            | negative sequence current                      |
| BER       | bit error rate                               |            | phase A current                                |
|           | breaker fail                                 | IAR        | phase A minus B current                        |
|           | breaker failure initiate                     | IR         | phase B current                                |
| BKR       |                                              |            | phase B minus C current                        |
| BLK       |                                              |            | phase C current                                |
|           |                                              |            | phase C current                                |
| BLKG      |                                              |            |                                                |
| DPIN I    | breakpoint of a characteristic               |            | identification                                 |
|           |                                              | IEEE       | Institute of Electrical & Electronic Engineers |
|           |                                              | !G         | ground (not residual) current                  |
| CAP       |                                              | lgd        | differential ground current                    |
| CC        | coupling capacitor                           | IN         | CT residual current (3lo) or input             |
| CCVT      | coupling capacitor voltage transformer       | INC SEQ    | incomplete sequence                            |
| CFG       | configure / configurable                     | INIT       |                                                |
| .CFG      | file name extension for oscillography files  | INST       | instantaneous                                  |
| CHK       |                                              | INV        |                                                |
| CHNL      |                                              |            | input/output                                   |
| CLS       |                                              |            | instantaneous overcurrent                      |
| CLSD      |                                              |            | instantaneous overvoltage                      |
| CMND      |                                              |            | inter-range instrumentation group              |
|           |                                              |            |                                                |
|           | comparison                                   | 10 V       | instantaneous undervoltage                     |
|           | contact output                               | 1/0        |                                                |
|           | communication                                | KU         | zero sequence current compensation             |
|           | communications                               |            | kiloAmpere                                     |
|           | compensated                                  | kV         | kiloVolt                                       |
| CONN      |                                              |            |                                                |
| CO-ORD    | coordination                                 | LED        | light emitting diode                           |
| CPU       | central processing unit                      |            | line end open                                  |
| CRT, CRNT |                                              | LOOP       | loopback                                       |
| CT        | current transformer                          | LPU        | line pickup                                    |
|           | capacitive voltage transformer               | LRA        | locked-rotor current                           |
|           | , ,                                          |            | load tap-changer                               |
| D/A       | digital to analog                            |            |                                                |
| DC (dc)   | direct current                               | M          | machine                                        |
|           | disturbance detector                         |            | milliAmpere                                    |
| DFLT      |                                              |            | manual / manually                              |
| DGNST     | diagnostics                                  |            | man machine interface                          |
| DOINGT    | digital input                                |            | Manufacturing Message Specification            |
|           |                                              |            |                                                |
| DIFF      | directional                                  | IVIOG      | message                                        |
| DIR       |                                              |            | maximum torque angle                           |
|           | discrepancy                                  | MTR        |                                                |
| DIST      |                                              | MVA        | MegaVolt-Ampere (total 3-phase)                |
| DMD       |                                              | MVA_A      | MegaVolt-Ampere (phase A)                      |
| DPO       |                                              | MVA_B      | MegaVolt-Ampere (phase B)                      |
| DSP       | digital signal processor                     | MVA_C      | MegaVolt-Ampere (phase C)                      |
| DTT       | direct transfer trip                         |            | MegaVar (total 3-phase)                        |
| DUTT      | direct under-reaching transfer trip          |            | MegaVar (phase A)                              |
|           | · ·                                          |            | MegaVar (phase B)                              |
| EPRI      | Electric Power Research Institute            | MVAR C     | MegaVar (phase C)                              |
|           | file name extension for event recorder files |            | MegaVar-Hour                                   |
| EXT       |                                              |            | MegaWatt (total 3-phase)                       |
|           |                                              |            | MegaWatt (total 3-phase)                       |
| F         | field                                        | M\N/ R     | MegaWatt (phase B)                             |
| FAIL      |                                              | M//// C    | MegaWatt (phase C)                             |
|           |                                              |            |                                                |
|           | fault detector                               | IVI V V □  | MegaWatt-Hour                                  |
|           | fault detector high-set                      | N          | n a cotanal                                    |
|           | fault detector low-set                       | N          |                                                |
|           | full load current                            |            | not applicable                                 |
| FO        |                                              |            | negative                                       |
| FREQ      | trequency                                    |            | nameplate                                      |
| FSK       | frequency-shift keying                       |            | nominal                                        |
| FWD       |                                              | NTR        | neutral                                        |
|           |                                              |            |                                                |
| G         | generator                                    | 0          | over                                           |
|           | General Electric                             |            | overcurrent                                    |
| GND       |                                              | O/P, Op    |                                                |
| GNTR      |                                              | OP         |                                                |
|           | J 2                                          |            | - F                                            |

| ODED                                         | 011014                                       |
|----------------------------------------------|----------------------------------------------|
| OPER operate                                 | SUPV supervise / supervision                 |
| OPERATG operating                            | SV supervision                               |
| O/S operating system                         | SYNCHCHK synchrocheck                        |
| OSBout-of-step blocking                      |                                              |
| OUT output                                   | T time, transformer                          |
| OVovervoltage                                | TC thermal capacity                          |
| OVERFREQ overfrequency                       | TD MULT time dial multiplier                 |
|                                              |                                              |
| OVLDoverload                                 | TEMPtemperature                              |
| D                                            | THD total harmonic distortion                |
| Pphase                                       | TOC time overcurrent                         |
| PCphase comparison, personal computer        | TOV time overvoltage                         |
| PCNTpercent                                  | TRANS transient                              |
| PFpower factor (total 3-phase)               | TRANSF transfer                              |
| PF_Apower factor (phase A)                   | TSEL transport selector                      |
| PF_Bpower factor (phase B)                   | TUC time undercurrent                        |
| PF_Cpower factor (phase C)                   | TUV time undervoltage                        |
| PHSphase                                     | TX (Tx) transmit, transmitter                |
| DKD piokup                                   | TA (TA) transmit, transmitter                |
| PKPpickup                                    | II under                                     |
| PLCpower line carrier                        | U under                                      |
| POSpositive                                  | UCundercurrent                               |
| POTT permissive over-reaching transfer trip  | UCA Utility Communications Architecture      |
| PRESS pressure                               | UNBAL unbalance                              |
| PROT protection                              | URuniversal relay                            |
| PSELpresentation selector                    | .URS file name extension for settings files  |
| pu per unit                                  | UV undervoltage                              |
| PUIBpickup current block                     | o undo . onago                               |
| PUITpickup current trip                      | V/Hz Volts per Hertz                         |
| DUTT normically ander reaching transfer trip | V/112 Volto per menta                        |
| PUTTpermissive under-reaching transfer trip  | V_0zero sequence voltage                     |
| PWMpulse width modulated                     | V_1 positive sequence voltage                |
| PWRpower                                     | V_2negative sequence voltage                 |
|                                              | VA phase A voltage                           |
| Rrate, reverse                               | VAB phase A to B voltage                     |
| REM remote                                   | VAGphase A to ground voltage                 |
| REVreverse                                   | VARHvar-hour voltage                         |
| RIreclose initiate                           | VBphase B voltage                            |
| RIPreclose in progress                       | VBA phase B to A voltage                     |
| RODremote open detector                      | VBGphase B to ground voltage                 |
|                                              | VC phase C voltage                           |
| RSTreset                                     | VCphase C voltage                            |
| RSTRrestrained                               | VCAphase C to A voltage                      |
| RTDresistance temperature detector           | VCG phase C to ground voltage                |
| RTUremote terminal unit                      | VF variable frequency                        |
| RX (Rx)receive, receiver                     | VIBR vibration                               |
|                                              | VT voltage transformer                       |
| s second                                     | VTFF voltage transformer fuse failure        |
| Ssensitive                                   | VTLOSvoltage transformer loss of signal      |
| SATCT saturation                             | 1 1 200 mmm romago manoromor roos or orginar |
|                                              | WDG winding                                  |
| SBOselect before operate                     | WILL What have                               |
| SELselect / selector / selection             | WH                                           |
| SENS sensitive                               | w/ opt with option                           |
| SEQsequence                                  | WRT with respect to                          |
| SIRsource impedance ratio                    |                                              |
| SRCsource                                    | X reactance                                  |
| SSB single side band                         | XDUCER transducer                            |
| SSEL session selector                        | XFMR transformer                             |
| STATS statistics                             |                                              |
| SUPNsupervision                              | Zimpedance                                   |
| 001 14 3upervision                           | Z Impedance                                  |

# **GE POWER MANAGEMENT RELAY WARRANTY**

General Electric Power Management Inc. (GE Power Management) warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Power Management will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Power Management authorized factory outlet.

GE Power Management is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Power Management Standard Conditions of Sale.

|                                                  | BATTERY FAIL7-4                                |
|--------------------------------------------------|------------------------------------------------|
| Numerics                                         | BATTERY TAB1-10                                |
| Traineries                                       | BINARY INPUT POINTS E-8                        |
| 10BASE-F                                         | BINARY OUTPUT POINTS E-13                      |
| communications options                           | BLOCK DIAGRAM1-3                               |
| description 3-19                                 | BLOCK SETTING5-4                               |
| redundant option 3-17                            | BLOCKING SCHEME                                |
| settings 5-9                                     | application of settings9-6                     |
| specifications 2-12                              | logic 5-164                                    |
|                                                  | settings 5-161, 5-162                          |
|                                                  | BREAKER ARCING CURRENT                         |
| Λ                                                | clearing7-2                                    |
| A                                                | commissioning10-31                             |
| ABBREVIATIONSF-7                                 | logic 5-145                                    |
| AC CURRENT INPUTS2-10, 3-8, 5-23                 | measurement 5-145                              |
| AC VOLTAGE INPUTS                                | Modbus registers B-13, B-30                    |
| ACTIVATING THE RELAY1-10, 4-13                   | settings 5-144                                 |
| ACTIVE SETTING GROUP                             | BREAKER CONTROL                                |
| ACTUAL VALUES                                    | actual values6-16                              |
| maintenance 6-16                                 | commissioning10-9                              |
| metering6-6                                      | control of 2 breakers4-9                       |
| product information                              | description4-9                                 |
| records                                          | dual breaker logic5-30                         |
| status6-3                                        | Modbus registers B-19                          |
| ALARM LEDs                                       | settings5-28                                   |
| ALTITUDE 2-12                                    | BREAKER FAILURE                                |
| ANSI DEVICE NUMBERS2-2                           | commissioning                                  |
| APPARENT POWER2-10, 6-10                         | description                                    |
| APPLICATION EXAMPLES                             | determination                                  |
| breaker trip circuit integrity 5-141             | logic                                          |
| contact inputs 5-166                             | main path sequence                             |
| pilot schemes                                    | Modbus registers                               |
| series compensated lines 8-11, 9-7               | settings                                       |
| stepped distance scheme9-2                       | specifications2-8 BREAKER-AND-A-HALF SCHEME5-5 |
| APPROVALS 2-12                                   | BRIGHTNESS                                     |
| ARCHITECTURE 5-32                                | BRIGITINESS5-0                                 |
| ARCING CURRENT 5-144                             |                                                |
| AUTORECLOSE                                      |                                                |
| actual values 6-4                                | C                                              |
| commissioning 10-28                              |                                                |
| description 5-129                                | CE APPROVALS2-12                               |
| logic 5-135, 5-136, 5-137                        | CHANGES TO D60 MANUALF-1                       |
| Modbus registers B-13, B-26                      | CHANNELS                                       |
| sequence                                         | banks                                          |
| settings5-128, 5-130, 5-131, 5-132, 5-133, 5-134 | CLEANING                                       |
| specifications                                   | CLEANING                                       |
|                                                  |                                                |
| commissioning                                    | CLOCK commissioning10-1                        |
| Modbus registers B-44                            | Modbus registers B-17                          |
| settings                                         | setting date and time                          |
| specifications                                   | settings                                       |
| AUXILIARY UNDERVOLTAGE                           | COMMANDS MENU7-1                               |
| commissioning                                    | COMMUNICATIONS                                 |
| logic                                            | 10BASE-F                                       |
| Modbus registers                                 | commissioning                                  |
| settings                                         | connecting to the UR1-6, 1-7                   |
| specifications                                   | CRC-16 error checkingB-3                       |
| AUXILIARY VOLTAGE CHANNEL                        | DNP5-10                                        |
| AUXILIARY VOLTAGE METERING                       | dnp5-15, E-1                                   |
|                                                  | half duplex B-1                                |
|                                                  | HTTP5-13                                       |
| D.                                               | IEC 60870-5-104 protocol5-14                   |
| В                                                | Modbus5-10, 5-15, B-1, B-4                     |
| BANKS 5-6, 5-23, 5-24                            | Modbus registers B-16                          |
| DAINING                                          |                                                |

|    | overview                                |              |
|----|-----------------------------------------|--------------|
|    | RS232                                   |              |
|    | RS485 3-1                               |              |
| :  | settings 5-8, 5-9, 5-10, 5-12           | , 5-14, 5-15 |
| :  | specifications                          | 2-12         |
|    | TFTP                                    | 5-13         |
|    | UCA/MMS5-12, 5-28, 5-167, 5-169, 5-170, | 5-171, C-1   |
| ,  | web server                              | 5-13         |
| С  | OMTRADE                                 | B-7, B-8     |
| С  | ONDUCTED RFI                            | 2-12         |
|    | ONTACT INFORMATION                      |              |
| С  | ONTACT INPUTS                           |              |
|    | actual values                           | 6-3          |
|    | commissioning                           |              |
|    | dry connections                         |              |
|    | force contact inputs                    |              |
| ı  | Modbus registers B-10, B-13,            | B-34 B-36    |
|    | module assignments                      | 3-11         |
|    | settings                                |              |
|    | specifications                          |              |
|    | thresholds                              |              |
|    | wet connections                         |              |
|    | wiring                                  |              |
|    | ONTACT OUTPUTS                          | 3-13         |
|    | actual values                           | 6.4          |
|    |                                         |              |
|    | commissioning                           |              |
|    | force contact outputs                   |              |
|    | Modbus registersB-10,                   |              |
|    | module assignments                      |              |
|    | settings                                |              |
|    | wiring                                  |              |
|    | ONTROL ELEMENTS                         | 5-119        |
|    | ONTROL POWER                            |              |
|    | connection diagram                      |              |
|    | description                             |              |
|    | specifications                          | 2-11         |
|    | OUNTERS                                 |              |
|    | actual values                           |              |
|    | commissioning                           |              |
|    | settings                                |              |
|    | RC-16 ALGORITHM                         |              |
|    | RITICAL FAILURE RELAY                   |              |
|    | SA APPROVAL                             |              |
|    | T BANKS                                 |              |
|    | Modbus registers                        | B-18         |
| :  | settings                                | 5-23         |
| C. | T INPUTS                                | 5-6, 5-23    |
| C. | T WIRING                                | 3-9          |
| CI | URRENT BANK                             | 5-23         |
| С  | URRENT ELEMENTS                         | 5-76         |
| С  | URRENT METERING                         |              |
|    | actual values                           | 6-9          |
|    | Modbus registers                        |              |
|    | specifications                          |              |
|    | URVES                                   |              |
| -  | definite time                           | 5-81, 5-112  |
|    | FlexCurves™                             |              |
|    | IZT                                     | ,            |
|    | IAC                                     |              |
|    | IEC                                     |              |
|    | IEEE                                    |              |
|    | inverse time undervoltage               |              |
|    | types                                   |              |
|    | A1                                      |              |
|    |                                         |              |

# D

| DATA FORMATS, MODBUSDATA LOGGER clearing commissioning                                                                                                                                                                                                                                                                                                                           | B-46                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                  | 10-2                                                                              |
| Modbus                                                                                                                                                                                                                                                                                                                                                                           | B-7, B-8                                                                          |
| Modbus registers                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
| settings                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |
| specifications                                                                                                                                                                                                                                                                                                                                                                   | 2-10                                                                              |
| DATE                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |
| DCMA INPUTS                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| Modbus registers                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
| settings                                                                                                                                                                                                                                                                                                                                                                         | 5-173                                                                             |
| specifications                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |
| DEFINITE TIME CURVE                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |
| DESIGN                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   |
| DEVICE ID                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |
| DEVICE PROFILE DOCUMENT                                                                                                                                                                                                                                                                                                                                                          | E-1                                                                               |
| DIELECTRIC STRENGTH                                                                                                                                                                                                                                                                                                                                                              | 2-12, 3-7                                                                         |
| DIGITAL COUNTERS                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
| actual values                                                                                                                                                                                                                                                                                                                                                                    | 6-5                                                                               |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| logic                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |
| Modbus registers                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
| settings                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |
| DIGITAL ELEMENTS                                                                                                                                                                                                                                                                                                                                                                 | 5-142                                                                             |
| application example                                                                                                                                                                                                                                                                                                                                                              | E 140                                                                             |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 5-140                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| logic                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |
| Modbus registers                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
| settings                                                                                                                                                                                                                                                                                                                                                                         | 5-139                                                                             |
| DIGITAL INPUTS                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |
| see entry for CONTACT INPUTS                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |
| DIGITAL OUTPUTS                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| see entry for CONTACT OUTPUTS                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| DIMENSIONS                                                                                                                                                                                                                                                                                                                                                                       | 3-1                                                                               |
| DIRECT UNDERREACH TRANSER TRIP                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |
| see entry for DUTT                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |
| DIRECTIONAL CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                       | 8-3                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| DIRECTIONAL COMPARISON BLOCKING                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| DIRECTIONAL COMPARISON BLOCKING commissioning                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32                                                                             |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32                                                                             |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32                                                                             |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26                                                                     |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26                                                                     |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26<br>NAL entries                                                      |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26<br>NAL entries                                                      |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26<br>JAL entries<br>5-86<br>-8, 4-8, 5-8                              |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26<br>NAL entries<br>5-86<br>-8, 4-8, 5-8<br>10-1                      |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>B-26<br>NAL entries<br>5-86<br>-8, 4-8, 5-8<br>10-1                      |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>                                                                         |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>                                                                         |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32<br>                                                                         |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | 10-32                                                                             |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | NAL entries -8, 4-8, 5-8                                                          |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | NAL entries -8, 4-8, 5-8 -8, 4-8, 5-8                                             |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | NAL entries5-86 -8, 4-8, 5-810-18-710-212-6, 5-61 B-27, B-282-5, 5-55 .5-56, 5-57 |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | NAL entries5-86 -8, 4-8, 5-810-18-710-212-6, 5-61 B-27, B-282-5, 5-55 .5-56, 5-57 |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | JAL entries -8, 4-8, 5-8 -8, 4-8, 5-8 -10-1                                       |
| commissioning  Modbus registers  see BLOCKING SCHEME DIRECTIONAL OVERCURRENT see PHASE, GROUND, and NEUTRAL DIRECTION DIRECTIONAL POLARIZATION DISPLAY  1 DISPLAY 1 DISPLAY 6 DISPLAY 6 DISTANCE analysis of elements characteristics commissioning ground mho characteristic Modbus registers phase quad characteristic settings stepped distance DISTURBANCE DETECTOR internal | JAL entries -8, 4-8, 5-8 -8, 4-8, 5-8 -10-1                                       |
| commissioning                                                                                                                                                                                                                                                                                                                                                                    | IAL entries                                                                       |

| binary counters             | E-14        | Modbus registers               | B-14, B-17      |
|-----------------------------|-------------|--------------------------------|-----------------|
| binary input points         | E-8         | settings                       |                 |
| binary output points        |             | FAULT TYPE                     |                 |
| commissioning               |             | FAX NUMBERS                    | 1-1             |
| control relay output blocks |             | FEATURES                       |                 |
| device profile document     |             | FIRMWARE REVISION              |                 |
| frozen counters             |             | FIRMWARE UPGRADES              |                 |
| implementation table        |             | FLASH MESSAGES                 | 5-8             |
| Modbus registers            |             | FLEX STATE PARAMETERS          |                 |
| settings                    |             | actual values                  |                 |
| user map                    |             | commissioning                  |                 |
| DUPLEX, HALF                | B-1         | Modbus registers               |                 |
| DUTT                        |             | settings                       |                 |
| application of settings     |             | specifications                 |                 |
| commissioning               |             | FLEXANALOG PARAMETERS          | A-1             |
| logic                       |             | FLEXCURVES™                    |                 |
| Modbus registers            |             | commissioning                  |                 |
| settings                    |             | equation                       |                 |
| DYNAMIC REACH CONTROL       | 8-12        | Modbus registers               |                 |
|                             |             | settings                       |                 |
|                             |             | specifications                 |                 |
| E                           |             | table                          | 5-31            |
| _                           |             | FLEXELEMENTS™                  | 0.40            |
| ELECTROSTATIC DISCHARGE     | 2-12        | actual values commissioning    |                 |
| ELEMENTS                    | 5-3         | direction                      |                 |
| EQUATIONS                   |             |                                |                 |
| definite time curve         | 5-81, 5-112 | hysteresis<br>Modbus registers |                 |
| FlexCurve™                  |             |                                |                 |
| I²t curves                  | 5-81        | pickupscheme logic             |                 |
| IAC curves                  |             | settings                       |                 |
| IEC curves                  |             | specifications                 |                 |
| IEEE curves                 | 5-78        | FLEXLOGIC <sup>TM</sup>        | 2-9             |
| ETHERNET                    |             | commissioning                  | 10-12           |
| actual values               |             | editing with URPC              |                 |
| configuration               |             | equation editor                |                 |
| Modbus registers            |             | evaluation                     |                 |
| settings                    |             | example                        |                 |
| specifications              |             | example equation               |                 |
| EVENT CAUSE INDICATORS      | 4-5         | gate characteristics           |                 |
| EVENT RECORDER              | 0.45        | Modbus registers               |                 |
| actual values               |             | operands                       |                 |
| clearing                    |             | operators                      |                 |
| Modbus                      |             | rules                          |                 |
| Modbus registers            |             | specifications                 | 2-9             |
| specifications              |             | timers                         | 5-46, 10-17     |
| with URPC                   |             | worksheet                      | 5-42            |
| EXCEPTION RESPONSES         |             | FLEXLOGIC™ EQUATION EDITOR     | 5-46            |
| EXCEPTION RESPONSES         | D-0         | FLEXLOGIC™ TIMERS              | 5-46            |
|                             |             | FORCE CONTACT INPUTS           | 5-175, 10-42    |
|                             |             | FORCE CONTACT OUTPUTS          | 5-175, 10-42    |
| F                           |             | FORCE TRIGGER                  | 6-15            |
|                             |             | FORM-A RELAY                   |                 |
| F485                        |             | high impedance circuits        |                 |
| FACEPLATE                   |             | outputs                        | 3-9, 3-10, 3-15 |
| FACEPLATE PANELS            | ,           | specifications                 | 2-11            |
| FAST FORM-C RELAY           |             | FORM-C RELAY                   |                 |
| FAST TRANSIENT TESTING      | 2-12        | outputs                        |                 |
| FAULT LOCATOR               | = :         | specifications                 | 2-11            |
| logic                       |             | FREQUENCY                      |                 |
| Modbus registers            |             | actual values                  |                 |
| operation                   |             | settings                       | 5-25            |
| specifications              | 2-10        | FREQUENCY METERING             |                 |
| FAULT REPORT                | A 1 =       | Modbus registers               |                 |
| actual values               |             | specifications                 |                 |
| clearing                    |             | values                         |                 |
| commissioning               |             | FREQUENCY TRACKING             |                 |
| Modbus                      | B-8         | EDECLIENCY NOMINAL             | 5-24            |

| FUNCTION SETTING                  | 5-3                 | IMPORTANT CONCEPTS                         | 1-4                      |
|-----------------------------------|---------------------|--------------------------------------------|--------------------------|
| FUSE                              |                     | IN SERVICE INDICATOR                       |                          |
|                                   |                     | INPUTS                                     | -,                       |
|                                   |                     | AC current                                 | 2-10, 5-23               |
| C                                 |                     | AC voltage                                 |                          |
| G                                 |                     | contact inputs                             | 2-10, 3-13, 5-165, 5-175 |
| GE TYPE IAC CURVES                | 5-80                | DCMA inputs                                |                          |
| GOMSFE                            |                     | dcmA inputs                                |                          |
| GOOSE5-13, 5-169, 5-170           | , 5-171, 5-172, 6-5 | IRIG-B                                     |                          |
| GROUND CURRENT METERING           | 6-9                 | remote inputs                              |                          |
| GROUND DIRECTIONAL SUPERVISION    | 5-67                | RTD inputs                                 |                          |
| GROUND DISTANCE                   |                     | virtualINSPECTION CHECKLIST                |                          |
| application of settings           |                     | INSTALLATION                               |                          |
| commissioning                     |                     | commissioning                              | 10-7                     |
| Modbus registers                  |                     | communications                             |                          |
| op scheme                         |                     | contact inputs/outputs                     |                          |
| scheme logic                      |                     | CT inputs                                  |                          |
| settingsspecifications            |                     | Modbus registers                           | B-18                     |
| GROUND INSTANTANEOUS OVERCURREN   |                     | RS485                                      |                          |
| see entry for GROUND IOC          |                     | settings                                   |                          |
| GROUND IOC                        |                     | VT inputs                                  | 3-8                      |
| commissioning                     | 10-24               | INSTANTANEOUS OVERCURRENT                  |                          |
| logic                             | 5-96                | see PHASE, GROUND, and NEUTR               |                          |
| Modbus registers                  |                     | INSULATION RESISTANCE                      |                          |
| settings                          | 5-96                | INTELLIGENT ELECTRONIC DEVICE INTRODUCTION |                          |
| specifications                    | 2-7                 | INVERSE TIME UNDERVOLTAGE                  |                          |
| GROUND TIME OVERCURRENT           |                     | IOC                                        |                          |
| see entry for GROUND TOC          |                     | see PHASE, GROUND, and NEUTR               |                          |
| GROUND TOC                        | 40.04               | IP ADDRESS                                 |                          |
| commissioning                     |                     | IRIG-B                                     |                          |
| logic Modbus registers            |                     | connection                                 | 3-19                     |
| settings                          |                     | settings                                   | 5-15                     |
| specifications                    |                     | specifications                             |                          |
| GROUPED ELEMENTS                  |                     | ISO-9000 REGISTRATION                      | 2-12                     |
| H                                 |                     | K                                          |                          |
| HALF-DUPLEX                       | D 4                 | KEYPAD                                     | 1-9, 4-8                 |
| HARMONIC CONTENT                  |                     |                                            |                          |
| HTTP PROTOCOL                     |                     |                                            |                          |
| HUMIDITY                          | ,                   | 1                                          |                          |
| HYBRID PERMISSIVE OVERREACH TRANS |                     | _                                          |                          |
| see entry for HYBRID POTT         |                     | LAMPTEST                                   | 7-2                      |
| HYBRID POTT                       |                     | LED INDICATORS                             |                          |
| application of settings           |                     | LINE                                       |                          |
| commissioning                     | 10-32               | commissioning                              |                          |
| logic                             |                     | Modbus registers                           |                          |
| Modbus registers                  |                     | pickup                                     |                          |
| settings5                         | -157, 5-158, 5-159  | settings                                   |                          |
|                                   |                     | LINE LENGTH                                | 5-27                     |
|                                   |                     | LINE PICKUP                                | 40.04                    |
| I                                 |                     | commissioninglogic                         |                          |
|                                   |                     | •                                          |                          |
| I2T CURVES                        |                     | Modbus registerssettings                   |                          |
| IAC CURVES                        | 5-80                | specifications                             |                          |
| IEC 60870-5-104 PROTOCOL          | . = .               | LOAD ENCROACHMENT                          | 2-1                      |
| commissioning                     |                     | commissioning                              | 10-23                    |
| interoperability document         |                     | Modbus registers                           |                          |
| Modbus registers                  |                     | settings                                   |                          |
| settings                          |                     | specifications                             |                          |
| IED                               |                     | LOGIC GATES                                | 5-40                     |
| IEEE CURVES                       |                     | LOST PASSWORD                              | 5-7                      |

|                                         |             | NA - dh                           |          |
|-----------------------------------------|-------------|-----------------------------------|----------|
| M                                       |             | Modbus registers                  |          |
|                                         |             | settings                          |          |
| MAINTENANCE COMMANDS                    |             | specifications                    | 2-8      |
| MANUFACTURING DATE                      | 6-17        | NEGATIVE SEQUENCE IOC             |          |
| MEMORY MAP DATA FORMATS                 | B-46        | commissioning                     | 10-25    |
| MEMORY POLARIZATION                     | 8-6, 9-1    | logic                             | 5-98     |
| MEMORY VOLTAGE LOGIC                    | 5-54        | Modbus registers                  | B-23     |
| MENU HEIRARCHY                          | . 1-9, 4-10 | settings                          | 5-98     |
| MENU NAVIGATION1-9,                     |             | specifications                    | 2-7      |
| METERING                                | ,           | NEGATIVE SEQUENCE OVERVOLTAGE     |          |
| conventions                             | 6-6 6-7     | commissioning                     | 10-27    |
| current                                 | ,           | logic                             |          |
| frequency                               |             | Modbus registers                  |          |
|                                         |             | <u> </u>                          |          |
| power                                   |             | settings                          |          |
| voltage                                 |             | specifications                    | 2-8      |
| METERING CONVENTIONS                    |             | NEGATIVE SEQUENCE TOC             |          |
| MHO DISTANCE CHARACTERISTIC             | . 5-56, 8-2 | commissioning                     |          |
| MIC                                     |             | logic                             |          |
| MMS                                     |             | Modbus registers                  |          |
| see entry for UCA/MMS                   |             | settings                          | 5-97     |
| MODBUS                                  | B-8         | specifications                    | 2-7      |
| data logger                             |             | NEUTRAL DIRECTIONAL OVERCURRENT   |          |
| event recorder                          |             | commissioning                     | 10-25    |
| exception responses                     |             | logic                             |          |
| execute operation                       |             | Modbus registers                  |          |
| •                                       |             | polarization                      |          |
| fault report                            |             |                                   |          |
| flex state parameters                   |             | settings                          |          |
| function code 03/04h                    |             | specifications                    | 2-7      |
| function code 05h                       |             | NEUTRAL INSTANTANEOUS OVERCURRENT |          |
| function code 06h                       |             | see entry for NEUTRAL IOC         |          |
| function code 10h                       | B-6         | NEUTRAL IOC                       | B-22     |
| introduction                            | B-1         | commissioning                     | 10-24    |
| memory map data formats                 | B-46        | logic                             | 5-89     |
| obtaining files                         |             | settings                          | 5-89     |
| oscillography                           | B-7         | specifications                    | 2-7      |
| passwords                               |             | NEUTRAL OVERVOLTAGE               |          |
| read/write settings/actual values       |             | commissioning                     | 10-27    |
| settings                                |             | logic                             |          |
| store multiple settings                 |             | Modbus registers                  |          |
|                                         |             |                                   |          |
| store single setting                    |             | settings                          |          |
| supported function codes                |             | specifications                    | 2-8      |
| user map                                |             | NEUTRAL TIME OVERCURRENT          |          |
| MODEL INFORMATION                       |             | see entry for NEUTRAL TOC         |          |
| MODIFICATION FILE NUMBER                | 6-17        | NEUTRAL TOC                       |          |
| MODULES                                 |             | commissioning                     | 10-23    |
| communications                          | 3-17        | logic                             | 5-88     |
| contact inputs/outputs3-11,             |             | Modbus registers                  | B-22     |
| CT                                      | 3-9         | settings                          | 5-88     |
| CT/VT                                   |             | specifications                    |          |
| insertion                               | ,           | op 0000                           |          |
| order codes                             |             |                                   |          |
|                                         |             |                                   |          |
| ordering                                |             | 0                                 |          |
| power supply                            |             |                                   |          |
| transducer I/O                          |             | ONE SHOTS                         | 5-40     |
| VT                                      |             | OPEN POLE DETECTOR                |          |
| withdrawal                              | 3-4         | commissioning                     | 10-31    |
| MONITORING ELEMENTS                     | 5-144       | logic                             |          |
| MOUNTING                                | 3-1         | Modbus registers                  |          |
|                                         |             |                                   |          |
|                                         |             | settings                          |          |
|                                         |             | specifications                    |          |
| N                                       |             | OPERATING TEMPERATURE             |          |
|                                         |             | OPERATING TIMES                   |          |
| NAMEPLATE                               | 1-1         | ORDER CODES                       | ,        |
| NEGATIVE SEQUENCE DIRECTIONAL OVERCURRE | ENT         | ORDER CODES, UPDATING             | 7-2      |
| characteristics                         | 5-100       | ORDERING                          | 2-3, 2-4 |
| commissioning                           | 10-25       | OSCILLATORY TRANSIENT TESTING     | 2-12     |

| OSCILLOGRAPHY                     |                 | logic                           | 5-60                |
|-----------------------------------|-----------------|---------------------------------|---------------------|
| actual values                     | 6-15            | Modbus registers                | B-28                |
| clearing                          | 7-2             | op scheme                       | 5-59                |
| commissioning                     | 10-1            | settings                        | 5-55                |
| Modbus                            | B-7             | specifications                  |                     |
| Modbus registers                  |                 | PHASE INSTANTANEOUS OVERCURRENT | Г                   |
| settings                          |                 | see entry for PHASE IOC         |                     |
| specifications                    |                 | PHASE IOC                       |                     |
| with URPC                         |                 | commissioning                   | 10-23               |
| OST                               |                 | logic                           |                     |
| OUT-OF-STEP TRIPPING              | 2-8 5-69        | Modbus registers                |                     |
| OUTPUTS                           | 2 0, 0 00       | specifications                  |                     |
| contact outputs                   | 3-11 3-13 5-168 | PHASE OVERVOLTAGE               | 2 /                 |
| control power                     |                 | commissioning                   | 10-27               |
| critical failure relay            |                 | logic                           |                     |
| Fast Form-C relay                 |                 | Modbus registers                |                     |
| Form-A relay2-                    |                 | settings                        |                     |
| Form-C relay                      |                 | specifications                  |                     |
| remote outputs                    |                 | PHASE ROTATION                  |                     |
| virtual outputs                   |                 | PHASE TIME OVERCURRENT          | 5-2-                |
| OVERCURRENT CURVE TYPES           |                 | see entry for PHASE TOC         |                     |
| OVERCURRENT CURVES                |                 | PHASE TOC                       |                     |
|                                   | F 04            |                                 | 40.00               |
| definite time                     |                 | commissioning                   |                     |
| FlexCurves™                       |                 | logic                           |                     |
| I2T                               |                 | Modbus registers                |                     |
| IAC                               |                 | settings                        |                     |
| IEC                               |                 | specifications                  | 2-1                 |
| IEEE                              | 5-78            | PHASE UNDERVOLTAGE              |                     |
| OVERVOLTAGE                       |                 | commissioning                   |                     |
| auxiliary                         |                 | logic                           |                     |
| negative sequence                 |                 | Modbus registers                |                     |
| negative-sequence                 |                 | settings                        |                     |
| neutral                           |                 | specifications                  |                     |
| phase                             | 2-8, 5-114      | PHASOR ESTIMATION               |                     |
|                                   |                 | PHONE NUMBERS                   |                     |
|                                   |                 | PICS                            | C-2                 |
| P                                 |                 | PILOT SCHEMES                   |                     |
| •                                 |                 | application of settings         |                     |
| PANEL CUTOUT                      | 3-1             | blocking                        |                     |
| PASSWORD SECURITY                 |                 | commissioning                   | 10-32               |
| PASSWORDS                         |                 | directional comparison blocking |                     |
| changing                          | 4-13            | DUTT                            |                     |
| lost password                     |                 | hybrid POTT                     | 5-157               |
| Modbus                            |                 | Modbus registers                | B-25, B-26          |
| Modbus registers                  |                 | POTT                            |                     |
| overview                          | •               | PUTT                            | 5-151               |
| security                          |                 | specifications                  | 2-8                 |
| settings                          |                 | POTT                            |                     |
| PC SOFTWARE                       |                 | application of settings         |                     |
| see entry for URPC                |                 | commissioning                   | 10-32               |
| PERMISSIVE FUNCTIONS              | 5-112           | hybrid POTT                     | 5-157               |
| PERMISSIVE OVERREACH TRANSFER TRI |                 | logic                           | 5-156               |
| see entry for POTT                |                 | Modbus registers                | B-25                |
| PERMISSIVE UNDERREACH TRANSFER TE | DID             | settings                        | 5-153, 5-154, 5-155 |
| see entry for PUTT                | XIF             | POWER METERING                  |                     |
| PER-UNIT QUANTITY                 | 5.2             | Modbus registers                | B-12                |
|                                   |                 | specifications                  | 2-10                |
| PHASE ANGLE METERING              |                 | values                          | 6-10                |
| PHASE CURRENT METERING            | ხ-9             | POWER SUPPLY                    |                     |
| PHASE DIRECTIONAL OVERCURRENT     | 40.05           | description                     | 3-7                 |
| commissioning                     |                 | low range                       |                     |
| logic                             |                 | specifications                  |                     |
| phase A polarization              |                 | POWER SWING BLOCKING            |                     |
| settings                          |                 | POWER SWING DETECT              | 2, 2 00             |
| specifications                    | 2-7             | commissioning                   | 10-29               |
| PHASE DISTANCE                    |                 | logic                           |                     |
| application of settings           |                 | Modbus registers                |                     |
| commissioning                     | 10-21           | settings                        |                     |
|                                   |                 |                                 |                     |

# OEX

| specifications                 | 2-8             | specifications                  |            |
|--------------------------------|-----------------|---------------------------------|------------|
| POWER SYSTEM                   | 10.0            | wiring<br>RS485                 | 3-17       |
| commissioning Modbus registers |                 | communications                  | 2 17       |
| PRODUCT INFORMATION            |                 | description                     |            |
| PRODUCT SETUP                  |                 | specifications                  |            |
| PRODUCTION TESTS               |                 | RTD INPUTS                      |            |
| PROTECTION ELEMENTS            |                 | actual values                   | 6-12       |
| PU QUANTITY                    |                 | commissioning                   |            |
| PUTT                           |                 | Modbus registers                |            |
| application of settings        | 9-4             | settings                        |            |
| commissioning                  |                 | specifications                  |            |
| logic                          |                 | 1                               |            |
| Modbus registers               | B-25            |                                 |            |
| settings                       | 5-151           | S                               |            |
|                                |                 | 3                               |            |
|                                |                 | SALES OFFICE                    | 1-1        |
| Q                              |                 | SCAN OPERATION                  | 1-4        |
|                                |                 | SELF-TESTS                      |            |
| QUAD DISTANCE CHARACTERISTIC   | 5-56, 5-57, 8-5 | description                     | 7-3        |
|                                |                 | error messages                  | 7-4        |
|                                |                 | SERIAL NUMBER                   | 6-17       |
| D                              |                 | SERIAL PORTS                    |            |
| R                              |                 | SERIES COMPENSATED LINES        | 8-11, 9-7  |
| REACTIVE POWER                 | 2-10 6-10       | SETTING GROUPS                  |            |
| REAL POWER                     |                 | Modbus registers                |            |
| REAL TIME CLOCK                |                 | SETTINGS, CHANGING              | 4-11       |
| REAR TERMINAL ASSIGNMENTS      |                 | SIGNAL SOURCES                  |            |
| RECLOSING                      |                 | commissioning                   |            |
| description                    | 5-129           | description                     |            |
| logic                          |                 | metering                        |            |
| sequence                       |                 | Modbus registers                |            |
| settings5-128, 5-130, 5-131, 5 |                 | settings                        |            |
| REDUNDANT 10BASE-F             | 3-17            | SIGNAL TYPES                    |            |
| RELAY ACTIVATION               | 4-13            | SINGLE LINE DIAGRAM             |            |
| RELAY ARCHITECTURE             | 5-32            | SITE LIST, CREATING             | 4-1        |
| RELAY MAINTENANCE              |                 | SOFTWARE<br>see entry for URPC  |            |
| RELAY NAME                     |                 | SOFTWARE ARCHITECTURE           | 1.1        |
| RELAY NOT PROGRAMMED           | 1-10            | SOFTWARE, PC                    |            |
| REMOTE DEVICES                 |                 | see entry for URPC              |            |
| actual values                  |                 | SOURCE TRANSFER SCHEMES         | 5-112      |
| commissioning                  |                 | SOURCES                         |            |
| device ID                      |                 | description                     | 5-4        |
| Modbus registers               |                 | example use of                  |            |
| settings                       |                 | metering                        | 6-9        |
| statistics REMOTE INPUTS       | 6-5             | Modbus registers                | B-11       |
| actual values                  | 6-3             | settings                        | 5-26       |
| commissioning                  |                 | SPECIFICATIONS                  |            |
| Modbus registers               |                 | ST TYPE CONNECTORS              | 3-19       |
| settings                       |                 | STANDARD ABBREVIATIONS          |            |
| REMOTE OUTPUTS                 |                 | STATUS INDICATORS               |            |
| commissioning                  | 10-39           | STEPPED DISTANCE SCHEME         |            |
| DNA-1 bit pair                 | 5-171           | STUB BUS                        |            |
| Modbus registers               |                 | SURGE IMMUNITY                  |            |
| UserSt-1 bit pair              |                 | SYMMETRICAL COMPONENTS METERING | i6-7       |
| REPLACEMENT MODULES            |                 | SYNCHROCHECK                    | <b>.</b>   |
| RESETTING                      |                 | actual values                   |            |
| REVISION HISTORY               | F-1             | commissioning                   |            |
| RFI SUSCEPTIBILITY             | 2-12            | logic                           |            |
| RFI, CONDUCTED                 |                 | Modbus registers                |            |
| RMS CURRENT                    |                 | settings                        |            |
| RMS VOLTAGE                    | 2-10            | specificationsSYSTEM FREQUENCY  |            |
| RS232                          |                 | SYSTEM FREQUENCYSYSTEM SETUP    |            |
| configuration                  | 1-6             | 0.0.EW 0E101                    | 5-25, 10-0 |

|                                                                                                                                                                                                                                                                                                                 |                                                                                                            | UL APPROVAL                                                                                                                                                                                                                                                                                                                                                                                                    | 2-12                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| T                                                                                                                                                                                                                                                                                                               |                                                                                                            | UNDERVOLTAGE                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |
| -                                                                                                                                                                                                                                                                                                               |                                                                                                            | auxiliary                                                                                                                                                                                                                                                                                                                                                                                                      | 2-8                                                                            |
| TARGET MESSAGES                                                                                                                                                                                                                                                                                                 | 7-3                                                                                                        | phase                                                                                                                                                                                                                                                                                                                                                                                                          | 2-8, 5-113                                                                     |
| TARGET SETTING                                                                                                                                                                                                                                                                                                  | 5-4                                                                                                        | UNDERVOLTAGE CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                   | 5-112                                                                          |
| TARGETS MENU                                                                                                                                                                                                                                                                                                    | 7-3                                                                                                        | UNIT NOT PROGRAMMED                                                                                                                                                                                                                                                                                                                                                                                            | 5-22                                                                           |
| TCP PORT NUMBER                                                                                                                                                                                                                                                                                                 | 5-13                                                                                                       | UNPACKING THE RELAY                                                                                                                                                                                                                                                                                                                                                                                            | 1-1                                                                            |
| TEMPERATURE, OPERATING                                                                                                                                                                                                                                                                                          | 2-12                                                                                                       | UPDATING ORDER CODE                                                                                                                                                                                                                                                                                                                                                                                            | 7-2                                                                            |
| TERMINALS                                                                                                                                                                                                                                                                                                       |                                                                                                            | URPC                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |
| TEST MODE                                                                                                                                                                                                                                                                                                       |                                                                                                            | creating a site list                                                                                                                                                                                                                                                                                                                                                                                           | 4-1                                                                            |
| TESTING                                                                                                                                                                                                                                                                                                         |                                                                                                            | event recorder                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |
| commissioning                                                                                                                                                                                                                                                                                                   | 10-42                                                                                                      | firmware upgrades                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| force contact inputs                                                                                                                                                                                                                                                                                            |                                                                                                            | installation                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |
| force contact outputs                                                                                                                                                                                                                                                                                           |                                                                                                            | introduction                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |
| lamp test                                                                                                                                                                                                                                                                                                       |                                                                                                            | oscillography                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| self-test error messages                                                                                                                                                                                                                                                                                        |                                                                                                            | overview                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |
| test mode                                                                                                                                                                                                                                                                                                       |                                                                                                            | requirements                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |
| TFTP PROTOCOL                                                                                                                                                                                                                                                                                                   |                                                                                                            | USER MAP                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |
| THEORY OF OPERATION                                                                                                                                                                                                                                                                                             | ,                                                                                                          | USER-DEFINABLE DISPLAYS                                                                                                                                                                                                                                                                                                                                                                                        | D-10, D-20                                                                     |
| TIME                                                                                                                                                                                                                                                                                                            |                                                                                                            | commissioning                                                                                                                                                                                                                                                                                                                                                                                                  | 10.6                                                                           |
| TIME OVERCURRENT                                                                                                                                                                                                                                                                                                | 1-2                                                                                                        | example                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |
|                                                                                                                                                                                                                                                                                                                 | OC antrina                                                                                                 | settings                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |
| see PHASE, NEUTRAL, and GROUND T                                                                                                                                                                                                                                                                                |                                                                                                            | specifications                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |
| TIMERS                                                                                                                                                                                                                                                                                                          | 5-46                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                              | 2-9                                                                            |
| TOC                                                                                                                                                                                                                                                                                                             | 5.05                                                                                                       | USER-PROGRAMMABLE LEDS                                                                                                                                                                                                                                                                                                                                                                                         | 40.0                                                                           |
| ground                                                                                                                                                                                                                                                                                                          |                                                                                                            | commissioning                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
| neutral                                                                                                                                                                                                                                                                                                         |                                                                                                            | custom labeling                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |
| phase                                                                                                                                                                                                                                                                                                           |                                                                                                            | defaults                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | description                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |
| TRACKING FREQUENCY                                                                                                                                                                                                                                                                                              | 6-11                                                                                                       | Modbus registers                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |
| TRANSDUCER I/O                                                                                                                                                                                                                                                                                                  |                                                                                                            | settings                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |
| actual values                                                                                                                                                                                                                                                                                                   |                                                                                                            | specifications                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |
| commissioning                                                                                                                                                                                                                                                                                                   |                                                                                                            | USERST-1 BIT PAIR                                                                                                                                                                                                                                                                                                                                                                                              | 5-172                                                                          |
| Modbus registers B                                                                                                                                                                                                                                                                                              | -14, B-15, B-30, B-31                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |
| settings                                                                                                                                                                                                                                                                                                        | 5-173, 5-174                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |
| settingsspecifications                                                                                                                                                                                                                                                                                          |                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
|                                                                                                                                                                                                                                                                                                                 | 2-11                                                                                                       | v                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  | 2-11<br>3-16                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                              | 2-12                                                                           |
| specificationswiring                                                                                                                                                                                                                                                                                            | 2-11<br>3-16                                                                                               | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              | 2-12                                                                           |
| specifications wiring TRIP LEDs                                                                                                                                                                                                                                                                                 | 2-11<br>3-16<br>5-19                                                                                       | VIBRATION TESTINGVIRTUAL INPUTS                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |
| specifications wiring TRIP LEDs TRIP OUTPUT                                                                                                                                                                                                                                                                     | 2-11<br>3-16<br>5-19                                                                                       | VIBRATION TESTINGVIRTUAL INPUTS actual values                                                                                                                                                                                                                                                                                                                                                                  | 6-3                                                                            |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTINGVIRTUAL INPUTS actual valuescommands                                                                                                                                                                                                                                                                                                                                                          | 6-3<br>7-1                                                                     |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTINGVIRTUAL INPUTS actual valuescommandscommissioning                                                                                                                                                                                                                                                                                                                                             | 6-3<br>7-1<br>10-34                                                            |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              | 6-3<br>7-1<br>10-34<br>5-167<br>8-9, B-36                                      |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              | 6-3<br>7-1<br>10-34<br>5-167<br>8-9, B-36                                      |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications wiring                                                                                                                                                                                                                                                                                           |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers                                                                                                                                                                                                                                             |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings Settings                                                                                                                                                                                                                           |                                                                                |
| specifications                                                                                                                                                                                                                                                                                                  |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VIRTUAL OUTPUTS                                                                                                                                                                                                                    |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER                                                                                                                                   |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control                                                                                                               |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER                                                                                                                                   |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              | 6-3 7-1 10-34 5-167 8-9, B-36 5-167 6-4 10-36 8-37 5-168 5-24, 10-8 2-12 5-112 |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs UCA/MMS                                                                                    | 2-11 3-16 5-19 10-28 5-123 B-24 5-120 2-9 1-10, 7-3 2-12 3-6                                               | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers                                                                                                                                                                   |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs                                                                                            | 2-11 3-16 5-19 10-28 5-123 B-24 5-120 2-9 1-10, 7-3 2-12 3-6                                               | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications                                                                                                                                                    |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs UCA/MMS                                                                                    | 2-11 3-16 5-19 10-28 5-123 B-24 5-120 2-9 1-10, 7-3 2-12 3-6 5-28, 10-9 5-167, 10-34                       | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values                                                                                                                          |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs UCA/MMS commissioning                                                                      |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications                                                                                                                                                    |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs UCA/MMS commissioning device ID                                                            | 2-11 3-16 3-16 5-19 10-28 5-123 8-24 5-120 2-9 1-10, 7-3 2-12 3-6 5-28, 10-9 5-167, 10-34 10-1 5-169 5-171 | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs UCA/MMS commissioning device ID DNA2 assignments                                           |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U UCA SBO TIMER for breaker control for virtual inputs UCA/MMS commissioning device ID DNA2 assignments MIC                                       |                                                                                                            | VIBRATION TESTING                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
| specifications wiring TRIP LEDS TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U  UCA SBO TIMER for breaker control for virtual inputs UCA/MMS commissioning device ID DNA2 assignments MIC overview                             |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values VOLTAGE RESTRAINT CHARACTERISTIC VT BANKS Modbus registers                                                               |                                                                                |
| specifications wiring TRIP LEDs TRIP OUTPUT commissioning logic Modbus registers settings specifications TROUBLE INDICATOR TYPE TESTS TYPICAL WIRING DIAGRAM  U  UCA SBO TIMER for breaker control for virtual inputs UCA/MMS commissioning device ID DNA2 assignments MIC overview PICS remote device settings |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values VOLTAGE RESTRAINT CHARACTERISTIC VT BANKS Modbus registers VT FUSE FAILURE                                               |                                                                                |
| specifications wiring                                                                                                                                                                                                                                                                                           |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values VOLTAGE RESTRAINT CHARACTERISTIC VT BANKS Modbus registers VT FUSE FAILURE commissioning                                 |                                                                                |
| specifications wiring                                                                                                                                                                                                                                                                                           |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values VOLTAGE RESTRAINT CHARACTERISTIC VT BANKS Modbus registers VT FUSE FAILURE commissioning logic Modbus registers          |                                                                                |
| specifications wiring                                                                                                                                                                                                                                                                                           |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values VOLTAGE RESTRAINT CHARACTERISTIC VT BANKS Modbus registers VT FUSE FAILURE commissioning                                 |                                                                                |
| specifications wiring                                                                                                                                                                                                                                                                                           |                                                                                                            | VIBRATION TESTING VIRTUAL INPUTS actual values commands commissioning logic Modbus registers settings VIRTUAL OUTPUTS actual values commissioning Modbus registers settings VOLTAGE BANKS VOLTAGE DEVIATIONS VOLTAGE ELEMENTS VOLTAGE METERING Modbus registers specifications values VOLTAGE RESTRAINT CHARACTERISTIC VT BANKS Modbus registers VT FUSE FAILURE commissioning logic Modbus registers settings |                                                                                |

viii

#