SEL-351R

RECLOSER CONTROL

INSTRUCTION MANUAL

IMPORTANT: Use this manual in conjunction with the *SEL-351R Quick-Start Installation and User's Guide.*

SCHWEITZER ENGINEERING LABORATORIES 2350 NE HOPKINS COURT PULLMAN, WA USA 99163-5603 TEL: (509) 332-1890 FAX: (509) 332-7990

CAUTION: The relay contains devices sensitive to electrostatic discharge (ESD). When working on the relay with front or top cover removed, work surfaces and personnel must be properly grounded or equipment damage may result.

CAUTION: There is danger of explosion if the battery is incorrectly replaced. Replace only with Ray-O-Vac[®] no. BR2335 or equivalent recommended by manufacturer. Dispose of used batteries according to the manufacturer's instructions.

WARNING: This device is shipped with default passwords. Default passwords should be changed to private passwords at installation. Failure to change each default password to a private password may allow unauthorized access. SEL shall not be responsible for any damage resulting from unauthorized access. ATTENTION: Le relais contient des pièces sensibles aux décharges électrostatiques (DES). Quand on travaille sur le relais avec le panneau avant ou du dessus enlevé, les surfaces de travail et le personnel doivent être mis à la terre convenablement pour éviter les dommages à l'équipement.

ATTENTION: Il y a un danger d'explosion si la pile électrique n'est pas correctement remplacée. Utiliser exclusivement Ray-O-Vac[®] No. BR2335 ou un équivalent recommandé par le fabricant. Se débarrasser des piles usagées suivant les instructions du fabricant.

AVERTISSEMENT: Cet équipement est expédié avec des mots de passe par défaut. A l'installation, les mots de passe par défaut devront être changés pour des mots de passe confidentiels. Dans le cas contraire, un accès non-autorisé à l'équipement pourrait être possible. SEL décline toute responsabilité pour tout dommage résultant de cet accès non-autorisé.

The software (firmware), schematic drawings, relay commands, and relay messages are copyright protected by the United States Copyright Law and International Treaty provisions. All rights are reserved.

∕!∖

/!\

/!\

You may not copy, alter, disassemble, or reverse-engineer the software. You may not provide the software to any third party.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders.

Schweitzer Engineering Laboratories, SELogic, Connectorized, Job Done, SEL-PROFILE, ACSELERATOR, and SEL are registered trademarks of Schweitzer Engineering Laboratories.

The English language manual is the only approved SEL manual.

Copyright © SEL 1997, 1998, 1999, 2000, 2001, 2002 (All rights reserved) Printed in USA.

This product is covered by U.S. Patent Numbers: 5,790,418; 5,208,545; 5,317,472; 5,602,707; 5,367,426; 5,515,227; 5,883,578; 5,349,490; 5,365,396; 5,041,737; 5,479,315; 5,793,750; 5,694,281; and U.S. Patent(s) Pending, and Foreign Patent(s) Issued and Pending.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative. Note: The 24 Vdc battery inside the SEL-351R Recloser Control enclosure is excluded from the product warranty. PM351R-01

MANUAL CHANGE INFORMATION

The date code at the bottom of each page of this manual reflects the creation or revision date. Date codes are changed only on pages that have been revised and any following pages affected by the revisions (i.e., pagination). If significant revisions are made to a section, the date code on all pages of the section will be changed to reflect the revision date.

Each time revisions are made, both the main table of contents and the affected individual section table of contents are regenerated and the date code is changed to reflect the revision date.

Changes in this manual to date are summarized below (most recent revisions listed at top).

Revision Date	Summary of Revisions
	<i>l Change Information</i> section has been created to begin a record of revisions to . All changes will be recorded in this Summary of Revisions table.
20020215	This revision includes the following changes:
	- Reissued entire manual with post script fonts.
	Section 1:
	 Added the setting "Phantom voltages from (VA,VB,VC,VAB,VBC,VCA,OFF)" to Table 1.1.
	Section 7:
	 Increased the number of local, latch, and remote bits and display points to 16 for SEL-351R-2.
	- Added description of new SELOGIC counter feature.
	Section 8:
	- Added description of how the relay generates phantom voltages.
	Section 9:
	 Included Relay Word bits for additional local, remote, and latch bits in Table 9.3 and Table 9.4.
	 Added eight set and reset equations for latch bits; increment, decrement, and reset equations for SELOGIC counters; and eight additional display point equations to the SELOGIC control equation settings sheets.
	Section 10:
	 Included the COU command in Table 10.5, and also added a description and screen capture of the command. The description of the metering command also briefly describes how phantom voltages are generated.
	 Additional screen captures for SHO G and SHO FZ commands on an SEL-351R-2 show the new phantom voltage setting.
	 The descriptions of SHO L and SHO T now mention the availability of eight additional latch, local, and remote bits and display points.
	 Eight additional local, remote, and latch bits were added to Table 10.6 for the SEL-351R-2.

Revision Date	Summary of Revisions
	Appendix A:
	- Updated firmware version information.
	Appendix B:
	- Incorporated new Firmware Upgrade Instructions: Date Code 20020118
	Appendix D:
	 Changed Fast commands to reflect additional Relay Word bits and remote bits available on the SEL-351R-2.
	Appendix G:
	 Created a description of an SELOGIC analog compare statement, which is now available in the SEL-351R-2, and added the processing slot for the counters to Table G.3.
	Appendix H:
	 Updated the DNP map in Table H.3 to show the new capabilities of the SEL-351R-2.
20010518	This revision includes the following changes:
	- Reissued entire manual.
	 Replaced Standard Product Warranty page with warranty statement on cover page.
	Section 1:
	 Discussed defeating three-second delay on LOCK operator control (Figure 1.38).
	 Discussed changes to front-panel AC SUPPLY LED settings in <i>Reclose</i> Supervision Logic subsection and made LED11 logic settings change in Figure 1.51.
	Section 2:
	- Added caution note to the <i>Clock Battery</i> subsection.
	Section 3:
	 Doubled the voltage ranges (e.g., 150 to 300 V secondary) of the voltage element settings in Table 3.8, Table 3.9, and Table 3.10.
	Section 4:
	 Changed the impedance settings ranges for load-encroachment and directional elements to match the 1 a nominal secondary settings ranges in other SEL-351 family relays.
	Section 5:
	 Added SELOGIC Control Equation Setting FAULT subsection at end of section.

Revision Date	Summary of Revisions
	Section 7:
	- Added ac setting description to <i>Input Debounce Timers</i> subsection.
	- Updated subsection Note: Make Latch Control Switch Settings With Care.
	- Updated subsection <i>Note: Make Active Setting Group Switching Settings</i> <i>With Care</i> .
	 Added subsection <i>Displaying Values (other than user-entered text) on the</i> <i>Rotating Default Display</i> near the end of the section.
	Section 9:
	 Relay Words bits DDATA and DCONN added to Table 9.3 and Table 9.4 (row 56)—used in automatic dial-out via DNP.
	 Changed the impedance settings ranges for line settings, load-encroachment elements, and directional elements to match the 1 A nominal secondary settings ranges in other SEL-351 family relays (Settings Sheet pages 1, 6, and 7 respectively).
	 Doubled the voltage settings ranges (e.g., 150 to 300 V secondary) on Setting Sheets page 7 and page 8.
	- Added ac setting choice to optoisolated input timers on Setting Sheets page 18.
	 Added Y1 and N1 settings options and explanation for setting RSTLED on Setting Sheets page 19 (for defeating the three-second delay on the LOCK operator control).
	 Added PROTO = DNPE, and AUTO = DTA settings choices to the Port Settings Sheet page 23.
	Section 10:
	 Added DTA2 compatibility information.
	- Added MIRRORED BITS Communications subsection.
	- Added notes about powering down the relay after setting the date and time.
	 Added MET X command description.
	 Updated SELOGIC setting LED11 = !DISCHG in listing of factory default settings in the SHO Command (Show/View Settings) subsection.
	– Updated password information.
	 Added warning note to the PAS Command (View/Change Passwords) subsection.
	- Updated Command Summary to include MET X command.
	Section 12:
	 Corrected explanation for column "32 NG" in Table 12.3 ("F32I" and "R32I" should be "F32N" and "R32N", respectively; corresponding symbols should be "N" and "n".
	Appendix A:
	– Updated firmware version information.

Revision Date	Summary of Revisions
	Appendix H:
	 Added Extended Mode DNP details and settings. Added UNSOL = DIAL as a settings choice for DNP (for automatic dial-out). Added DNP automatic dial-out information.
20000602	This revision includes the following changes:
	Section 3:
	– Corrected Figure 3.20.
	Section 8:
	– Added qualifying statement about changing the LDAR setting.
	Section 9:
	 Added qualifying statement concerning the SET s command in Settings Changes via the Serial Port.
	Appendix A:
	- Released new firmware version.
	Appendix H:
	- DNP labels (DECPLA, DECPLV, DECPLM) now correctly identified.
20000407	This revision includes the following changes:
	Reissued entire manual.
	Section 3:
	 Clarified the operation of the synchronism check elements for breaker close time setting TCLOSD = 0.00 in the <i>Synchronism Check Elements</i> subsection (see Figure 3.25).
	Section 5:
	 Added explanation to the target LEDs information near the end of the section that the target LEDs no longer reset if a TRIP condition is present.
	Section 9, Settings Sheet 20 of 23:
	- Corrected demand ammeter element names for load profile.
	Section 10:
	- Corrected number of event reports stored in relay in HIS Command subsection.
	 Added NOMSG state and explanation to battery monitor/charger mode displayed with STATUS command.
	 Added note to the TAR R command explanation that the target LEDs no longer reset if a TRIP condition is present.
	 Corrected Relay Word bit entries 32NE (row TAR 15) and F32N and R32N (row TAR 17) in Table 10.6.

Revision Date	Summary of Revisions
	Appendix D:
	 Corrected length and digital bank parameters for A5D1 <i>Fast Meter</i> data block. Corrected 32NE, F32N, and R32N entries for DNA message. Added 50NF, 50NR, 32NF, and 32NR entries for DNA message.
	Appendix G: – Updated SELOGIC [®] Control Equation limitations.
991123	Appendix H:
	 Corrected documentation errors in DNP 3.0 Device Profile, page H-5.
990628	This revision includes the following changes: – Updated MIRRORED BITS [™] format throughout to reflect new trademark.
	Section 1:
	 Added phase pickup setting 50P4P to Table 1.1. Setting 50P4P is set (in A secondary) when Min. trip-phase is set (in A primary) in the EZ setting routing (SET EZ command). Phase pickup setting 50P4P controls single-phase elements 50A4, 50B4, and 50C4, listed in Table 1.2. These single-phase elements indicate faulted phases for the trip operations counters (see discussion on trip operation counters in the <i>Breaker/Recloser Contact Wear Monitor</i> subsection in <i>Section 8: Breaker/Recloser Monitor, Battery System Monitor, and Load Profile Functions</i>).
	Section 3:
	 Added explanation to the <i>Synchronism Check Elements</i> subsection for the new angle setting option for the SYNCP (synchronizing phase) setting. Synchronism check can now be accomplished for synchronism check voltage input VS connected phase-phase or beyond a delta-wye transformer. Setting SYNCP accounts for the constant angle difference between reference voltage input VA and synchronism check voltage input VS.
	Section 7:
	 Clarified the operation of the latch control switches when the SEL-351R Recloser Control loses power (see the <i>Latch Control Switches</i> subsection).
	Section 8:
	 Added discussion on the per-phase and ground trip operation counter information now available via the BRE A command in the <i>Breaker/Recloser</i> <i>Contact Wear Monitor</i> subsection.
	Section 9:
	 Expanded the setting range for the SYNCP (synchronizing phase) setting to accommodate compensation angle settings for synchronism check (Settings Sheet 8 of 23).
	 Added the MB8A and MB8B serial port protocol settings options for MIRRORED BITS protocol operating on communication channels requiring an 8 data bit format (Settings Sheet 23 of 23).
20020215	Manual Change Information

Revision Date	Summary of Revisions
	Section 10:
	 Added the BRE A and BRE W A serial port commands. These new commands have the additional feature of displaying and preloading, respectively, per-phase and ground trip operation counters.
	Appendix B:
	 Updated Firmware Upgrade Instructions.
	Appendix I:
	 Explained the MB8A and MB8B serial port protocol settings options for MIRRORED BITS protocol operating on communication channels requiring an 8 data bit format.
990323	This revision includes the following changes:
	Section 1:
	 Changed logic in Figure 1.11 and Figure 1.12 to allow high current trips to operate if auto-reclosing is nonexistent.
	 Changed logic in bottom of Figure 1.23 to allow time-overcurrent pickups 51N1 and 51N2 to indicate ground current above Min. trip-ground level for the drive-to-lockout logic (51N1 and 51N2 don't have the built-in 2 cycle delay that 50N6 has - thus, 51N1 and 51N2 are useful indication for instantaneous trips).
	 Changed logic in Figure 1.54 to allow time-overcurrent pickups 51N1 and 51N2 to indicate ground current above Min. trip-ground level for the fault-type trip target LED "G."
	Section 3:
	 Changed routing of Directional Control to Figure 3.8 (67N elements) and Figures 3.16 and 3.17 (51NT elements)
	Section 4:
	 Added zero-sequence voltage polarized, neutral current directional elements to Best Choice Ground DirectionalTM Logic.
	– Inserted the following drawings:
	Figure 4.7: Internal Enable (32NE) for Zero-Sequence Voltage-Polarized, Neutral-Current Directional Element
	Figure 4.11: Zero-Sequence Voltage-Polarized, Neutral-Current Directional Element for Neutral Ground Overcurrent Elements
	Figure 4.13: Routing of Directional Element to Neutral Ground Overcurrent Elements
	Figure 4.15: Direction Forward/Reverse Logic for Neutral Ground Overcurrent Elements

Revision Date	Summary of Revisions
	Section 8:
	 Changed setting range for kA Interrupted set points KASP1, KASP2, and KASP3 listed in Table 8.1 (new lower limit is 0.10 kA and new setting increment is 0.01 kA).
	Section 9:
	 Settings Sheet 1 of 23: changed setting increment to 0.01 for CTR, CTRN, PTR and PTRS settings.
	 Settings Sheet 18 of 23: changed setting range for kA Interrupted set points KASP1, KASP2, and KASP3 (new lower limit is 0.10 kA and new setting increment is 0.01 kA).
	Section 10:
	 Changed factory default logic settings listed on page 10-32 for settings SV14 and LED24 (see preceding Section 1 references for corresponding Figure 1.23 and Figure 1.54).
	Section 11:
	 Corrected rotating display figures on the right-hand side of pages 11-7 through 11-9 (showing IA, IB, IC, and IN metering quantities as part of the "2 seconds per screen" rotation).
	Section 12:
	 Corrected references to the number of available event reports, depending on the length of event report format chosen: 15 or 30 cycles (twenty-eight 15- cycle event reports or fourteen 30-cycle event reports).
	Appendix F:
	 Changed Figure F.1 to reflect the built-in minimum response time feature of the 51QT negative-sequence time-overcurrent element.
	Appendix H:
	- Changed the setting range of setting UTIMEO to 1-50 seconds.
	- Corrected the designation for the ECLASS setting in Table H.1.
981216	This revision includes the following changes:
	 Updated references to figures in the SEL-351R Quick-Start Installation and User's Guide throughout manual (no date code change).
	Section 1:
	 Added Table 1.2 to clarify the function of the overcurrent elements when the factory default EZ settings are active for a particular settings group.
	 Clarified the function of EZ setting Close power wait time (corresponding setting 79CLSD) in <i>Reclose Supervision Logic</i>.
	 Added clarifying reference below Figure 1.51 in <i>Front-Panel Status and Trip</i> <i>Target LEDs</i>.

Revision Date	Summary of Revisions
	Section 3:
	 Added clarifying reference to introduction and in <i>Frequency Elements</i> subsection.
	Section 4:
	- Removed a Setting Description in Settings Ranges (under setting ZLR).
	 Revised the example at the end of <i>Apply Load-Encroachment to a Phase Time-Overcurrent</i>.
	Section 7:
	- Added clarifying reference in the <i>Recloser Trip and Close Circuits</i> .
	 Expanded Figure 7.29 to show the 22000ìF capacitor in parallel with the 24 Vdc supply to the recloser trip and close circuitry.
	Section 8:
	 Changed battery amp-hour rating from 6.5 to 8.0 Ah (factory-shipped batteries have changed as detailed in the <i>Battery Replacement</i> subsection in the <i>Battery</i> section of the <i>SEL-351R Quick-Start Installation and User's Guide</i>).
	Note: The Battery Amp-hours setting was not changed in the factory-default global settings listed in <i>SHO Command</i> (Show/View Settings) in <i>Section 10: Serial Port Communications and Commands</i> – it remains at 6.5 Ah. This is a conservative setting for the new 8.0 Ah batteries. The user can change the Battery Amp-hours setting to 8.0 Ah, if desired.
981203	This revision includes the following changes:
	- Corrected Figure 1.22 in Section 1: Factory-Set Logic.
	 SELOGIC Control Equations torque control settings can no longer be set directly to logical 0, as explained in the overcurrent element sections of <i>Section 3: Overcurrent, Voltage, Synchronism Check, Frequency, and</i> <i>Power Elements</i> and the SELOGIC Control Equations settings sheets in the back of <i>Section 9: Setting the SEL-351R Recloser Control</i>.
	 SELOGIC Control Equations drive-to-lockout setting 79DTL has a 60-cycle dropout time, as explained in <i>Section 6: Close and Reclose Logic</i>.
	 Corrected typographical error in <i>Factory Settings Example</i> in <i>Section 6:</i> <i>Close and Reclose Logic</i> (no date code change).
	 Corrected typographical error in <i>Determining the Size of the Load Profile</i> <i>Buffer</i> in <i>Section 8: Breaker/Recloser Monitor, Battery System Monitor,</i> <i>metering, and Load Profile Functions</i> (no date code change).
	- More SELOGIC Control Equations settings limitations information added to <i>Appendix G: Setting SELOGIC Control Equations</i> .

Revision Date	Summary of Revisions
981103	This revision includes the following changes:
	Section 1:
	 Changed logic in Figure 1.6 and Figure 1.7 to allow fast curves to operate if auto-reclosing is nonexistent (reissued entire section).
	Section 3:
	- Corrected phase time-overcurrent element pickup setting 51P1P in Table 3.3 .
	Section 4
	– Updated Figure 4.2.
	Section 6
	– Updated Figure 6.1.
	- Section 12:
	- Corrected typographical error on page 12-4 (reissued entire section).
981021	This revision includes the following changes:
	 New factory default SELOGIC[®] Control Equation setting 79RIS = 52A + 79CY (reclose initiate supervision) explained in <i>Section 6: Close and Reclose Logic</i>.
	 SELOGIC Control Equation setting FAULT now momentarily suspends demand metering updating and peak recording as explained in Section 8: Breaker Monitor, Metering, and Load Profile Functions.
	 Changed entry "Obj. 50, Var. 1, Time and Date" in Table H.2 in Appendix H: Distributed Network Protocol (DNP) V3.00.
980710	New Manual Release.

- SECTION 1: FACTORY-SET LOGIC
- SECTION 2: ADDITIONAL INSTALLATION DETAILS
- SECTION 3: OVERCURRENT, VOLTAGE, SYNCHRONISM CHECK, AND FREQUENCY ELEMENTS
- SECTION 4: LOSS-OF-POTENTIAL, LOAD ENCROACHMENT, AND DIRECTIONAL ELEMENT LOGIC
- SECTION 5: TRIP AND TARGET LOGIC
- SECTION 6: CLOSE AND RECLOSE LOGIC
- SECTION 7: INPUTS, OUTPUTS, TIMERS, AND OTHER CONTROL LOGIC
- SECTION 8: BREAKER/RECLOSER MONITOR, BATTERY SYSTEM MONITOR, METERING, AND LOAD PROFILE FUNCTIONS
- SECTION 9: SETTING THE SEL-351R RECLOSER CONTROL
- SECTION 10: SERIAL PORT COMMUNICATIONS AND COMMANDS
- SECTION 11: ADDITIONAL FRONT-PANEL INTERFACE DETAILS
- SECTION 12: STANDARD EVENT REPORTS AND SER
- SECTION 13: TESTING AND TROUBLESHOOTING
- **SECTION 14: APPENDICES**
 - Appendix A: Firmware Versions
 - Appendix B: Firmware Upgrade Instructions
 - Appendix C: SEL Distributed Port Switch Protocol
 - Appendix D: Configuration, Fast Meter, and Fast Operate Commands
 - Appendix E: Compressed ASCII Commands
 - Appendix F: Setting Negative-Sequence Overcurrent Elements
 - Appendix G: Setting SELogic[®] Control Equations
 - Appendix H: Distributed Network Protocol (DNP) V3.00
 - Appendix I: MIRRORED BITS™
- SECTION 15: SEL-351R RECLOSER CONTROL COMMAND SUMMARY

TABLE OF CONTENTS

SECTION 1:	FACTORY-SET LOGIC	1-1
Introduction	1	1-1
	V Default Settings	
	tion Variations and Logic Changes	
	tings vs. "Regular" Settings	
	Irrent Element Functions Overview	
Residu	al Ground vs. Neutral Ground	1-5
	Pickup Scheme	
	Cold Load Pickup Scheme	
	oss of Load Diversity Timer	
Active	ly Engage Cold Load Pickup Scheme (Phase Elements Example)	1-8
Use Ov	vercurrent Element Torque Control Logic to Enable/Disable or Desensitize	
	ements (Phase Elements Example)	1-10
Desens	itize Delay Curve—Maintain Coordination (Phase Elements Example)	1-10
Diseng	age Cold Load Pickup Scheme (Phase Elements Example)	1-11
	Cold Load Pickup Scheme Details Involving Ground and SEF Elements	
Fast Curve	Operation Logic	1-11
Fast Cu	urve Operation When Reclosing Is Defeated	1-12
Operations	to Lockout, Activate High Current Trip, and Activate High Current Lockout	
Logic		1-14
High C	Current Trip Operation When Reclosing Is Defeated	1-15
	Element Enable/Disable Logic	
Trip Logic .		1-22
Close Logic	9	1-23
	Conditions—Other Than Auto-Reclosing	
Unlatel	h Close Conditions	1-24
Drive-to-Lo	ckout Logic	1-26
Operat	ions to Lockout	1-26
	urrent Lockout	
Other I	Drive-to-Lockout Conditions	1-27
	t Timing	
Sequence C	oordination	1-31
Reclose Sup	pervision Logic	1-33
	y Battery	
	t Close Power	
Front-H	Panel AC SUPPLY LED	1-35
Installa	tion With Only 120 Vac Power (Traditional Installation)	1-37
	20 Vac Close Power	
	imary Voltage Close Power	
	tion With Separate 120 Vac Power and Three-Phase Voltage	
	20 Vac Close Power	
	imary Voltage Close Power	
U	ndervoltage Block for Frequency Elements	1-38

Installation With Separate 120 Vac Power, Three-Phase, and Synchronism Check	
Voltage	1-38
120 Vac Close Power	1-39
Primary Voltage Close Power	1-39
Undervoltage Block for Frequency Elements	
Installation With Only Three-Phase Voltage (120 Vac Power Provided by Three-	
Phase Voltage)	1-39
120 Vac Close Power	1-40
Primary Voltage Close Power	1-40
Operator Control Logic	
Detailed Operator Control Pushbutton Output	1-41
GROUND ENABLED Operator Control Pushbutton Output	1-42
Other Operator Control Pushbutton Outputs Operate Similarly to	
GROUND ENABLED	
LOCK Operator Control Pushbutton Output	1-42
TRIP and CLOSE Operator Control Pushbutton Outputs	1-43
Corresponding Operator Control LEDs and Logic Applications	1-46
GROUND ENABLED Operator Control	1-46
Other Operator Controls	1-47
RECLOSE ENABLED Operator Control	1-48
REMOTE ENABLED Operator Control	1-48
Example Application for the REMOTE ENABLED Operator Control	1-49
AUX 1 and AUX 2 Operator Controls	1-49
Example Application for the AUX 1 Operator Control (Hot Line Tag)	1-50
ALTERNATE SETTINGS Operator Control	1-52
LOCK Operator Control	1-53
Front-Panel Status and Trip Target LEDs	1-53

TABLES

Table 1.1:	Correspondence Between EZ Settings and "Regular" Settings	1-2
Table 1.2:	Overcurrent Element Functions With EZ Settings Operative	1-4
Table 1.3:	Conditions for Assertion of Relay Word Bits SH0 Through SH4 1	1-12

FIGURES

Figure 1.1:	Loss of Load Diversity (top) and Restore Min. Trips (bottom) Logic for Cold Load	
	Pickup Scheme	1-7
Figure 1.2:	Cold Load Pickup Scheme Seal-In Logic for Phase Overcurrent Elements	1-8
Figure 1.3:	Cold Load Pickup Scheme Seal-In Logic for Ground Overcurrent Elements	1-9
Figure 1.4:	Cold Load Pickup Scheme Seal-in Logic for SEF Overcurrent Elements	1-9
Figure 1.5:	Disable Lower Portion of Delay Curve - Phase for Cold Load Pickup	1-10
Figure 1.6:	Operations - Phase Fast Curve Logic	1-13
Figure 1.7:	Operations - Ground Fast Curve Logic	1-14
Figure 1.8:	Operations to Lockout - Phase Logic	1-15
Figure 1.9:	Operations to Lockout - Ground Logic	1-16
Figure 1.10:	Operations to Lockout - SEF Logic	1-16

ii

Figure 1.11:	Activate High Current Trip - Phase Logic	1-17
Figure 1.12:	Activate High Current Trip - Ground Logic	1-18
Figure 1.13:	Activate High Current Lockout - Phase Logic	1-19
	Activate High Current Lockout - Ground Logic	
	Fast Curve - Phase (top) and Fast Curve - Ground (bottom) Enable/Disable Logic	
•	Delay Curve - Phase (top) and Delay Curve - Ground (bottom) Enable/Disable	
C	Logic	1-21
Figure 1.17:	High Current Trip (top) and High Current Lockout (bottom) Enable/Disable Logic	1-21
	SEF Element Enable/Disable Logic	
	Trip Conditions	
Figure 1.20:	Close Conditions—Other Than Auto-Reclosing	1-24
Figure 1.21:	Unlatch Close Conditions	1-25
Figure 1.22:	Recloser Status Determination	1-25
	Drive-to-Lockout Logic—Part 1 of 3	
Figure 1.24:	Drive-to-Lockout Logic—Part 2 of 3	1-29
	Drive-to-Lockout Logic—Part 3 of 3	
	Block Reset Timing Logic	
	Sequence Coordination Logic	
	Phase Coordination of SEL-351Rs in Series	
	Operation of SEL-351R(1) Sequence Coordination Logic for Phase Fault Beyond	
e	Downstream SEL-351R(2)	1-33
Figure 1.30:	Reclose Supervision Logic	
•	Installation With Only 120 Vac Power (traditional installation)	
•	Installation With Separate 120 Vac Power and Three-Phase Voltage	
	Installation With Separate 120 Vac Power, Three-Phase, and Synchronism Check	
e	Voltage	1-36
Figure 1.34:	Installation With Only Three-Phase Voltage (120 Vac power provided by three-	
C	phase voltage)	1-37
Figure 1.35:	Operator Controls—GROUND ENABLED Through LOCK	1-41
Figure 1.36:	Operator Controls—AUX 1 Through TRIP	1-41
Figure 1.37:	GROUND ENABLED Operator Control Pushbutton Output	1-42
	LOCK Operator Control Pushbutton Output	
Figure 1.39:	CLOSE On such as Constant Development of Constant	1 4 7
E	CLOSE Operator Control Pushbutton Output	1-45
	TRIP Operator Control Pushbutton Output	1-46
		1-46
Figure 1.41:	TRIP Operator Control Pushbutton Output	1-46 1-47
Figure 1.41: Figure 1.42:	TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application	1-46 1-47 1-48
Figure 1.41: Figure 1.42: Figure 1.43:	TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application	1-46 1-47 1-48
Figure 1.41: Figure 1.42: Figure 1.43:	TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application	1-46 1-47 1-48 1-48
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44:	TRIP Operator Control Pushbutton Output	1-46 1-47 1-48 1-48 1-49
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.45:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) 	1-46 1-47 1-48 1-48 1-49 1-49
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.45: Figure 1.45:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application 	1-46 1-47 1-48 1-48 1-49 1-49 1-50
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.45: Figure 1.46: Figure 1.47:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application AUX 2 Operator Control Logic Application 	1-46 1-47 1-48 1-48 1-49 1-49 1-50 1-51
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.44: Figure 1.45: Figure 1.46: Figure 1.47: Figure 1.48:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application AUX 2 Operator Control Logic Application Hot Line Tag Logic 	1-46 1-47 1-48 1-48 1-49 1-49 1-50 1-51 1-51
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.45: Figure 1.45: Figure 1.46: Figure 1.47: Figure 1.48: Figure 1.49:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application AUX 2 Operator Control Logic Application Hot Line Tag Logic Example AUX 1 Operator Control Application (local control of hot line tag) 	1-46 1-47 1-48 1-48 1-49 1-49 1-50 1-51 1-51 1-51
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.45: Figure 1.45: Figure 1.46: Figure 1.47: Figure 1.48: Figure 1.49: Figure 1.50:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application AUX 2 Operator Control Logic Application Hot Line Tag Logic Example AUX 1 Operator Control Application (local control of hot line tag) ALTERNATE SETTINGS Operator Control LED and Logic Application 	1-46 1-47 1-48 1-48 1-49 1-49 1-50 1-51 1-51 1-52 1-53
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.44: Figure 1.45: Figure 1.46: Figure 1.46: Figure 1.47: Figure 1.48: Figure 1.49: Figure 1.50: Figure 1.51:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application AUX 2 Operator Control Logic Application Hot Line Tag Logic Example AUX 1 Operator Control Application (local control of hot line tag) ALTERNATE SETTINGS Operator Control LED and Logic Application 	1-46 1-47 1-48 1-48 1-49 1-49 1-50 1-51 1-51 1-51 1-52 1-53 1-54
Figure 1.41: Figure 1.42: Figure 1.43: Figure 1.44: Figure 1.45: Figure 1.46: Figure 1.47: Figure 1.47: Figure 1.48: Figure 1.49: Figure 1.50: Figure 1.50: Figure 1.51: Figure 1.52: Figure 1.53:	 TRIP Operator Control Pushbutton Output GROUND ENABLED Operator Control LED and Logic Application RECLOSE ENABLED Operator Control LED and Logic Application REMOTE ENABLED Operator Control Logic Application Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements) AUX 1 Operator Control Logic Application AUX 2 Operator Control Logic Application Hot Line Tag Logic. Example AUX 1 Operator Control Application (local control of hot line tag) ALTERNATE SETTINGS Operator Control LED and Logic Application Front-Panel Status LEDs 	1-46 1-47 1-48 1-48 1-49 1-50 1-51 1-51 1-52 1-53 1-54 1-55 1-55

INTRODUCTION

This section describes the factory-set logic (SELOGIC[®] control equations, set with the SET L n command) that makes the SEL-351R Recloser Control operate as a recloser control. *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements* through *Section 9: Setting the SEL-351R Recloser Control* provide more settings information and settings variation details. Important: Use this manual in conjunction with the *SEL-351R Quick-Start Installation and User's Guide*.

Factory Default Settings

Factory default settings are listed under subsection SHO Command (Show/View Settings) in Section 10: Serial Port Communications and Commands.

Installation Variations and Logic Changes

For traditional recloser control installations (see Figure 1.31), none of the factory-set logic has to be changed. However, for other recloser control installation variations (see Figure 1.32 through Figure 1.34), some changes might be made to the factory-set logic, as detailed in the text accompanying these figures. Also, if the SEL-351R were applied in "nonstandard" applications (e.g., at a cogeneration interconnection point), changes would probably be made to the factory-set logic. *Section 9: Setting the SEL-351R Recloser Control* provides details on making settings changes.

EZ Settings vs. "Regular" Settings

The Settings section in the SEL-351R Quick-Start Installation and User's Guide describes:

- EZ recloser control settings (set with SET EZ n command)
- EZ global settings (set with SET FZ command)

Section 9: Setting the SEL-351R Recloser Control describes:

- "regular" settings (set with SET n command)
- "regular" global settings (set with SET G command)

The EZ recloser control settings are a subset of the "regular" settings, but if the EZ recloser control settings are enabled for a specific settings group n (n = 1-6), then the corresponding EZ recloser control settings override and change certain "regular" settings for that settings group. The EZ global settings override certain "regular" global settings if EZ recloser control settings are enabled for at least settings group 1. Global setting EZGRPS determines if EZ recloser control settings are enabled for a particular setting group.

The correlation between EZ recloser control settings and "regular" settings is given in Table 1.1. The correlation between EZ global settings and "regular" global settings is also given at the end of Table 1.1.

EZ Recloser Control Settings	Corresponding "Regular" Settings
(SHO EZ n Command; SET EZ n Command)	(SHO n Command; SET n Command)
Control Identifier (30 characters)	RID
Circuit Identifier (30 characters)	TID
CT Ratio	CTR, CTRN
PT Ratio	PTR, PTRS
Min. trip - phase	51P1P, 51P2P, 50P4P, 50P6P
Min. trip - ground	51G1P, 51G2P, 50G6P, 51N1P, 51N2P, 50N6P
Min. trip - SEF	50N3P, 50N4P
Fast curve - phase	51P1C
Time dial - phase fast curve	51P1TD
EM reset - phase fast curve	51P1RS
Fast curve - ground	51G1C, 51N1C
Time dial - ground fast curve	51G1TD, 51N1TD
EM reset - ground fast curve	51G1RS, 51N1RS
Delay curve - phase	51P2C
Time dial - phase delay curve	51P2TD
EM reset - phase delay curve	51P2RS
Delay curve - ground	51G2C, 51N2C
Time dial - ground delay curve	51G2TD, 51N2TD
EM reset - ground delay curve	51G2RS, 51N2RS
Time delay - SEF	67N3D
Operations - phase fast curve	OPPH
Operations - ground fast curve	OPGR
Operations to lockout - phase	OPLKPH
Operations to lockout - ground	OPLKGR
Operations to lockout - SEF	OPLKSF
Reclose interval 1	790I1
Reclose interval 2	790I2
Reclose interval 3	790I3
Reclose interval 4	790I4
Reset time for auto reclose	79RSD
Reset time from lockout	79RSLD
Close power wait time	79CLSD
Complex fast curve - phase (Y/N) Const. time adder - phase fast curve Vert. multiplier - phase fast curve Min. response - phase fast curve	51P1CT 51P1TD 51P1MR

Table 1.1: Correspondence Between EZ Settings and "Regular" Settings

EZ Recloser Control Settings (SHO EZ n Command; SET EZ n Command)	Corresponding "Regular" Settings (SHO n Command; SET n Command)
Complex fast curve - ground (Y/N) Const. time adder - ground fast curve Vert. multiplier - ground fast curve Min. response - ground fast curve	51G1CT, 51N1CT 51G1TD, 51N1TD 51G1MR, 51N1MR
Complex Delay curve - phase (Y/N) Const. time adder - phase delay curve Vert. multiplier - phase delay curve Min. response - phase delay curve	51P2CT 51P2TD 51P2MR
Complex Delay curve - ground (Y/N) Const. time adder - ground delay curve Vert. multiplier - ground delay curve Min. response - ground delay curve	51G2CT, 51N2CT 51G2TD, 51N2TD 51G2MR, 51N2MR
High current trip - phase (Y/N) High current trip - phase Time delay - phase high current trip Activate high current trip - phase	50P2P 67P2D HITRPH
High current trip - ground (Y/N) High current trip - ground Time delay - ground high current trip Activate high current trip - ground	50G2P, 50N2P 67G2D, 67N2D HITRGR
High current lockout - phase (Y/N) High current lockout - phase Activate high current lockout - phase	50P1P HILKPH
High current lockout - ground (Y/N) High current lockout - ground Activate high current lockout - ground	50G1P, 50N1P HILKGR
Cold load pickup scheme (Y/N) Cold load pickup - phase Cold load pickup - ground Loss of load diversity time	50P5P, ECOLDP 50G5P, ECOLDG, 50N5P SV6PU
Restore min. trips - time limit Restore Min. trip - phase Restore Min. trip - ground Restore Min. trip - SEF	SV5PU RPPH RPGR RPSEF
Sequence coordination (Y/N) Ground trip precedence (Y/N)	ESEQ PRECED
Underfrequency loadshedding (Y/N) Underfrequency pickup Underfrequency time delay	81D1P 81D1D
Demand meter time constant	DMTC

EZ Global Settings	Corresponding "Regular" Global Settings
(SHO FZ Command; SET FZ Command)	(SHO G Command; SET G Command)
System Frequency	NFREQ
Phase Rotation	PHROT
Recloser Wear Monitor (AUTO, Y, N)	EBMON
Recloser type (OIL, VAC1, VAC2)	COSP1, COSP2, COSP3
Interrupt rating	KASP1, KASP2, KASP3
Reset trip-latched LEDs on close (Y,Y1,N,N1)	RSTLED
True three-phase voltage connected (Y/N)	3PVOLT
Phantom voltages from (VA,VB,VC,VAB,VBC, VCA,OFF) (SEL-351R-2 only)	PHANTV
Battery Amp-hours	AMPHR
% Battery capacity for sleep	SLPCAP
Turn on the 12 V power (Y/N)	ON12V
Keep the 12 V power on while asleep (Y/N)	12VSLP

Overcurrent Element Functions Overview

When the factory default EZ settings are active for a particular settings group, many of the overcurrent elements in that settings group have specific functions, as explained in Table 1.2.

Table 1.2: Overcurrent Element Functions With EZ Settings Operat
--

Overcurrent Element	Function With EZ Settings Operative	Associated Settings
51P1T	Fast curve - phase	51P1P, 51P1C, 51P1TD, 51P1RS, 51P1CT, 51P1MR
51G1T, 51N1T	Fast curve - ground	51G1P, 51G1C, 51G1TD, 51G1RS, 51G1CT, 51G1MR
		51N1P, 51N1C, 51N1TD, 51N1RS, 51N1CT, 51N1MR
51P2T	Delay curve - phase	51P2P, 51P2C, 51P2TD, 51P2RS, 51P2CT, 51P2MR
51G2T, 51N2T	Delay curve - ground	51G2P, 51G2C, 51G2TD, 51G2RS, 51G2CT, 51G2MR
		51N2P, 51N2C, 51N2TD, 51N2RS, 51N2CT, 51N2MR
67N3T	SEF element	50N3P, 67N3D
67P2T	High current trip - phase	50P2P, 67P2D

Overcurrent Element	Function With EZ Settings Operative	Associated Settings
67G2T, 67N2T	High current trip - ground	50G2P, 67G2D, 50N2P, 67N2D
67P1	High current lockout - phase	50P1P
67G1, 67N1	High current lockout - ground	50G1P, 50N1P
50P5	Effective min. trip for "Delay curve - phase" when cold load pickup scheme is active.	50P5P
50G5, 50N5	Effective min. trip for "Delay curve - ground" and "SEF element" when cold load pickup scheme is active.	50G5P, 50N5P
50P6	Threshold (set equal to "Min. trip - phase") to detect phase current returning below the normal "Min. trip - phase" level when cold load pickup scheme is active.	50P6P
50G6, 50N6	Threshold (set equal to "Min. trip - ground") to detect ground current returning below the normal "Min. trip - ground" level when cold load pickup scheme is active.	50G6P, 50N6P
50N4	Threshold (set equal to "Min. trip - SEF") to detect ground current returning below the normal "Min. trip - SEF" level when cold load pickup scheme is active.	50N4P
50A4, 50B4, 50C4	Threshold (set equal to "Min. trip - phase") to detect faulted phases for trip operation counters.	50P4P

The overcurrent elements are available for use in SELOGIC control equations as "Relay Word bits" (see Tables 9.3 and 9.4). The associated overcurrent element settings listed in Table 1.2 and SELOGIC control equations settings are found in the settings sheets at the end of *Section 9: Setting the SEL-351R Recloser Control*. The factory default SELOGIC control equations settings are explained in the remainder of this section.

Residual Ground vs. Neutral Ground

In the following logic explanations, reference is made to residual ground and neutral ground overcurrent elements. The residual ground overcurrent elements (e.g., 51G1T) are derived from phase current input channels IA, IB, and IC. The neutral ground overcurrent elements (e.g., 51N1T) are derived from current input channel IN. Current channel IN is wired residually with phase current input channels IA, IB, and IC, so the residual ground and neutral ground

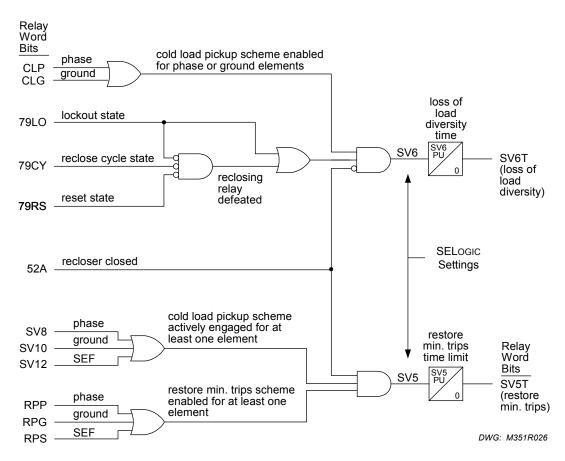
overcurrent elements see the same magnitude zero-sequence current (see Figure 13 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide*).

Phase current input channels IA, IB, and IC are rated 1A nominal. Current input channel IN is rated 0.05 A nominal. The neutral ground overcurrent elements (derived from current input channel IN) can be more sensitively set than the residual ground overcurrent elements (derived from phase current input channels IA, IB, and IC).

<u>For example</u>, for the Fast curve - ground element, a neutral ground overcurrent element (51N1T) is used when a more sensitive setting is needed, as opposed to the complimentary residual ground overcurrent element (51G1T). This is taken care of automatically when EZ settings are made. See Figure 1.15 and Figure 1.19 for more details on the operation of the Fast curve - ground element.

COLD LOAD PICKUP SCHEME

The cold load pickup scheme activates to prevent tripping on cold load pickup current. Both the following occur when the cold load pickup scheme activates:


- Fast curves are disabled
- Delay curves and SEF (Sensitive Earth Fault) element are desensitized

The delay curves and SEF element are not shifted in the desensitization process—coordination is maintained.

Enable Cold Load Pickup Scheme

The cold load pickup scheme begins in Figure 1.1 (top). The logic at the top of this figure is enabled when <u>either</u> of the following EZ settings is made (enabling the loss of load diversity timer, SV6PU):

- Cold load pickup phase \neq OFF (Relay Word bit CLP = logical 1)
- Cold load pickup ground \neq OFF (Relay Word bit CLG = logical 1)

Figure 1.1: Loss of Load Diversity (top) and Restore Min. Trips (bottom) Logic for Cold Load Pickup Scheme

Start Loss of Load Diversity Timer

Loss of load diversity timer SV6PU in Figure 1.1 starts timing when <u>both</u> the following conditions are true:

- Recloser is open (Relay Word bit 52A = logical 0)
- SEL351R is in the lockout state (Relay Word bit 79LO = logical 1) or the reclosing relay is defeated

EZ setting Reclose interval 1 = 0 (SET EZ command) or enable setting E79 = N (SET n command) defeats the reclosing relay (it is effectively nonexistent; Relay Word bits 79RS = 79CY = 79LO = logical 0).

When SV6PU times out, Relay Word bit SV6T asserts to logical 1, indicating a loss of load diversity condition. SV6T propagates to the logic in Figure 1.2 through Figure 1.4 for phase, ground, and SEF overcurrent elements, respectively. The logic in these three figures operates similarly—let's examine the operation of Figure 1.2 (phase).

Actively Engage Cold Load Pickup Scheme (Phase Elements Example)

SV6T propagates into Figure 1.2 and seals in with SELOGIC setting/Relay Word bit SV8, if Relay Word bit CLP = logical 1 (EZ setting Cold load pickup - phase \neq OFF). This actively engages the cold load pickup scheme for the phase overcurrent elements (Relay Word bit SV8 = logical 1).

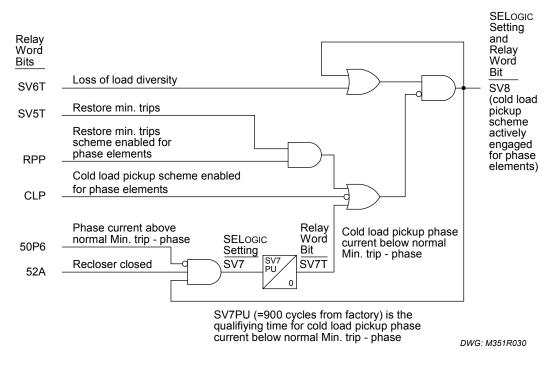


Figure 1.2: Cold Load Pickup Scheme Seal-In Logic for Phase Overcurrent Elements

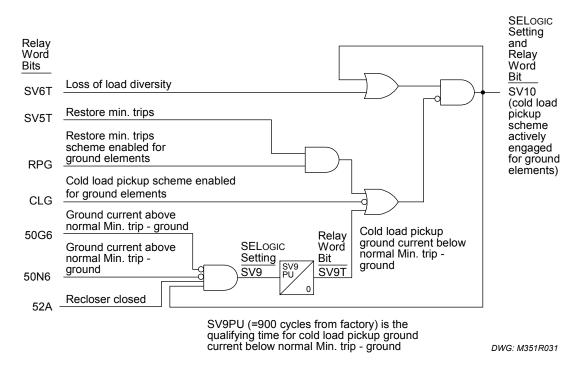


Figure 1.3: Cold Load Pickup Scheme Seal-In Logic for Ground Overcurrent Elements

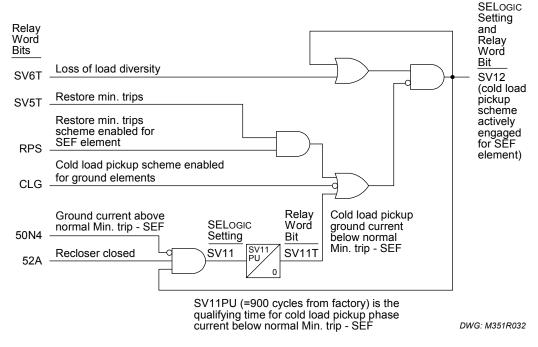


Figure 1.4: Cold Load Pickup Scheme Seal-in Logic for SEF Overcurrent Elements

<u>Use Overcurrent Element Torque Control Logic to Enable/Disable or Desensitize</u> <u>Elements (Phase Elements Example)</u>

With Relay Word bit SV8 = logical 1 (cold load pickup scheme actively engaged for the phase overcurrent elements), both the following occur:

- Fast curve phase (51P1T) is disabled (see top of Figure 1.15)
- Delay curve phase (51P2T) is desensitized (see top of Figure 1.16)

With Relay Word bit SV8 = logical 1, SELOGIC setting 51P1TC = logical 0 in top of Figure 1.15. This disables Fast curve - phase (51P1T).

With Relay Word bit SV8 = logical 1, SELOGIC setting 51P2TC in top of Figure 1.16 is controlled by phase instantaneous element 50P5. Element 50P5 asserts to logical 1 when phase current exceeds its pickup setting, 50P5P (see Figure 3.2). Pickup setting 50P5P corresponds to EZ setting Cold load pickup - phase. With Relay Word bit SV8 = logical 1, SELOGIC setting 51P2TC enables Delay curve - phase (51P2T) when phase current exceeds pickup setting 50P5P.

Desensitize Delay Curve-Maintain Coordination (Phase Elements Example)

In Figure 1.5, the normal Min. trip - phase for Delay curve - phase (51P2T) is 51P2P.

When the cold load pickup scheme is actively engaged for phase elements, the effective Min. trip - phase for Delay curve - phase is 50P5P. This effective Min. trip - phase is derived as follows:

50P5P = 51P2P * [Cold load pickup - phase (multiples of Min. trip - phase)]

When the cold load pickup scheme is actively engaged for the phase elements, the lower portion of the 51P2T phase overcurrent element (below pickup 50P5P) is effectively disabled. Note that the 51P2T phase overcurrent element is not shifted—coordination is maintained.

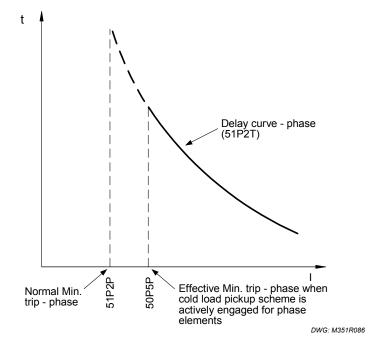


Figure 1.5: Disable Lower Portion of Delay Curve - Phase for Cold Load Pickup

Disengage Cold Load Pickup Scheme (Phase Elements Example)

SV8 in Figure 1.2 remains sealed in (and the cold load pickup scheme remains actively engaged for the phase overcurrent elements) until one of the following occurs:

- A <u>natural</u> return is made to normal Min. trip phase
- A <u>forced</u> return is made to normal Min. trip phase

A <u>natural</u> return to normal Min. trip - phase occurs with the logic in Figure 1.2 (bottom). The recloser closes and cold load pickup phase current goes below the normal Min. trip - phase setting value (monitored by phase instantaneous element 50P6—see Figure 3.2; corresponding pickup setting 50P6P is set the same as the normal Min. trip - phase). All this is time-qualified with timer SV7PU. Relay Word bit output SV7T unlatches SV8, disengaging the cold load pickup scheme for the phase elements.

A <u>forced</u> return to normal Min. trip - phase occurs with the logic in Figure 1.1 (bottom). The recloser closes and the Restore min. trips scheme is enabled for at least one element. This is time qualified with timer SV5PU. Relay Word bit output SV5T then propagates to Figure 1.2 and unlatches SV8 if setting Restore Min. trip - phase = Y (Relay Word bit RPP = logical 1). This disengages the cold load pickup scheme for the phase elements.

Other Cold Load Pickup Scheme Details Involving Ground and SEF Elements

The logic in Figure 1.3 and Figure 1.4 operates similarly to the logic operating in Figure 1.2, which has just been examined. A few details need to be explained concerning the operation of the cold load pickup scheme for the ground and SEF elements:

- See Figure 1.3 (bottom). If setting Min. trip ground is set below 0.1 Amp secondary, 50N6 provides the indication that cold load pickup ground current is above the normal Min. trip ground setting value (50G6 is turned off automatically). Otherwise, 50G6 provides the indication (50N6 is turned off automatically).
- See Figure 1.3 and Figure 1.4. The Cold load pickup ground setting enables the cold load pickup scheme for both the ground and SEF elements (Relay Word bit CLG = logical 1). Ground and SEF elements both see the same zero-sequence current.

FAST CURVE OPERATION LOGIC

Note the symmetry between Figure 1.6 and Figure 1.7. Relay Word bits SH0 through SH4 assert during different periods of a reclose cycle as the shot (reclose) counter increments. The shot counter increments just before each reclose.

Relay Word Bit	Asserted to Logical 1 From:
SH0	reset state to just before 1st reclose
SH1	just before 1st reclose to just before 2nd reclose
SH2	just before 2nd reclose to just before 3rd reclose
SH3	just before 3rd reclose to just before 4th reclose
SH4	just before 4th reclose, and following (through lockout state)

 Table 1.3: Conditions for Assertion of Relay Word Bits SH0 Through SH4

Note: Table 1.3 presumes that five trip operations are set (four reclosures in between them). If the SEL-351R is set for fewer trip operations, the shot counter does not increment to the higher shots (e.g., the shot counter doesn't increment to shot = 4 if only four trip operations are set). Thus, the corresponding higher shot bits (e.g., SH4) never assert for lesser numbers of trip operations.

An example reclose cycle (from reset to lockout) appears as:

(reset) 1st trip - 1st reclose - 2nd trip - 2nd reclose - 3rd trip - 3rd reclose - 4th trip (lockout)

Per Table 1.3, SH0 = logical 1 during the first trip, SH1 = logical 1 during the second trip, and so forth. Therefore, to enable Fast curve - phase for the first and second trip operations, make EZ setting Operations - phase fast curve = 2 (OPGR = 2) see Figure 1.6. This causes Relay Word bit OCG to assert to logical 1 for both the following conditions:

- shot = 0 (SH0 = logical 1)
- shot = 1 (SH1 = logical 1)

The note in Figure 1.6 refers to Figure 1.15—the logic that controls the Fast curve - phase (phase time-overcurrent element 51P1T). In this example, Fast curve - phase is enabled for the first two trip operations.

Fast curve - ground (Figure 1.7) operates similarly to the Fast curve - phase just discussed (Figure 1.6).

Fast Curve Operation When Reclosing Is Defeated

If reclosing is defeated via setting (e.g., all Operations to lockout \leq 1), then all the following reclosing-related Relay Word bits default to logical 0 (the reclosing relay is nonexistent):

SH0, SH1, SH2, SH3, SH4	(shot counter states)
79RS, 79CY, 79LO	(reclosing relay states)

The logic at the top of Figure 1.6 and Figure 1.7 enables set phase and ground fast curves, respectively, when reclosing is defeated.

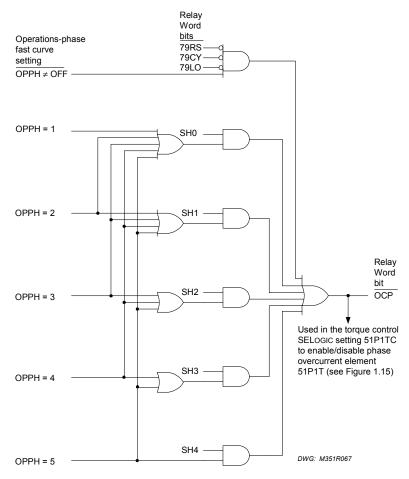


Figure 1.6: Operations - Phase Fast Curve Logic

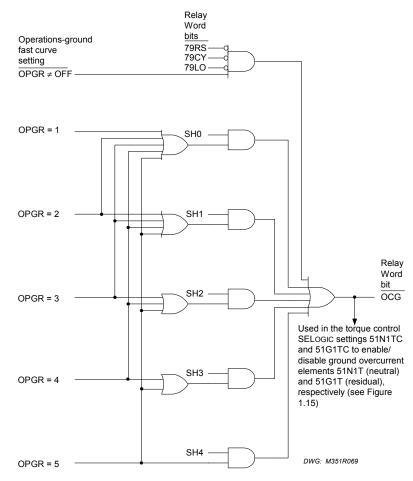


Figure 1.7: Operations - Ground Fast Curve Logic

OPERATIONS TO LOCKOUT, ACTIVATE HIGH CURRENT TRIP, AND ACTIVATE HIGH CURRENT LOCKOUT LOGIC

Note the symmetry amongst Figure 1.8 through Figure 1.14. Relay Word bits SH0 through SH4 assert during different periods of a reclose cycle as the shot (reclose) counter increments. The shot counter increments just before each reclose. See Table 1.3 and accompanying note.

An example reclose cycle (from reset to lockout) appears as:

(reset) 1st trip - 1st reclose - 2nd trip - 2nd reclose - 3rd trip - 3rd reclose - 4th trip (lockout)

Per Table 1.3, SH0 = logical 1 during the first trip, SH1 = logical 1 during the second trip and so forth. To enable the High current trip - phase for the third and fourth trip operations, make setting Activate high current trip - phase = 3 (HITRPH = 3). As shown in Figure 1.11, this causes Relay Word bit HTP to be asserted to logical 1 for all the following conditions:

- shot = 2 (SH2 = logical 1)
- shot = 3 (SH3 = logical 1)
- shot = 4 (SH4 = logical 1)

The note in Figure 1.11 refers to Figure 1.17—the logic that controls the High current trip - phase (phase definite-time element 67P2T). In this example, High current trip - phase is enabled for the third trip operation and every following trip operation.

The logic in Figure 1.8, Figure 1.9, Figure 1.10, Figure 1.12, Figure 1.13, and Figure 1.14 operates similarly to the High current trip - phase just discussed (Figure 1.11).

High Current Trip Operation When Reclosing Is Defeated

If reclosing is defeated via setting (e.g., all Operations to lockout ≤ 1), then all the following reclosing-related Relay Word bits default to logical 0 (the reclosing relay is nonexistent):

SH0, SH1, SH2, SH3, SH4	(shot counter states)
79RS, 79CY, 79LO	(reclosing relay states)

The logic at the top of Figure 1.11 and Figure 1.12 enables set phase and ground high current trips, respectively, when reclosing is defeated.

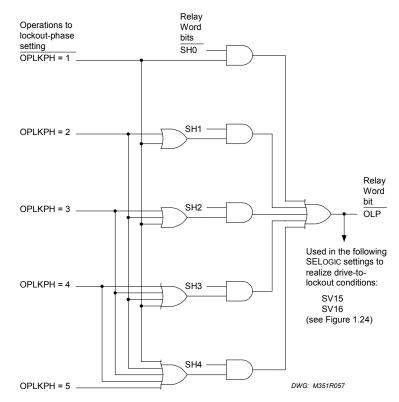


Figure 1.8: Operations to Lockout - Phase Logic

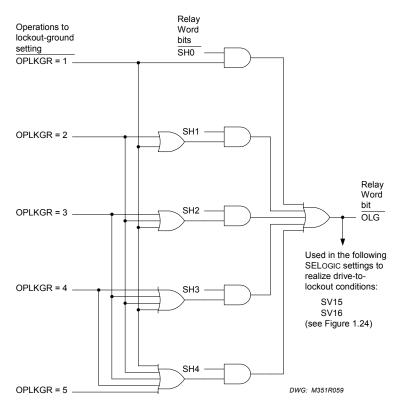


Figure 1.9: Operations to Lockout - Ground Logic

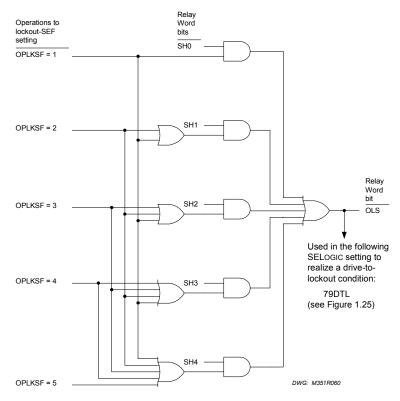


Figure 1.10: Operations to Lockout - SEF Logic

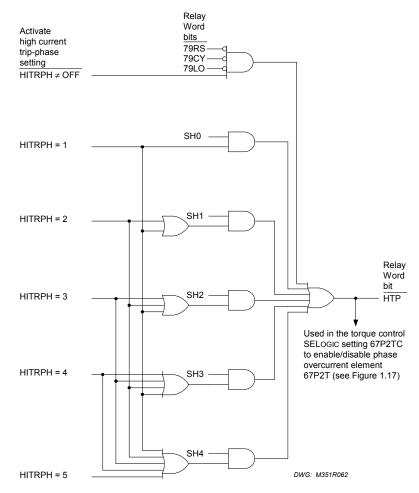


Figure 1.11: Activate High Current Trip - Phase Logic

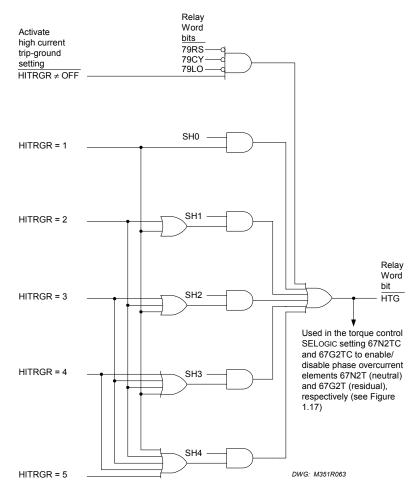


Figure 1.12: Activate High Current Trip - Ground Logic

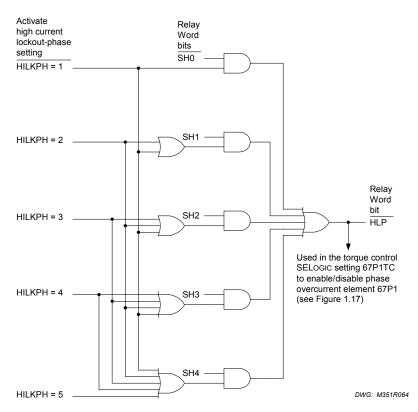


Figure 1.13: Activate High Current Lockout - Phase Logic

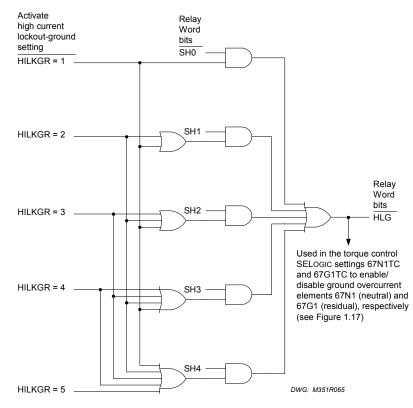


Figure 1.14: Activate High Current Lockout - Ground Logic

OVERCURRENT ELEMENT ENABLE/DISABLE LOGIC

The logic in Figure 1.15 through Figure 1.18 is a compilation of cold load pickup scheme outputs (Relay Word bits SV8, SV10, and SV12) and other enabling logic (Relay Word bits OCP, OCG, HTP, HTG, HLP, and HLG) discussed in preceding subsections. The torque control settings set with this logic propagate to their respective overcurrent elements to enable/disable the elements.

Note that all the ground and SEF overcurrent elements are controlled by the GROUND ENABLED operator control (via Relay Word bit LT1).

Other overcurrent element enable/disable details involving ground and SEF elements:

- See Figure 1.16 (bottom) and Figure 1.18. If setting Cold load pickup ground is set effectively below 0.05 Amp secondary, 50N5 is set to this Cold load pickup ground value (50G5 is turned off automatically). 50N5 provides the effective Min. trip ground for Delay curve ground when the cold load pickup scheme is actively engaged (similar to Figure 1.5). Otherwise, 50G5 provides the effective Min. trip ground for Delay curve ground when the cold load pickup scheme is actively engaged (50N5 is turned off automatically).
- See Figure 1.18. The SEF element is enabled only if none of the Fast curve and Delay curve elements are picked up and timing. If the SEF element is used, it is traditionally set to be more sensitive than any other overcurrent elements.

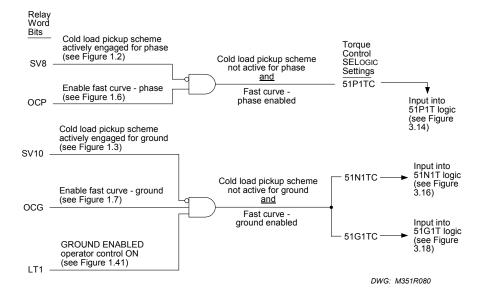


Figure 1.15: Fast Curve - Phase (top) and Fast Curve - Ground (bottom) Enable/Disable Logic

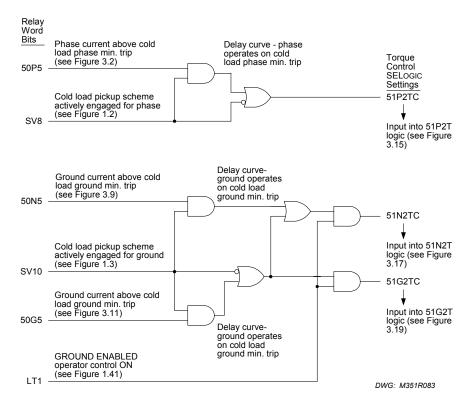
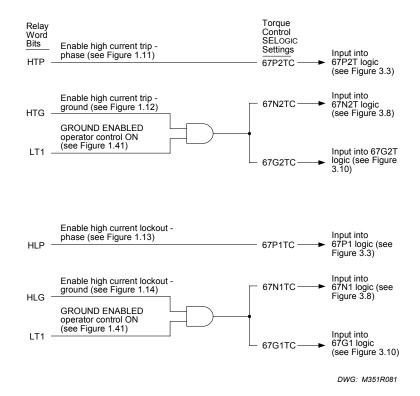
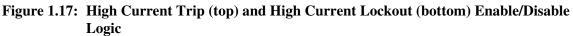




Figure 1.16: Delay Curve - Phase (top) and Delay Curve - Ground (bottom) Enable/Disable Logic

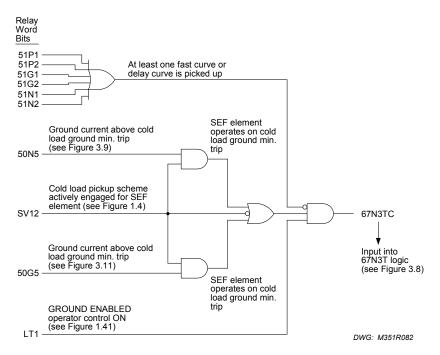


Figure 1.18: SEF Element Enable/Disable Logic

TRIP LOGIC

See Figure 1.19. The overcurrent elements in Figure 1.19 are controlled by the logic in Figure 1.15 through Figure 1.18. Other trip logic details:

- If setting Min. trip ground is set below 0.1 Amp secondary, 51N1T and 51N2T operate as Fast curve ground and Delay curve ground, respectively (51G1T and 51G2T are turned off automatically). Otherwise, 51G1T and 51G2T operate as Fast curve ground and Delay curve ground, respectively (51N1T and 51N2T are turned off automatically).
- If setting High current trip ground is set effectively below 0.05 Amp secondary, 67N2T operates as High current trip ground (67G2T is turned off automatically). Otherwise, 67G2T operates as High current trip ground (67N2T is turned off automatically).

Figure 1.19 propagates into the trip logic (see Figure 5.1). The trip signal output (Relay Word bit TRIP) is then assigned to the HV FET trip output with SELOGIC recloser control trip setting (see Figure 7.30):

RCTR = TRIP

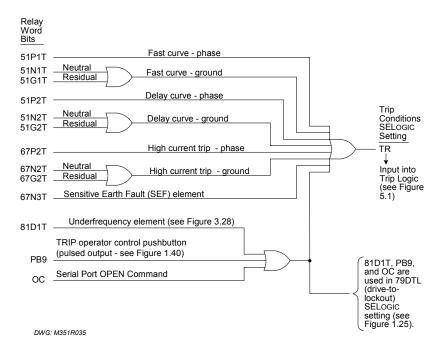


Figure 1.19: Trip Conditions

CLOSE LOGIC

Close Conditions-Other Than Auto-Reclosing

Figure 1.20 shows the two additional ways to issue a close signal to a recloser, other than with auto-reclosing:

- CLOSE operator control (local)
- Serial port CLOSE command (remote)

Supervision of these local and remote close signals is provided by:

- LOCK operator control—supervises CLOSE operator control only
- Hot line tag-supervises CLOSE operator control and serial port CLOSE command

Other close logic details in Figure 1.20 are listed below:

- The LOCK operator control also supervises other front-panel operator controls (see Figure 1.41, Figure 1.42, Figure 1.43, Figure 1.45, Figure 1.46, and Figure 1.49)
- Hot line tag also supervises auto-reclosing (see Figure 1.25).
- No standing close is possible with this logic. The CLOSE operator control (Relay Word bit PB8) and serial port CLOSE command (Relay Word bit CC) pulse for only one processing interval (one quarter cycle) when activated. Also, in referenced Figure 6.1, SELOGIC control equation setting CL is rising edge triggered. Thus, if the LOCK operator control (Relay Word bit LT4) or hot line tag (Relay Word bit LT7) are turned ON or OFF, no surprise close takes place—there is no standing close condition waiting to get through.

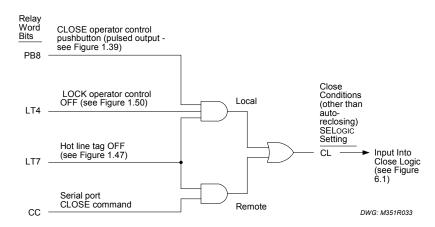
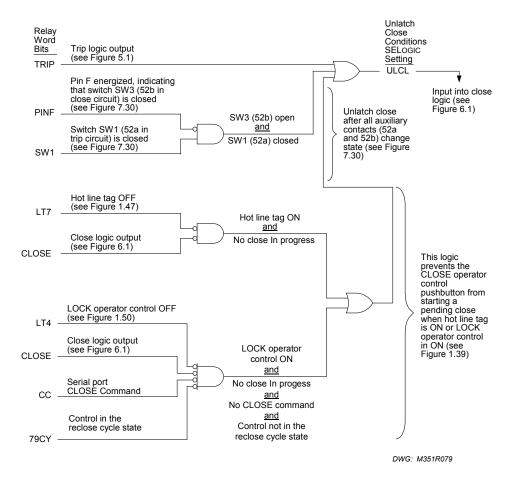
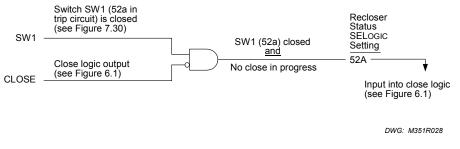



Figure 1.20: Close Conditions—Other Than Auto-Reclosing

Unlatch Close Conditions


Figure 1.21 shows the means to unlatch the close signal output. Other unlatch close logic details in Figure 1.21 are listed below:

- When the CLOSE operator control is set with a time delay (PB8D > 0; see Figure 1.39) and is timing to a pending close, the corresponding RECLOSER CLOSED LED flashes as a timing indication. Besides unlatching the close signal output, the unlatch close SELOGIC setting (ULCL) also prevents the CLOSE operator control from starting to time to a pending close. The logic in the bottom-half of Figure 1.21 is set primarily with the task in mind of keeping the RECLOSER CLOSED LED from flashing, by preventing the CLOSE operator control from starting to time for a Hot line tag ON or a LOCK operator control ON. The logic allows the CLOSE command and auto-reclosing to still proceed, with the LOCK operator control ON.
- The logic in the top-half of Figure 1.21 is set to unlatch the close signal output when the 52b contact in the close circuit is open and the 52a in the trip circuit is closed (see Figure 7.30)—the recloser has made a complete mechanical changeover to the close position.

Figure 1.21: Unlatch Close Conditions

Figure 1.22 shows the logic for recloser status determination. SELOGIC setting 52A includes the CLOSE Relay Word bit to hold off the change of state of 52A until the unlatch close logic (see Figure 1.21) unlatches the close signal output. This assures that the 52b in the close circuit is open (as indicated by Relay Word bit PINF = logical 0 in Figure 7.30) before the close signal output is unlatched (CLOSE = logical 0).

Figure 1.22: Recloser Status Determination

Figure 1.20 through Figure 1.22 all propagate into the close logic (see Figure 6.1). The close signal output (Relay Word bit CLOSE) is then assigned to the HV FET close output with SELOGIC recloser control close setting (see Figure 7.30):

RCCL = CLOSE

DRIVE-TO-LOCKOUT LOGIC

SELOGIC Variables SV13, SV14, SV15, and SV16 are used as intermediate steps in realizing the entire drive-to-lockout logic (see Figure 1.23 through Figure 1.25). Other details in Figure 1.23:

- If setting Min. trip ground is set below 0.1 Amp secondary, 51N1T and 51N2T operate as Fast curve ground and Delay curve ground, respectively (51G1T and 51G2T are turned off automatically). Otherwise, 51G1T and 51G2T operate as Fast curve ground and Delay curve ground, respectively (51N1T and 51N2T are turned off automatically).
- If setting High current trip ground is set effectively below 0.05 Amp secondary, 67N2T operates as High current trip ground (67G2T is turned off automatically). Otherwise, 67G2T operates as High current trip ground (67N2T is turned off automatically).
- If setting Min. trip ground is set below 0.1 Amp secondary, 50N6 provides the indication that ground current is above the Min. trip ground setting value (50G6 is turned off automatically). Otherwise, 50G6 provides the indication (50N6 is turned off automatically).

Operations to Lockout

The logic for the operations to lockout settings for phase, ground and SEF elements is found in preceding Figure 1.8 through Figure 1.10. The output of this logic (Relay Word bits OLP, OLG, and OLS) is used in the drive-to-lockout logic in Figure 1.24 and top of Figure 1.25.

The SEL-351R is driven to lockout if all the following are true:

- The number of trip operations is greater than or equal to setting Operations to lockout ground (Relay Word bit OLG asserted to logical 1)
- An overcurrent trip is in progress (except SEF element trip)
- <u>Either</u> of the following two scenarios is true:
- Ground trip precedence enabled and ground fault current above Min. trip ground level
- Ground trip precedence disabled, ground fault current above Min. trip ground level, and phase fault current below Min. trip phase level

The SEL-351R is driven to lockout if <u>all</u> the following are true:

- The number of trip operations is greater than or equal to setting Operations to lockout phase (Relay Word bit OLP asserted to logical 1)
- An overcurrent trip is in progress (except SEF element trip)
- Either of the following two scenarios is true:
- Ground trip precedence enabled, ground fault current below Min. trip ground level, and phase fault current above Min. trip phase level
- Ground trip precedence disabled and phase fault current above Min. trip phase level

The SEL-351R is driven to lockout (regardless of the Ground trip precedence setting) if <u>all</u> the following are true:

- An overcurrent trip is in progress (except SEF element trip)
- The number of trip operations is greater than or equal to setting Operations to lockout ground (Relay Word bit OLG asserted to logical 1)
- The number of trip operations is greater than or equal to setting Operations to lockout phase (Relay Word bit OLP asserted to logical 1)

The SEL-351R is driven to lockout if <u>both</u> the following are true:

- The SEF element trips
- The number of trip operations is greater than or equal to setting Operations to lockout -SEF (Relay Word bit OLS asserted to logical 1)

High Current Lockout

The controlling logic for the High current lockout - phase and ground elements is found in preceding Figure 1.17. The resultant High current lockout - phase and High current lockout - ground elements are used in the drive-to-lockout logic in Figure 1.25. If phase or ground fault current exceeds the pickups of either of these respective High current lockout - phase and High current lockout ground elements when the SEL-351R trips, the SEL-351R is driven to lockout.

• If setting High current lockout - ground is set effectively below 0.05 Amp secondary, 67N1 operates as the High current lockout - ground element (67G1 is turned off automatically). Otherwise, 67G1 operates as the High current lockout - ground element (67N1 is turned off automatically).

Other Drive-to-Lockout Conditions

The SEL-351R is driven to lockout if a trip operation occurs or the recloser opens while <u>either</u> one of the following is true:

- RECLOSE ENABLED operator control OFF
- Hot line tag ON

The SEL-351R is driven to lockout if <u>any</u> of the following occur:

- Underfrequency element operates
- TRIP operator control pressed
- Serial port OPEN command executed

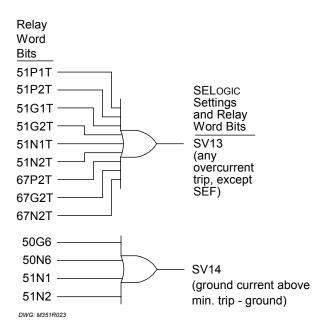


Figure 1.23: Drive-to-Lockout Logic—Part 1 of 3

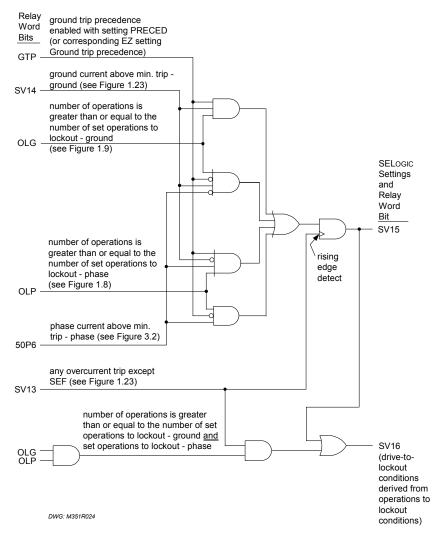


Figure 1.24: Drive-to-Lockout Logic—Part 2 of 3

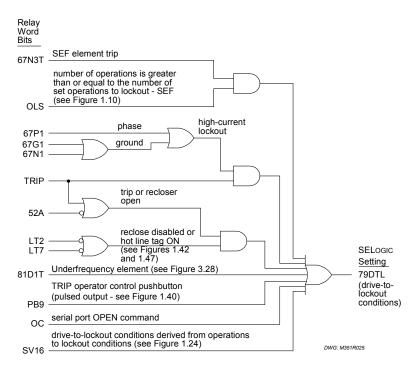
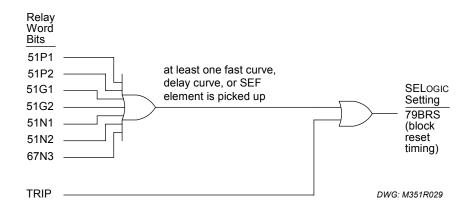



Figure 1.25: Drive-to-Lockout Logic—Part 3 of 3

BLOCK RESET TIMING

See Figure 1.26. If any of the fast curves, delay curves, or SEF elements are picked up and timing, reset timing is blocked. Reset timing is also blocked if tripping is in progress. After block reset conditions are gone, the reset timer fully loads up again and then begins timing if the recloser is closed.

SEQUENCE COORDINATION

Refer to subsection *Sequence Coordination Setting (79SEQ)* in *Section 6: Close and Reclose Logic* for background on the operation of the 79SEQ setting.

See Figure 1.27. Enable sequence coordination with EZ setting:

Sequence coordination = Y (asserts Relay Word bit SEQC to logical 1)

Besides the Sequence coordination EZ setting, the factory-set sequence coordination logic requires <u>both</u> the following be true:

- SEL-351R is in the Reset state (Relay Word bit 79RS = logical 1)
- Fast curve phase or Fast curve ground is picked up (Relay Word bit pickup indicator 51P1 = logical 1, 51G1 = logical 1, or 51N1 = logical 1, respectively)

Then the sequence coordination SELOGIC setting 79SEQ asserts to logical 1.

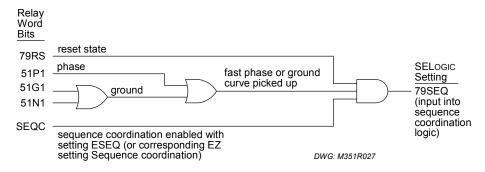


Figure 1.27: Sequence Coordination Logic

Refer to the example in Figure 1.28. The sequence coordination logic in Figure 1.27 keeps SEL-351R(1) from overtripping for a fault beyond SEL-351R(2).

Refer to Figure 1.29. The following are factory settings for SEL-351R(1):

79SEQ = 79RS * (51P1 + 51G1 + 51N1) * SEQC (see Figure 1.27) 51P1TC = !SV8 * OCP (see Figure 1.2 and Figure 1.15)

Presuming the cold load pickup scheme is not active, !SV8 = NOT(SV8) = NOT (logical 0) = logical 1. Setting 51P1TC is then controlled only by Relay Word bit OCP. With factory EZ setting Operations - phase fast curve = 2, Relay Word bit OCP = logical 1 for shot counter = 0 and shot counter = 1. Fast curve - phase (51P1T) is then enabled for shot counter = 0 and shot counter = 1.

Figure 1.29 gives a time-line of the operation of SEL-351R(1) sequence coordination logic for a fault beyond downstream SEL-351R(2). Each time SEL-351R(2) interrupts the phase fault, the SEL-351R(1) shot counter increments to the next shot. The shot counter in turn controls Fast curve - phase (51P1T) via torque control setting 51P1TC.

Once shot counter = 2, Fast curve - phase is disabled. Then when downstream SEL-351R(2) is operating on Delay curve - phase, the SEL-351R(1) Fast curves are out of the way—the SEL-351R(1) does not overtrip for a fault beyond SEL-351R(2).

As stated in subsection *Sequence Coordination Setting (79SEQ)* in *Section 6: Close and Reclose Logic*, the reset timer setting 79RSD (corresponding EZ setting Reset time for auto reclose) takes the shot counter back to shot counter = 0 after a sequence coordination operation increments the shot counter. Make sure that reset timer setting 79RSD is set long enough to maintain the shot counter at shot = 2 as shown in Figure 1.29.

Other sequence coordination details involving ground elements:

• If setting Min. trip - ground is set below 0.1 Amp secondary, 51N1 provides the indication that the ground fault current is above the normal Min. trip - ground setting value and the Fast curve - ground is picked up (51G1 is turned off automatically). Otherwise, 51G1 provides the indication (51N1 is turned off automatically).

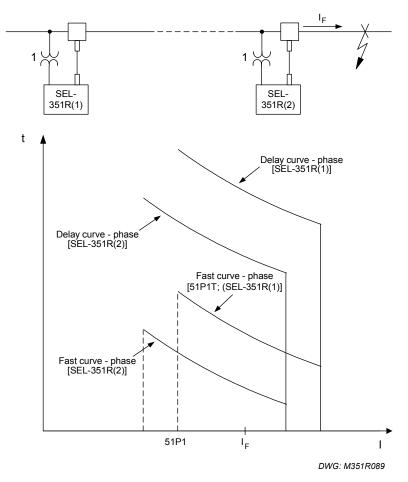


Figure 1.28: Phase Coordination of SEL-351Rs in Series

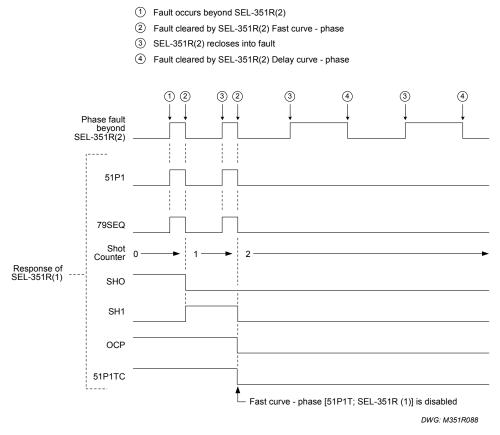


Figure 1.29: Operation of SEL-351R(1) Sequence Coordination Logic for Phase Fault Beyond Downstream SEL-351R(2)

RECLOSE SUPERVISION LOGIC

See Figure 1.30. After a reclose interval times out, a final check is made of the reclose supervision logic before the SEL-351R auto-recloses the recloser. For auto-reclosing to proceed, <u>both</u> following conditions must be met:

- Healthy battery
- Present close power

After a reclose interval times out, the logic in Figure 1.30 is final checked for a time period equivalent to EZ setting Close power wait time (corresponding setting 79CLSD—see Figure 6.2). If SELOGIC setting 79CLS (reclose supervision) asserts to logical 1 any time during this time period, auto-reclosing proceeds.

Note that the reclose supervision logic in Figure 1.30 is a combination of the same logic that drives the AC SUPPLY and BATTERY PROBLEM LEDs (see Figure 1.51).

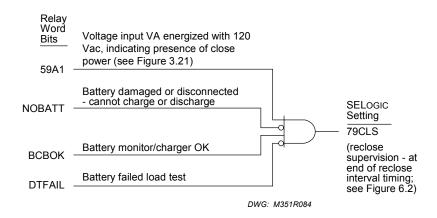


Figure 1.30: Reclose Supervision Logic

Healthy Battery

Relay Word bits NOBATT, BCBOK, and DTFAIL (as used in Figure 1.30 logic) indicate that the battery is healthy. If the battery fails the load test, Relay Word bit DTFAIL remains asserted to logical 1 until the next load test is successfully passed. See the *Battery* section in the *SEL-351R Quick-Start Installation and User's Guide* and subsection *Battery System Monitor* in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions* for more information.

Present Close Power

The power to close the main contacts and compress the tripping springs in the recloser is usually either of the following:

- 120 Vac
- Primary voltage

depending on recloser construction. If this close power is 120 Vac, it is usually paralleled off the SEL-351R terminal block for convenience (see Figure 7 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide*).

The following Figure 1.31 through Figure 1.34 detail various scenarios for connecting the SEL-351R to the recloser, 120 Vac power, and power system voltages. The installation in each figure is discussed from the point of view of both close power scenarios (120 Vac or primary voltage). In each of these figures, note the following voltage connections are always made:

- 120 Vac power bus (to power the SEL-351R)
- Voltage input VA (for frequency monitoring)

Suggested settings changes are given for:

- Close power monitoring in the reclose supervision logic (SELOGIC setting 79CLS in Figure 1.30)
- Undervoltage block for frequency elements (setting 27B81P in Figure 3.27)

These settings change, depending on the installation connections.

Front-Panel AC SUPPLY LED

Refer to Figure 7 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide* (Date Code 20010518 or later). Note that the 120 Vac power into the SEL-351R relay module (POWER connector J6) is now fuse protected from terminal block position 28. If the fuse blew, 120 Vac could still be hot up to the terminal block (bussed-together positions 17, 18, and 19) and to paralleled voltage input VA. Thus, an energized voltage input VA is not necessarily an indication that the SEL-351R relay module is energized. Thus, the SELOGIC setting for the AC SUPPLY LED is changed from previous factory setting LED11 = 59A1 (voltage input VA energized) to:

LED11 = !DISCHG [= NOT(DISCHG); the battery is not discharging]

If the battery is not discharging, it is either charging, disconnected or otherwise damaged. The SEL-351R relay module gets its power to run from either:

- Incoming 120 Vac power (pins 8, 4 on POWER connector J6) or
- 24 Vdc battery (pins 6, 2 on POWER connector J6)

If neither one of these power sources is available, then the SEL-351R relay module is dead and the AC SUPPLY LED is extinguished anyway. The AC SUPPLY LED may flicker at times when tripping or closing, due to the battery momentarily discharging a bit.

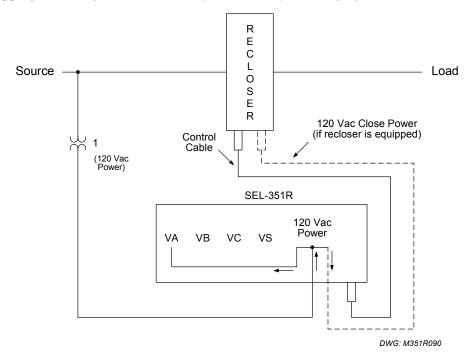


Figure 1.31: Installation With Only 120 Vac Power (traditional installation)

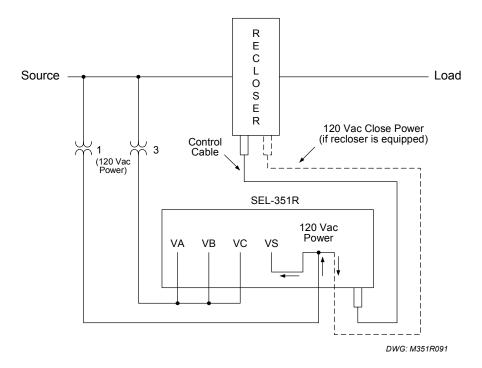


Figure 1.32: Installation With Separate 120 Vac Power and Three-Phase Voltage

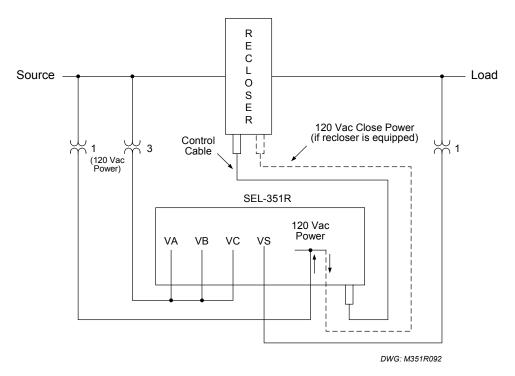
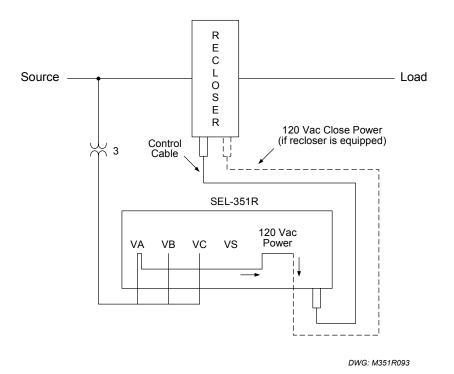



Figure 1.33: Installation With Separate 120 Vac Power, Three-Phase, and Synchronism Check Voltage

Figure 1.34: Installation With Only Three-Phase Voltage (120 Vac power provided by three-phase voltage)

Installation With Only 120 Vac Power (Traditional Installation)

See Figure 1.31. This is the traditional recloser control installation—only single-phase 120 Vac power is brought to the SEL-351R. The jumper from the 120 Vac power bus to voltage input VA is factory-installed (see also Figure 7 and Figure 11 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide*).

120 Vac Close Power

Voltage input VA provides direct 120 Vac close power monitoring—it is in parallel with the incoming 120 Vac power. The close power part of the factory-set logic in Figure 1.30 (79CLS = 59A1 * ...) is configured to work optimally with this scenario in Figure 1.31. Voltage element 59A1 picks up when nominal 120 Vac is applied to voltage input VA.

Primary Voltage Close Power

Voltage input VA provides only indirect primary voltage close power monitoring, even if the primary voltage close power for the recloser comes from phase A and the 120 Vac power to the SEL-351R also comes from phase A. Any other arrangement is even more indirect (e.g., primary voltage close power for the recloser comes from phases B and C and the 120 Vac power to the SEL-351R comes from phase A. Though if phase A is energized, phases B and C most likely are energized, too).

No meaningful changes can be made in the close power part of the factory-set logic in Figure 1.30 (79CLS = 59A1 * ...)—only single-phase 120 Vac power is brought to the SEL-351R. Voltage element 59A1 picks up when nominal 120 Vac is applied to voltage input VA.

Installation With Separate 120 Vac Power and Three-Phase Voltage

See Figure 1.32. The factory-installed jumper from the 120 Vac power bus to voltage input VA is moved to voltage input VS (see also Figure 7 and Figure 11 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide*). Voltage input VS is then in parallel with the incoming 120 Vac power.

120 Vac Close Power

Voltage input VS provides direct 120 Vac close power monitoring.

Change the close power part of factory-set logic in Figure 1.28 from 79CLS = 59A1 * ... (for voltage input VA) to 79CLS = 59S1 * ... (for voltage input VS) with the SET L n command (n = setting group number).

Make pickup setting 59S1P = 104 (for voltage element 59S1; 87% of 120 V) with the SET n command (n = setting group number). Voltage element 59S1 picks up when nominal 120 Vac is applied to voltage input VS.

Primary Voltage Close Power

All three voltage inputs VA, VB, and VC are connected and can provide indirect, but phase-specific primary voltage close power monitoring.

<u>For example</u>, if primary voltage close power for the recloser comes from phases B and C (phase-to-phase), change the close power part of the factory-set logic in Figure 1.30 from 79CLS = $59A1 * \dots$ (for voltage input VA) to 79CLS = $59BC * \dots$ (for voltage inputs VB and VC), with the SET L n command (n = setting group number). Set pickup setting 59PP (for voltage element 59BC) to some percentage (e.g., 87%) of the nominal phase-to-phase voltage secondary value of the three-phase voltage with the SET n command (n = setting group number). Voltage element 59BC picks up when nominal voltage is applied to voltage inputs VB and VC.

Undervoltage Block for Frequency Elements

If the three-phase voltage is not 120 Vac nominal (phase-to-neutral), then the factory-set pickup setting 27B81P = 80 may have to be changed. 27B81P is the pickup setting for the undervoltage block for frequency elements (see Figure 3.27).

Installation With Separate 120 Vac Power, Three-Phase, and Synchronism Check Voltage

See Figure 1.33. This installation is similar to the preceding subsection *Installation With Separate 120 Vac Power and Three-Phase Voltage* (Figure 1.32), with the addition of a load-side voltage to the synchronism check voltage input VS. The factory-installed jumper from the 120 Vac power bus to voltage input VA is removed (see also Figure 7 and Figure 11 in the

Installation section in the *SEL-351R Quick-Start Installation and User's Guide*). No voltage input is in parallel with the incoming 120 Vac power (no extra voltage input is available).

120 Vac Close Power

No voltage input provides direct 120 Vac close power monitoring. All three voltage inputs VA, VB, and VC are connected and can provide indirect, but phase-specific monitoring of 120 Vac close power. If the 120 Vac close power comes from phase A, keep the close power part of factory-set logic in Figure 1.30 (79CLS = 59A1 * ...). If the 120 Vac power comes from phase B or C, change the close power part of factory-set logic in Figure 1.28 to 79CLS = 59B1 * ... or 79CLS = 59C1 * ..., respectively (for voltage input VB or VC, respectively), with the SET L n command (n = setting group number).

If the three-phase voltage is not 120 Vac nominal (phase-to-neutral), then change factory-set pickup setting 59P1P = 104 (for voltage elements 59A1, 59B1, and 59C1; 87% of 120 V) to some percentage (e.g., 87%) of the nominal phase-to-neutral voltage secondary value of the three-phase voltage, with the SET n command (n = setting group number). Voltage elements 59A1, 59B1, and 59C1 pick up when nominal voltage is applied to voltage inputs VA, VB, and VC, respectively.

Primary Voltage Close Power

All three voltage inputs VA, VB, and VC are connected and can provide indirect, but phasespecific primary voltage close power monitoring.

<u>For example</u>, if primary voltage close power for the recloser comes from phases B and C (phase-to-phase), change the close power part of the factory-set logic in Figure 1.30 from 79CLS = $59A1 * \dots$ (for voltage input VA) to $79CLS = 59BC * \dots$ (for voltage inputs VB and VC), with the SET L n command (n = setting group number). Set pickup setting 59PP (for voltage element 59BC) to some percentage (e.g., 87%) of the nominal phase-to-phase voltage secondary value of the three-phase voltage with the SET n command (n = setting group number). Voltage element 59BC picks up when nominal voltage is applied to voltage inputs VB and VC.

Undervoltage Block for Frequency Elements

If the three-phase voltage is not 120 Vac nominal (phase-to-neutral), then the factory-set pickup setting 27B81P = 80 may have to be changed. 27B81P is the pickup setting for the undervoltage block for frequency elements (see Figure 3.27).

Installation With Only Three-Phase Voltage (120 Vac Power Provided by Three-Phase Voltage)

See Figure 1.34. Only three-phase voltage is brought to the SEL-351R. The jumper from the 120 Vac power bus to voltage input VA is factory-installed (see also Figure 7 and Figure 11 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide*). The three-phase voltage must be 120 Vac nominal (phase-to-neutral).

120 Vac Close Power

Voltage input VA provides direct 120 Vac close power monitoring—it is in parallel with the incoming 120 Vac power. The close power part of the factory-set logic in Figure 1.30 (79CLS = 59A1 * ...) is configured to work optimally with this scenario in Figure 1.34. Voltage element 59A1 picks up when nominal 120 Vac is applied to voltage input VA.

Primary Voltage Close Power

All three voltage inputs VA, VB, and VC are connected and can provide indirect, but phase-specific primary voltage close power monitoring.

<u>For example</u>, if primary voltage close power for the recloser comes from phases B and C (phase-to-phase), change the close power part of the factory-set logic in Figure 1.34 from 79CLS = $59A1 * \dots$ (for voltage input VA) to 79CLS = $59BC * \dots$ (for voltage inputs VB and VC), with the SET L n command (n = setting group number). Set pickup setting 59PP (for voltage element 59BC) to some percentage (e.g., 87%) of the nominal phase-to-phase voltage secondary value of the three-phase voltage with the SET n command (n = setting group number). Voltage element 59BC picks up when nominal voltage is applied to voltage inputs VB and VC.

OPERATOR CONTROL LOGIC

See *Operator Controls* subsection in the *Front-Panel Interface* section in the *SEL-351R Quick-Start Installation and User's Guide* for an explanation of the factory-set operation for the operator controls.

See Figure 1.35 and Figure 1.36. The operator controls (except WAKE UP) are programmable. Relay Word bits PB1 through PB9 are the outputs of operator control pushbuttons GROUND ENABLED through TRIP, respectively.

The corresponding LEDs (LED1 through LED9, respectively) are programmed independently. This allows great flexibility, especially in indicating status for a function that is controlled both locally and remotely.

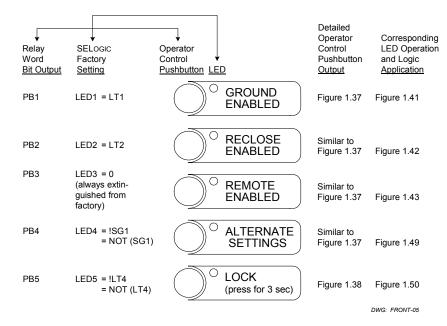
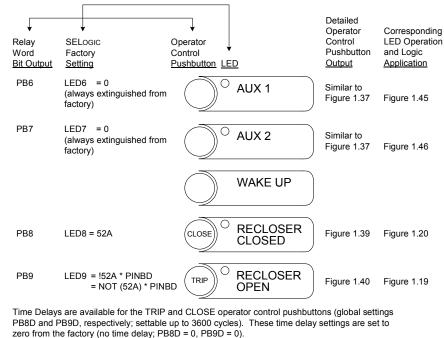
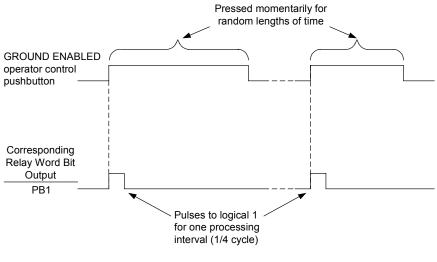



Figure 1.35: Operator Controls—GROUND ENABLED Through LOCK

DWG: FRONT-06

Figure 1.36: Operator Controls—AUX 1 Through TRIP

Detailed Operator Control Pushbutton Output


Figure 1.35 and Figure 1.36 list corresponding figures that detail operator control pushbutton output and corresponding LED operation and logic operation. Note that the pushbutton output (e.g., Relay Word bit PB1 for the GROUND ENABLED operator control pushbutton)

corresponds number-wise to the LED setting (e.g., SELOGIC setting LED<u>1</u> for the GROUND ENABLED LED).

GROUND ENABLED Operator Control Pushbutton Output

Figure 1.37 describes the GROUND ENABLED operator control pushbutton output. Every time the GROUND ENABLED operator control pushbutton is pressed momentarily, Relay Word bit PB1 asserts to logical 1 immediately for one processing interval.

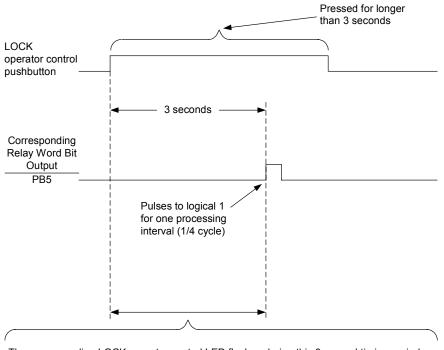
The corresponding GROUND ENABLED LED (controlled by SELOGIC setting LED1) is independent of the GROUND ENABLED operator control pushbutton.

Figures 1.35 and 1.36 list other operator control pushbuttons that operate similarly to the above detailed GROUND ENABLED operator control pushbutton and corresponding Relay Word bit PB1. DWG: M351R076

Figure 1.37: GROUND ENABLED Operator Control Pushbutton Output

Other Operator Control Pushbutton Outputs Operate Similarly to GROUND ENABLED

The following operator control pushbutton outputs operate similarly to the GROUND ENABLED operator control pushbutton output described in Figure 1.37 (corresponding Relay Word bits PB2, PB3, PB4, PB6, and PB7 assert to logical 1 immediately for one processing interval when the operator control pushbutton is pressed momentarily):


RECLOSE ENABLED (PB2)	AUX 1 (PB6)
REMOTE ENABLED (PB3)	AUX 2 (PB7)
ALTERNATE SETTINGS (PB4)	

LOCK Operator Control Pushbutton Output

Figure 1.38 describes the output of the unique LOCK operator control pushbutton. Note the need to press the LOCK operator control pushbutton continually for three seconds until Relay Word bit PB5 asserts to logical 1 for one processing interval.

The corresponding LOCK LED (controlled by SELOGIC setting LED5) is independent of the LOCK operator control pushbutton, unless the LOCK operator control pushbutton is pressed for the three seconds (and the LED flashes), as described in Figure 1.38.

Note: The three-second delay described in Figure 1.38 can be defeated via setting (see global setting RSTLED and corresponding global EZ setting "Reset trip-latched LEDs on close"). If the three-second delay is defeated, the LOCK operator control operates similar to Figure 1.37.

The corresponding LOCK operator control LED flashes during this 3 second timing period while the LOCK operator control pushbutton is pressed. This flashing indicates a pending pulsing of Relay Word Bit PB5, regardless of the setting of corresponding SELOGIC Control Equation setting LED5.

If the LOCK operator control pushbutton is released before 3 seconds, the corresponding LED stops flashing and Relay Word Bit PB5 is not pulsed. The LED returns to its regular operation, per SELOGIC Control Equation setting LED5 (see Figure 1.50).

DWG: M351R073

Figure 1.38: LOCK Operator Control Pushbutton Output

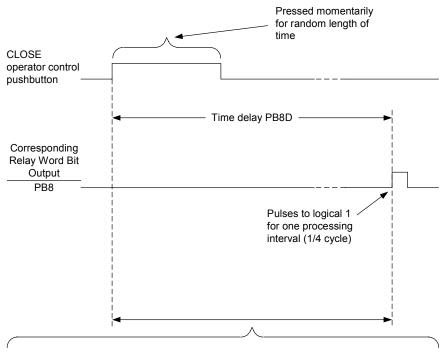

TRIP and CLOSE Operator Control Pushbutton Outputs

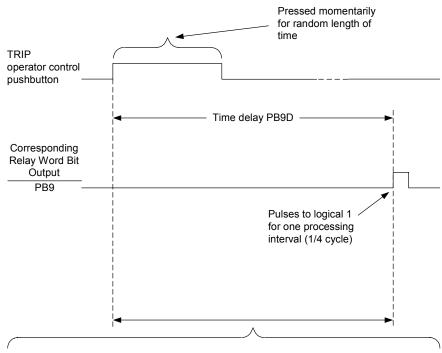
Figure 1.39 and Figure 1.40 describe the operation of the CLOSE and TRIP operator control pushbutton outputs, respectively. Note the programmable time delays (PB8D and PB9D, respectively), whereby the operator control can be pressed momentarily and the corresponding Relay Word bit (PB8 or PB9) asserts to logical 1 for one processing interval after the time delay. Also note the interlocking between the CLOSE and TRIP pushbuttons as described in Figure 1.39 and Figure 1.40, whereby a pending close can be turned off by pressing the TRIP pushbutton and a pending trip can be turned off by pressing the CLOSE pushbutton.

The corresponding RECLOSER CLOSED and RECLOSER OPEN LEDs (controlled by SELOGIC settings LED8 and LED9, respectively) are independent of the CLOSE and TRIP operator control pushbuttons, unless the CLOSE or TRIP operator control pushbutton is pressed and a pending close or trip results (and LED flashes), as described in Figure 1.39 and Figure 1.40.

If the control cable is removed from the bottom of the SEL-351R, both RECLOSER CLOSED and RECLOSER OPEN LEDs extinguish, even if the recloser is open. This occurs even for the RECLOSER OPEN LED because of SELOGIC setting LED9 = !52A * PINBD. See Figure 7.30—monitored trip circuit point PINBD should always be energized by the 24 Vdc anytime the recloser is open [SW1(52a) is open]. If PINBD is not energized (PINBD = logical 0) and the recloser is open, the control cable must be removed, or some other defect is in the 24 Vdc trip circuit/control cable.

CLOSE and TRIP operator control outputs (Relay Word bits PB8 and PB9) are routed into close logic (see Figure 1.20) and trip logic (see Figure 1.19), respectively.

The corresponding RECLOSER CLOSED LED flashes during the timing of time delay PB8D. This flashing indicates a pending pulsing of Relay Word Bit PB8, regardless of the setting of corresponding SELOGIC Control Equation setting LED8.


If the CLOSE operator control pushbutton is pressed again (or the TRIP operator control pushbutton is pressed) while PB8D is timing, the RECLOSER CLOSED LED stops flashing, PB8D stops timing, and Relay Word Bit PB8 is not pulsed. The pending close operation is aborted. The RECLOSER CLOSED LED returns to its regular operation, per SELOGIC Control Equation setting LED8 (see Figure 1.36).

If time delay setting PB8D is set PB8D>0, then the assertion of SELOGIC setting ULCL (unlatch close) to logical 1 also aborts pending closes and prevents the CLOSE operator control pushbutton from starting a pending close in the first place. See Figure 1.21.

If time delay setting PB8D is set PB8D=0 (no time delay), then Relay Word bit PB8 functions in a manner similar to Figure 1.37.

DWG: M351R074

Figure 1.39: CLOSE Operator Control Pushbutton Output

The corresponding RECLOSER OPEN LED flashes during the timing of time delay PB9D. This flashing indicates a pending pulsing of Relay Word Bit PB9, regardless of the setting of corresponding SELOGIC Control Equation setting LED9.

If the TRIP operator control pushbutton is pressed again (or the CLOSE operator control pushbutton is pressed) while PB9D is timing, the RECLOSER OPEN LED stops flashing, PB9D stops timing, and Relay Word Bit PB9 is not pulsed. The pending trip operation is aborted. The RECLOSER OPEN LED returns to its regular operation, per SELOGIC Control Equation setting LED9 (see Figure 1.36).

It time delay setting PB9D is set PB9D=0 (no time delay), then Relay Word Bit PB9 functions in a manner similar to Figure 1.37.

DWG: M351R075

Figure 1.40: TRIP Operator Control Pushbutton Output

Corresponding Operator Control LEDs and Logic Applications

Figure 1.35 and Figure 1.36 list corresponding figures that detail operator control LED operation and logic applications. Note that the pushbutton output corresponds number-wise to the LED setting—for example:

GROUND ENABLED operator control pushbutton output:	PB <u>1</u>
GROUND ENABLED LED SELOGIC control equations setting:	LED <u>1</u>

GROUND ENABLED Operator Control

Figure 1.41 describes the logic driven by the GROUND ENABLED operator control pushbutton (pulsed output PB1) and operation of the corresponding LED. Note that the LOCK operator control logic supervises the GROUND ENABLED operator control. The LOCK operator control has to be OFF (LT4 = logical 1) in order for the GROUND ENABLED operator control to effectively function—so that Relay Word bit PB1 can propagate on to latch LT1.

Latch LT1 is set up as a flip-flop with one effective logic input:

- Momentarily press the GROUND ENABLED operator control pushbutton and LT1 sets to logical 1
- Momentarily press the GROUND ENABLED operator control pushbutton again and LT1 resets to logical 0

All latches (LT1 through LT8) are nonvolatile (retain their state if the SEL-351R is powered down and then powered up again). The latch output (Relay Word bit LT1) propagates to the following logic:

- Drives the corresponding GROUND ENABLED operator control LED (SELOGIC setting LED1 = LT1) to indicate that ground overcurrent tripping is enabled (LED is illuminated) or disabled (LED is extinguished).
- Drives the ground overcurrent element torque control equations to enable or disable ground overcurrent elements

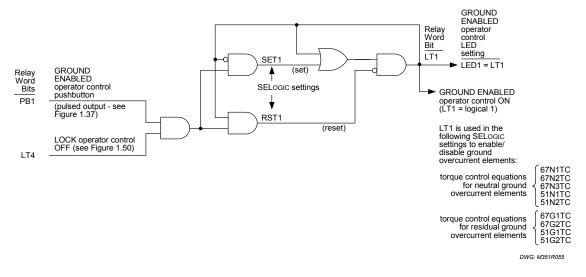


Figure 1.41: GROUND ENABLED Operator Control LED and Logic Application

Other Operator Controls

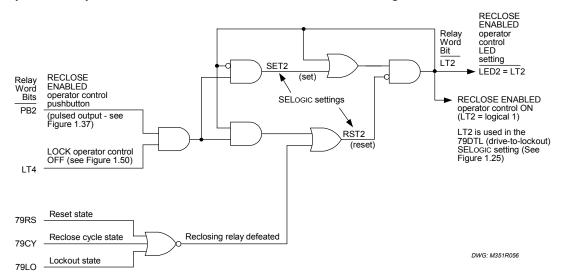

The following figures:


Figure 1.42 (RECLOSE ENABLED)
Figure 1.43 (REMOTE ENABLED)
Figure 1.46 (AUX 2)

operate similarly to Figure 1.41. Note that the LOCK operator control logic supervises the operator controls in these figures, too.

RECLOSE ENABLED Operator Control

Figure 1.42 (RECLOSE ENABLED) has additional logic that resets latch LT2 (LT2 = logical 0) if the reclosing relay is defeated. If the reclosing relay is defeated, the RECLOSE ENABLED operator control is effectively disabled—the corresponding LED (LED2 = LT2) is always extinguished. Make setting Reclose interval 1 = 0 to defeat reclosing and all three reclosing relay-state Relay Word bits (79RS, 79CY, and 79LO) deassert to logical 0.

REMOTE ENABLED Operator Control

As stated in Figure 1.43 (REMOTE ENABLED), latch LT3 is not used in any of the factory-set logic. Each press of the REMOTE ENABLED operator control pushbutton toggles latch LT3 from LT3 = logical 0 to LT3 = logical 1 and vice versa, but LT3 is not used in any of the factory-set logic. Thus, the REMOTE ENABLED operator control is not functional from the factory (corresponding LED is extinguished all the time, too; SELOGIC setting LED3 = 0, see Figure 1.35).

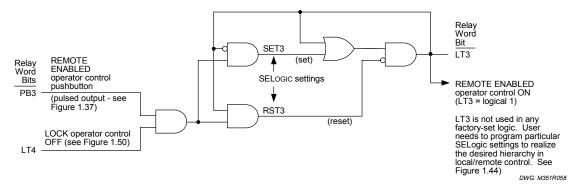


Figure 1.43: REMOTE ENABLED Operator Control Logic Application

Example Application for the REMOTE ENABLED Operator Control

To use the REMOTE ENABLED operator control, change the corresponding LED setting to LED3 = LT3 (to monitor the output of latch LT3) and assign LT3 to a supervising role in logic. For example, Figure 1.44 is a logic modification to Figure 1.41 (GROUND ENABLED operator control). Latch LT1 can be set/reset locally (with GROUND ENABLED operator control pushbutton) or remotely (with input IN101). Note that the remote control (IN101) is supervised by Relay Word bit LT3 (REMOTE ENABLED operator control). Likewise, the local control (GROUND ENABLED operator control) is supervised by Relay Word bit LT4 (LOCK operator control). This is just one example—many variations are possible.

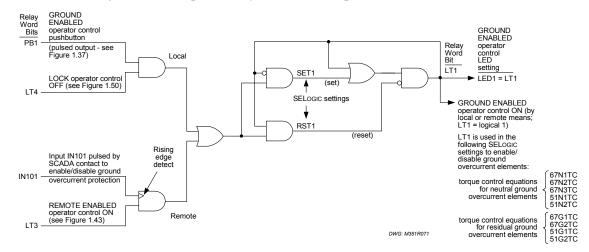


Figure 1.44: Example REMOTE ENABLED Operator Control Application (supervising remote control of ground overcurrent elements)

AUX 1 and AUX 2 Operator Controls

As stated in Figure 1.45 (AUX 1) and Figure 1.46 (AUX 2), latches LT5 and LT6 are not used in any of the factory-set logic. Each press of the AUX 1 operator control pushbutton toggles latch LT5 from LT5 = logical 0 to LT5 = logical 1 and vice versa, but LT5 is not used in any of the factory-set logic. Thus, the AUX 1 operator control is not functional from the factory (corresponding LED is extinguished all the time, too; SELOGIC setting LED6 = 0, see Figure 1.36). The AUX 2 operator control operates similarly.

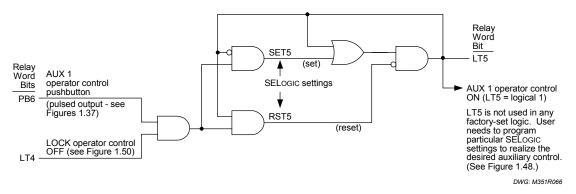


Figure 1.45: AUX 1 Operator Control Logic Application

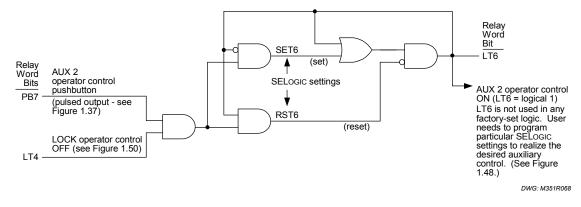


Figure 1.46: AUX 2 Operator Control Logic Application

Example Application for the AUX 1 Operator Control (Hot Line Tag)

The following figures show that latches are reserved for the corresponding operator controls in the factory settings:

- Figure 1.41 (GROUND ENABLED)
- Figure 1.42 (RECLOSE ENABLED)
- Figure 1.43 (REMOTE ENABLED)
- Figure 1.50 (LOCK)
- However, these operator control pushbuttons can be used without the reserved latches if desired. For example, the AUX 1 operator control pushbutton output is embedded into latch LT5 in the factory settings. However, the AUX 1 operator control pushbutton output (PB6) can be used independent of latch LT5 (latch LT5 can reprogrammed for another function). The following describes applying the AUX 1 operator control pushbutton output to hot line tag logic. A set hot line tag disables all closing or auto-reclosing from the SEL-351R.

Figure 1.47 shows the factory-set hot line tag logic. From the factory, latch LT7 is set such that latch output LT7 is always asserted (Relay Word bit LT7 = logical 1)—the hot line tag is reset (disabled). The front-panel HOT LINE TAG LED is always extinguished. Relay Word bit LT7 is also embedded in close logic (CL and ULCL) and drive-to-lockout (79DTL) SELOGIC factory settings.

- Figure 1.45 (AUX 1)
- Figure 1.46 (AUX 2)

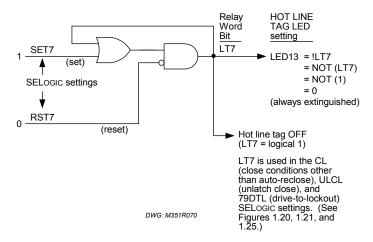


Figure 1.47: Hot Line Tag Logic

Figure 1.48 shows modified hot line tag logic, where the hot line tag can be set/reset in either of two ways:

- Locally (with the AUX 1 operator control pushbutton output)
- Remotely (with input IN102 wired to a SCADA contact)

Note that the LOCK operator control logic supervises the AUX 1 operator control. The LOCK operator control has to be OFF (LT4 = logical 1) in order for the AUX 1 operator control to effectively function, and so that Relay Word bit PB6 can propagate on to latch LT7.

The corresponding AUX 1 LED (SELOGIC setting LED6 = !LT7) is programmed to follow the front-panel HOT LINE TAG LED (SELOGIC setting LED13 = !LT7). Thus, the AUX 1 LED displays the status of the hot line tag—not of a latch reserved specifically for the AUX 1 operator control.

Input IN102 is not supervised in this example. A SCADA contact pulses input IN102 to set/reset hot line tag remotely.

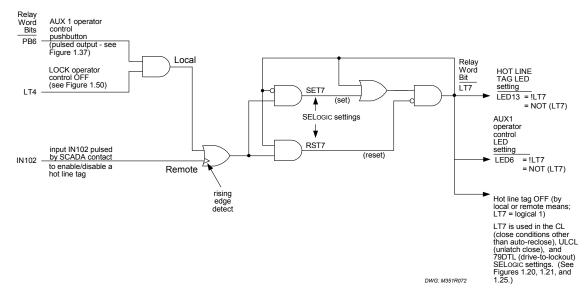


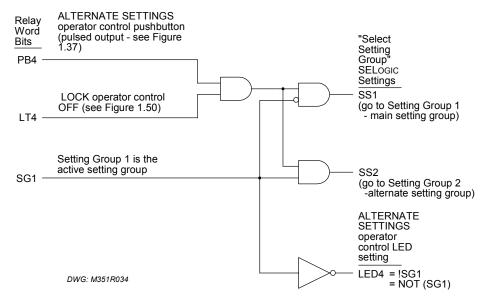
Figure 1.48: Example AUX 1 Operator Control Application (local control of hot line tag)

ALTERNATE SETTINGS Operator Control

Figure 1.49 describes the logic driven by the ALTERNATE SETTINGS operator control pushbutton (pulsed output PB4) and operation of the corresponding LED. Note that the LOCK operator control logic supervises the ALTERNATE SETTINGS operator control. The LOCK operator control has to be OFF (LT4 = logical 1) in order for the ALTERNATE SETTINGS operator control to effectively function, and so that Relay Word bit PB4 can propagate on to:

- "select setting group" SELOGIC settings SS1 and SS2
- ALTERNATE SETTINGS operator control LED setting LED4

Relay Word bit SG1 = logical 1 indicates that settings group 1 is the active setting group. Relay Word bit SG1 routes the ALTERNATE SETTINGS operator control pushbutton output PB4 to:


- SELOGIC setting SS1 (go to setting group 1) when SG1 = logical 0 (setting group 1 is <u>not</u> presently the active setting group)
- SELOGIC setting SS2 (go to setting group 2) when SG1 = logical 1 (setting group 1 is presently the active setting group)

Each time the ALTERNATE SETTINGS operator control pushbutton is momentarily pressed, the active setting group switches between:

- Setting group 2 as the active setting group (ALTERNATE SETTINGS operator control LED illuminates)
- And setting group 1 as the active setting group (ALTERNATE SETTINGS operator control LED extinguishes)

Neither SELOGIC setting SS1 nor SS2 has to be maintained at logical 1 in order for the active setting group to remain at setting group 1 or setting group 2, respectively. See *Multiple Settings Groups* subsection in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*.

The active setting group designation is nonvolatile (retained if the SEL-351R is powered down and then powered up again, i.e., returns to the same active setting group).

LOCK Operator Control

Figure 1.50 describes the logic driven by the LOCK operator control pushbutton (pulsed output PB5) and operation of the corresponding LED. Relay Word bit PB5 propagates to latch LT4.

Latch LT4 is set up as a flip-flop:

- Press the LOCK operator control pushbutton (for 3 seconds as described in Figure 1.38) and LT4 sets to logical 1
- Press the LOCK operator control pushbutton (for 3 seconds as described in Figure 1.38) again and LT4 resets to logical 0

All latches (LT1 through LT8) are nonvolatile (retain their state if the SEL-351R is powered down and then powered up again). The latch output (Relay Word bit LT4) propagates to the following logic:

- Drives the corresponding LOCK operator control LED [SELOGIC setting LED5 = !LT4 = NOT(LT4)] to indicate that LOCK is ON (LED is illuminated; LT4 = logical 0) or OFF (LED is extinguished; LT4 = logical 1).
- Supervises most of the other operator controls as listed at the bottom of Figure 1.50.

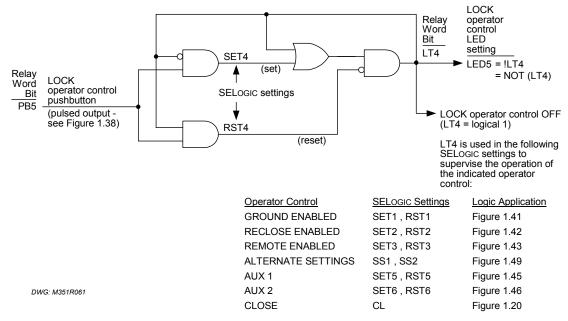


Figure 1.50: LOCK Operator Control LED and Logic Application

FRONT-PANEL STATUS AND TRIP TARGET LEDS

See Figure 21 in the *Front-Panel Interface* section in the *SEL-351R Quick-Start Installation and User's Guide* for an explanation of the factory-set operation for the front-panel status and trip target LEDs.

See Figure 1.51 through Figure 1.54. The front-panel status and trip target LEDs (except the CONTROL ENABLED status LED and the A, B, and C fault-type trip target LEDs) are programmable. Two settings are made for each of these programmable target LEDs:

- SELOGIC setting
- LEDnL global setting (where n = 11-20, 24, or 25)

The SELOGIC setting lists the conditions to illuminate the specified LED (e.g., LED11 = !DISCHG; the AC SUPPLY LED illuminates when Relay Word bit DISCHG deasserts to logical 0; see the font-panel AC SUPPLY LED discussion in the preceding *Reclose Supervision Logic* subsection).

The LEDnL global setting determines if the specified LED illuminates in one of two ways:

• LEDnL (Y/N) = N (LED operates as a <u>status</u> LED):

For example, when LED11L (Y/N) = N and LED11 = !DISCHG

The AC SUPPLY LED illuminates when Relay Word bit DISCHG deasserts to logical 0, regardless of any trip condition.

• If LEDnL (Y/N) = Y (LED operates as a <u>trip target</u> LED):

For example, when LED17L (Y/N) = Y and LED17 = 81D1T

The 81 (underfrequency trip) LED illuminates when Relay Word bit 81D1T is asserted to logical 1 and a rising-edge of TRIP occurs.

Trip-latched LEDs [e.g., the 81 (underfrequency trip) LED] remain latched in and illuminated until one of the following occur:

- Next trip occurs
- TARGET RESET pushbutton is pressed
- Recloser closes [if global setting "Reset trip-latched LEDs on close (Y,Y1,N,N1)" = Y or Y1]

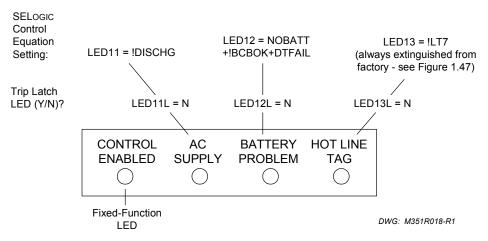
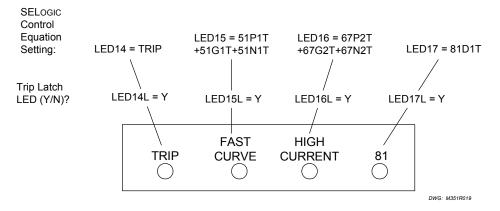



Figure 1.51: Front-Panel Status LEDs

Figure 1.31 through Figure 1.34 and associated text in subsection *Reclose Supervision Logic* earlier in this section discuss possible changes necessary to the factory default AC SUPPLY LED SELOGIC control equations setting LED11, for various voltage connections.

Figure 1.52: Front-Panel Trip Target LEDs

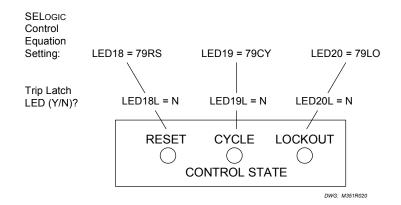


Figure 1.53: Front-Panel Reclosing Relay Status LEDs

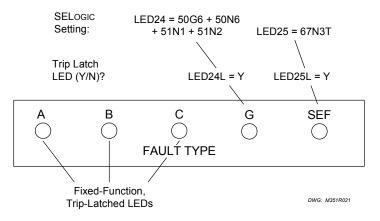
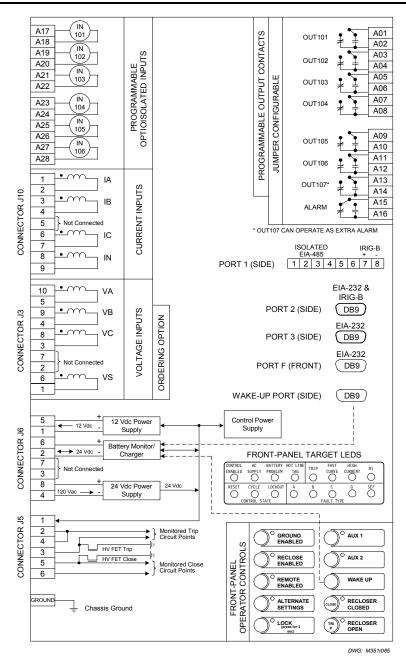


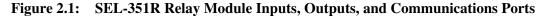
Figure 1.54: Front-Panel Fault-Type Trip Target LEDs

TABLE OF CONTENTS

SECTION 2: ADDITIONAL INSTALLATION DETAILS 2-1

Introduction	2-1
Output Contact Jumpers	2-2
"Extra Alarm" Output Contact Control Jumper	
Password and Breaker Jumpers	2-3
EIA-232 Serial Port Voltage Jumpers	2-4
Clock Battery	. 2-4
Voltage Connections	


TABLES


Table 2.1:	Output Contact Jumpers and Corresponding Output Contacts	2-2
Table 2.2:	"Extra Alarm" Output Contact and Corresponding Controlling Jumper	2-2
Table 2.3:	Required Position of Jumper JMP23 for Desired Output Contact OUT107 Operation	2-3
Table 2.4:	Password and Breaker Jumper Positions for Standard Relay Shipments	2-3
Table 2.5:	Password and Breaker Jumper Operation	2-3
Table 2.6:	EIA-232 Serial Port Voltage Jumper Positions for Standard Relay Shipments	2-4

FIGURES

Figure 2.1:	SEL-351R Relay Module Inputs	s, Outputs, and Communications Ports	2-1
-------------	------------------------------	--------------------------------------	-----

SECTION 2: ADDITIONAL INSTALLATION DETAILS

INTRODUCTION

This section describes additional SEL-351R Recloser Control installation details not covered in the *Installation* section of the *SEL-351R Quick-Start Installation and User's Guide*. Refer also to Figure 19 in the guide.

OUTPUT CONTACT JUMPERS

Table 2.1 shows the correspondence between output contact jumpers and the output contacts they control. Figure 19 in the *Communications* section of the *SEL-351R Quick-Start Installation and User's Guide* shows the exact location and correspondence. With a jumper in the A position, the corresponding output contact is an "a" type output contact. An "a" type output contact is open when the output contact coil is deenergized and closed when the output contact coil is energized. With a jumper in the B position, the corresponding output contact is closed when the output contact is a "b" type output contact. A "b" type output contact is closed when the output contact coil is deenergized and open when the output contact coil is energized. These jumpers are soldered in place.

In Figure 2.1, note that the ALARM output contact is a "b" type output contacts and the other output contacts are all "a" type output contacts. This is how these jumpers are configured in a <u>standard SEL-351R Recloser Control shipment</u>. Refer to corresponding Figure 7.27 for examples of output contact operation for different output contact types.

Output Contact	Corresponding
Jumpers	Output Contacts
JMP21–JMP29 (but not JMP23)	ALARM-OUT101

 Table 2.1: Output Contact Jumpers and Corresponding Output Contacts

"EXTRA ALARM" OUTPUT CONTACT CONTROL JUMPER

The SEL-351R has a dedicated alarm output contact (labeled ALARM—see Figure 2.1). Often more than one alarm output contact is needed for such applications as local or remote annunciation, backup schemes, etc. An extra alarm output contact can be had without the addition of any external hardware.

The output contact next to the dedicated ALARM output contact can be converted to operate as an "extra alarm" output contact by moving a jumper on the main board (see Table 2.2).

 Table 2.2: "Extra Alarm" Output Contact and Corresponding Controlling Jumper

"Extra Alarm"	Controlling
Output Contact	Jumper
OUT107	JMP23

The position of the jumper controls the operation of the output contact next to the dedicated ALARM output contact. With the jumper in one position, the output contact operates regularly. With the jumper in the other position, the output contact is driven by the same signal that operates the dedicated ALARM output contact (see Table 2.3).

Table 2.3: Required Position of Jumper JMP23 for Desired OutputContact OUT107 Operation

Position	Output Contact OUT107 Operation	
(3) (2)	Regular output contact OUT107 (operated by Relay Word bit OUT107). Jumper JMP23 comes in this position in a <u>standard</u> SEL-351R shipment (see Figure 7.27)	
• (3) • (2) • (1) • (1) • (3)	"Extra Alarm" output contact (operated by alarm logic/circuitry). Relay Word bit OUT107 does not have any effect on output contact OUT107 when jumper JMP23 is in this position (see Figure 7.27)	

If an output contact is operating as an "extra alarm" (driven by the same signal that operates the dedicated ALARM output contact), it will be in the <u>opposite state</u> of the dedicated ALARM output contact in a <u>standard relay shipment</u>. In a standard SEL-351R shipment, the dedicated ALARM output contact comes as a "b" type output contact and all the other output contacts (including the "extra alarm") come as "a" type output contacts.

The output contact type for any output contact can be changed (see preceding subsection *Output Contact Jumpers*). Thus, the dedicated ALARM output contact and the "extra alarm" output contact can be configured as the same output contact type if desired (e.g., both can be configured as "b" type output contacts).

PASSWORD AND BREAKER JUMPERS

Password Jumper/Position	Breaker Jumper/Position
(for standard relay shipments)	(for standard relay shipments)
JMP6-A = OFF	JMP6-B = ON

Jumper Type	Jumper Position	Function
Password	ON (in place)	disable password protection ¹ for serial ports and front panel
	OFF (removed/not in place)	enable password protection ¹ for serial ports and front panel
Breaker	ON	enable serial port commands OPEN, CLOSE, and

(in place)	PULSE ²
OFF (removed/not in place)	disable serial port commands OPEN, CLOSE, and PULSE ²

¹ View or set the passwords with the PASSWORD command (see *Section 10: Serial Port Communications and Commands*).

² The OPEN, CLOSE, and PULSE commands are used primarily to assert output contacts for circuit breaker control or testing purposes (see *Section 10: Serial Port Communications and Commands*).

Note that JMP6 in Figure 19 in the *Communications* section of the *SEL-351R Quick-Start Installation and User's Guide* has multiple jumpers A through D. Jumpers A and B are used (see Table 2.4 and Table 2.5). Jumpers C and D are not used. Therefore, the positions (ON or OFF) of jumpers C and D are of no consequence.

EIA-232 SERIAL PORT VOLTAGE JUMPERS

The jumpers listed in Table 2.6 connect or disconnect +5 Vdc to Pin 1 on the corresponding EIA-232 serial ports. The +5 Vdc is rated at 0.5 A maximum for each port. See Table 10.1 in *Section 10: Serial Port Communications and Commands* for EIA-232 serial port pin functions.

In a <u>standard SEL-351R shipment</u>, the jumpers are "OFF" (removed/not in place) so that the +5 Vdc is not connected to Pin 1 on the corresponding EIA-232 serial ports. Put the jumpers "ON" (in place) so that the +5 Vdc is connected to Pin 1 on the corresponding EIA-232 serial ports.

EIA-232 Serial Port 2	EIA-232 Serial Port 3
(rear panel)	(rear panel)
JMP2 = OFF	JMP1 = OFF

 Table 2.6: EIA-232 Serial Port Voltage Jumper Positions for Standard Relay Shipments

CLOCK BATTERY

Refer to Figure 19 in the *Communications* section of the *SEL-351R Quick-Start Installation and User's Guide* for clock battery location (front of main board). A lithium battery powers the relay clock (date and time) if power source is lost or removed. The battery is a 3 V lithium coin cell, Ray-O-Vac[®] No. BR2335 or equivalent. At room temperature (25°C), the battery will nominally operate for 10 years at rated load.

If power is lost or disconnected, the battery discharges to power the clock. When the SEL-351R is powered from an external source, the battery only experiences a low self-discharge rate. Thus, battery life can extend well beyond the nominal 10 years because the battery rarely has to discharge after the relay is installed. The battery cannot be recharged.

If the relay does not maintain the date and time after power loss, replace the battery. Follow the instructions in the *Password Jumper* subsection in the *Communications* section of the *SEL-351R Quick-Start Installation and User's Guide* to remove the relay main board.

There is danger of explosion if the battery is incorrectly replaced. Replace only with Ray-O-Vac[®] no. BR2335 or equivalent recommended by manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Remove the battery from beneath the clip and install a new one. The positive side (+) of the battery faces up. Reassemble the relay as described in the same subsection. Set the relay date and time via serial communications port or front panel (see the *Communications* section or *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*, respectively).

VOLTAGE CONNECTIONS

See Figures 1.31 through 1.34 and accompanying text in Section 1: Factory-Set Logic.

TABLE OF CONTENTS

SECTION 3:	OVERCURRENT, VOLTAGE, SYNCHRONISM	2.1
	CHECK, AND FREQUENCY ELEMENTS	3-1
Instantaneou	ss/Definite-Time Overcurrent Elements	
Phase I	nstantaneous/Definite-Time Overcurrent Elements	
Se	ttings Ranges	
Ac	ccuracy	
Pie	ckup Operation	
Di	rectional Control Option	
Тс	rque Control	
Co	ombined Single-Phase Instantaneous Overcurrent Elements	
	ckup and Reset Time Curves	
Phase-t	o-Phase Instantaneous Overcurrent Elements	
Se	tting Range	
Ad	ccuracy	
Pie	ckup Operation	
Pie	ckup and Reset Time Curves	
Neutral	Ground Instantaneous/Definite-Time Overcurrent Elements	
Se	ttings Ranges	3-11
Ac	curacy	3-11
	ckup and Reset Time Curves	
Residu	al Ground Instantaneous/Definite-Time Overcurrent Elements	3-12
Se	ttings Ranges	3-13
Ac	curacy	3-13
Pie	ckup and Reset Time Curves	3-13
Negativ	ve-Sequence Instantaneous/Definite-Time Overcurrent Elements	3-14
Se	ttings Ranges	3-14
Ac	curacy	3-14
	ckup and Reset Time Curves	
	urrent Elements	
Phase 7	Fime-Overcurrent Elements	3-16
Se	ttings Ranges	3-16
	ccuracy	
	ogic Outputs (51P1T element example)	
To	orque Control Switch Operation (51P1T element example)	
	Torque Control Switch Closed	
	Torque Control Switch Open	
	Control of Logic Point TCP1	
	Directional Control Option	
	Torque Control	
Re	eset Timing Details (51P1T element example)	
	Setting 51P1RS = Y	
	Setting 51P1RS = N	
	Ground Time-Overcurrent Elements	
Se	ttings Ranges	3-24

Accuracy	. 3-24
Residual Ground Time-Overcurrent Elements	
Settings Ranges	. 3-26
Accuracy	. 3-26
Negative-Sequence Time-Overcurrent Element	. 3-27
Settings Ranges	. 3-28
Accuracy	. 3-28
Voltage Elements	. 3-29
Voltage Values	. 3-29
Voltage Element Settings	. 3-29
Accuracy	. 3-33
Voltage Element Operation	. 3-33
Undervoltage Element Operation Example	. 3-33
Overvoltage Element Operation Example	. 3-34
Voltage Elements Used in POTT Logic	. 3-34
Synchronism Check Elements	. 3-34
Voltage Input VS Connected Phase-to-Phase or Beyond Delta-Wye Transformer	. 3-35
Synchronism Check Elements Settings	. 3-35
Setting SYNCP	. 3-35
Accuracy	. 3-36
Synchronism Check Elements Voltage Inputs	. 3-38
System Frequencies Determined from Voltages V _A and V _S	. 3-38
System Rotation Can Affect Setting SYNCP	
Synchronism Check Elements Operation	. 3-39
Voltage Window	. 3-39
Other Uses for Voltage Window Elements	. 3-39
Block Synchronism Check Conditions	. 3-39
Slip Frequency Calculator	. 3-40
Angle Difference Calculator	
Voltages V_p and V_s are "Static"	3-40
Voltages V_p and V_s are "Slipping"	. 3-41
Angle Difference Example (voltages V_p and V_s are "slipping")	. 3-42
Synchronism Check Element Outputs	
Voltages V_p and V_s are "Static" or Setting TCLOSD = 0.00	. 3-43
Voltages V_p and V_s are "Slipping" and Setting TCLOSD $\neq 0.00$. 3-43
Synchronism Check Applications for Automatic Reclosing and Manual Closing	. 3-44
Frequency Elements	
Frequency Element Settings	. 3-45
Accuracy	. 3-47
Create Over- and Underfrequency Elements	. 3-47
Overfrequency Element	
Underfrequency Element	
Frequency Element Operation	
Overfrequency Element Operation	
Underfrequency Element Operation	
Frequency Element Voltage Control	
Other Uses for Undervoltage Element 27B81	
Frequency Element Uses	. 3-49

TABLES

Table 3.1:	Available Phase Time-Overcurrent Elements	
Table 3.2:	Phase Time-Overcurrent Elements Settings	
Table 3.3:	Phase Time-Overcurrent Element (maximum phase) Logic Outputs	3-19
Table 3.4:	Neutral Ground Time-Overcurrent Elements Settings	3-24
Table 3.5:	Residual Ground Time-Overcurrent Elements Settings	
Table 3.6:	Negative-Sequence Time-Overcurrent Elements Settings	
Table 3.7:	Voltage Values Used by Voltage Elements	3-29
Table 3.8:	Voltage Elements Settings and Settings Ranges	3-30
Table 3.9:	Synchronism Check Elements Settings and Settings Ranges	3-35
Table 3.10:	Frequency Elements Settings and Settings Ranges	

FIGURES

Figure 3.1:	Levels 1 Through 4 Phase Instantaneous Overcurrent Elements	3-2
Figure 3.2:	Levels 5 Through 6 Phase Instantaneous Overcurrent Elements	3-3
Figure 3.3:	Levels 1 Through 4 Phase Instantaneous/Definite-Time Overcurrent Elements (with	
-	Directional Control Option)	3-4
Figure 3.4:	Combined Single-Phase Instantaneous Overcurrent Elements	3-6
Figure 3.5:	SEL-351R Recloser Control Nondirectional Instantaneous Overcurrent Element	
C	Pickup Time Curve	3-7
Figure 3.6:	SEL-351R Recloser Control Nondirectional Instantaneous Overcurrent Element	
-	Reset Time Curve	3-7
Figure 3.7:	Levels 1 through 4 Phase-to-Phase Instantaneous Overcurrent Elements	3-9
Figure 3.8:	Levels 1 through 4 Neutral Ground Instantaneous/Definite-Time Overcurrent	
C	Elements (with Directional Control Option)	. 3-10
Figure 3.9:	Levels 5 Through 6 Neutral Ground Instantaneous Overcurrent Elements	
Figure 3.10:	Levels 1 through 4 Residual Ground Instantaneous/Definite-Time Overcurrent	
C	Elements (with Directional Control Option)	. 3-12
Figure 3.11:	Levels 5 Through 6 Residual Ground Instantaneous Overcurrent Elements	
Figure 3.12:	Levels 1 Through 4 Negative-Sequence Instantaneous/Definite-Time Overcurrent	
_	Elements (with Directional Control Option)	. 3-15
Figure 3.13:	Levels 5 Through 6 Negative-Sequence Instantaneous Overcurrent Elements	. 3-16
Figure 3.14:	Phase Time-Overcurrent Element 51P1T (with Directional Control Option)	. 3-18
Figure 3.15:	Phase Time-Overcurrent Element 51P2T (with Directional Control Option)	. 3-18
Figure 3.16:	Neutral Ground Time-Overcurrent Element 51N1T (with Directional Control	
-	Option)	. 3-23
Figure 3.17:	Neutral Ground Time-Overcurrent Element 51N2T (with Directional Control	
-	Option)	. 3-23
Figure 3.18:	Residual Ground Time-Overcurrent Element 51G1T (with Directional Control	
	Option)	. 3-25
Figure 3.19:	Residual Ground Time-Overcurrent Element 51G2T (with Directional Control	
_	Option)	. 3-25
Figure 3.20:	Negative-Sequence Time-Overcurrent Element 51QT (with Directional Control	
-	Option)	. 3-27
Figure 3.21:	Single-Phase and Three-Phase Voltage Elements	. 3-31
Figure 3.22:	Phase-to-Phase and Sequence Voltage Elements	. 3-32

Figure 3.23:	Channel VS Voltage Elements	. 3-33
Figure 3.24:	Synchronism Check Voltage Window and Slip Frequency Elements	. 3-36
Figure 3.25:	Synchronism Check Elements	. 3-37
Figure 3.26:	Angle Difference Between V_p and V_s Compensated by Breaker Close Time ($f_p < f_s$;	
	V _p shown as reference in this example)	. 3-41
Figure 3.27:	Undervoltage Block for Frequency Elements	. 3-45
Figure 3.28:	Levels 1 Through 6 Frequency Elements	. 3-46

SECTION 3: OVERCURRENT, VOLTAGE, SYNCHRONISM CHECK, AND FREQUENCY ELEMENTS

Many of the elements described in this section are used in the factory-set logic for the SEL-351R Recloser Control. Refer to Table 1.1 in *Section 1: Factory-Set Logic* for the correlation between the EZ settings that drive this factory-set logic and the "regular" settings that set many of the elements in this section. Refer to Table 1.2 in *Section 1: Factory-Set Logic* for the functions of the overcurrent elements when the factory default EZ settings are active for a particular setting group.

INSTANTANEOUS/DEFINITE-TIME OVERCURRENT ELEMENTS

Phase Instantaneous/Definite-Time Overcurrent Elements

Four levels of phase instantaneous/definite-time overcurrent elements are available. Two additional levels of phase instantaneous overcurrent elements (Levels 5 and 6) are also available. The different levels are enabled with the E50P enable setting, as shown in Figure 3.1, Figure 3.2, and Figure 3.3.

Level 2 element 67P2S in Figure 3.3 is used in directional comparison blocking schemes (see *Directional Comparison Blocking (DCB) Logic* in *Section 5: Trip and Target Logic*). All the other phase instantaneous/definite-time overcurrent elements are available for use in any tripping or control scheme.

Settings Ranges

Setting range for pickup settings 50P1P through 50P6P:

0.05–20.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

Setting range for definite-time settings 67P1D through 67P4D:

0.00-16000.00 cycles, in 0.25-cycle steps

Setting range for definite-time setting 67P2SD (used in the DCB logic):

0.00-60.00 cycles, in 0.25-cycle steps

Accuracy

Pickup: ±0.01 A secondary and ±3% of setting (1 A nominal phase current inputs, IA, IB, IC)
Timer: ±0.25 cycles and ±0.1% of setting
Transient Overreach: ±5% of setting

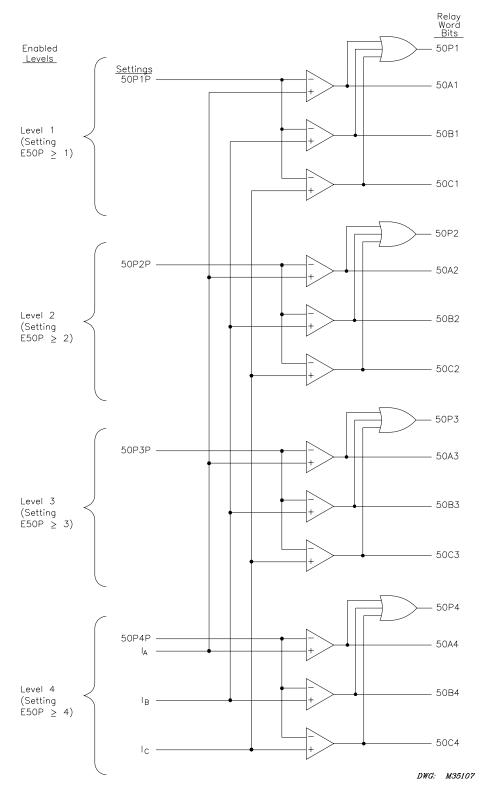


Figure 3.1: Levels 1 Through 4 Phase Instantaneous Overcurrent Elements

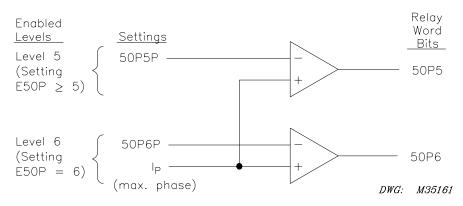


Figure 3.2: Levels 5 Through 6 Phase Instantaneous Overcurrent Elements

Pickup Operation

The phase instantaneous/definite-time overcurrent element logic begins with Figure 3.1 and Figure 3.2. The pickup settings for each level (50P1P through 50P6P) are compared to the magnitudes of the individual phase currents I_A , I_B , and I_C . The logic outputs in Figure 3.1 and Figure 3.2 are Relay Word bits and operate as follows (Level 1 example shown):

50A1	= 1 (logical 1), if $I_A >$ pickup setting 50P1P = 0 (logical 0), if $I_A \le$ pickup setting 50P1P
50B1	= 1 (logical 1), if I_{B} > pickup setting 50P1P = 0 (logical 0), if $I_{B} \le$ pickup setting 50P1P
50C1	= 1 (logical 1), if $I_c > pickup$ setting 50P1P = 0 (logical 0), if $I_c \le pickup$ setting 50P1P
50P1	 1 (logical 1), if at least one of the Relay Word bits 50A1, 50B1, or 50C1 is asserted (e.g., 50B1 = 1) 0 (logical 0), if all three Relay Word bits 50A1, 50B1, and 50C1 are deasserted (50A1 = 0, 50B1 = 0, and 50C1 = 0)

Note that single-phase overcurrent elements are not available in Levels 5 and 6 (see Figure 3.2).

Ideally, set 50P1P > 50P2P > 50P3P > 50P4P so that instantaneous overcurrent elements 67P1 through 67P4 will display in an organized fashion in event reports (see Figure 3.3 and Table 12.3).

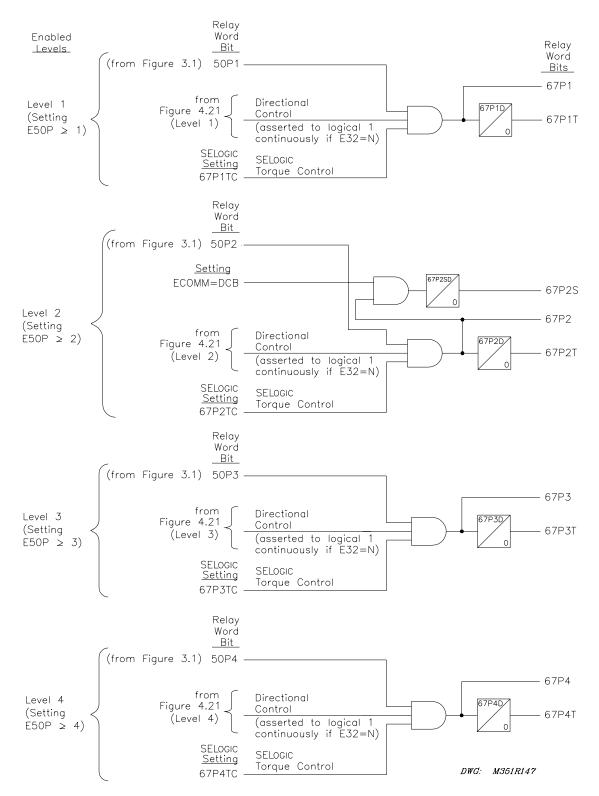


Figure 3.3: Levels 1 Through 4 Phase Instantaneous/Definite-Time Overcurrent Elements (with Directional Control Option)

Directional Control Option

The phase instantaneous overcurrent element Relay Word bit outputs in Figure 3.1 (50P1, 50P2, 50P3, and 50P4) are inputs into the phase instantaneous/definite-time overcurrent element logic in Figure 3.3.

Levels 1 through 4 in Figure 3.3 have corresponding directional control options. See Figure 4.21 in *Section 4: Loss-of-Potential, Load Encroachment, and Directional Element Logic* for more information on this optional directional control. If the directional control enable setting E32 is set:

E32 = N

then directional control is defeated, and the directional control inputs into all four phase instantaneous/definite-time overcurrent element levels in Figure 3.3 are asserted to logical 1 continuously. Then only the corresponding SELOGIC[®] control equation torque control settings have to be considered in the control of the phase instantaneous/definite-time overcurrent elements.

For example, consider the Level 1 phase instantaneous/definite-time overcurrent elements 67P1/67P1T in Figure 3.3. If the directional control enable setting E32 is set:

E32 = N

then the directional control input from Figure 4.21 (Level 1) is asserted to logical 1 continuously. Then only the corresponding SELOGIC control equation torque control setting 61P1TC has to be considered in the control of the phase instantaneous/definite-time overcurrent elements 67P1/67P1T.

SELOGIC control equation torque control settings are discussed next.

Torgue Control

Levels 1 through 4 in Figure 3.3 have corresponding SELOGIC control equation torque control settings 67P1TC through 67P4TC. SELOGIC control equation torque control settings cannot be set directly to logical 0. The following are torque control setting examples for Level 1 phase instantaneous/definite-time overcurrent elements 67P1/67P1T.

67P1TC = 1 Setting 67P1TC set directly to logical 1:

Then only the corresponding directional control input from Figure 4.21 has to be considered in the control of phase instantaneous/definite-time overcurrent elements 67P1/67P1T.

If directional control enable setting E32 =N, then phase instantaneous/definite-time overcurrent elements 67P1/67P1T are enabled and nondirectional.

Note: Some of the SELOGIC control equation torque control settings are set directly to logical 1 (e.g., 67P3TC = 1) for the <u>factory default settings</u>. See SHO Command (Show/View Settings) in Section 10: Serial Port Communications and Commands for a list of the factory default settings.

67P1TC = IN105 Input IN105 deasserted (67P1TC = IN105 = logical 0):

Then phase instantaneous/definite-time overcurrent elements 67P1/67P1T are defeated and nonoperational, regardless of any other setting.

Input IN105 asserted (67P1TC = IN105 = logical 1):

Then only the corresponding directional control input from Figure 4.21 has to be considered in the control of phase instantaneous/definite-time overcurrent elements 67P1/67P1T.

If directional control enable setting E32 =N, then phase instantaneous/definite-time overcurrent elements 67P1/67P1T are enabled and nondirectional.

Sometimes SELOGIC control equation torque control settings are set to provide directional control. See *Directional Control Provided by Torque Control Settings* at the end of *Section 4: Loss-of-Potential, Load Encroachment, and Directional Element Logic*.

Combined Single-Phase Instantaneous Overcurrent Elements

The single-phase instantaneous overcurrent element Relay Word bit outputs in Figure 3.1 are combined together in Figure 3.4 on a per phase basis, producing Relay Word bit outputs 50A, 50B, and 50C.

Relay Word bits 50A, 50B, and 50C can be used to indicate the presence or absence of current in a particular phase.

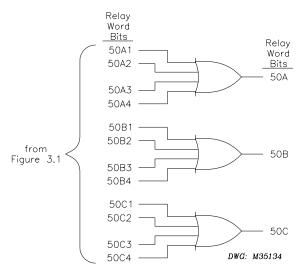


Figure 3.4: Combined Single-Phase Instantaneous Overcurrent Elements

Pickup and Reset Time Curves

Figure 3.5 and Figure 3.6 show pickup and reset time curves applicable to all nondirectional instantaneous overcurrent elements in the SEL-351R (60 Hz or 50 Hz relays). These times do <u>not</u> include output contact operating time and, thus, are accurate for determining element operation time for use in internal SELOGIC control equations. Output contact pickup/dropout time is 4 ms (0.25 cycle for a 60 Hz relay; 0.20 cycle for a 50 Hz relay).

If instantaneous overcurrent elements are made directional, the pickup time curve in Figure 3.5 is adjusted as follows:

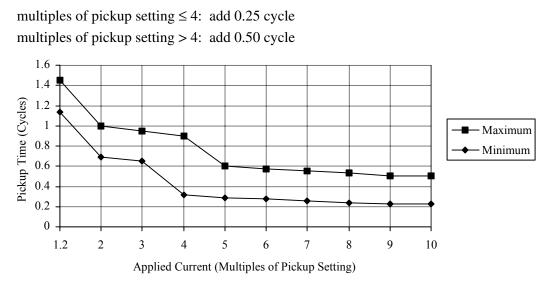


Figure 3.5: SEL-351R Recloser Control Nondirectional Instantaneous Overcurrent Element Pickup Time Curve

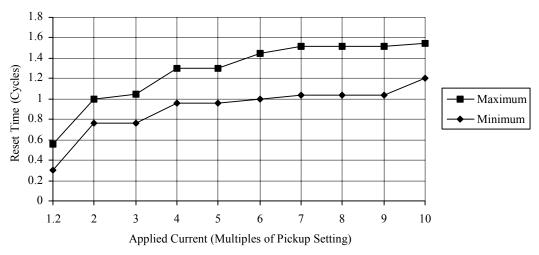


Figure 3.6: SEL-351R Recloser Control Nondirectional Instantaneous Overcurrent Element Reset Time Curve

Phase-to-Phase Instantaneous Overcurrent Elements

Four levels of phase-to-phase instantaneous overcurrent elements are available. The different levels are enabled with the E50P enable setting, as shown in Figure 3.7.

Setting Range

Setting range for pickup settings 50PP1P through 50PP4P:

0.20–34.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

Accuracy

Pickup: ±0.01 A secondary and ±3% of setting (1 A nominal phase current inputs, IA, IB, IC)

Pickup Operation

The pickup settings for each level (50PP1P through 50PP4P) are compared to the magnitudes of the individual phase-to-phase difference currents I_{AB} , I_{BC} , and I_{CA} . The logic outputs in Figure 3.7 are the following Relay Word bits (Level 1 example shown):

	1 (logical 1), if I_{AB} > pickup setting 50PP1P 0 (logical 0), if I_{AB} ≤ pickup setting 50PP1P
	1 (logical 1), if I_{BC} > pickup setting 50PP1P 0 (logical 0), if $I_{BC} \le$ pickup setting 50PP1P
	1 (logical 1), if I_{CA} > pickup setting 50PP1P 0 (logical 0), if $I_{CA} \le$ pickup setting 50PP1P

Pickup and Reset Time Curves

See Figure 3.5 and Figure 3.6.

Neutral Ground Instantaneous/Definite-Time Overcurrent Elements

Four levels of neutral ground instantaneous/definite-time overcurrent elements are available. Two additional levels of neutral ground instantaneous overcurrent elements (Levels 5 and 6) are also available. The different levels are enabled with the E50N enable setting, as shown in Figure 3.8 and Figure 3.9.

Level 2 element 67N2S in Figure 3.8 is used in directional comparison blocking schemes (see *Directional Comparison Blocking (DCB) Logic* in *Section 5: Trip and Target Logic*). All the other neutral ground instantaneous/definite-time overcurrent elements are available for use in any tripping or control scheme.

To understand the operation of Figure 3.8 and Figure 3.9, follow the explanation given for Figure 3.1, Figure 3.2, and Figure 3.3 in the preceding *Phase Instantaneous/Definite-Time Overcurrent Elements* subsection, substituting current I_N (channel IN current) for phase currents and substituting like settings and Relay Word bits.

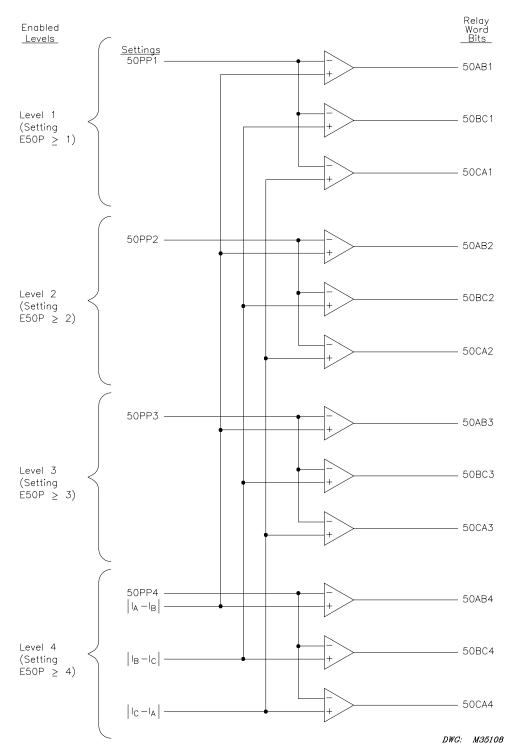


Figure 3.7: Levels 1 through 4 Phase-to-Phase Instantaneous Overcurrent Elements

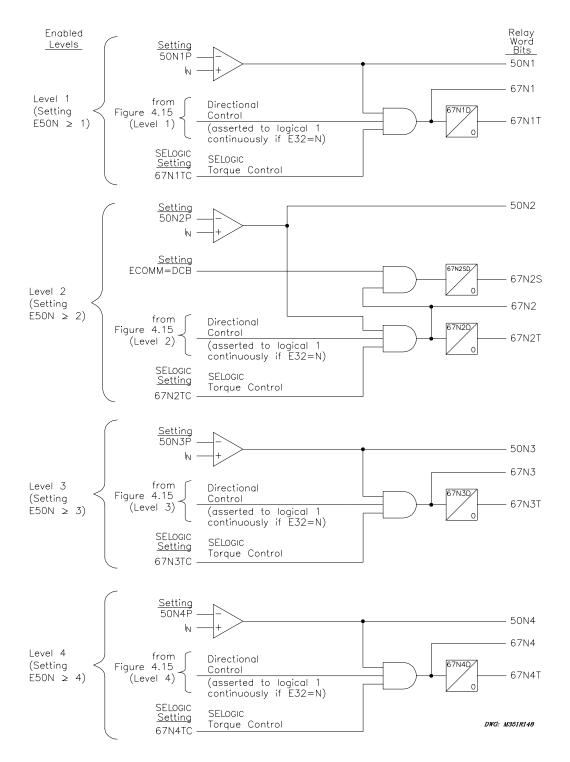


Figure 3.8: Levels 1 through 4 Neutral Ground Instantaneous/Definite-Time Overcurrent Elements (with Directional Control Option)

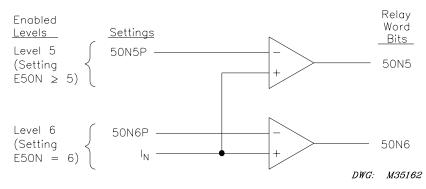


Figure 3.9: Levels 5 Through 6 Neutral Ground Instantaneous Overcurrent Elements

Settings Ranges

Setting range for pickup settings 50N1P through 50N6P:

0.005–1.500 A secondary (0.05 A nominal channel IN current input)

Setting range for definite-time settings 67N1D through 67N4D:

0.00-16000.00 cycles, in 0.25-cycle steps

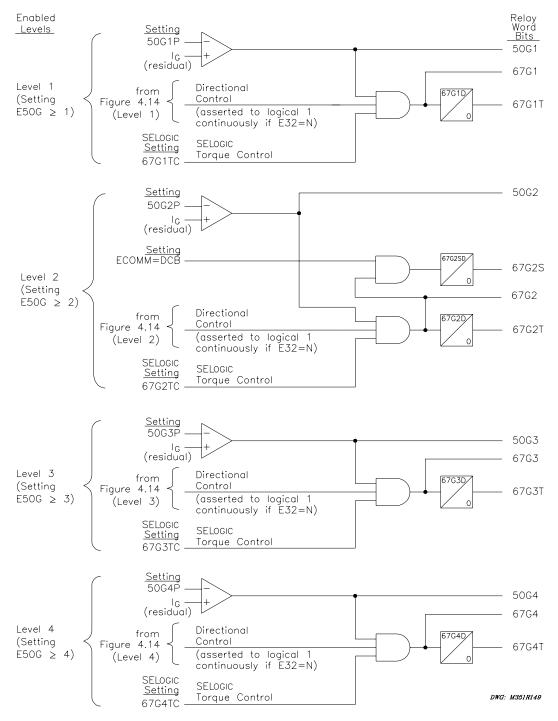
Setting range for definite-time setting 67N2SD (used in DCB logic):

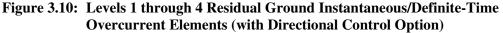
0.00-60.00 cycles, in 0.25-cycle steps

Note: Because channel IN is rated 0.05 A nominal, there is an additional 2-cycle time delay on all the neutral ground instantaneous (50N1–50N6, 67N1–67N6) and definite-time (67N1T–67N4T) elements. Any time delay provided by the definite-time settings (67N1D–67N4D) is in addition to this 2-cycle time delay.

Accuracy

Pickup: ±1 mA secondary and ±5% of setting (0.05 A nominal channel IN current input)
Timer: ±0.25 cycles and ±0.1% of setting
Transient Overreach: ±5% of setting


Pickup and Reset Time Curves


See Figure 3.5 and Figure 3.6.

3-11

Residual Ground Instantaneous/Definite-Time Overcurrent Elements

Four levels of residual ground instantaneous/definite-time overcurrent elements are available. Two additional levels of residual ground instantaneous overcurrent elements (Levels 5 and 6) are also available. The different levels are enabled with the E50G enable setting, as shown in Figure 3.10 and Figure 3.11.

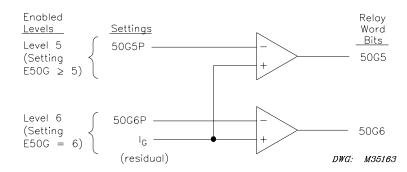


Figure 3.11: Levels 5 Through 6 Residual Ground Instantaneous Overcurrent Elements

Level 2 element 67G2S in Figure 3.10 is used in directional comparison blocking schemes (see *Directional Comparison Blocking (DCB) Logic* in *Section 5: Trip and Target Logic*). All the other residual ground instantaneous/definite-time overcurrent elements are available for use in any tripping or control scheme.

To understand the operation of Figure 3.10 and Figure 3.11, follow the explanation given for Figure 3.1, Figure 3.2, and Figure 3.3 in the preceding *Phase Instantaneous/Definite-Time Overcurrent Elements* subsection, substituting residual ground current I_{G} ($I_{G} = 3I_{0} = I_{A} + I_{B} + I_{C}$) for phase currents and substituting like settings and Relay Word bits.

Settings Ranges

Setting range for pickup settings 50G1P through 50G6P:

0.05-20.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

Setting range for definite-time settings 67G1D through 67G4D:

0.00-16000.00 cycles, in 0.25-cycle steps

Setting range for definite-time setting 67G2SD (used in DCB logic):

0.00-60.00 cycles, in 0.25-cycle steps

Accuracy

Pickup: ± 0.01 A secondary and $\pm 3\%$ of setting (1 A nominal phase current inputs, IA, IB, IC) Timer: ± 0.25 cycles and $\pm 0.1\%$ of setting Transient Overreach: $\pm 5\%$ of setting

Pickup and Reset Time Curves

See Figure 3.5 and Figure 3.6.

Negative-Sequence Instantaneous/Definite-Time Overcurrent Elements

IMPORTANT: See *Appendix F*: *Setting Negative-Sequence Overcurrent Elements* for information on setting negative-sequence overcurrent elements.

Four levels of negative-sequence instantaneous/definite-time overcurrent elements are available. Two additional levels of negative-sequence instantaneous overcurrent elements (Levels 5 and 6) are also available. The different levels are enabled with the E50Q enable setting, as shown in Figure 3.12 and Figure 3.13.

Level 2 element 67Q2S in Figure 3.12 is used in directional comparison blocking schemes (see *Directional Comparison Blocking (DCB) Logic* in *Section 5: Trip and Target Logic*). All the other negative-sequence instantaneous/definite-time overcurrent elements are available for use in any tripping or control scheme.

To understand the operation of Figure 3.12 and Figure 3.13, follow the explanation given for Figure 3.1, Figure 3.2, and Figure 3.3 in the preceding *Phase Instantaneous/Definite-Time Overcurrent Elements* subsection, substituting negative-sequence current $3I_2 [3I_2 = I_A + a^2 \cdot I_B + a \cdot I_C (ABC rotation), 3I_2 = I_A + a^2 \cdot I_C + a \cdot I_B (ACB rotation), where <math>a = 1 \angle 120^\circ$ and $a^2 = 1 \angle -120^\circ$] for phase currents and substituting like settings and Relay Word bits.

Settings Ranges

Setting range for pickup settings 50Q1P through 50Q6P:

0.05–20.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

Setting range for definite-time settings 67Q1D through 67Q4D:

0.00-16000.00 cycles, in 0.25-cycle steps

Setting range for definite-time setting 67Q2SD (used in DCB logic):

0.00-60.00 cycles, in 0.25-cycle steps

Accuracy

Pickup: ± 0.01 A secondary and $\pm 3\%$ of setting (1 A nominal phase current inputs, IA, IB, IC) Timer: ± 0.25 cycles and $\pm 0.1\%$ of setting Transient Overreach: $\pm 5\%$ of setting

Pickup and Reset Time Curves

See Figure 3.5 and Figure 3.6.

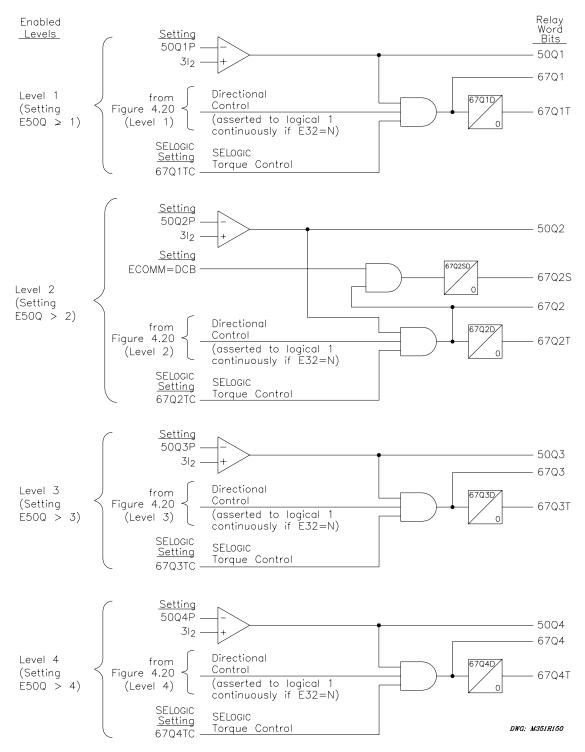


Figure 3.12: Levels 1 Through 4 Negative-Sequence Instantaneous/Definite-Time Overcurrent Elements (with Directional Control Option)

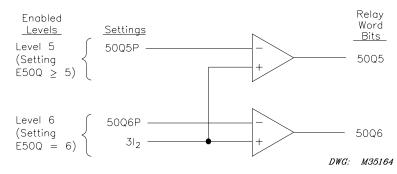


Figure 3.13: Levels 5 Through 6 Negative-Sequence Instantaneous Overcurrent Elements

TIME-OVERCURRENT ELEMENTS

Phase Time-Overcurrent Elements

Two phase time-overcurrent elements, 51P1T and 51P2T, are available. The elements are enabled with the E51P enable setting as follows:

Time-Overcurrent Element	Enabled with Setting	Operating Current	See Figure
51P1T 51P2T	E51P = 1 or 2 E51P = 2	I_p , maximum of A-, B-, and C-phase currents	Figure 3.14

 Table 3.1: Available Phase Time-Overcurrent Elements

The following is an example of 51P1T element operation. 51P2T is similar.

Settings Ranges

Besides the settings involved with the Torque Control Switch operation in Figure 3.14 and Figure 3.15, the 51P1T and 51P2T phase time-overcurrent elements have the following settings:

Setting	Definition	Range
51P1P 51P2P	pickup	0.10–3.20 A secondary (1 A nominal phase current inputs, IA, IB, IC)
51P1C 51P2C	curve type	U1–U5 (US curves), C1–C5 (IEC curves), recloser or user curves see Figure 9.1–Figure 9.20
51P1TD 51P2TD	time dial (has no multiplying effect on constant time adder or minimum response time)	0.50–15.00 (US curves), 0.05–1.00 (IEC curves), 0.10–2.00 (recloser or user curves) see Figure 9.1–Figure 9.20
51P1RS 51P2RS	electromechanical reset timing	Y, N
51P1CT 51P2CT	constant time adder—adds additional time to curve	0.00–60.00 cycles (no effect if set = 0.00)
51P1MR 51P2MR	minimum response time— flattens curve at set time; curve can operate no faster than this set time	0.00–60.00 cycles (no effect if set = 0.00)
51P1TC 51P2TC	SELOGIC control equation torque control setting	Relay Word bits referenced in Table 9.3 or set directly to logical 1 (=1)—see note below

Note: SELOGIC control equation torque control settings (e.g., 51P1TC) cannot be set directly to logical 0.

See *Section 9: Setting the SEL-351R Recloser Control* for additional time-overcurrent element setting information.

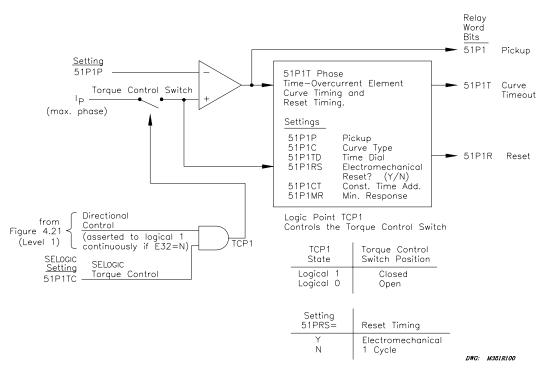


Figure 3.14: Phase Time-Overcurrent Element 51P1T (with Directional Control Option)

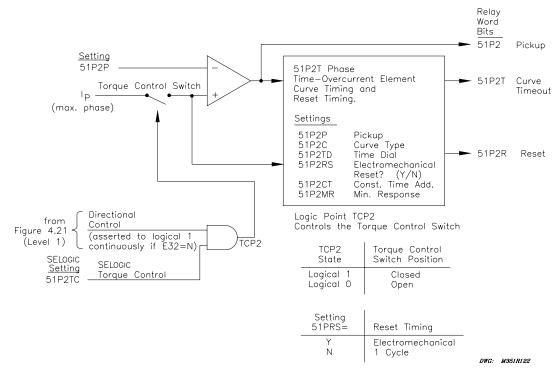


Figure 3.15: Phase Time-Overcurrent Element 51P2T (with Directional Control Option)

Accuracy

Pickup:±0.01 A secondary and ±3% of setting (1 A nominal phase current inputs, IA, IB, IC)Curve Timing:±1.50 cycles and ±4% of curve time for currents between (and including)
2 and 30 multiples of pickup

Logic Outputs (51P1T element example)

The resultant logic outputs in Figure 3.14 are the following Relay Word bits:

Relay Word Bit	Definition/ Indication	Application
51P1	Maximum phase current, I_p , is greater than phase time- overcurrent element pickup setting 51P1P.	Element pickup testing or other control applications. See <i>Trip</i> <i>Logic</i> in <i>Section 5: Trip and</i> <i>Target Logic</i> .
51P1T	Phase time-overcurrent element is timed out on its curve.	Tripping and other control applications. See <i>Trip Logic</i> in <i>Section 5: Trip and Target Logic</i> .
51P1R	Phase time-overcurrent element is fully reset.	Element reset testing or other control applications.

 Table 3.3: Phase Time-Overcurrent Element (maximum phase) Logic Outputs

Torque Control Switch Operation (51P1T element example)

Torque Control Switch Closed

The pickup comparator in Figure 3.14 compares the pickup setting (51P1P) to the maximum phase current, I_p , if the Torque Control Switch is closed. I_p is also routed to the curve timing/reset timing functions. The Relay Word bits logic outputs operate as follows with the Torque Control Switch closed:

- 51P1 = 1 (logical 1), if I_p > pickup setting 51P1P and the phase time-overcurrent element is timing or is timed out on its curve
 - = 0 (logical 0), if $I_p \le pickup$ setting 51P1P
- 51P1T = 1 (logical 1), if $I_p >$ pickup setting 51P1P and the phase time-overcurrent element is timed out on its curve
 - = 0 (logical 0), if I_p > pickup setting 51P1P and the phase time-overcurrent element is timing, but not yet timed out on its curve
 - = 0 (logical 0), if $I_p \le pickup$ setting 51P1P

- 51P1R = 1 (logical 1), if $I_p \le$ pickup setting 51P1P and the phase time-overcurrent element is fully reset
 - = 0 (logical 0), if $I_p \le$ pickup setting 51P1P and the phase time-overcurrent element is timing to reset (not yet fully reset)
 - = 0 (logical 0), if I_p > pickup setting 51P1P and the phase time-overcurrent element is timing or is timed out on its curve

Torque Control Switch Open

If the Torque Control Switch in Figure 3.14 is open, maximum phase current, I_p , <u>cannot</u> get through to the pickup comparator (setting 51P1P) and the curve timing/reset timing functions. For example, suppose that the Torque Control Switch is closed, I_p is:

 I_{p} > pickup setting 51P1P

and the phase time-overcurrent element is timing or is timed out on its curve. If the Torque Control Switch is then opened, I_p effectively appears as a magnitude of zero (0) to the pickup comparator:

 $I_p = 0 A$ (effective) < pickup setting 51P1P

resulting in Relay Word bit 51P deasserting to logical 0. I_p also effectively appears as a magnitude of zero (0) to the curve timing/reset timing functions, resulting in Relay Word bit 51P1T also deasserting to logical 0. The phase time-overcurrent element then starts to time to reset. Relay Word bit 51P1R asserts to logical 1 when the phase time-overcurrent element is fully reset.

Control of Logic Point TCP1

Refer to Figure 3.14.

The Torque Control Switch is controlled by logic point TCP1. Logic point TCP1 is controlled by directional control (optional) and SELOGIC control equation torque control setting 51P1TC.

If logic point TCP1 = logical 1, the Torque Control Switch is closed and maximum phase current, I_p , is routed to the pickup comparator (setting 51P1P) and the curve timing/reset timing functions.

If logic point TCP1 = logical 0, the Torque Control Switch is open and maximum phase current, I_p , <u>cannot</u> get through to the pickup comparator and the curve timing/reset timing functions. The maximum phase current, I_p , effectively appears as a magnitude of zero (0) to the pickup comparator and the curve timing/reset timing function.

Directional Control Option

Refer to Figure 3.14.

See Figure 4.21 in *Section 4: Loss-of-Potential, Load Encroachment, and Directional Element Logic* for more information on the optional directional control. If the directional control enable setting E32 is set:

E32 = N

then directional control is defeated, and the directional control input into logic point TCP1 in Figure 3.14 is asserted to logical 1 continuously. Then, only the corresponding SELOGIC control equation torque control setting 51P1TC has to be considered in the control of logic point TCP1 (and, thus, in the control of the Torque Control Switch and phase time-overcurrent element 51P1T).

Torque Control

Refer to Figure 3.14.

SELOGIC control equation torque control settings (e.g., 51P1TC) cannot be set directly to logical 0. The following are setting examples of SELOGIC control equation torque control setting 51P1TC for phase time-overcurrent element 51P1T.

51P1TC = 1Setting 51P1TC set directly to logical 1: Then only the corresponding directional control input from Figure 4.21 has to be considered in the control of logic point TCP1 (and, thus, in the control of the Torque Control Switch and phase time-overcurrent element 51P1TC). If directional control enable setting E32 = N, then logic point TCP1 = logical 1 and, thus, the Torque Control Switch closes and phase time-overcurrent element 51P1TC is enabled and nondirectional. Note: Some of the overcurrent element SELOGIC control equation torque control settings are set directly to logical 1 (e.g., 51QTC = 1) for the factory default settings. See SHO Command (Show/View Settings) in Section 10: Serial Port Communications and Commands for a list of the factory default settings. 51P1TC = IN105Input IN105 deasserted (51P1TC = IN105 = logical 0): Then logic point TCP1 = logical 0 and, thus, the Torque Control Switch opens and phase time-overcurrent element 51P1T is defeated and nonoperational, regardless of any other setting. Input IN105 asserted (51P1TC = IN105 = logical 1): Then only the corresponding directional control input from Figure 4.21 has to be considered in the control of logic point TCP1 (and, thus, in the control of the Torque Control Switch and phase time-overcurrent element 51P1T). If directional control enable setting E32 = N, then logic point TCP1 = logical 1 and, thus, the Torque Control Switch closes and phase time-overcurrent element 51P1T is enabled and nondirectional. Sometimes SELOGIC control equation torque control settings are set to provide directional control. See *Directional Control Provided by Torque Control Settings* at the end of *Section 4: Loss-of-Potential, Load Encroachment, and Directional Element Logic*.

Reset Timing Details (51P1T element example)

Refer to Figure 3.14.

Any time current I_p goes above pickup setting 51P1P and the phase time-overcurrent element starts timing, Relay Word bit 51P1R (reset indication) = logical 0. If the phase time-overcurrent element times out on its curve, Relay Word bit 51P1T (curve time-out indication) = logical 1.

Setting 51P1RS = Y

If electromechanical reset timing setting 51P1RS = Y, the phase time-overcurrent element reset timing emulates electromechanical reset timing. If maximum phase current, I_p , goes above pickup setting 51P1P (element is timing or already timed out) and then current I_p goes below 51P1P, the element starts to time to reset, emulating electromechanical reset timing. Relay Word bit 51P1R (resetting indication) = logical 1 when the element is fully reset.

Setting 51P1RS = N

If reset timing setting 51P1RS = N, element 51P1T reset timing is a 1-cycle dropout. If current I_p goes above pickup setting 51P1P (element is timing or already timed out) and then current I_p goes below pickup setting 51P1P, there is a 1-cycle delay before the element fully resets. Relay word bit 51P1R (reset indication) = logical 1 when the element is fully reset.

Neutral Ground Time-Overcurrent Elements

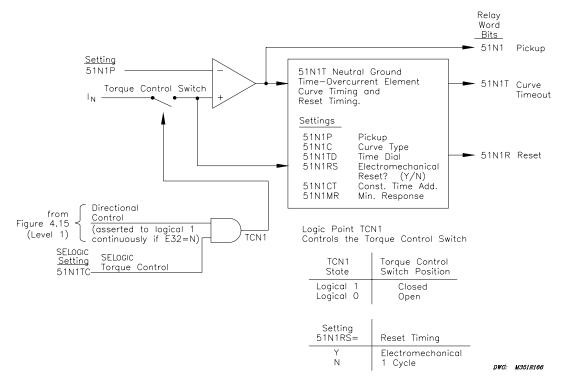


Figure 3.16: Neutral Ground Time-Overcurrent Element 51N1T (with Directional Control Option)

Figure 3.17: Neutral Ground Time-Overcurrent Element 51N2T (with Directional Control Option)

To understand the operation of Figure 3.16 and Figure 3.17, follow the explanation given for Figure 3.14 in the preceding *Phase Time-Overcurrent Elements* subsection, substituting current $I_{\rm p}$ (channel IN current) for maximum phase current $I_{\rm p}$ and substituting like settings and Relay Word bits.

Settings Ranges

Setting	Definition	Range
51N1P 51N2P	pickup	0.005–0.160 A secondary (0.05 A nominal channel IN current input)
51N1C 51N2C	curve type	U1–U5 (US curves), C1–C5 (IEC curves), recloser or user curves see Figure 9.1–Figure 9.20
51N1TD 51N2TD	time dial (has no multiplying effect on constant time adder or minimum response time)	0.50–15.00 (US curves), 0.05–1.00 (IEC curves), 0.10–2.00 (recloser or user curves) see Figure 9.1–Figure 9.20
51N1RS 51N2RS	electromechanical reset timing	Y, N
51N1CT 51N2CT	constant time adder—adds additional time to curve	0.00–60.00 cycles (no effect if set = 0.00)
51N1MR 51N2MR	minimum response time— flattens curve at set time; curve can operate no faster than this set time	0.00–60.00 cycles (no effect if set = 0.00)
51N1TC 51N2TC	SELOGIC control equation torque control setting	Relay Word bits referenced in Table 9.3 or set directly to logical 1 (= 1) or logical 0 (= 0)—see note below

 Table 3.4: Neutral Ground Time-Overcurrent Elements Settings

Note: If SELOGIC control equation torque control setting 51N1TC is set directly to logical 0 (i.e., 51N1TC = 0), then corresponding neutral ground time-overcurrent element 51N1T is <u>defeated</u> and <u>nonoperational</u>, regardless of any other setting. 51N2T is similar.

See *Section 9: Setting the SEL-351R Recloser Control* for additional time-overcurrent element setting information.

Accuracy

Pickup: ± 1 mA secondary and $\pm 5\%$ of setting (0.05 A nominal channel IN current input)

Curve Timing: ±1.50 cycles and ±4% of curve time for currents between (and including) 2 and 30 multiples of pickup

Residual Ground Time-Overcurrent Elements

To understand the operation of Figure 3.16 and Figure 3.17, follow the explanation given for Figure 3.14 in the preceding *Phase Time-Overcurrent Elements* subsection, substituting residual ground current $I_G (I_G = 3I_0 = I_A + I_B + I_C)$ for maximum phase current I_P and substituting like settings and Relay Word bits.

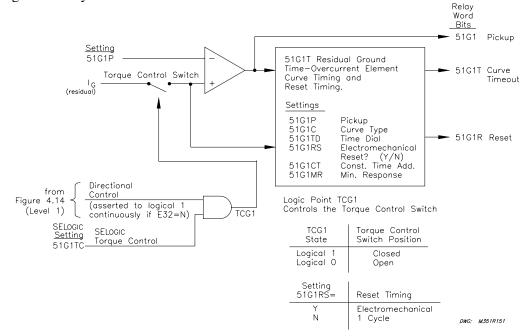
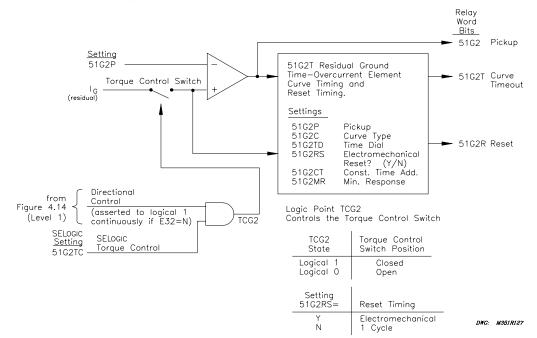



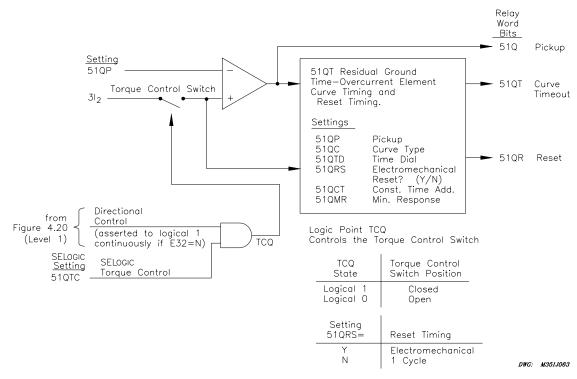
Figure 3.18: Residual Ground Time-Overcurrent Element 51G1T (with Directional Control Option)

Figure 3.19: Residual Ground Time-Overcurrent Element 51G2T (with Directional Control Option)

Date Code 20020215 Overcurrent, Voltage, Synchronism Check, and Frequency Elements SEL-351R Instruction Manual

Setting	Definition	Range
51G1P 51G2P	pickup	0.10–3.20 A secondary (1 A nominal phase current inputs, IA, IB, IC)
51G1C 51G2C	curve type	U1–U5 (US curves), C1–C5 (IEC curves), recloser or user curves see Figure 9.1–Figure 9.20
51G1RS 51G2RS	electromechanical reset timing	Y, N
51G1TD 51G2TD	time dial (has no multiplying effect on constant time adder or minimum response time)	0.50–15.00 (US curves), 0.05–1.00 (IEC curves), 0.10–2.00 (recloser or user curves) see Figure 9.1–Figure 9.20
51G1CT 51G2CT	constant time adder—adds additional time to curve	0.00–60.00 cycles (no effect if set = 0.00)
51G1MR 51G2MR	minimum response time— flattens curve at set time; curve can operate no faster than this set time	0.00–60.00 cycles (no effect if set = 0.00)
51G1TC 51G2TC	SELOGIC control equation torque control setting	Relay Word bits referenced in Table 9.3 or set directly to logical 1 (= 1) or logical 0 (= 0)—see note below

 Table 3.5: Residual Ground Time-Overcurrent Elements Settings


Note: If SELOGIC control equation torque control setting 51G1TC is set directly to logical 0 (i.e., 51G1TC = 0), then corresponding residual ground time-overcurrent element 51G1T is <u>defeated</u> and <u>nonoperational</u>, regardless of any other setting. 51G2T is similar.

See *Section 9: Setting the SEL-351R Recloser Control* for additional time-overcurrent element setting information.

Accuracy

Pickup: ±0.01 A secondary and ±3% of setting (1 A nominal phase current inputs, IA, IB, IC)Curve Timing: ±1.50 cycles and ±4% of curve time for currents between (and including) 2
and 30 multiples of pickup

Negative-Sequence Time-Overcurrent Element

Figure 3.20: Negative-Sequence Time-Overcurrent Element 51QT (with Directional Control Option)

IMPORTANT: See *Appendix F*: *Setting Negative-Sequence Overcurrent Elements* for information on setting negative-sequence overcurrent elements.

To understand the operation of Figure 3.20, follow the explanation given for Figure 3.14 in the preceding *Phase Time-Overcurrent Elements* subsection, substituting negative-sequence current $3I_2 [3I_2 = I_A + a^2 \cdot I_B + a \cdot I_C \text{ (ABC rotation)}, 3I_2 = I_A + a^2 \cdot I_C + a \cdot I_B \text{ (ACB rotation)}, where <math>a = 1 \angle 120^\circ$ and $a^2 = 1 \angle -120^\circ$] for maximum phase current I_p and like settings and Relay Word bits.

Settings Ranges

Setting	Definition	Range
51QP	pickup	0.10–3.20 A secondary (1 A nominal phase current inputs, IA, IB, IC)
51QC	curve type	U1–U5 (US curves), C1–C5 (IEC curves), recloser or user curves see Figure 9.1–Figure 9.20
51QTD	time dial (has no multiplying effect on constant time adder or minimum response time)	0.50–15.00 (US curves), 0.05–1.00 (IEC curves), 0.10–2.00 (recloser or user curves) see Figure 9.1–Figure 9.20
51QRS	electromechanical reset timing	Y, N
51QCT	constant time adder—adds additional time to curve	0.00–60.00 cycles (no effect if set = 0.00)
51QMR	minimum response time— flattens curve at set time; curve can operate no faster than this set time	0.00–60.00 cycles (no effect if set = 0.00)
51QTC	SELOGIC control equation torque control setting	Relay Word bits referenced in Table 9.3 or set directly to logical 1 (= 1) or logical 0 (= 0)—see note below

 Table 3.6:
 Negative-Sequence Time-Overcurrent Elements Settings

Note: If SELOGIC control equation torque control setting 51QTC is set directly to logical 0 (i.e., 51QTC = 0), then corresponding negative-sequence time-overcurrent element 51QT is <u>defeated</u> and <u>nonoperational</u>, regardless of any other setting.

See *Section 9: Setting the SEL-351R Recloser Control* for additional time-overcurrent element setting information.

Accuracy

Pickup: ±0.01 A secondary and ±3% of setting (1 A nominal phase current inputs, IA, IB, IC)
 Curve Timing: ±1.50 cycles and ±4% of curve time for currents between (and including) 2 and 30 multiples of pickup

VOLTAGE ELEMENTS

Enable numerous voltage elements by making the enable setting:

EVOLT = Y

Voltage Values

The voltage elements operate off of various voltage values shown in Table 3.7.

Voltage	Description
V _A	A-phase voltage, from SEL-351R rear-panel voltage input VA
V _B	B-phase voltage, from SEL-351R rear-panel voltage input VB
V _c	C-phase voltage, from SEL-351R rear-panel voltage input VC
$V_{_{AB}}$	Phase-to-phase voltage
V _{BC}	Phase-to-phase voltage
V _{ca}	Phase-to-phase voltage
3V ₀	Zero-sequence voltage
V_2	Negative-sequence voltage
\mathbf{V}_{1}	Positive-sequence voltage
V _s	Synchronism check voltage, from SEL-351R rear-panel voltage input VS*

 Table 3.7: Voltage Values Used by Voltage Elements

* Voltage V_s is used in the synchronism check elements described in the following subsection *Synchronism Check Elements*. Voltage V_s is also used in the three voltage elements described at the end of Table 3.8 and Figure 3.26. These voltage elements are <u>independent</u> of the synchronism check elements, even though voltage V_s is used in both.

Voltage Element Settings

Table 3.8 lists available voltage elements and the corresponding voltage inputs and settings ranges.

Voltage Element (Relay Word bits)	Operating Voltage	Pickup Setting/Range	See Figure
27A1	V _A	27P1P	Figure 3.21
27B1	V _B	0.0–300.0 V secondary	
27C1	V _c		
3P27 = 27A1 * 27B1 * 27C1			
27A2	V _A	27P2P	
27B2	V _B	0.0–300.0 V secondary	
27C2	V _c		
59A1	V _A	59P1P	
59B1	V _B	0.0–300.0 V secondary	
59C1	V _c		
3P59 = 59A1 * 59B1 * 59C1			
59A2	V _A	59P2P	
59B2	V _B	0.0–300.0 V secondary	
59C2	V _c		
27AB	V _{AB}	27PP	Figure 3.22
27BC	V _{BC}	0.0–520.0 V secondary	
27CA	V _{ca}		
59AB	V _{AB}	59PP	
59BC	V _{BC}	0.0–520.0 V secondary	
59CA	V _{ca}		
59N1	3V ₀	59N1P 0.0–300.0 V secondary	
59N2	3V ₀	59N2P 0.0–300.0 V secondary	
59Q	V ₂	59QP 0.0–200.0 V secondary	
59V1	V ₁	59V1P 0.0–300.0 V secondary	
27S	V _s	27SP 0.0–300.0 V secondary	Figure 3.23
59S1	V _s	59S1P 0.0–300.0 V secondary	
5982	V _s	59S2P 0.0–300.0 V secondary	

 Table 3.8: Voltage Elements Settings and Settings Ranges

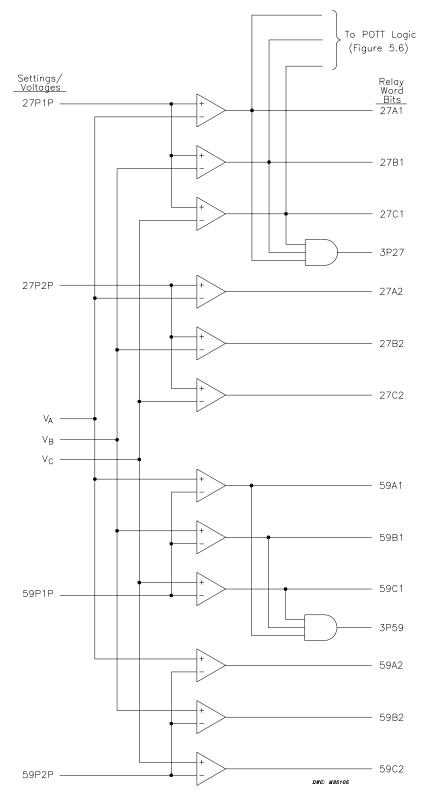


Figure 3.21: Single-Phase and Three-Phase Voltage Elements

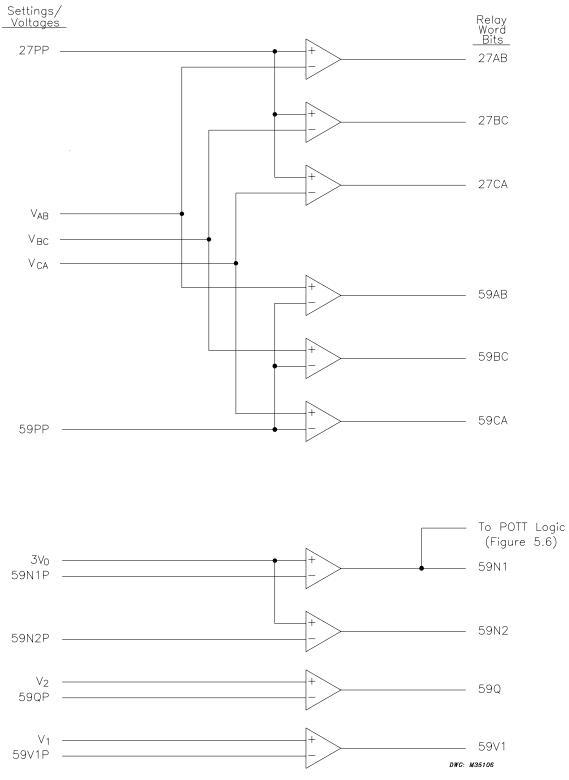


Figure 3.22: Phase-to-Phase and Sequence Voltage Elements

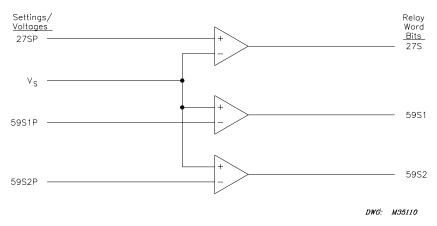


Figure 3.23: Channel VS Voltage Elements

Accuracy

Pickup: ±1 V and ±5% of setting Transient Overreach: ±5% of setting

Voltage Element Operation

Note that the voltage elements in Table 3.8, Figure 3.21, and Figure 3.22 are a combination of "undervoltage" (Device 27) and "overvoltage" (Device 59) type elements. Undervoltage elements (Device 27) assert when the operating voltage goes <u>below</u> the corresponding pickup setting. Overvoltage elements (Device 59) assert when the operating voltage goes <u>above</u> the corresponding pickup setting.

Undervoltage Element Operation Example

Refer to Figure 3.21 (top of the figure).

Pickup setting 27P1P is compared to the magnitudes of the individual phase voltages V_A , V_B , and V_C . The logic outputs in Figure 3.21 are the following Relay Word bits:

27A1	= 1 (logical 1), if $V_A < pickup$ setting 27P1P = 0 (logical 0), if $V_A \ge pickup$ setting 27P1P
27B1	 = 1 (logical 1), if VB < pickup setting 27P1P = 0 (logical 0), if VB ≥ pickup setting 27P1P
27C1	 = 1 (logical 1), if VC < pickup setting 27P1P = 0 (logical 0), if VC ≥ pickup setting 27P1P
3P27	 1 (logical 1), if all three Relay Word bits 27A1, 27B1, and 27C1 are asserted (27A1 = 1, 27B1 = 1, and 27C1 = 1) 0 (logical 0), if at least one of the Relay Word bits 27A1, 27B1, or 27C1 is deasserted (e.g., 27A1 = 0)

Overvoltage Element Operation Example

Refer to Figure 3.21 (bottom of the figure).

Pickup setting 59P1P is compared to the magnitudes of the individual phase voltages V_A , V_B , and V_C . The logic outputs in Figure 3.21 are the following Relay Word bits:

59A1	= 1 (logical 1), if $V_A >$ pickup setting 59P1P = 0 (logical 0), if $V_A \le$ pickup setting 59P1P
59B1	= 1 (logical 1), if V_{B} > pickup setting 59P1P = 0 (logical 0), if $V_{B} \le$ pickup setting 59P1P
59C1	= 1 (logical 1), if $V_c > pickup$ setting 59P1P = 0 (logical 0), if $V_c \le pickup$ setting 59P1P
3P59	 1 (logical 1), if all three Relay Word bits 59A1, 59B1, and 59C1 are asserted (59A1 = 1, 59B1 = 1, and 59C1 = 1) 0 (logical 0), if at least one of the Relay Word bits 59A1, 59B1, or 59C1 is deasserted (e.g., 59A1 = 0)

Voltage Elements Used in POTT Logic

Refer to Figure 3.21 and Figure 3.22. Note that voltage elements 27A1, 27B1, 27C1, and 59N1 are also used in the weak-infeed portion of the POTT logic, if the weak-infeed logic is enabled (see Figure 5.6).

If the weak-infeed portion of the POTT logic is enabled (setting EWFC = Y) and these voltage elements are used in the logic, they can still be used in other applications (if the settings are applicable). If the weak-infeed portion of the POTT logic is not enabled, these voltage elements can be used in any desired application.

SYNCHRONISM CHECK ELEMENTS

Enable the two single-phase synchronism check elements by making the enable setting:

E25 = Y

Synchronism check voltage input VS is connected to one side of the circuit breaker, on any desired phase. The other synchronizing phase (VA, VB, or VC voltage inputs) on the other side of the circuit breaker is setting-selected.

The two synchronism check elements use the same voltage window (to ensure healthy voltage) and slip frequency settings (see Figure 3.24). They have separate angle settings (see Figure 3.25).

If the voltages are static (voltages <u>not</u> slipping with respect to one another), the two synchronism check elements operate as shown in the top of Figure 3.25. The angle settings are checked for synchronism check closing.

If the voltages are <u>not</u> static (voltages slipping with respect to one another), the two synchronism check elements operate as shown in the bottom of Figure 3.25. The angle difference is compensated by breaker close time, and the breaker is ideally closed at a zero degree phase angle difference, to minimize system shock.

These synchronism check elements are explained in detail in the following text.

Voltage Input VS Connected Phase-to-Phase or Beyond Delta-Wye Transformer

Sometimes synchronism check voltage V_s cannot be in phase with voltage V_A , V_B , or V_c . This happens in applications where voltage input VS is connected phase-to-phase or beyond a deltawye transformer. For such applications requiring V_s to be at a constant phase angle difference from any of the possible synchronizing voltages (V_A , V_B , or V_c), an angle setting is made with the SYNCP setting (see Table 3.9 and the SYNCP setting discussion that follows).

Synchronism Check Elements Settings

Setting	Definition	Range
25VLO	low voltage threshold for "healthy voltage" window	0.0–300.0 V secondary
25VHI	high voltage threshold for "healthy voltage" window	0.0–300.0 V secondary
25SF	maximum slip frequency	0.005–0.500 Hz
25ANG1	synchronism check element 25A1 maximum angle	0°–80°
25ANG2	synchronism check element 25A2 maximum angle	0°–80°
SYNCP	synchronizing phase or	VA, VB, or VC
	the number of degrees that synchronism check voltage V_s constantly lags voltage V_A	0°–330°, in 30-degree steps
TCLOSD	breaker close time for angle compensation	0.00–60.00 cycles
BSYNCH	SELOGIC control equation block synchronism check setting	Relay Word bits referenced in Table 9.3

Table 3.9: Synchronism Check Elements Settings and Settings Ranges

Setting SYNCP

The angle setting choices (0, 30, ..., 300, or 330 degrees) for setting SYNCP are referenced to V_A . They indicate how many degrees V_s constantly lags V_A . In any synchronism check application, voltage input VA always has to be connected to determine system frequency on one side of the circuit breaker (to determine the slip between V_s and V_A). V_A always has to meet the

"healthy voltage" criteria (settings 25VHI and 25VLO—see Figure 3.24). Thus, for situations where V_s cannot be in phase with V_A , V_B , or V_C , it is most straightforward to have the angle setting choices (0, 30, ..., 300, or 330 degrees) referenced to V_A . See Application Guide entitled *Compensate for Constant Phase Angle Difference in Synchronism Check with the SEL-351R Recloser Control* for more information on setting SYNCP with an angle setting.

Note on setting SYNCP = 0:

Settings SYNCP = 0 and SYNCP = VA are effectively the same (voltage V_s is directly synchronism checked with voltage V_A ; V_s does not lag V_A). The relay will display the setting entered (SYNCP = VA or SYNCP = 0).

Accuracy

Voltage Pickup: ± 1 V and $\pm 5\%$ of settingVoltage Transient Overreach: $\pm 5\%$ of settingSlip Pickup:0.003 HzAngle Pickup: $\pm 4^{\circ}$

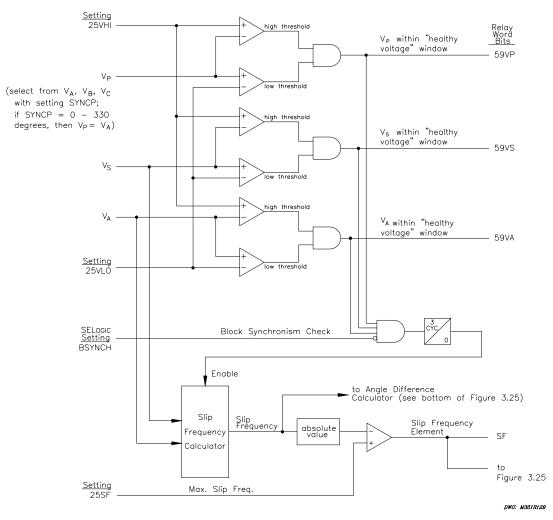


Figure 3.24: Synchronism Check Voltage Window and Slip Frequency Elements

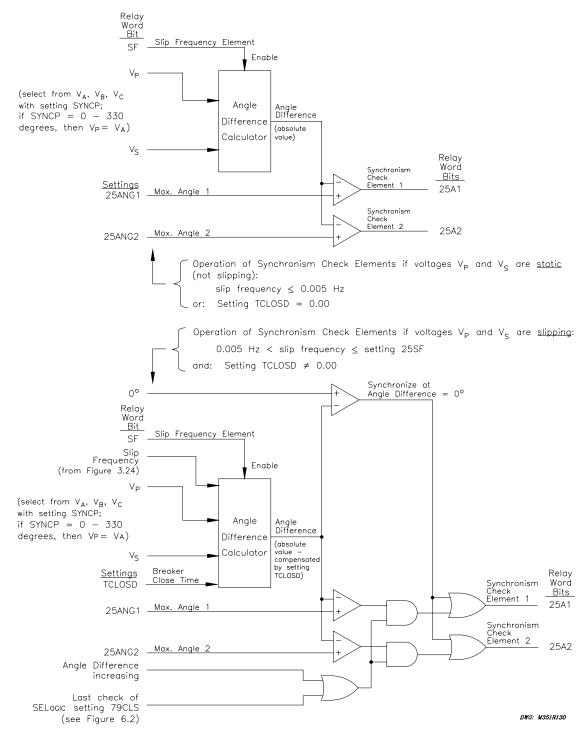


Figure 3.25: Synchronism Check Elements

Synchronism Check Elements Voltage Inputs

The two synchronism check elements are single-phase elements, with single-phase voltage inputs V_{p} and V_{s} used for both elements:

- V_{p} Phase input voltage (V_{A} , V_{B} , or V_{C}), designated by setting SYNCP (e.g., if SYNCP = VB, then $V_{p} = V_{B}$)
- V_s Synchronism check voltage, from SEL-351R rear-panel voltage input VS

For example, if V_p is designated as phase input voltage V_B (setting SYNCP = VB), then rearpanel voltage input VS is connected to B-phase on the other side of the circuit breaker. The voltage across VB is synchronism checked with the voltage across VS (see Figure 2.1).

System Frequencies Determined from Voltages V_{A} and V_{s}

To determine slip frequency, you must first determine the system frequencies on both sides of the circuit breaker. Voltage V_s determines the frequency on one side. Voltage V_A determines the frequency on the other side. Thus, voltage input VA has to be connected, even if another voltage (e.g., voltage V_R) is to be synchronized with voltage V_s .

In most applications, all three voltage inputs VA, VB, and VC are connected to the three-phase power system and no additional connection concerns are needed for voltage connection VA-N. The presumption is that the frequency determined for A-phase is also valid for B- and C-phase in a three-phase power system.

However, for example, if voltage V_B is to be synchronized with voltage V_S and plans were to connect only voltage inputs VB and VS to Phase B on both sides of the circuit breaker, then voltage input VA will also have to be connected for frequency determination. If desired, voltage input VA can be connected in parallel with voltage input VB. In such a nonstandard parallel connection, remember that voltage input VA is monitoring Phase B. This understanding helps prevent confusion when observing metering and event report information or voltage element operation.

Another possible solution to this example (synchronism check voltage input VS connected to Phase B) is to make setting SYNCP = 120 (the number of degrees that synchronism check voltage V_s constantly lags voltage V_A) and connect voltage input VA to Phase A. Voltage input VB doesn't have to be connected.

System Rotation Can Affect Setting SYNCP

The solution in the preceding paragraph:

- Voltage input VA connected to Phase A
- Voltage input VS connected to Phase B
- Setting SYNCP = 120 degrees (V_s constantly lags V_A by 120 degrees)

presumes ABC system rotation. If voltage input connections are the same, but system rotation is ACB, then setting SYNCP = 240 degrees (V_s constantly lags V_A by 240 degrees). See Application Guide entitled *Compensate for Constant Phase Angle Difference in Synchronism*

Check with the SEL-351R Recloser Control for more information on setting SYNCP with an angle setting.

Synchronism Check Elements Operation

Refer to Figure 3.24 and Figure 3.25.

Voltage Window

Refer to Figure 3.24.

Single-phase voltage inputs V_p and V_s are compared to a voltage window, to verify that the voltages are "healthy" and lie within settable voltage limits 25VLO and 25VHI. If both voltages are within the voltage window, the following Relay Word bits assert:

59VP indicates that voltage V_p is within voltage window setting limits 25VLO and 25VHI

59VS indicates that voltage V_s is within voltage window setting limits 25VLO and 25VHI

As discussed previously, voltage V_A determines the frequency on the voltage V_P side of the circuit breaker. Voltage V_A is also run through voltage limits 25VLO and 25VHI to ensure "healthy voltage" for frequency determination, with corresponding Relay Word bit output 59VA.

Other Uses for Voltage Window Elements

If voltage limits 25VLO and 25VHI are applicable to other control schemes, Relay Word bits 59VP, 59VS, and 59VA can be used in other logic at the same time they are used in the synchronism check logic.

If synchronism check is not being used, Relay Word bits 59VP, 59VS, and 59VA can still be used in other logic, with voltage limit settings 25VLO and 25VHI set as desired. Enable the synchronism check logic (setting E25 = Y) and make settings 25VLO and 25VHI. Apply Relay Word bits 59VP, 59VS, and 59VA in desired logic scheme, using SELOGIC control equations. Even though synchronism check logic is enabled, the synchronism check logic outputs (Relay Word bits SF, 25A1, and 25A2) do not need to be used.

Block Synchronism Check Conditions

Refer to Figure 3.24.

The synchronism check element slip frequency calculator runs if voltages V_p , V_s , and V_A are healthy (59VP, 59VS, and 59VA asserted to logical 1) and the SELOGIC control equation setting BSYNCH (Block Synchronism Check) is deasserted (= logical 0). Setting BSYNCH is most commonly set to block synchronism check operation when the circuit breaker is closed (synchronism check is only needed when the circuit breaker is open):

BSYNCH = 52A (see Figure 1.22)

In addition, synchronism check operation can be blocked when the relay is tripping:

BSYNCH = \dots + TRIP

Slip Frequency Calculator

Refer to Figure 3.24.

The synchronism check element Slip Frequency Calculator in Figure 3.24 runs if voltages V_p , V_s , and V_A are healthy (59VP, 59VS, and 59VA asserted to logical 1) and the SELOGIC control equation setting BSYNCH (Block Synchronism Check) is deasserted (= logical 0). The Slip Frequency Calculator output is:

Slip Frequency = $f_p - f_s$	(in units of Hz = slip cycles/second)
$f_p = $ frequency of voltage V_p	(in units of $Hz = cycles/second$)
(determined from V_A)	
$f_s = $ frequency of voltage V_s	(in units of $Hz = cycles/second$)

A complete slip cycle is one single 360 degree revolution of one voltage (e.g., V_s) by another voltage (e.g., V_p). Both voltages are thought of as revolving phasor-wise, so the "slipping" of V_s past V_p is the <u>relative</u> revolving of V_s past V_p .

For example, in Figure 3.24, if voltage V_p has a frequency of 59.95 Hz and voltage V_s has a frequency of 60.05 Hz, the difference between them is the slip frequency:

Slip Frequency = 59.95 Hz - 60.05 Hz = -0.10 Hz = -0.10 slip cycles/second

The slip frequency in this example is negative, indicating that voltage V_s is not "slipping" <u>behind</u> voltage V_p , but in fact "slipping" <u>ahead</u> of voltage V_p . In a time period of one second, the angular distance between voltage V_p and voltage V_s changes by 0.10 slip cycles, which translates into:

0.10 slip cycles/second x (360°/slip cycle) x 1 second = 36°

Thus, in a time period of one second, the angular distance between voltage V_p and voltage V_s changes by 36 degrees.

The absolute value of the Slip Frequency output is run through a comparator and if the slip frequency is less than the maximum slip frequency setting, 25SF, Relay Word bit SF asserts to logical 1.

Angle Difference Calculator

The synchronism check element Angle Difference Calculator in Figure 3.25 runs if the slip frequency is less than the maximum slip frequency setting 25SF (Relay Word bit SF is asserted).

If SYNCP = 0, 30, ..., 300, or 330 degrees (indicating how many degrees V_s constantly lags $V_p = V_A$), the Angle Difference Calculator automatically accounts for this angular difference.

Voltages V_{P} and V_{s} are "Static"

Refer to top of Figure 3.25.

If the slip frequency is less than or equal to 0.005 Hz, the Angle Difference Calculator does <u>not</u> take into account breaker close time—it presumes voltages V_p and V_s are "static" (not "slipping" with respect to one another). This would usually be the case for an open breaker with voltages

 V_p and V_s that are paralleled via some other electric path in the power system. The Angle Difference Calculator calculates the angle difference between voltages V_p and V_s :

Angle Difference = $|(\angle V_p - \angle V_s)|$

For example, if SYNCP = 90 (indicating V_s constantly lags $V_p = V_A$ by 90 degrees), but V_s actually lags V_A by 100 angular degrees on the power system at a given instant, the Angle Difference Calculator automatically accounts for the 90 degrees and:

Angle Difference = $|(\angle V_{p} - \angle V_{s})| = 10^{\circ}$

Also, if breaker close time setting TCLOSD = 0.00, the Angle Difference Calculator does not take into account breaker close time, even if the voltages V_p and V_s are "slipping" with respect to one another.

Voltages $V_{\scriptscriptstyle P}$ and $V_{\scriptscriptstyle S}$ are "Slipping"

Refer to bottom of Figure 3.25.

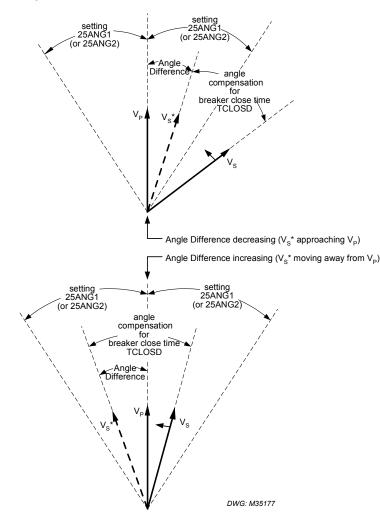


Figure 3.26: Angle Difference Between V_p and V_s Compensated by Breaker Close Time $(f_p < f_s; V_p \text{ shown as reference in this example})$

If the slip frequency is greater than 0.005 Hz and breaker close time TCLOSD \neq 0.00, the Angle Difference Calculator takes the breaker close time into account with breaker close time setting TCLOSD (set in cycles; see Figure 3.26). The Angle Difference Calculator calculates the Angle Difference between voltages V_p and V_s, compensated with the breaker close time:

Angle Difference = $|(\angle V_p - \angle V_s) + [(f_p - f_s) \times TCLOSD \times (1 \text{ second/60 cycles}) \times (360^\circ/\text{slip cycle})]|$

Angle Difference Example (voltages V_{p} and V_{s} are "slipping")

Refer to bottom of Figure 3.25.

For example, if the breaker close time is 10 cycles, set TCLOSD = 10. Presume the slip frequency is the example slip frequency calculated previously. The Angle Difference Calculator calculates the angle difference between voltages V_p and V_s , compensated with the breaker close time:

Angle Difference = $|(\angle V_p - \angle V_s) + [(f_p - f_s) \times TCLOSD \times (1 \text{ second/60 cycles}) \times (360^\circ/\text{slip cycle})]|$

Intermediate calculations:

$$(f_p - f_s) = (59.95 \text{ Hz} - 60.05 \text{ Hz}) = -0.10 \text{ Hz} = -0.10 \text{ slip cycles/second}$$

TCLOSD x (1 second/60 cycles) = 10 cycles x (1 second/60 cycles) = 0.167 second

Resulting in:

Angle Difference =
$$|(\angle V_p - \angle V_s) + [(f_p - f_s) \times \text{TCLOSD } x \text{ (1 second/60 cycles) } x (360^\circ/\text{slip cycle})]|$$

= $|(\angle V_p - \angle V_s) + [-0.10 \times 0.167 \times 360^\circ]|$
= $|(\angle V_p - \angle V_s) - 6^\circ|$

During the breaker close time (TCLOSD), the voltage angle difference between voltages V_p and V_s changes by 6 degrees. This 6-degree angle compensation is applied to voltage V_s , resulting in derived voltage V_s^* , as shown in Figure 3.26 (**Note**: The angle compensation in Figure 3.26 appears much greater than 6 degrees. Figure 3.26 is for general illustrative purposes only).

The top of Figure 3.26 shows the Angle Difference <u>decreasing</u>— V_s^* is approaching V_p . Ideally, circuit breaker closing is initiated when V_s^* is in-phase with V_p (Angle Difference = 0°). Then when the circuit breaker main contacts finally close, V_s is in-phase with V_p , minimizing system shock.

The bottom of Figure 3.26 shows the Angle Difference <u>increasing</u>— V_s^* is moving away from V_p . Ideally, circuit breaker closing is initiated when V_s^* is in-phase with V_p (Angle Difference = 0°). Then when the circuit breaker main contacts finally close, V_s is in-phase with V_p . But in this case, V_s^* has already moved past V_p . In order to initiate circuit breaker closing when V_s^* is in-phase with V_p (Angle Difference = 0°), V_s^* has to slip around another revolution, relative to V_p .

Synchronism Check Element Outputs

Synchronism check element outputs (Relay Word bits 25A1 and 25A2 in Figure 3.25) assert to logical 1 for the conditions explained in the following text.

Voltages V_{p} and V_{s} are "Static" or Setting TCLOSD = 0.00

Refer to top of Figure 3.25.

If V_p and V_s are "static" (not "slipping" with respect to one another), the Angle Difference between them remains constant—it is not possible to close the circuit breaker at an ideal zero degree phase angle difference. Thus, synchronism check elements 25A1 or 25A2 assert to logical 1 if the Angle Difference is less than corresponding maximum angle setting 25ANG1 or 25ANG2.

Also, if breaker close time setting TCLOSD = 0.00, the Angle Difference Calculator does not take into account breaker close time, even if the voltages V_p and V_s are "slipping" with respect to one another. Thus, synchronism check elements 25A1 or 25A2 assert to logical 1 if the Angle Difference is less than corresponding maximum angle setting 25ANG1 or 25ANG2.

Voltages V_P and V_s are "Slipping" <u>and</u> Setting TCLOSD \neq 0.00

Refer to bottom of Figure 3.25. If V_p and V_s are "slipping" with respect to one another and breaker close time setting TCLOSD $\neq 0.00$, the Angle Difference (compensated by breaker close time TCLOSD) changes through time. Synchronism check element 25A1 or 25A2 asserts to logical 1 for any one of the following three scenarios.

- 1. The top of Figure 3.26 shows the Angle Difference <u>decreasing</u>— V_s^* is approaching V_p . When V_s^* is in-phase with V_p (Angle Difference = 0°), synchronism check elements 25A1 and 25A2 assert to logical 1.
- 2. The bottom of Figure 3.26 shows the Angle Difference <u>increasing</u>— V_s^* is moving away from V_p . V_s^* was in-phase with V_p (Angle Difference = 0°), but has now moved past V_p . If the Angle Difference is <u>increasing</u>, but the Angle Difference is still less than maximum angle settings 25ANG1 or 25ANG2, then corresponding synchronism check elements 25A1 or 25A2 assert to logical 1.

In this scenario of the Angle Difference increasing, but still being less than maximum angle settings 25ANG1 or 25ANG2, the operation of corresponding synchronism check elements 25A1 and 25A2 becomes less restrictive. Synchronism check breaker closing does not have to wait for voltage V_s^* to slip around again in-phase with V_p (Angle Difference = 0°). There might not be enough time to wait for this to happen. Thus, the "Angle Difference = 0°" restriction is eased for this scenario.

3. Refer to Reclose Supervision Logic in Section 6: Close and Reclose Logic.

Refer to the bottom of Figure 6.2 in *Section 6: Close and Reclose Logic*. If timer 79CLSD is set greater than zero (e.g., 79CLSD = 60.00 cycles) and it times out without SELOGIC control equation setting 79CLS (Reclose Supervision) asserting to logical 1, the relay goes to the Lockout State (see top of Figure 6.3).

Refer to the top of Figure 6.2 in *Section 6: Close and Reclose Logic*. If timer 79CLSD is set to zero (79CLSD = 0.00), SELOGIC control equation setting 79CLS (Reclose Supervision) is checked only once to see if it is asserted to logical 1. If it is not asserted to logical 1, the relay goes to the Lockout State.

Refer to the top of Figure 3.26. Ideally, circuit breaker closing is initiated when V_s^* is inphase with V_p (Angle Difference = 0°). Then when the circuit breaker main contacts finally close, V_s is in-phase with V_p , minimizing system shock. But with time limitations imposed by timer 79CLSD, this may not be possible. To try to avoid going to the Lockout State, employ the following logic:

If 79CLS has not asserted to logical 1 while timer 79CLSD is timing (or timer 79CLSD is set to zero and only one check of 79CLS is made), the synchronism check logic at the bottom of Figure 3.25 becomes <u>less restrictive</u> at the "instant" timer 79CLSD is going to time out (or make the single check). It drops the requirement of waiting until the <u>decreasing</u> Angle Difference $(V_s^* \text{ approaching } V_p)$ brings V_s^* in-phase with V_p (Angle Difference = 0°). Instead, it just checks to see that the Angle Difference is less than angle settings 25ANG1 or 25ANG2.

If the Angle Difference is less than angle setting 25ANG1 or 25ANG2, then the corresponding Relay Word bit, 25A1 or 25A2, asserts to logical 1 for that "instant" (asserts for 1/4 cycle).

For example, if SELOGIC control equation setting 79CLS (Reclose Supervision) is set as follows:

 $79CLS = 25A1 + \dots$

and the angle difference is less than angle setting 25ANG1 at that "instant," setting 79CLS asserts to logical 1 for 1/4 cycle, allowing the sealed-in open interval time out to propagate on to the close logic in Figure 6.1 in *Section 6: Close and Reclose Logic*. Element 25A2 operates similarly.

Synchronism Check Applications for Automatic Reclosing and Manual Closing

Refer to Close Logic and Reclose Supervision Logic in Section 6: Close and Reclose Logic.

For example, set $25ANG1 = 15^{\circ}$ and use the resultant synchronism check element in the reclosing relay logic to supervise automatic reclosing:

e.g., 79CLS = 25A1 + ... (see Figure 6.2)

Set $25ANG2 = 25^{\circ}$ and use the resultant synchronism check element in manual close logic to supervise manual closing (for example, assert IN106 to initiate manual close):

e.g., CL = IN106 * (25A2 + ...) (see Figure 6.1)

In this example, the angular difference across the circuit breaker can be greater for a manual close (25 degrees) than for an automatic reclose (15 degrees).

A single output contact (e.g., OUT102 = CLOSE) can provide the close function for both automatic reclosing and manual closing (see Figure 6.1 logic output).

FREQUENCY ELEMENTS

Six frequency elements are available. The desired number of frequency elements are enabled with the E81 enable setting:

E81 = N (none), 1 through 6

as shown in Figure 3.28. Frequency is determined from the voltage connected to voltage input VA.

Frequency element 1 at the top of Figure 3.28 is the frequency element used in the factorydefault EZ settings (see Figure 1.19 in *Section 1: Factory-Set Logic* in this manual and the Underfrequency loadshedding setting in Table 10 and subsection *Settings Descriptions* in the *Settings* section in the *SEL-351R Quick-Start Installation and User's Guide*).

For various connections, Figure 1.31 through Figure 1.34 and associated text in subsection *Reclose Supervision Logic* in *Section 1: Factory-Set Logic* discuss possible changes necessary to the factory default undervoltage block setting 27B81P (see Figure 3.27 and Table 3.10).

To Frequency Element Logic (Figure 3.28) Setting/ Voltages 27B81P VA low Relay Word Bit 27B81 VA, VB, or VC low V_{c} Global EZ setting True three-phase DWG: M351R087 voltage connected = Y

Frequency Element Settings

Figure 3.27: Undervoltage Block for Frequency Elements

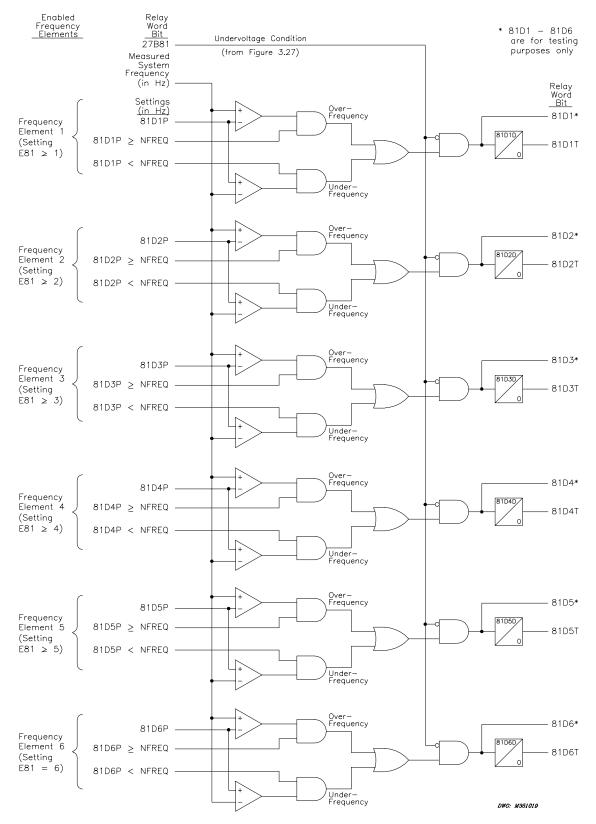


Figure 3.28: Levels 1 Through 6 Frequency Elements

Setting	Definition	Range
27B81P	undervoltage frequency element block	20.0-300.0 V secondary
81D1P	frequency element 1 pickup	40.10–65.00 Hz
81D1D	frequency element 1 time delay	2.00–16000.00 cycles, in 0.25-cycle steps
81D2P	frequency element 2 pickup	40.10–65.00 Hz
81D2D	frequency element 2 time delay	2.00–16000.00 cycles, in 0.25-cycle steps
81D3P	frequency element 3 pickup	40.10–65.00 Hz
81D3D	frequency element 3 time delay	2.00–16000.00 cycles, in 0.25-cycle steps
81D4P	frequency element 4 pickup	40.10–65.00 Hz
81D4D	frequency element 4 time delay	2.00–16000.00 cycles, in 0.25-cycle steps
81D5P	frequency element 5 pickup	40.10–65.00 Hz
81D5D	frequency element 5 time delay	2.00–16000.00 cycles, in 0.25-cycle steps
81D6P	frequency element 6 pickup	40.10–65.00 Hz
81D6D	frequency element 6 time delay	2.00–16000.00 cycles, in 0.25-cycle steps

 Table 3.10: Frequency Elements Settings and Settings Ranges

Accuracy

Pickup: $\pm 0.01 \text{ Hz}$ Timer: $\pm 0.25 \text{ cycles and } \pm 0.1\% \text{ of setting}$

Create Over- and Underfrequency Elements

Refer to Figure 3.28.

Note that pickup settings 81D1P through 81D6P are compared to setting NFREQ. NFREQ is the nominal frequency setting (a global setting), set to 50 or 60 Hz.

Overfrequency Element

For example, make settings:

NFREQ = 60 Hz	(nominal system frequency is 60 Hz)
E81 ≥ 1	(enable frequency element 1)
81D1P = 61.25 Hz.	(frequency element 1 pickup)

With these settings: $81D1P \ge NFREQ$

the overfrequency part of frequency element 1 logic is enabled. 81D1 and 81D1T operate as overfrequency elements. 81D1 is used in <u>testing only</u>.

Underfrequency Element

For example, make settings:

NFREQ = 60 Hz	(nominal system frequency is 60 Hz)
E81 ≥ 2	(enable frequency element 2)
81D2P = 59.65 Hz	(frequency element 2 pickup)

With these settings: 81D2P < NFREQ

the underfrequency part of frequency element 2 logic is enabled. 81D2 and 81D2T operate as underfrequency elements. 81D2 is used in <u>testing only</u>.

Frequency Element Operation

Refer to Figure 3.28.

Overfrequency Element Operation

With the previous overfrequency element example settings, if system frequency is <u>less than or</u> equal to 61.25 Hz (81D1P = 61.25 Hz), frequency element 1 outputs:

81D1 = logical 0	(instantaneous element)
81D1T = logical 0	(time delayed element)

If system frequency is greater than 61.25 Hz (81D1P = 61.25 Hz), frequency element 1 outputs:

81D1 = logical 1	(instantaneous element)
81D1T = logical 1	(time delayed element)

Relay Word bit 81D1T asserts to logical 1 only after time delay 81D1D.

Underfrequency Element Operation

With the previous underfrequency element example settings, if system frequency is <u>less than or</u> equal to 59.65 Hz (81D2P = 59.65 Hz), frequency element 2 outputs:

81D2 = logical 1	(instantaneous element)
81D2T = logical 1	(time delayed element)

Relay Word bit 81D2T asserts to logical 1 only after time delay 81D2D.

If system frequency is greater than 59.65 Hz (81D2P = 59.65 Hz), frequency element 2 outputs:

81D2 = logical 0	(instantaneous element)
81D2T = logical 0	(time delayed element)

Frequency Element Voltage Control

Refer to Figure 3.27 and Figure 3.28.

Note that all six frequency elements are controlled by the same undervoltage element (Relay Word bit 27B81). Relay Word bit 27B81 asserts to logical 1 and blocks the frequency element operation if any voltage (V_A , V_B , or V_c) goes below voltage pickup 27B81P. This control prevents erroneous frequency element operation following fault inception.

- Any voltage (V_A , V_B , or V_C) goes below voltage pickup 27B81P (EZ global setting "True three-phase voltage connected" = Y)
- Voltage V_A goes below voltage pickup 27B81P (EZ global setting "True three-phase voltage connected" = N)

This control prevents erroneous frequency element operation following fault inception.

Other Uses for Undervoltage Element 27B81

If voltage pickup setting 27B81P is applicable to other control schemes, Relay Word bit 27B81 can be used in other logic at the same time it is used in the frequency element logic.

If frequency elements are not being used, Relay Word bit 27B81 can still be used in other logic, with voltage setting 27B81P set as desired. Enable the frequency elements (setting E81 \geq 1) and make setting 27B81P. Apply Relay Word bit 27B81 in desired logic scheme, using SELOGIC control equations. Even though frequency elements are enabled, the frequency element outputs (Relay Word bits 81D1T through 81D6T) do not have to be used.

Frequency Element Uses

The instantaneous frequency elements (81D1 through 81D6) are used in testing only.

The time-delayed frequency elements (81D1T through 81D6T) are used for underfrequency load shedding, frequency restoration, and other schemes.

TABLE OF CONTENTS

Loss-of-Potential Logic	4-1
Setting ELOP = Y or Y1	
Setting ELOP = Y	
Setting ELOP = N	
Load-Encroachment Logic	
Settings Ranges	4-4
Load-Encroachment Setting Example	4-4
Convert Maximum Loads to Equivalent Secondary Impedances	
Convert Power Factors to Equivalent Load Angles	4-5
Apply Load-Encroachment Logic to a Phase Time-Overcurrent	4-5
Use SEL-321 Relay Application Guide for the SEL-351R Recloser Control	4-7
Directional Control for Neutral Ground and Residual Ground Overcurrent Elements	4-7
Internal Enables	4-8
Best Choice Ground Directional TM Logic	4-8
Directional Elements	4-9
Directional Element Routing	4-9
Loss-of-Potential	4-9
Direction Forward/Reverse Logic	4-10
Directional Control for Negative-Sequence and Phase Overcurrent Elements	4-19
Internal Enables	4-20
Directional Elements	4-20
Directional Element Routing	4-21
Loss-of-Potential	4-21
Direction Forward/Reverse Logic	4-21
Directional Control Settings	4-27
Settings Made Automatically	4-27
Settings	4-28
DIR1 – Level 1 Overcurrent Element Direction Setting	4-28
DIR2 – Level 2 Overcurrent Element Direction Setting	4-28
DIR3 – Level 3 Overcurrent Element Direction Setting	4-28
DIR4 – Level 4 Overcurrent Element Direction Setting	
ORDER – Ground Directional Element Priority Setting	4-29
50P32P – Phase Directional Element Three-Phase Current Pickup	
Z2F – Forward Directional Z2 Threshold	
Z2R – Reverse Directional Z2 Threshold	4-30
Z2F and Z2R Set Automatically	4-30
50QFP – Forward Directional Negative-Sequence Current Pickup	4-31
50QRP – Reverse Directional Negative-Sequence Current Pickup	4-31
50QFP and 50QRP Set Automatically	
a2 – Positive-Sequence Current Restraint Factor, I_2/I_1	
a2 Set Automatically	4-31
k2 – Zero-Sequence Current Restraint Factor, I_2/I_0	4-32

k2 Set Automatically	4-32
50GFP – Forward Directional Residual Ground Current Pickup	4-33
50GRP – Reverse Directional Residual Ground Current Pickup	4-33
50GFP and 50GRP Set Automatically	4-33
a0 – Positive-Sequence Current Restraint Factor, I_0/I_1	4-33
a0 Set Automatically	4-34
Z0F – Forward Directional Z0 Threshold	4-34
Z0R – Reverse Directional Z0 Threshold	4-34
Z0F and Z0R Set Automatically	4-34
E32IV – SELOGIC Control Equation Enable	4-34
Directional Control Provided by Torque Control Settings	4-35

TABLES

Table 4.1:	Overcurrent Elements Controlled by Level Direction Settings DIR1 Through DIR4
	(corresponding overcurrent element figure numbers in parentheses)

FIGURES

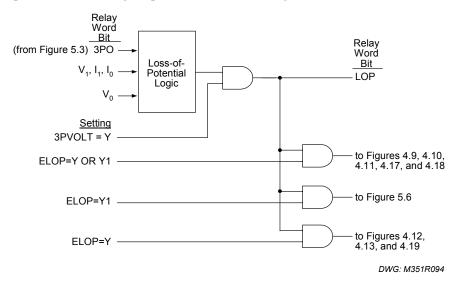

Figure 4.1:	Loss-of-Potential Logic	4-1
Figure 4.2:	Load-Encroachment Logic	4-3
Figure 4.3:	Migration of Apparent Positive-Sequence Impedance for a Fault Condition	4-6
Figure 4.4:	General Logic Flow of Directional Control for Neutral Ground and Residual	
	Ground Overcurrent Elements	4-7
Figure 4.5:	Internal Enables (32QE and 32QGE) Logic for Negative-Sequence	
	Voltage-Polarized Directional Elements	. 4-11
Figure 4.6:	Internal Enable (32VE) Logic for Zero-Sequence Voltage-Polarized, Residual-	
	Current Directional Element	. 4-12
Figure 4.7:	Internal Enable (32NE) for Zero-Sequence Voltage-Polarized, Neutral-Current	
	Directional Element	. 4-12
Figure 4.8:	Best Choice Ground Directional Logic	. 4-13
Figure 4.9:	Negative-Sequence Voltage-Polarized Directional Element for Neutral and	
	Residual Overcurrent Elements	. 4-14
Figure 4.10:	Zero-Sequence Voltage-Polarized, Residual-Current Directional Element for	
	Neutral and Residual Overcurrent Elements	. 4-15
Figure 4.11:	Zero-Sequence Voltage-Polarized, Neutral-Current Directional Elements for	
	Neutral Ground Overcurrent Elements	. 4-16
Figure 4.12:	Routing of Directional Elements to Residual Overcurrent Elements	. 4-17
Figure 4.13:	Routing of Directional Elements to Neutral Ground Overcurrent Elements	. 4-17
Figure 4.14:	Direction Forward/Reverse Logic for Residual Ground Overcurrent Elements	. 4-18
Figure 4.15:	Direction Forward/Reverse Logic for Neutral Ground Overcurrent Elements	. 4-19
Figure 4.16:	General Logic Flow of Directional Control for Negative-Sequence and Phase	
	Overcurrent Elements	. 4-20
Figure 4.17:	Negative-Sequence Voltage-Polarized Directional Element for Negative-Sequence	
	and Phase Overcurrent Elements	. 4-23
Figure 4.18:	Positive-Sequence Voltage-Polarized Directional Element for Phase Overcurrent	
	Elements	. 4-24

Figure 4.19:	Routing of Directional Elements to Negative-Sequence and Phase Overcurrent	
	Elements	-25
Figure 4.20:	Direction Forward/Reverse Logic for Negative-Sequence Overcurrent Elements	-25
Figure 4.21:	Direction Forward/Reverse Logic for Phase Overcurrent Elements	-26

SECTION 4: LOSS-OF-POTENTIAL, LOAD ENCROACH-MENT, AND DIRECTIONAL ELEMENT LOGIC

LOSS-OF-POTENTIAL LOGIC

The loss-of-potential (LOP) logic operates as shown in Figure 4.1.

Figure 4.1: Loss-of-Potential Logic

Inputs into the LOP logic are:

- 3PO three-pole open condition (indicates circuit breaker open condition see Figure 5.3)
- V₁ positive-sequence voltage (V secondary)
- I₁ positive-sequence current (A secondary)
- V₀ zero-sequence voltage (V secondary)
- I_0 zero-sequence current (A secondary)
- V₂ negative-sequence voltage (V secondary)

The circuit breaker has to be closed (Relay Word bit 3PO = logical 0) for the LOP logic to operate. The EZ global setting "True three-phase voltage connected (Y/N)" = Y also has to be made in order for the LOP logic to operate (corresponding "regular" global setting 3PVOLT = Y). Even if the LOP logic is not used (i.e., no directional overcurrent elements are used), setting 3PVOLT = Y should still be made (SET G command) if true three-phase voltage is connected to the SEL-351R.

Loss-of-potential is declared (Relay Word bit LOP = logical 1) when a 10 percent drop in V_1 is detected, with no corresponding change in I_1 or I_0 . If the LOP condition persists for 60 cycles, it latches in. LOP resets (Relay Word bit LOP = logical 0) when V_1 returns above 50 V secondary and V_0 is less than 5 V secondary.

The loss-of-potential enable setting, ELOP, does not enable or disable the LOP logic. It just routes the LOP Relay Word bit to different logic, as is shown in Figure 4.1 and explained in the remainder of this subsection.

Setting ELOP = Y or Y1

If setting ELOP = Y or Y1 and a loss-of-potential condition occurs (Relay Word bit LOP asserts to logical 1), negative-sequence voltage-polarized, zero-sequence voltage-polarized, and positive-sequence voltage-polarized directional elements are disabled (see Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.17 and Figure 4.18). The loss-of-potential condition makes these voltage-polarized directional elements unreliable. Thus, they are disabled. The overcurrent elements controlled by these voltage-polarized directional elements are also disabled (unless overridden by conditions explained in the following Setting ELOP = Y discussion).

In Figure 5.6, if setting ELOP = Y1 and LOP asserts, keying and echo keying in the permissive overreaching transfer trip (POTT) logic are blocked.

Setting ELOP = Y

Additionally, if setting ELOP = Y and a loss-of-potential condition occurs (Relay Word bit LOP asserts to logical 1), overcurrent elements set direction forward are enabled (see Figure 4.12, Figure 4.13, and Figure 4.19). These direction forward overcurrent elements effectively become nondirectional and provide overcurrent protection during a loss-of-potential condition.

As detailed previously, voltage-based directional elements are disabled during a loss-of-potential condition. Thus, the overcurrent elements controlled by these voltage-based directional elements are also disabled. But this disable condition is overridden for the overcurrent elements set direction forward if setting ELOP = Y.

Setting ELOP = N

If setting ELOP = N, the loss-of-potential logic still operates (Relay Word bit LOP asserts to logical 1 for a loss-of-potential condition) but does not disable any voltage-based directional elements (as occurs with ELOP = Y or Y1) or enable overcurrent elements set direction forward (as occurs with ELOP = Y).

LOAD-ENCROACHMENT LOGIC

The load-encroachment logic (see Figure 4.2) and settings are enabled/disabled with setting ELOAD (= Y or N). The load-encroachment feature allows phase overcurrent elements to be set independent of load levels. This is especially helpful in bus overcurrent applications. A bus relay sees the cumulative currents of all the feeders, but still has to provide overcurrent backup protection for all these feeders. If the phase elements in the bus relay are set to provide adequate backup, they often are set close to maximum bus load current levels. This runs the risk of tripping on bus load current. The load-encroachment feature prevents this from happening, as shown in the example that follows in this subsection.

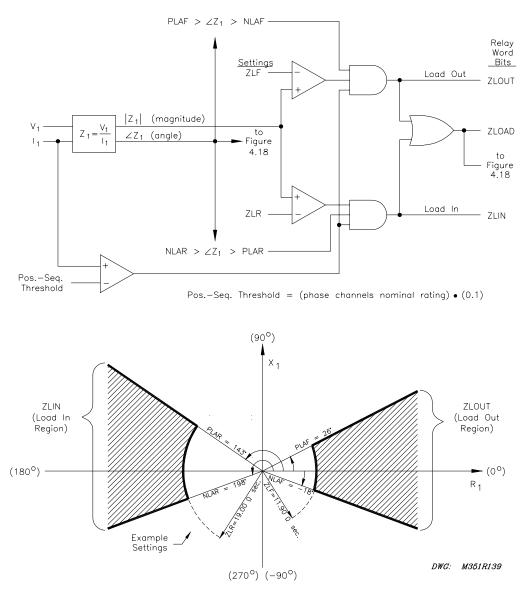


Figure 4.2: Load-Encroachment Logic

Note that a positive-sequence impedance calculation (Z_1) is made in the load-encroachment logic in Figure 4.2. Load is largely a balanced condition, so apparent positive-sequence impedance is a good load measure. The load-encroachment logic only operates if the positive-sequence current (I_1) is greater than the Positive-Sequence Threshold defined in Figure 4.2. For a balanced load condition, I_1 = phase current magnitude.

Forward load (load flowing out) lies within the hatched region labeled ZLOUT. Relay Word bit ZLOUT asserts to logical 1 when the load lies within this hatched region.

Reverse load (load flowing in) lies within the hatched region labeled ZLIN. Relay Word bit ZLIN asserts to logical 1 when the load lies within this hatched region.

Relay Word bit ZLOAD is the OR-combination of ZLOUT and ZLIN:

ZLOAD = ZLOUT + ZLIN

Settings Ranges

Refer to Figure 4.2.

<u>Setting</u>	Description and Range	
ZLF	Forward Minimum Load Impedance—corresponding to maximum load flowing out	
ZLR	Reverse Minimum Load Impedance—corresponding to maximum load flowing in	
	0.5 to 640.00 Ω secondary (1 A nominal phase current inputs, IA, IB, IC)	
PLAF	Maximum Positive Load Angle Forward $(-90^{\circ} \text{ to } +90^{\circ})$	
NLAF	Maximum Negative Load Angle Forward (-90° to $+90^{\circ}$)	
PLAR	Maximum Positive Load Angle Reverse (+90° to +270°)	
NLAR	Maximum Negative Load Angle Reverse (+90° to +270°)	

Load-Encroachment Setting Example

Example system conditions:

Nominal Line-Line Voltage:	230 kV
Maximum Forward Load:	800 MVA
Maximum Reverse Load:	500 MVA
Power Factor (Forward Load):	0.90 lag to 0.95 lead
Power Factor (Reverse Load):	0.80 lag to 0.95 lead
CT ratio:	2000/5 = 400
PT ratio:	134000/67 = 2000

The PTs are connected line-to-neutral.

Convert Maximum Loads to Equivalent Secondary Impedances

Start with maximum forward load:

800 MVA • (1/3) = 267 MVA per phase 230 kV • (1/ $\sqrt{3}$) = 132.8 kV line-to-neutral 267 MVA • (1/132.8 kV) • (1000 kV/MV) = 2010 A primary 2010 A primary • (1/CT ratio) = 2010 A primary • (1 A seconday/400 A primary) = 5.03 A secondary 132.8 kV • (1000 V/kV) = 132800 V primary 132800 V primary • (1/PT ratio) = 132800 V primary • (1 V secondary/2000 V primary) = 66.4 V secondary

Now, calculate the equivalent secondary impedance:

```
66.4 V secondary/5.03 A secondary = 13.2 \Omega secondary
```

This Ω secondary value can be calculated more expediently with the following equation:

[(line-line voltage in kV)² • (CT ratio)]/[(3-phase load in MVA) • (PT ratio)]

Again, for the maximum forward load:

 $[(230)^2 \bullet (400)]/[(800) \bullet (2000)] = 13.2 \Omega$ secondary

To provide a margin for setting ZLF, multiply by a factor of 0.9:

 $ZLF = 13.2 \Omega$ secondary • 0.9 = 11.90 Ω secondary

For the maximum reverse load:

 $[(230)^2 \bullet (400)]/[(500) \bullet (2000)] = 21.1 \Omega$ secondary

Again, to provide a margin for setting ZLR:

 $ZLR = 21.1 \Omega$ secondary • 0.9 = 19.00 Ω secondary

Convert Power Factors to Equivalent Load Angles

The power factor (forward load) can vary from 0.90 lag to 0.95 lead.

Setting PLAF = $\cos^{-1} (0.90) = 26^{\circ}$ Setting NLAF = $\cos^{-1} (0.95) = -18^{\circ}$

The power factor (reverse load) can vary from 0.80 lag to 0.95 lead.

Setting PLAR = $180^{\circ} - \cos^{-1}(0.80) = 180^{\circ} - 37^{\circ} = 143^{\circ}$ Setting NLAR = $180^{\circ} + \cos^{-1}(0.95) = 180^{\circ} + 18^{\circ} = 198^{\circ}$

Apply Load-Encroachment Logic to a Phase Time-Overcurrent

Again, from Figure 4.2:

ZLOAD = ZLOUT + ZLIN

Refer to Figure 4.3. In a load condition, the apparent positive-sequence impedance is <u>within</u> the ZLOUT area, resulting in:

ZLOAD = ZLOUT + ZLIN = logical 1 + ZLIN = logical 1

If a fault occurs, the apparent positive-sequence impedance moves <u>outside</u> the ZLOUT area (and stays outside the ZLIN area, too), resulting in:

ZLOAD = ZLOUT + ZLIN = logical 0 + logical 0 = logical 0

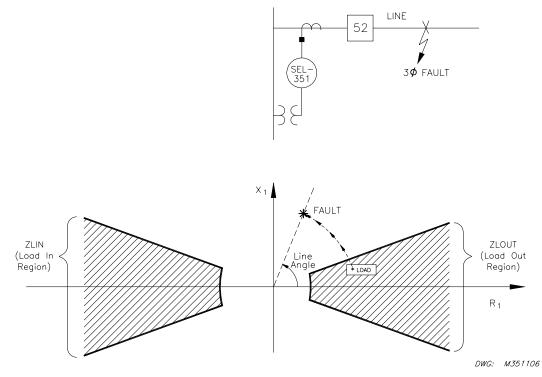


Figure 4.3: Migration of Apparent Positive-Sequence Impedance for a Fault Condition

Refer to Figure 3.14 in *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements*. To prevent phase time-overcurrent element 51P1T from operating for high load conditions, make the following SELOGIC[®] control equation torque control setting:

51P1TC = !ZLOAD*!LOP + 50P6 (= NOT[ZLOAD]*NOT[LOP] + 50P6)

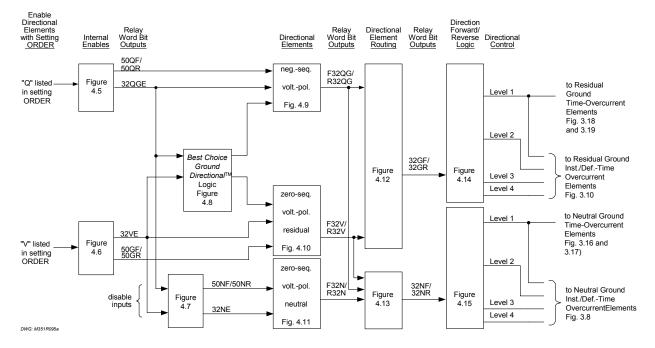
As shown in Figure 4.2, load-encroachment logic is a positive-sequence calculation. During LOP conditions (loss-of-potential; see Figure 4.1), positive-sequence voltage (V_1) can be substantially depressed in magnitude or changed in angle. This change in V_1 can possibly cause ZLOAD to deassert (= logical 0), erroneously indicating that a "fault condition" exists. Thus, !ZLOAD should be supervised by !LOP in a torque control setting. This also effectively happens in the directional element in Figure 4.18, where ZLOAD and LOP are part of the logic.

In the above setting example, phase instantaneous overcurrent element 50P6 is set above any maximum load current level—if 50P6 picks up, there is assuredly a fault. For faults below the pickup level of 50P6, but above the pickup of phase time-overcurrent element 51PT, the !ZLOAD*!LOP logic discriminates between high load and fault current. If an LOP condition occurs (LOP = logical 1), the pickup level of 50P6 becomes the effective pickup of phase time-overcurrent element 51P1T (51P1T loses its sensitivity when an LOP condition occurs):

51P1TC = !ZLOAD*!LOP + 50P6 = !ZLOAD*NOT[LOP] + 50P6

= !ZLOAD*NOT[logical 1] + 50P6 = 50P6

Use SEL-321 Relay Application Guide for the SEL-351R Recloser Control


The load-encroachment logic and settings in the SEL-351R Recloser Control are the same as those in the SEL-321 Relay. Refer to *Application Guide AG93-10* (*SEL-321 Relay Load-Encroachment Function Setting Guidelines*) for applying the load-encroachment logic in the SEL-351R. Note that *Application Guide AG93-10* discusses applying the load-encroachment feature to phase distance elements in the SEL-321 Relay. Although the SEL-351R does not have phase distance elements, the principles and settings example in this guide are still applicable.

DIRECTIONAL CONTROL FOR NEUTRAL GROUND AND RESIDUAL GROUND OVERCURRENT ELEMENTS

The directional control for overcurrent elements is enabled by making directional control enable setting E32. Setting E32 and other directional control settings are described in the following *Directional Control Settings*.

Three directional elements are available to control the neutral ground and two directional elements are available to control residual ground overcurrent elements. These directional elements are:

- Negative-sequence voltage-polarized directional element (residual and neutral)
- Zero-sequence voltage-polarized, residual-current directional element (residual and neutral)

• Zero-sequence voltage-polarized, neutral-current directional element (neutral only)

Figure 4.4: General Logic Flow of Directional Control for Neutral Ground and Residual Ground Overcurrent Elements

Figure 4.4 gives an overview of how these directional elements are enabled and routed to control the neutral ground and residual ground overcurrent elements.

Note in Figure 4.4 that setting ORDER enables the directional elements. Setting ORDER can be set with any combination of Q and V. They have the following correspondence to the directional elements:

- Q Negative-sequence voltage-polarized directional element
- V Zero-sequence voltage-polarized, residual-current directional element and zero-sequence voltage-polarized, neutral-current directional element

The <u>order</u> in which these directional elements are listed in setting ORDER determines the priority in which they operate to provide *Best Choice Ground Directional*TM logic control. See discussion on setting ORDER in the following subsection *Directional Control Settings*.

Internal Enables

Refer to Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7.

The internal enables 32QGE and 32VE have the following correspondence to the directional elements:

- 32QGE Negative-sequence voltage-polarized directional element
- 32VE Zero-sequence voltage-polarized, residual-current directional element and zero-sequence voltage-polarized, neutral-current directional element

Note that Figure 4.5 has extra internal enable 32QE, which is used in the directional element logic that controls negative-sequence and phase overcurrent elements (see Figure 4.17).

The settings involved with internal enables 32QGE and 32VE in Figure 4.5 and Figure 4.6 (e.g., settings a2, k2, a0) are explained in the following subsection *Directional Control Settings*.

The zero-sequence voltage-polarized, neutral-current directional element is a sensitive-earth-fault (SEF) directional element. If V is in the setting ORDER, and no other internal enable is asserted, 32NE may be asserted as shown in Figure 4.7. Neutral current will then be used in determining fault direction.

Best Choice Ground Directional[™]Logic

Refer to Figure 4.4 and Figure 4.8.

The internal enables 32QGE and 32VE and setting ORDER are used in the *Best Choice Ground Directional* logic in Figure 4.8. The *Best Choice Ground Directional* logic determines which directional element should be enabled to operate. The neutral ground and residual ground overcurrent elements set for directional control are then controlled by this enabled directional element. If V is in the setting ORDER, and no other internal enable is asserted, 32NE may be asserted as shown in Figure 4.7. Neutral current will then be used in determining fault direction.

Directional Elements

Refer to Figure 4.4, Figure 4.9, Figure 4.10, and Figure 4.11.

The enable output of *Best Choice Ground Directional* logic in Figure 4.8, and the internal enables in Figure 4.5, Figure 4.6, and Figure 4.7 determine which directional element will run.

Additionally, note that if enable setting ELOP = Y or Y1 and a loss-of-potential condition occurs (Relay Word bit LOP asserts), the negative-sequence voltage-polarized and zero-sequence voltage-polarized directional elements are disabled (see Figure 4.9, Figure 4.10, and Figure 4.11).

Refer to Figure 4.1 and accompanying text for more information on loss-of-potential.

Directional Element Routing

Refer to Figure 4.4, Figure 4.12, and Figure 4.13.

The negative-sequence and zero-sequence polarized, residual-current directional element outputs are routed to the forward (Relay Word bit 32GF) and reverse (Relay Word bit 32GR) logic points and then on to the direction forward/reverse logic in Figure 4.14.

Neutral overcurrent directional logic, shown in Figure 4.13, uses the quantities listed above along with zero-sequence polarized, neutral-current directional element outputs from Figure 4.11.

Loss-of-Potential

Note that if <u>both</u> the following are true:

- Enable setting ELOP = Y
- A loss-of-potential condition occurs (Relay Word bit LOP asserts)

then the forward logic point (Relay Word bit 32GF) asserts to logical 1, thus enabling the neutral ground and residual ground overcurrent elements that are set direction forward (with settings DIR1 = F, DIR2 = F, etc.). These direction forward overcurrent elements effectively become nondirectional and provide overcurrent protection during a loss-of-potential condition.

As detailed previously (in Figure 4.9, Figure 4.10, and Figure 4.11), voltage-based directional elements are disabled during a loss-of-potential condition. Thus, the overcurrent elements controlled by these voltage-based directional elements are disabled also. But this disable condition is overridden for the overcurrent elements set direction forward if setting ELOP = Y.

Refer to Figure 4.1 and accompanying text for more information on loss-of-potential.

Direction Forward/Reverse Logic

Refer to Figure 4.4, Figure 4.14, and Figure 4.15.

The forward (Relay Word bits 32GF and 32NF) and reverse (Relay Word bits 32GR and 32NR) logic points are routed to the different levels of overcurrent protection by the level direction settings DIR1 through DIR4.

Table 4.1 shows the overcurrent elements that are controlled by each level direction setting. Note in Table 4.1 that all the time-overcurrent elements (51_T elements) are controlled by the DIR1 level direction setting.

In most communications-assisted trip schemes, the levels are set as follows (see Figure 5.4):

Level 1 overcurrent elements set direction forward (DIR1 = F) Level 2 overcurrent elements set direction forward (DIR2 = F) Level 3 overcurrent elements set direction reverse (DIR3 = R)

If a level direction setting (e.g., DIR1) is set:

DIR1 = N (nondirectional)

then the corresponding Level 1 directional control output in Figure 4.14 asserts to logical 1. The Level 1 overcurrent elements referenced in Figure 4.14 and Figure 4.15 are then not controlled by the directional control logic.

See the beginning of following subsection *Directional Control Settings* for discussion of the operation of level direction settings DIR1 through DIR4 when the directional control enable setting E32 is set to E32 = N.

In some applications, level direction settings DIR1 through DIR4 are not flexible enough in assigning the desired direction for certain overcurrent elements. Subsection *Directional Control Provided by Torque Control Settings* at the end of this section describes how to avoid this limitation for special cases.

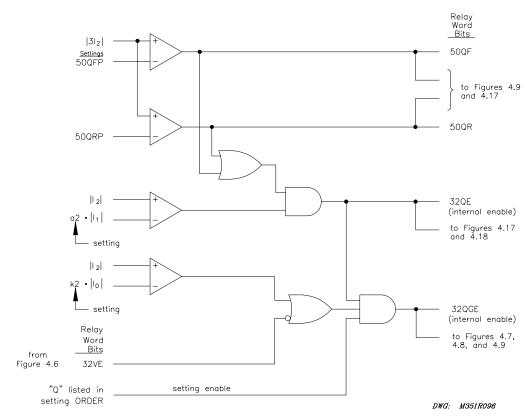


Figure 4.5: Internal Enables (32QE and 32QGE) Logic for Negative-Sequence Voltage-Polarized Directional Elements

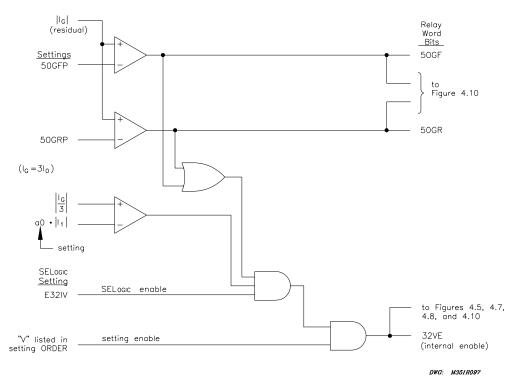


Figure 4.6: Internal Enable (32VE) Logic for Zero-Sequence Voltage-Polarized, Residual-Current Directional Element

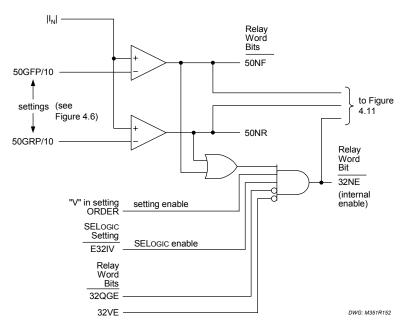


Figure 4.7: Internal Enable (32NE) for Zero-Sequence Voltage-Polarized, Neutral-Current Directional Element

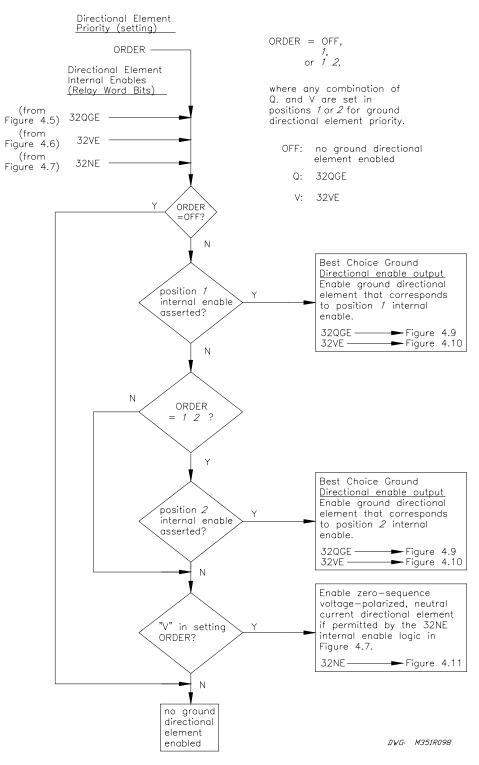
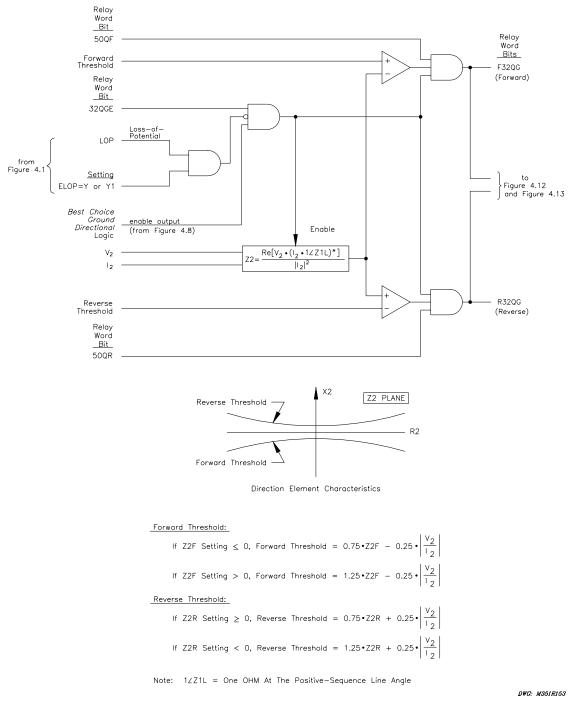



Figure 4.8: Best Choice Ground Directional Logic

Figure 4.9: Negative-Sequence Voltage-Polarized Directional Element for Neutral and Residual Overcurrent Elements

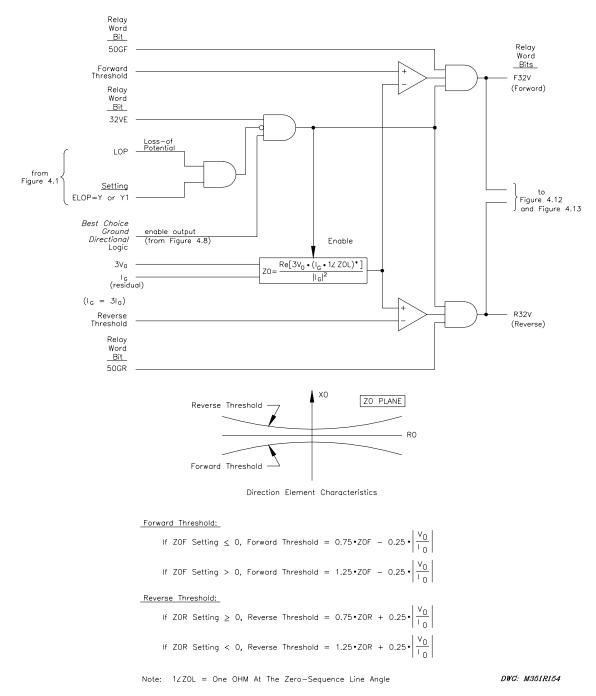
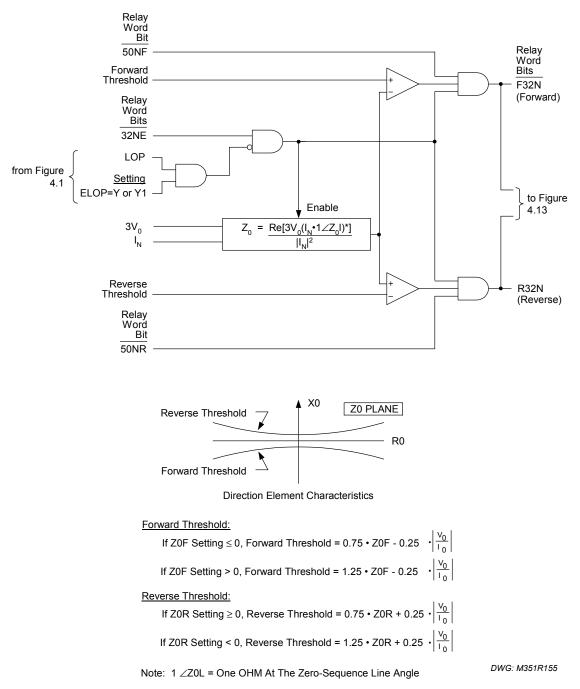



Figure 4.10: Zero-Sequence Voltage-Polarized, Residual-Current Directional Element for Neutral and Residual Overcurrent Elements

Figure 4.11: Zero-Sequence Voltage-Polarized, Neutral-Current Directional Elements for Neutral Ground Overcurrent Elements

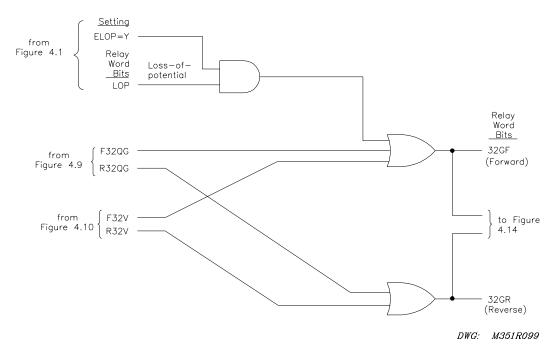


Figure 4.12: Routing of Directional Elements to Residual Overcurrent Elements

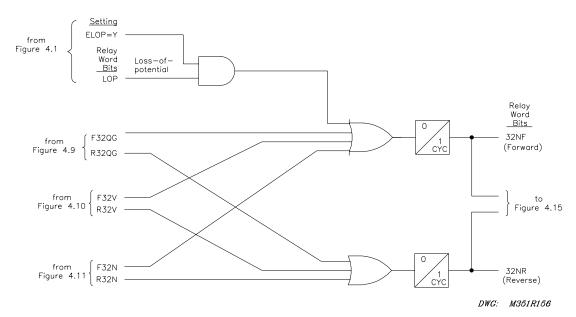


Figure 4.13: Routing of Directional Elements to Neutral Ground Overcurrent Elements

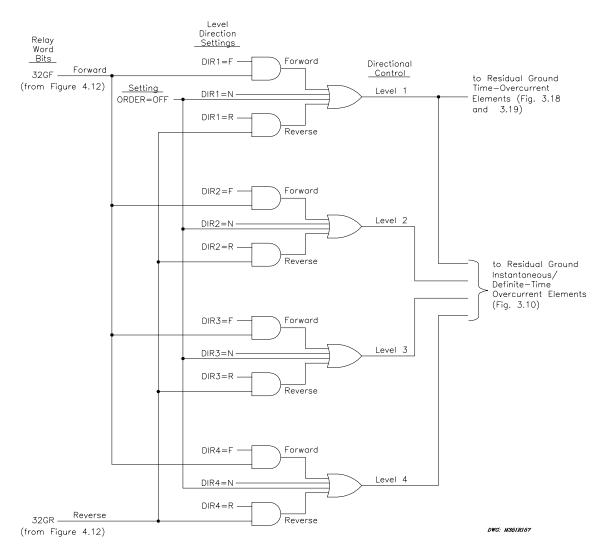


Figure 4.14: Direction Forward/Reverse Logic for Residual Ground Overcurrent Elements

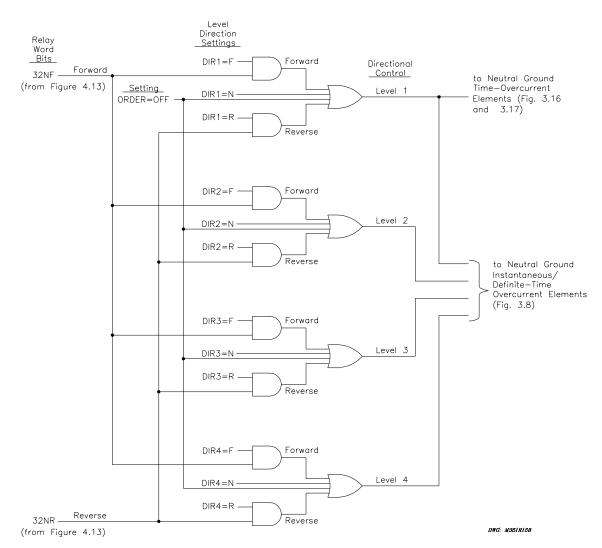
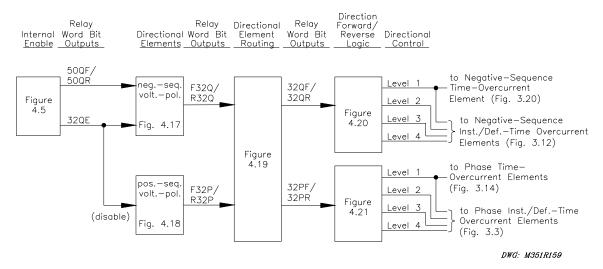



Figure 4.15: Direction Forward/Reverse Logic for Neutral Ground Overcurrent Elements

DIRECTIONAL CONTROL FOR NEGATIVE-SEQUENCE AND PHASE OVERCURRENT ELEMENTS

The directional control for overcurrent elements is enabled by making directional control enable setting E32. Setting E32 and other directional control settings are described in the following subsection *Directional Control Settings*.

The negative-sequence voltage-polarized directional element controls the negative-sequence overcurrent elements. Negative-sequence voltage-polarized and positive-sequence voltage-polarized directional elements control the phase overcurrent elements. Figure 4.17 gives an overview of how the negative-sequence voltage-polarized and positive-sequence voltage-polarized directional elements are enabled and routed to control the negative-sequence and phase overcurrent elements.

Figure 4.16: General Logic Flow of Directional Control for Negative-Sequence and Phase Overcurrent Elements

The negative-sequence voltage-polarized directional element has priority over the positivesequence voltage-polarized directional elements in controlling the phase overcurrent elements. The negative-sequence voltage-polarized directional element operates for unbalanced faults, while the positive-sequence voltage-polarized directional element operates for three-phase faults.

Internal Enables

Refer to Figure 4.5 and Figure 4.16.

The internal enable 32QE corresponds to the negative-sequence voltage-polarized directional element.

Note that Figure 4.5 has extra internal enable 32QGE, which is used in the directional element logic that controls the neutral ground and residual ground overcurrent elements (see Figure 4.4).

The settings involved with internal enable 32QE in Figure 4.5 (e.g., settings a2, k2) are explained in a following subsection *Directional Control Settings*.

Directional Elements

Refer to Figure 4.16, Figure 4.17, and Figure 4.18.

If enable setting ELOP = Y or Y1 and a loss-of-potential condition occurs (Relay Word bit LOP asserts), the negative-sequence voltage-polarized and positive-sequence voltage-polarized directional elements are disabled (see Figure 4.17 and Figure 4.18).

Refer to Figure 4.1 and accompanying text for more information on loss-of-potential.

Note in Figure 4.16 and Figure 4.18, that the assertion of internal enable 32QE (for the negativesequence voltage-polarized directional element) disables the positive-sequence voltage-polarized directional element. The negative-sequence voltage-polarized directional element has priority over the positive-sequence voltage-polarized directional elements in controlling the phase overcurrent elements. The negative-sequence voltage-polarized directional element operates for unbalanced faults while the positive-sequence voltage-polarized directional element operates for three-phase faults.

Note also in Figure 4.18 that the assertion of ZLOAD disables the positive-sequence voltagepolarized directional element. ZLOAD asserts when the relay is operating in a user-defined load region (see Figure 4.2).

Directional Element Routing

Refer to Figure 4.16 and Figure 4.19.

The directional element outputs are routed to the forward (Relay Word bits 32QF and 32PF) and reverse (Relay Word bits 32QR and 32PR) logic points and then on to the direction forward/reverse logic in Figure 4.20 and Figure 4.21.

Loss-of-Potential

Note if <u>both</u> the following are true:

- Enable setting ELOP = Y,
- A loss-of-potential condition occurs (Relay Word bit LOP asserts),

then the forward logic points (Relay Word bits 32QF and 32PF) assert to logical 1, thus, enabling the negative-sequence and phase overcurrent elements that are set direction forward (with settings DIR1 = F, DIR2 = F, etc.). These direction forward overcurrent elements effectively become nondirectional and provide overcurrent protection during a loss-of-potential condition.

As detailed previously (in Figure 4.17 and Figure 4.18), voltage-based directional elements are disabled during a loss-of-potential condition. Thus, the overcurrent elements controlled by these voltage-based directional elements are also disabled. But this disable condition is overridden for the overcurrent elements set direction forward if setting ELOP = Y.

Refer to Figure 4.1 and accompanying text for more information on loss-of-potential.

Direction Forward/Reverse Logic

Refer to Figure 4.16, Figure 4.20, and Figure 4.21.

The forward (Relay Word bits 32QF and 32PF) and reverse (Relay Word bits 32QR and 32PR) logic points are routed to the different levels of overcurrent protection by the level direction settings DIR1 through DIR4.

Table 4.1 shows the overcurrent elements that are controlled by each level direction setting. Note in Table 4.1 that all the time-overcurrent elements (51_T elements) are controlled by the DIR1 level direction setting.

In most communications-assisted trip schemes, the levels are set as follows (see Figure 5.4):

Level 1 overcurrent elements set direction forward (DIR1 = F) Level 2 overcurrent elements set direction forward (DIR2 = F) Level 3 overcurrent elements set direction reverse (DIR3 = R) If a level direction setting (e.g., DIR1) is set:

DIR1 = N (nondirectional)

then the corresponding Level 1 directional control outputs in Figure 4.20 and Figure 4.21 assert to logical 1. The referenced Level 1 overcurrent elements in Figure 4.20 and Figure 4.21 are then not controlled by the directional control logic.

See the beginning of following subsection *Directional Control Settings* for discussion of the operation of level direction settings DIR1 through DIR4 when the directional control enable setting E32 is set to E32 = N.

In some applications, level direction settings DIR1 through DIR4 are not flexible enough in assigning the desired direction for certain overcurrent elements. Subsection *Directional Control Provided by Torque Control Settings* at the end of this section describes how to avoid this limitation for special cases.

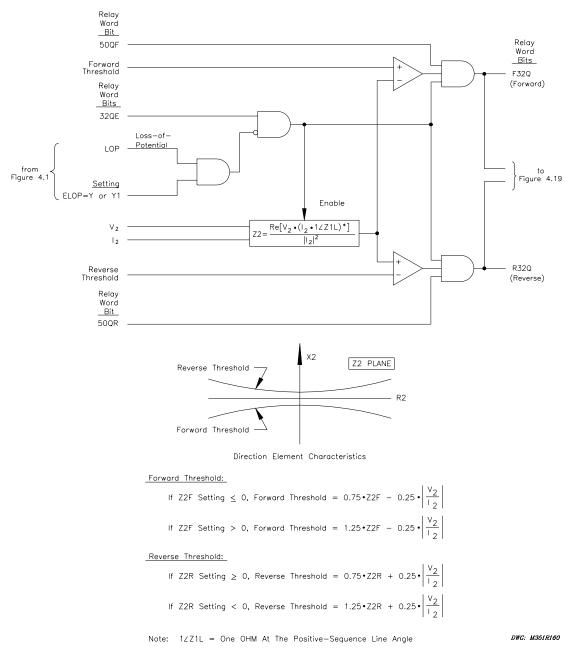


Figure 4.17: Negative-Sequence Voltage-Polarized Directional Element for Negative-Sequence and Phase Overcurrent Elements

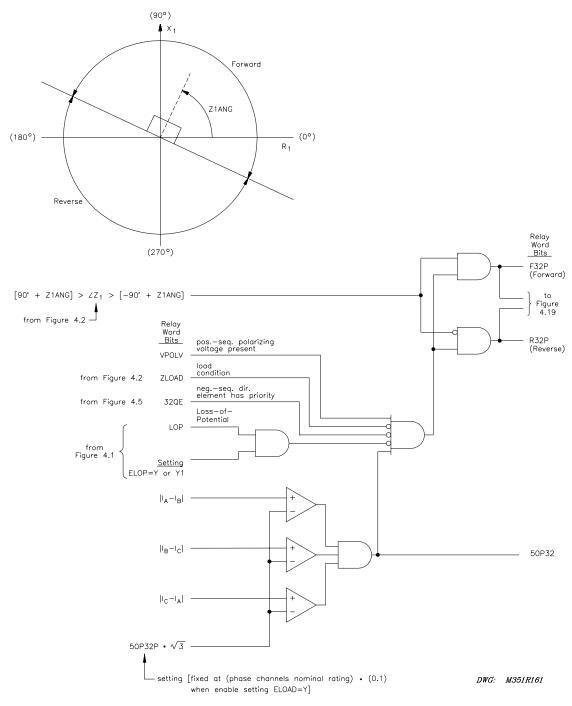


Figure 4.18: Positive-Sequence Voltage-Polarized Directional Element for Phase Overcurrent Elements

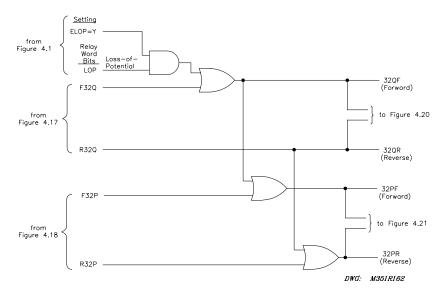


Figure 4.19: Routing of Directional Elements to Negative-Sequence and Phase Overcurrent Elements

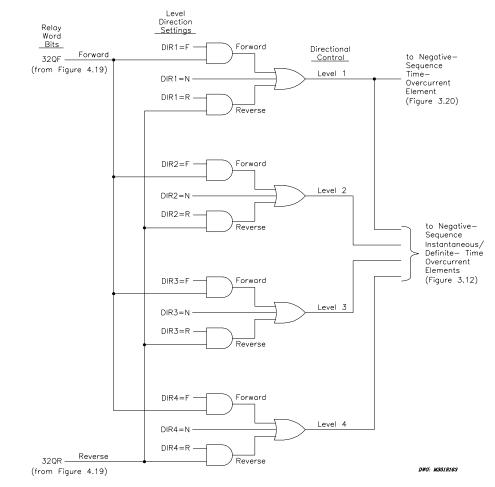


Figure 4.20: Direction Forward/Reverse Logic for Negative-Sequence Overcurrent Elements

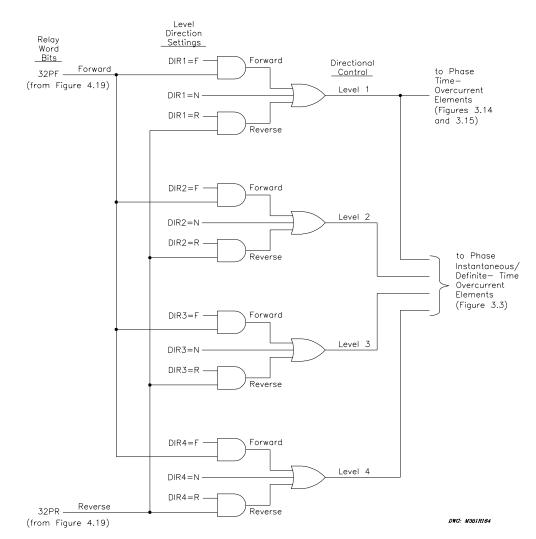


Figure 4.21: Direction Forward/Reverse Logic for Phase Overcurrent Elements

DIRECTIONAL CONTROL SETTINGS

The directional control for overcurrent elements is enabled by making directional control enable setting E32. Setting E32 has setting choices:

- Y enable directional control
- N disable directional control
- AUTO enable directional control and set a number of the directional element settings automatically
- **Note:** If directional control enable setting E32 = N, directional control is disabled and no directional control settings are made. All level direction settings are set internally as:

DIR1 = N	(no directional control for Level 1 overcurrent elements)
DIR2 = N	(no directional control for Level 2 overcurrent elements)
DIR3 = N	(no directional control for Level 3 overcurrent elements)
DIR4 = N	(no directional control for Level 4 overcurrent elements)

With the above settings, the directional control outputs in Figure 4.14, Figure 4.20, and Figure 4.21 assert to logical 1. The referenced overcurrent elements in Figure 4.14, Figure 4.20, and Figure 4.21 are then not controlled by the directional control logic.

Settings Made Automatically

If the directional control enable setting E32 is set:

E32 = AUTO

then the following directional control settings are calculated and set automatically:

Z2F, Z2R, 50QFP, 50QRP, a2, k2, 50GFP, 50GRP, a0, Z0F, and Z0R

Once these settings are calculated automatically, they can only be modified if the user goes back and changes the directional control enable setting to E32 = Y.

The remaining directional control settings are <u>not</u> set automatically if setting E32 = AUTO. They have to be set by the user, whether setting E32 = AUTO or Y. These settings are:

DIR1, DIR2, DIR3, DIR4, ORDER, 50P32P, and E32IV

All these settings are explained in detail in the remainder of this subsection.

<u>Settings</u>

DIR1 - Level 1 Overcurrent Element Direction Setting

DIR2 - Level 2 Overcurrent Element Direction Setting

DIR3 - Level 3 Overcurrent Element Direction Setting

DIR4 - Level 4 Overcurrent Element Direction Setting

Setting Range:

- F = Direction Forward
- R = Direction Reverse
- N = Nondirectional

Table 4.1 shows the overcurrent elements that are controlled by each level direction setting. Note in Table 4.1 that all the time-overcurrent elements (51_T elements) are controlled by the DIR1 level direction setting. Figure 4.14, Figure 4.20, and Figure 4.21 show the logic implementation of the control listed in Table 4.1.

Level Direction	Phase	Neutral	Residual	Negative-
Settings		Ground	Ground	Sequence
DIR1	67P1 (3.3) 67P1T (3.3) 51P1T (3.14) 51P2T (3.15)	67N1 (3.8) 67N1T (3.8) 51N1T (3.16) 51N2T (3.17)	67G1 (3.10) 67G1T (3.10) 51G1T (3.18) 51G2T (3.19)	67Q1 (3.12) 67Q1T (3.12) 51QT (3.20)
DIR2	67P2 (3.3)	67N2 (3.8)	67G2 (3.10)	67Q2 (3.12)
	67P2T (3.3)	67N2T (3.8)	67G2T (3.10)	67Q2T (3.12)
	67P2S (3.3)	67N2S (3.8)	67G2S (3.10)	67Q2S (3.12)
DIR3	67P3 (3.3)	67N3 (3.8)	67G3 (3.10)	67Q3 (3.12)
	67P3T (3.3)	67N3T (3.8)	67G3T (3.10)	67Q3T (3.12)
DIR4	67P4 (3.3)	67N4 (3.8)	67G4 (3.10)	67Q4 (3.12)
	67P4T (3.3)	67N4T (3.8)	67G4T (3.10)	67Q4T (3.12)

Table 4.1: Overcurrent Elements Controlled by Level Direction Settings DIR1 Through DIR4 (corresponding overcurrent element figure numbers in parentheses)

In most communications-assisted trip schemes, the levels are set as follows (see Figure 5.4):

Level 1 overcurrent elements set direction forward (DIR1 = F) Level 2 overcurrent elements set direction forward (DIR2 = F) Level 3 overcurrent elements set direction reverse (DIR3 = R) In some applications, level direction settings DIR1 through DIR4 are not flexible enough in assigning the desired direction for certain overcurrent elements. Subsection *Directional Control Provided by Torque Control Settings* at the end of this section describes how to avoid this limitation for special cases.

ORDER - Ground Directional Element Priority Setting

Setting Range:

- Q Negative-sequence voltage-polarized directional element
- V Zero-sequence voltage-polarized, residual-current directional element and zerosequence voltage-polarized, neutral-current directional element
- OFF No ground directional control

Setting ORDER can be set with any combination of Q and V. The <u>order</u> in which these directional elements are listed in setting ORDER determines the priority in which they operate to provide *Best Choice Ground Directional* logic control. See Figure 4.8.

For example, if setting:

ORDER = QV

then the first listed directional element (Q = negative-sequence voltage-polarized, residualcurrent directional element; see Figure 4.9) is the first priority directional element to provide directional control for the neutral ground and residual ground overcurrent elements.

If the zero-sequence voltage-polarized directional element is not operable (i.e., it does not have sufficient operating quantity as indicated by its internal enable, 32QGE, not being asserted), then the second listed directional element (V = zero-sequence voltage-polarized, residual-current directional element; see Figure 4.10) provides directional control for the neutral ground and residual ground overcurrent elements.

If the zero-sequence voltage-polarized, residual-current directional element is not operable (i.e., it does not have sufficient operating quantity as indicated by its internal enable, 32VE, not being asserted), then 32NE asserts according to Figure 4.7. In this case, directional control will be provided for neutral ground overcurrent elements only.

Another example, if setting:

ORDER = V

then the zero-sequence voltage-polarized, residual-current directional element (see Figure 4.10) provides directional control for the neutral ground and residual ground overcurrent elements. If the zero-sequence voltage-polarized, residual-current directional element is not operable (i.e., it does not have sufficient operating quantity as indicated by its internal enable, 32VE, not being asserted), then 32NE asserts according to Figure 4.7. In this case, directional control will be provided for neutral ground overcurrent elements only.

Setting ORDER can be set with any element combination (e.g., ORDER = VQ, ORDER = Q).

If setting:

ORDER = OFF

then the two directional elements (Q and V) are inoperable. Note in Figure 4.14 and Figure 4.15 that setting ORDER = OFF effectively makes the neutral ground and residual ground overcurrent elements nondirectional (the directional control outputs of Figure 4.14 and Figure 4.15 are continuously asserted to logical 1).

50P32P - Phase Directional Element Three-Phase Current Pickup

Setting Range:

0.1 to 2.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

The 50P32P setting is set to pick up for all three-phase faults that need to be covered by the phase overcurrent elements. It supervises the positive-sequence voltage-polarized directional elements F32P and R32P (see Figure 4.18).

If the load-encroachment logic is enabled (enable setting ELOAD = Y), then setting 50P32P is not made or displayed, but is fixed internally at:

0.1 A secondary (1 A nominal phase current inputs, IA, IB, IC)

Z2F - Forward Directional Z2 Threshold

Z2R - Reverse Directional Z2 Threshold

Setting Range:

-640.00 to +640.00 Ω secondary (1 A nominal phase current inputs, IA, IB, IC)

Z2F and Z2R are used to calculate the Forward and Reverse Thresholds, respectively, for the negative-sequence voltage-polarized directional elements (see Figure 4.9 and Figure 4.17).

Z2F and Z2R Set Automatically

If enable setting E32 = AUTO, settings Z2F and Z2R (negative-sequence impedance values) are calculated automatically, using the positive-sequence line impedance magnitude setting Z1MAG as follows:

Z2F = Z1MAG/2	(Ω secondary)
Z2R = Z1MAG/2 + 1.0	(Ω secondary)

If enable setting E32 = Y, settings Z2F and Z2R (negative-sequence impedance values) are calculated by the user and entered by the user, but setting Z2R must be at least 1.0 Ω secondary greater in value than setting Z2F.

50QFP - Forward Directional Negative-Sequence Current Pickup

50QRP - Reverse Directional Negative-Sequence Current Pickup

Setting Range:

0.05 to 1.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

The 50QFP setting $(3I_2 \text{ current value})$ is the pickup for the forward fault detector 50QF of the negative-sequence voltage-polarized directional elements (see Figure 4.5). Ideally, the setting is above normal load unbalance and below the lowest expected negative-sequence current magnitude for unbalanced forward faults.

The 50QRP setting $(3I_2 \text{ current value})$ is the pickup for the reverse fault detector 50QR of the negative-sequence voltage-polarized directional elements (see Figure 4.5). Ideally, the setting is above normal load unbalance and below the lowest expected negative-sequence current magnitude for unbalanced reverse faults.

50QFP and 50QRP Set Automatically

If enable setting E32 = AUTO, settings 50QFP and 50QRP are set automatically at:

50QFP = 0.10 A secondary (1 A nominal phase current inputs, IA, IB, IC) 50QRP = 0.05 A secondary (1 A nominal phase current inputs, IA, IB, IC)

a2 - Positive-Sequence Current Restraint Factor, I_2/I_1

Setting Range:

0.02 to 0.50	(unitless)
--------------	------------

Refer to Figure 4.5.

The a2 factor increases the security of the negative-sequence voltage-polarized directional elements. It keeps the elements from operating for negative-sequence current (system unbalance), which circulates due to line asymmetries, CT saturation during three-phase faults, etc.

a2 Set Automatically

If enable setting E32 = AUTO, setting a2 is set automatically at:

a2 = 0.1

For setting $a^2 = 0.1$, the negative-sequence current (I₂) magnitude has to be greater than 1/10 of the positive-sequence current (I₁) magnitude in order for the negative-sequence voltage-polarized directional elements to be enabled $(|I_2| > 0.1 \cdot |I_1|)$.

k2 - Zero-Sequence Current Restraint Factor, I_2/I_0

Setting Range:

0.10 to 1.20	(unitless)
--------------	------------

Note the internal enable logic outputs in Figure 4.5:

- 32QE internal enable for the negative-sequence voltage-polarized directional element that controls the negative-sequence and phase overcurrent elements
- 32QGE internal enable for the negative-sequence voltage-polarized directional element that controls the neutral ground and residual ground overcurrent elements

The k2 factor is applied to internal enable 32QGE. The negative-sequence current (I_2) magnitude has to be greater than the zero-sequence current (I_0) magnitude multiplied by k2 in order for the 32QGE internal enable (and following negative-sequence voltage-polarized directional element in Figure 4.9) to be enabled:

 $|\mathbf{I}_2| > \mathbf{k} 2 \cdot |\mathbf{I}_0|$

This check ensures that the relay uses the most robust analog quantities in making directional decisions for the neutral ground and residual ground overcurrent elements.

If the internal enable:

32VE internal enable for the zero-sequence voltage-polarized, residual-current directional element that controls the neutral ground and residual ground overcurrent elements

is deasserted, then factor k2 is ignored as a logic enable for the 32QGE internal enable. If the zero-sequence voltage-polarized directional elements are not operable, less restrictions (i.e., factor k2) are put on the operation of the negative-sequence voltage-polarized directional element.

k2 Set Automatically

If enable setting E32 = AUTO, setting k2 is set automatically at:

k2 = 0.2

For setting k2 = 0.2, the negative-sequence current (I₂) magnitude has to be greater than 1/5 of the zero-sequence current (I₀) magnitude in order for the negative-sequence voltage-polarized directional elements to be enabled $(|I_2| > 0.2 \cdot |I_0|)$. Again, this presumes at least one of the internal enables 32VE or 32IE is asserted.

50GFP - Forward Directional Residual Ground Current Pickup

50GRP - Reverse Directional Residual Ground Current Pickup

Setting Range:

0.05 to 1.00 A secondary (1 A nominal phase current inputs, IA, IB, IC)

If preceding setting ORDER does not contain V (zero-sequence voltage-polarized directional element is not enabled), then settings 50GFP and 50GRP are not made or displayed.

The 50GFP setting $(3I_0$ current value) is the pickup for the forward fault detector 50GF of the zero-sequence voltage-polarized, residual-current directional element (see Figure 4.6). Ideally, the setting is above normal load unbalance and below the lowest expected zero-sequence current magnitude for unbalanced forward faults.

The 50GRP setting $(3I_0 \text{ current value})$ is the pickup for the reverse fault detector 50GR of the zero-sequence voltage-polarized, residual-current directional element (see Figure 4.6). Ideally, the setting is above normal load unbalance and below the lowest expected zero-sequence current magnitude for unbalanced reverse faults.

The 50GFP/10 setting (I_N current value) is the pickup for the forward fault detector 50NF of the zero-sequence voltage-polarized, neutral-current directional element (see Figure 4.7). This setting is always automatic and used for SEF applications.

The 50GRP/10 setting (I_N current value) is the pickup for the reverse fault detector 50NR of the zero-sequence voltage-polarized, neutral-current directional element (see Figure 4.7). This setting is always automatic and used for SEF applications.

50GFP and 50GRP Set Automatically

If enable setting E32 = AUTO, settings 50GFP and 50GRP are set automatically at:

50GFP = 0.10 A secondary (1 A nominal phase current inputs, IA, IB, IC) 50GRP = 0.05 A secondary (1 A nominal phase current inputs, IA, IB, IC)

aO - Positive-Sequence Current Restraint Factor, I_0/I_1

Setting Range:

0.02 to 0.50 (unitless)

If preceding setting ORDER does not contain V (zero-sequence voltage-polarized directional element is not enabled), then setting a0 is not made or displayed.

Refer to Figure 4.6.

The a0 factor increases the security of the zero-sequence voltage-polarized directional element. It keeps the element from operating for zero-sequence current (system unbalance), which circulates due to line asymmetries, CT saturation during three-phase faults, etc.

aO Set Automatically

If enable setting E32 = AUTO, setting a0 is set automatically at:

a0 = 0.1

For setting a0 = 0.1, the zero-sequence current (I_0) magnitude has to be greater than 1/10 of the positive-sequence current (I_1) magnitude in order for the zero-sequence voltage-polarized directional element to be enabled ($|I_0| > 0.1 \cdot |I_1|$).

ZOF - Forward Directional ZO Threshold

ZOR - Reverse Directional ZO Threshold

Setting Range:

-640.00 to +640.00 Ω secondary (1 A nominal phase current inputs, IA, IB, IC)

If preceding setting ORDER does not contain V (no zero-sequence voltage-polarized directional element is enabled), then settings ZOF and ZOR are not made or displayed.

ZOF and ZOR are used to calculate the Forward and Reverse Thresholds, respectively, for all the zero-sequence voltage-polarized directional elements (see Figure 4.10 and Figure 4.11).

ZOF and ZOR Set Automatically

If enable setting E32 = AUTO, settings Z0F and Z0R (zero-sequence impedance values) are calculated automatically, using the zero-sequence line impedance magnitude setting Z0MAG as follows:

ZOF = ZOMAG/2 (Ω secondary) ZOR = ZOMAG/2 + 1.0 (Ω secondary)

If enable setting E32 = Y, settings Z0F and Z0R (zero-sequence impedance values) are calculated by the user and entered by the user, but setting Z0R must be at least 1.0 Ω secondary greater in value than setting Z0F.

E32IV - SELOGIC Control Equation Enable

Refer to Figure 4.6.

SELOGIC control equation setting E32IV must be asserted to logical 1 to enable the zerosequence voltage-polarized directional element for directional control of neutral ground and residual ground overcurrent elements.

Most often, this setting is set directly to logical 1:

E32IV = 1 (numeral 1)

For situations where zero-sequence source isolation can occur (e.g., by the opening of a circuit breaker) and result in possible mutual coupling problems for the zero-sequence voltage-polarized directional elements, SELOGIC control equation setting E32IV should be deasserted to logical 0.

In this example, this is accomplished by connecting a circuit breaker auxiliary contact from the identified circuit breaker to the SEL-351R:

E32IV = IN6 (52a connected to optoisolated input IN6)

Almost any desired control can be set in SELOGIC control equation setting E32IV.

DIRECTIONAL CONTROL PROVIDED BY TORQUE CONTROL SETTINGS

For most applications, the level direction settings DIR1 through DIR4 are used to set overcurrent elements direction forward, reverse, or nondirectional. Table 4.1 shows the overcurrent elements that are controlled by each level direction setting. Note in Table 4.1 that all the time-overcurrent elements (51_T elements) are controlled by the DIR1 level direction setting. See Figure 4.14, Figure 4.20, and Figure 4.21.

In most communications-assisted trip schemes, the levels are set as follows (see Figure 5.4):

Level 1 overcurrent elements set direction forward (DIR1 = F) Level 2 overcurrent elements set direction forward (DIR2 = F) Level 3 overcurrent elements set direction reverse (DIR3 = R)

Suppose that the Level 1 overcurrent elements should be set as follows:

67P1	direction forward
67G1	direction forward
51P1T	direction forward

- 51P2T direction reverse
- 51N1T nondirectional
- 51G1T direction forward

To accomplish this, the DIR1 setting is "turned off," and the corresponding SELOGIC control equation torque control settings for the above overcurrent elements are used to make the elements directional (forward or reverse) or nondirectional. The required settings are:

DIR1 = N	("turned off"; see Figure 4.14, Figure 4.20, and Figure 4.21)
67P1TC = 32PF	(direction forward; see Figure 3.3)
67G1TC = 32GF	(direction forward; see Figure 3.10)
51P1TC = 32PF	(direction forward; see Figure 3.14)
51P2TC = 32PR	(direction reverse; see Figure 3.15)
51N1TC = 1	(nondirectional; see Figure 3.16)
51G1TC = 32GF	(direction forward; see Figure 3.18)

This is just one example of using SELOGIC control equation torque control settings to make overcurrent elements directional (forward or reverse) or nondirectional. This example discussed only Level 1 overcurrent elements (controlled by level direction setting DIR1). The same setting principles can apply to the other levels as well. Many variations are possible.

TABLE OF CONTENTS

TION 5: TRIP AND TARGET LOGIC	5-1
Trip Logic	5-1
Set Trip	
Unlatch Trip	
Other Applications for the Target Reset Function	
Factory Settings Example (using setting TR)	
Program an Output for Tripping	
Switch-Onto-Fault (SOTF) Trip Logic	
Three-Pole Open Logic	
Determining Three-Pole Open Condition Without Circuit Breaker Auxiliary	
Contact	5-7
Circuit Breaker Operated Switch-Onto-Fault Logic	5-7
Close Bus Operated Switch-Onto-Fault Logic	5-7
Switch-Onto-Fault Logic Output (SOTFE)	5-8
Switch-Onto-Fault Trip Logic Trip Setting (TRSOTF)	5-8
Communications-Assisted Trip Logic—General Overview	5-9
Enable Setting ECOMM	5-9
Trip Setting TRCOMM	5-10
Trip Settings TRSOTF and TR	5-11
Trip Setting DTT	5-11
Use Existing SEL-321 Relay Application Guides for the SEL-351R Recloser	
Control	5-12
Optoisolated Input Settings Differences Between the SEL-321 and SEL-351R	
Recloser Control	5-12
Trip Settings Differences Between the SEL-321 and SEL-351R Recloser	
Control	
Permissive Overreaching Transfer Trip (POTT) Logic	5-13
Use Existing SEL-321 Relay POTT Application Guide for the SEL-351R Recloser	
Control	
External Inputs	
PT1 — Received Permissive Trip Signal(s)	
Timer Settings	
Z3RBD — Zone (Level) 3 Reverse Block Delay	
EBLKD — Echo Block Delay	
ETDPU — Echo Time Delay Pickup	
EDURD — Echo Duration	
Logic Outputs	
Z3RB — Zone (Level) 3 Reverse Block	
ECTT — Echo Conversion to Trip	
KEY — Key Permissive Trip EKEY — Echo Key Permissive Trip	
•	
Variations for Permissive Underreaching Transfer Trip (PUTT) Scheme Installation Variations	
Directional Comparison Unblocking (DCUB) Logic	
	5-10

Use Existing SEL-321 Relay DCUB Application Guide for the SEL-351R Recloser
Control
External Inputs 5-19
PT1, PT2 — Received Permissive Trip Signal(s)
LOG1, LOG2 — Loss-of-Guard Signal(s) 5-20
Timer Settings
GARD1D — Guard-Present Delay 5-20
UBDURD — DCUB Disable Delay 5-20
UBEND — DCUB Duration Delay 5-20
Logic Outputs
UBB1, UBB2 — Unblocking Block Output(s) 5-21
PTRX1, PTRX2 — Permissive Trip Receive Outputs
Installation Variations
Directional Comparison Blocking (DCB) Logic 5-24
Use Existing SEL-321 Relay DCB Application Guide for the SEL-351R Recloser
Control
External Inputs
BT—Received Block Trip Signal(s)
Timer Settings
Z3XPU—Zone (Level) 3 Reverse Pickup Time Delay
Z3XD — Zone (Level) 3 Reverse Dropout Extension
BTXD — Block Trip Receive Extension
67P2SD, 67N2SD, 67G2SD, 67Q2SD — Level 2 Short Delay 5-25
Logic Outputs
DSTRT — Directional Carrier Start
NSTRT — Nondirectional Carrier Start 5-26
STOP — Stop Carrier
BTX — Block Trip Extension
Installation Variations
Additional Front-Panel Status and Target LED Information 5-29
A, B, and C Target LEDs 5-29
Target Reset/Lamp Test Front-Panel Pushbutton 5-29
Other Applications for the Target Reset Function
SELOGIC Control Equation Setting FAULT 5-30

FIGURES

Trip Logic	5-2
Minimum Trip Duration Timer Operation (see bottom of Figure 5.1)	5-3
Three-Pole Open Logic (top) and Switch-Onto-Fault Logic (bottom)	5-6
Communications-Assisted Tripping Scheme	5-9
Permissive Input Logic Routing to POTT Logic	5-14
POTT Logic	5-16
Permissive Input Logic Routing to Trip Logic	5-17
SEL-351R Recloser Control Connections to Communications Equipment for a	
Two-Terminal Line POTT Scheme	5-18
SEL-351R Recloser Control Connections to Communications Equipment for a	
Three-Terminal Line POTT Scheme	5-18
	 Minimum Trip Duration Timer Operation (see bottom of Figure 5.1) Three-Pole Open Logic (top) and Switch-Onto-Fault Logic (bottom) Communications-Assisted Tripping Scheme Permissive Input Logic Routing to POTT Logic POTT Logic Permissive Input Logic Routing to Trip Logic SEL-351R Recloser Control Connections to Communications Equipment for a Two-Terminal Line POTT Scheme SEL-351R Recloser Control Connections to Communications Equipment for a

Figure 5.10:	DCUB Logic	5-22
Figure 5.11:	Unblocking Block Logic Routing to Trip Logic	5-23
Figure 5.12:	SEL-351R Recloser Control Connections to Communications Equipment for a	
	Two-Terminal Line DCUB Scheme (setting ECOMM = DCUB1)	5-23
Figure 5.13:	SEL-351R Recloser Control Connections to Communications Equipment for a	
	Three-Terminal Line DCUB Scheme (setting ECOMM = DCUB2)	5-24
Figure 5.14:	DCB Logic	5-27
Figure 5.15:	SEL-351R Recloser Control Connections to Communications Equipment for a	
	Two-Terminal Line DCB Scheme	5-28
Figure 5.16:	SEL-351R Recloser Control Connections to Communications Equipment for a	
	Three-Terminal Line DCB Scheme	5-29
Figure 5.17:	Seal-In of Breaker Failure Occurrence for Message Display	5-30

SECTION 5: TRIP AND TARGET LOGIC

TRIP LOGIC

The trip logic in Figure 5.1 provides flexible tripping with SELOGIC[®] control equation settings:

TRCOMM	Communications-Assisted Trip Conditions. Setting TRCOMM is supervised by communications-assisted trip logic. See <i>Communications-Assisted Trip Logic—General Overview</i> later in this section for more information on communications-assisted tripping.
DTT	Direct Transfer Trip Conditions.
	Note in Figure 5.1 that setting DTT is unsupervised. Any element that asserts in setting DTT will cause Relay Word bits COMMT and TRIP to assert to logical 1.
	A typical setting for DTT is:
	DTT = IN106
	where input IN106 is connected to the output of direct transfer trip communications equipment.
	Setting DTT is also used for Direct Underreaching Transfer Trip (DUTT) schemes.
	To illuminate an LED to indicate a communications-assisted trip (via SELOGIC control equation settings TRCOMM or DTT), reprogram an LED with Relay Word bit COMMT. The LED also has to be set as a triplatch LED (see <i>Front-Panel Status and Trip Target LEDs</i> subsection in <i>Section 1: Factory-Set Logic</i>).
TRSOTF	Switch-Onto-Fault Trip Conditions.
	Setting TRSOTF is supervised by the switch-onto-fault condition SOTFE. See <i>Switch-Onto-Fault (SOTF) Trip Logic</i> later in this section for more information on switch-onto-fault logic.
TR	Other Trip Conditions.
	Setting TR is the SELOGIC control equation trip setting <u>most often used</u> if tripping does not involve communications-assisted (settings TRCOMM and DTT) or switch-onto-fault (setting TRSOTF) trip logic.
	Note in Figure 5.1 that setting TR is unsupervised. Any element that asserts in setting TR will cause Relay Word bit TRIP to assert to logical 1.
ULTR	Unlatch Trip Conditions.
TDURD	Minimum Trip Duration Time.
	This timer establishes the <u>minimum</u> time duration for which the TRIP Relay Word bit asserts. This is a rising edge initiated timer. The settable range for this timer is 4–16,000 cycles. See Figure 5.2.

More than one trip setting (or all four trip settings TRCOMM, DTT, TRSOTF, and TR) can be set. For example, in a communications-assisted trip scheme, TRCOMM is set with direction forward overreaching Level 2 overcurrent elements, TR is set with direction forward underreaching Level 1 overcurrent elements and other time delayed elements (e.g., Level 2 definitetime overcurrent elements), and TRSOTF is set with nondirectional overcurrent elements.

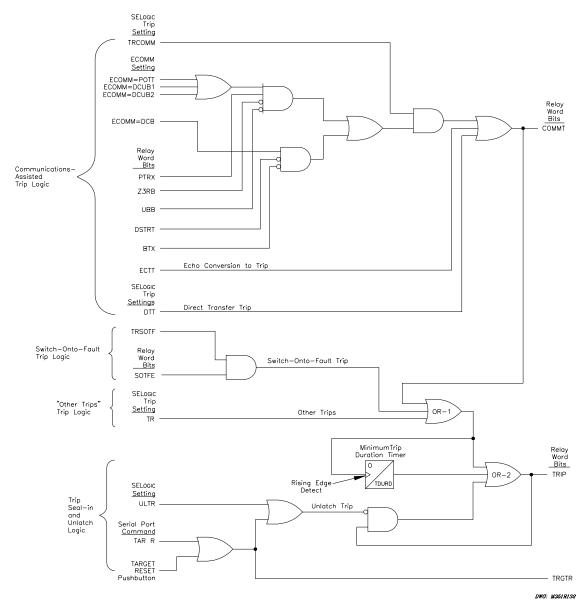
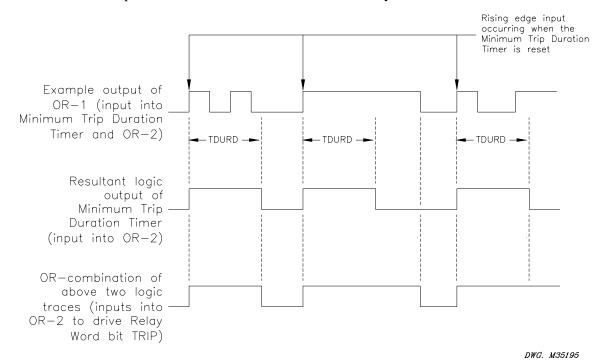


Figure 5.1: Trip Logic


Set Trip

Refer to Figure 5.1. All trip conditions:

- Communications-Assisted Trip
- Direct Transfer Trip
- Switch-Onto-Fault Trip
- Other Trips

are combined into OR-1 gate. The output of OR-1 gate asserts Relay Word bit TRIP to logical 1, regardless of other trip logic conditions. It also is routed into the Minimum Trip Duration Timer (setting TDURD).

As shown in the time line example in Figure 5.2, the Minimum Trip Duration Timer (with setting TDURD) outputs a logical 1 for a time duration of "TDURD" cycles any time it sees a <u>rising edge</u> on its input (logical 0 to logical 1 transition), if it is not already timing (timer is reset). The TDURD timer assures that the TRIP Relay Word bit remains asserted at logical 1 for a <u>minimum</u> of "TDURD" cycles. If the output of OR-1 gate is logical 1 beyond the TDURD time, Relay Word bit TRIP remains asserted at logical 1 for as long as the output of OR-1 gate remains at logical 1, regardless of other trip logic conditions.

The Minimum Trip Duration Timer can be set no less than 4 cycles.

Figure 5.2: Minimum Trip Duration Timer Operation (see bottom of Figure 5.1)

Unlatch Trip

Once Relay Word bit TRIP is asserted to logical 1, it remains asserted at logical 1 until <u>all</u> the following conditions come true:

- Minimum Trip Duration Timer stops timing (logic output of the TDURD timer goes to logical 0)
- Output of OR-1 gate deasserts to logical 0
- One of the following occurs:
 - SELOGIC control equation setting ULTR asserts to logical 1,
 - The front-panel TARGET RESET button is pressed,
 - Or the TAR R (Target Reset) command is executed via the serial port.

The front-panel TARGET RESET button or the TAR R (Target Reset) serial port command is primarily used during testing. Use these to force the TRIP Relay Word bit to logical 0 if test conditions are such that setting ULTR does not assert to logical 1 to automatically deassert the TRIP Relay Word bit instead.

Other Applications for the Target Reset Function

Refer to the bottom of Figure 5.1. Note that the combination of the TARGET RESET Pushbutton and the TAR R (Target Reset) serial port command is also available as Relay Word bit TRGTR. See Figure 5.17 and accompanying text for applications for Relay Word bit TRGTR.

Factory Settings Example (using setting TR)

If the "communications-assisted" and "switch-onto-fault" trip logic at the top of Figure 5.1 can effectively be ignored, the figure becomes a lot smaller. Then SELOGIC control equation trip setting TR is the only input into OR-1 gate and follows into the "seal-in and unlatch" logic for Relay Word bit TRIP.

The factory settings for the trip logic SELOGIC control equation settings are:

TR = 51P1T + 51P2T + 51G1T + 51G2T + 51N1T + 51N2T	
+ 67P2T + 67G2T + 67N2T + 67N3T + 81D1T + PB9 + OC	(trip conditions)
ULTR = !52A	(unlatch trip conditions)

The factory setting for the Minimum Trip Duration Timer setting is:

TDURD = 12.00 cycles

With setting TDURD = 12.000 cycles, once the TRIP Relay Word bit asserts via SELOGIC control equation setting TR, it remains asserted at logical 1 for a <u>minimum</u> of 12 cycles.

See Figures in *Section 1: Factory-Set Logic* for more information on factory-set SELOGIC control equation settings TR and ULTR.

Program an Output for Tripping

In the factory settings, the resultant of the trip logic in Figure 5.1 is routed to high voltage FET trip output RCTR with the following SELOGIC control equation setting:

RCTR = TRIP (see Figure 7.30)

If additional TRIP output contacts are needed, program the extra output contacts with the TRIP Relay Word bit (e.g., OUT101 = TRIP). Examples of uses for additional TRIP output contacts:

- Tripping more than one breaker
- Keying an external breaker failure relay
- Keying communication equipment in a Direct Transfer Trip scheme

See *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on programming output contacts.

SWITCH-ONTO-FAULT (SOTF) TRIP LOGIC

Switch-Onto-Fault (SOTF) trip logic provides a programmable time window for selected elements to trip right after the circuit breaker closes. "Switch-onto-fault" implies that a circuit breaker is closed into an existing fault condition. For example, suppose safety grounds are accidentally left attached to a line after a clearance. If the circuit breaker is closed into such a condition, the resulting fault needs to be cleared right away and reclosing blocked. An instantaneous overcurrent element is usually set to trip in the three-pole open (3PO) logic and the SOTF trip logic.

Refer to the SOTF trip logic in Figure 5.1 (middle of figure). The SOTF trip logic permits tripping if <u>both</u> the following occur:

- An element asserts in SELOGIC control equation trip setting TRSOTF
- Relay Word bit SOTFE is asserted to logical 1

Relay Word bit SOTFE (the output of the SOTF logic) provides the effective time window for an element in trip setting TRSOTF (e.g., TRSOTF = 50P2) to trip after the circuit breaker closes. Figure 5.3 and the following discussion describe the three-pole open (3PO) logic and the SOTF logic.

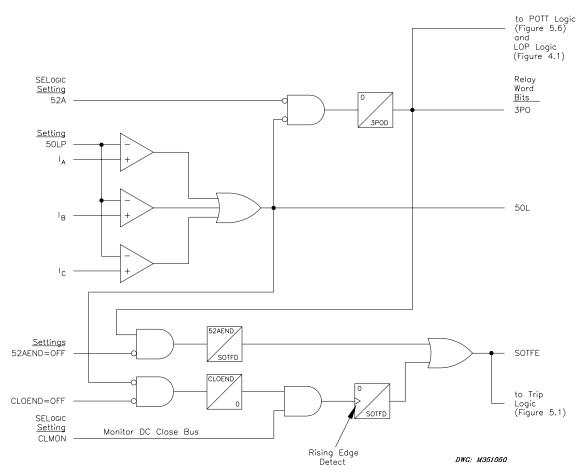


Figure 5.3: Three-Pole Open Logic (top) and Switch-Onto-Fault Logic (bottom)

Three-Pole Open Logic

Three-pole open (3PO) logic is the top half of Figure 5.3. It is not affected by enable setting ESOTF (see Settings Sheet 1 of 28 in *Section 9: Setting the SEL-351R Recloser Control*).

The open circuit breaker condition is determined from the combination of:

- Circuit breaker status (52A)
- Load current condition (50L)

If the circuit breaker is open (52A = logical 0) and current is below phase pickup 50LP (50L = logical 0), then the three-pole open (3PO) condition is true:

3PO = logical 1 (circuit breaker open)

The 3POD dropout time qualifies circuit breaker closure, whether detected by circuit breaker status (52A) or load current level (50L). When the circuit breaker is closed:

3PO = logical 0 (circuit breaker closed)

Determining Three-Pole Open Condition Without Circuit Breaker Auxiliary Contact

If a circuit breaker auxiliary contact is not connected to the SEL-351R Recloser Control, SELOGIC control equation setting 52A is set:

52A = 0 (numeral 0)

With SELOGIC control equation setting 52A continually at logical 0, 3PO logic is controlled solely by load detection element 50L. Phase pickup 50LP is set below load current levels.

When the circuit breaker is open, Relay Word bit 50L drops out (= logical 0) and the 3PO condition asserts:

3PO = logical 1 (circuit breaker open)

When the circuit breaker is closed, Relay Word bit 50L picks up (= logical 0; current above phase pickup 50LP) and the 3PO condition deasserts after the 3POD dropout time:

3PO = logical 0 (circuit breaker closed)

Note that the 3PO condition is also routed to the permissive overreaching transfer trip (POTT) logic (see Figure 5.6) and the loss-of-potential (LOP) logic (see Figure 4.1).

Circuit Breaker Operated Switch-Onto-Fault Logic

Circuit breaker operated switch-onto-fault logic is enabled by making time setting 52AEND (52AEND \neq OFF). Time setting 52AEND qualifies the three-pole open (3PO) condition and then asserts Relay Word bit SOTFE:

SOTFE = logical 1

Note that SOTFE is asserted when the circuit breaker is open. This allows elements set in the SELOGIC control equation trip setting TRSOTF to operate if a fault occurs when the circuit breaker is open (see Figure 5.1). In such a scenario (e.g., flashover inside the circuit breaker tank), the tripping via setting TRSOTF cannot help in tripping the circuit breaker (the circuit breaker is already open), but can initiate breaker failure protection, if a breaker failure scheme is implemented in the SEL-351R (see Figure 7.25 example in *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*) or externally.

When the circuit breaker is closed, the 3PO condition deasserts (3PO = logical 0) after the 3POD dropout time (setting 3POD is usually set for no more than a cycle). The SOTF logic output, SOTFE, continues to remain asserted at logical 1 for dropout time SOTFD.

Close Bus Operated Switch-Onto-Fault Logic

Close bus operated switch-onto-fault logic is enabled by making time setting CLOEND (CLOEND \neq OFF). Time setting CLOEND qualifies the deassertion of the load detection element 50L (indicating that the circuit breaker is open).

Circuit breaker closure is detected by monitoring the dc close bus. This is accomplished by wiring an optoisolated input on the SEL-351R (e.g., IN104) to the dc close bus. When a manual close or automatic reclosure occurs, optoisolated input IN104 is energized. SELOGIC control equation setting CLMON (close bus monitor) monitors the optoisolated input IN104:

CLMON = IN104

When optoisolated input IN104 is energized, CLMON asserts to logical 1. At the instant that optoisolated input IN104 is energized (close bus is energized), the circuit breaker is still open so the output of the CLOEND timer continues to be asserted to logical 1. Thus, the ANDed combination of these conditions latches in the SOTFD timer. The SOTFD timer outputs a logical 1 for a time duration of "SOTFD" cycles any time it sees a <u>rising edge</u> on its input (logical 0 to logical 1 transition), if it is not already timing. The SOTF logic output, SOTFE, asserts to logical 1 for SOTFD time.

Switch-Onto-Fault Logic Output (SOTFE)

Relay Word bit SOTFE is the output of the circuit breaker operated SOTF logic or the close bus operated SOTF logic described previously. Time setting SOTFD in each of these logic paths provides the effective time window for the overcurrent elements in SELOGIC control equation trip setting TRSOTF to trip after the circuit breaker closes (see Figure 5.1—middle of figure). Time setting SOTFD is usually set around 30 cycles.

Switch-Onto-Fault Trip Logic Trip Setting (TRSOTF)

An instantaneous overcurrent element is usually set to trip in the SELOGIC control equation trip setting TRSOTF (e.g., TRSOTF = 50P2).

If the voltage potential for the relay is from the line-side of the circuit breaker, the instantaneous overcurrent element in the SELOGIC control equation trip setting TRSOTF should be nondirectional. When the circuit breaker is open and the line is reenergized, the relay sees zero voltage. If a close-in three-phase fault condition exists on the line (e.g., safety grounds accidentally left attached to the line after a clearance) and then the circuit breaker is closed, the relay continues to see zero voltage. The directional elements have no voltage for reference and cannot operate. In this case, the instantaneous overcurrent element in the SOTF trip logic should be nondirectional.

COMMUNICATIONS-ASSISTED TRIP LOGIC -GENERAL OVERVIEW

The SEL-351R includes communications-assisted tripping schemes that provide unit-protection for transmission lines with the help of communications. No external coordination devices are required.

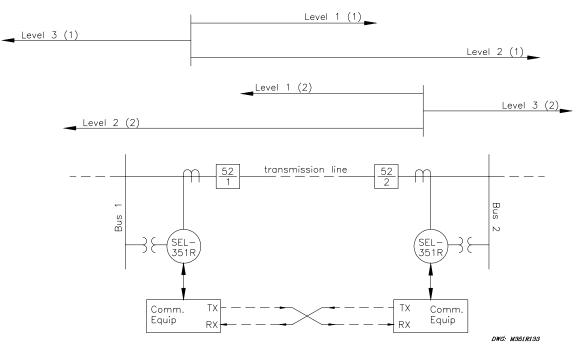


Figure 5.4: Communications-Assisted Tripping Scheme

Refer to Figure 5.4 and the top half of Figure 5.1.

The six available tripping schemes are:

- Direct Transfer Trip (DTT)
- Direct Underreaching Transfer Trip (DUTT)
- Permissive Overreaching Transfer Trip (POTT)
- Permissive Underreaching Transfer Trip (PUTT)
- Directional Comparison Unblocking (DCUB)
- Directional Comparison Blocking (DCB)

Enable Setting ECOMM

The POTT, PUTT, DCUB, and DCB tripping schemes are enabled with enable setting ECOMM. Setting choices are:

ECOMM = N	(no communications-assisted trip scheme enabled)
ECOMM = POTT	(POTT or PUTT scheme)

ECOMM = DCUB1	(DCUB scheme for two-terminal line [communications from <u>one</u> remote terminal])
ECOMM = DCUB2	(DCUB scheme for three-terminal line [communications from <u>two</u> remote terminals])
ECOMM = DCB	(DCB scheme)

These tripping schemes can all work in two-terminal or three-terminal line applications. The DCUB scheme requires separate settings choices for these applications (ECOMM = DCUB1 or DCUB2) because of unique DCUB logic considerations.

In most cases, these tripping schemes require (see Figure 5.4):

- Level 1 underreaching overcurrent elements set direction forward (setting DIR1 = F)
- Level 2 overreaching overcurrent elements set direction forward (setting DIR2 = F)
- Level 3 overcurrent elements set direction reverse (setting DIR3 = R)

See *Settings* in the *Directional Control Settings* subsection in *Section 4: Loss-of-Potential, Load Encroachment, and Directional Element Logic* for more information on level direction settings DIR1 through DIR4.

POTT, PUTT, DCUB, and DCB communications-assisted tripping schemes are explained in subsections that follow.

Note: EZ settings should be turned off for the setting group(s) used in a communicationsassisted tripping scheme. The overcurrent element applications for traditional recloser control schemes (addressed with EZ settings) differ from those in a communicationsassisted tripping scheme (see following trip settings). See Table 1.1 and 1.2 and the EZ settings explanation preceding Table 1.1 in *Section 1: Factory-Set Logic* for more information on EZ settings and overcurrent element applications for traditional recloser control schemes.

Trip Setting TRCOMM

The POTT, PUTT, DCUB, and DCB tripping schemes use SELOGIC control equation trip setting TRCOMM for those tripping elements that are supervised by the communications-assisted trip logic (see top half of Figure 5.1). Setting TRCOMM is typically set with Level 2 overreaching overcurrent elements (set direction forward):

- 67P2 Level 2 directional phase instantaneous overcurrent element
- 67N2 Level 2 directional neutral ground instantaneous overcurrent element
- 67G2 Level 2 directional residual ground instantaneous overcurrent element
- 67Q2 Level 2 directional negative-sequence instantaneous overcurrent element

The exception is a DCB scheme, where Level 2 overreaching overcurrent elements (set direction forward) with a short delay are used instead:

- 67P2S Level 2 directional phase instantaneous overcurrent element (with delay 67P2SD)
- 67N2S Level 2 directional neutral ground instantaneous overcurrent element (with delay 67N2SD)
- 67G2S Level 2 directional residual ground instantaneous overcurrent element (with delay 67G2SD)
- 67Q2S Level 2 directional negative-sequence instantaneous overcurrent element (with delay 67Q2SD)

The short delays provide necessary carrier coordination delays (waiting for the block trip signal).

Trip Settings TRSOTF and TR

In a communications-assisted trip scheme, the SELOGIC control equation trip settings TRSOTF and TR can also be used, in addition to setting TRCOMM.

Setting TRSOTF can be set as described in preceding subsection *Switch-Onto-Fault (SOTF) Trip Logic*.

Setting TR is typically set with unsupervised Level 1 underreaching overcurrent elements (set direction forward):

- 67P1 Level 1 directional phase instantaneous overcurrent element
- 67N1 Level 1 directional neutral ground instantaneous overcurrent element
- 67G1 Level 1 directional residual ground instantaneous overcurrent element
- 67Q1 Level 1 directional negative-sequence instantaneous overcurrent element

and other time delayed elements (e.g., Level 2 definite-time overcurrent elements).

Trip Setting DTT

The DTT and DUTT tripping schemes are realized with SELOGIC control equation trip setting DTT, discussed at the beginning of this section.

To illuminate an LED to indicate a communications-assisted trip (via SELOGIC control equation settings TRCOMM or DTT), reprogram an LED with Relay Word bit COMMT (see Figure 5.1). The LED also has to be set as a trip-latch LED (see *Front-Panel Status and Trip Target LEDs* subsection in *Section 1: Factory-Set Logic*).

Use Existing SEL-321 Relay Application Guides for the SEL-351R Recloser Control

The communications-assisted tripping schemes settings in the SEL-351R are very similar to those in the SEL-321 Relay. Existing SEL-321 Relay application guides can also be used in setting up these schemes in the SEL-351R. The following application guides are available from SEL:

AG93-06	Applying the SEL-321 Relay to Directional Comparison Blocking (DCB) Schemes
AG95-29	Applying the SEL-321 Relay to Permissive Overreaching Transfer Trip (POTT) Schemes
AG96-19	Applying the SEL-321 Relay to Directional Comparison Unblocking (DCUB) Schemes
AG98-06	Using SEL-351s and SEL-351Rs to Provide Automated Load Restoration for Distribution Feeders

The major differences are in the way optoisolated input settings and the trip settings are made. The following explanations describe these differences.

Optoisolated Input Settings Differences Between the SEL-321 and SEL-351R Recloser Control

The SEL-351R does not have optoisolated input settings like the SEL-321 Relay. Rather, the optoisolated inputs of the SEL-351R are available as Relay Word bits and are used in SELOGIC control equations. The following optoisolated input setting example is for a Permissive Overreaching Transfer Trip (POTT) scheme.

SEL-321 Relay	<u>SEL-351R</u>	
IN2 = PT	PT1 = IN102	(received permissive trip)

In the above SEL-351R setting example, Relay Word bit IN102 is set in the PT1 SELOGIC control equation. Optoisolated input IN102 is wired to a communications equipment receiver output contact. Relay Word bit IN102 can also be used in other SELOGIC control equations in the SEL-351R. See *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on optoisolated inputs.

Trip Settings Differences Between the SEL-321 and SEL-351R Recloser Control

Some of the SELOGIC control equation trip settings of the SEL-321 and SEL-351R have different labels, yet are operationally the same. The correspondence is:

SEL-321 Relay	<u>SEL-351R</u>	
MTCS	TRCOMM	(Communications-Assisted Trip Conditions)
MTO	TRSOTF	(Switch-Onto-Fault Trip Conditions)
MTU	TR	(Unconditional or Other Trip Conditions)

The SEL-321 Relay handles trip unlatching with setting TULO. The SEL-351R handles trip unlatching with SELOGIC control equation setting ULTR.

The SEL-321 Relay has single-pole trip logic. The SEL-351R does not have single-pole trip logic.

PERMISSIVE OVERREACHING TRANSFER TRIP (POTT) LOGIC

Enable the POTT logic by setting ECOMM = POTT. The POTT logic in Figure 5.6 is also enabled for directional comparison unblocking schemes (ECOMM = DCUB1 or ECOMM = DCUB2). The POTT logic performs the following tasks:

- Keys communication equipment to send permissive trip when any element included in the SELOGIC control equation communications-assisted trip equation TRCOMM asserts and the current reversal logic is not asserted.
- Prevents keying and tripping by the POTT logic following a current reversal.
- Echoes the received permissive signal to the remote terminal.
- Prevents channel lockup during echo and test.
- Provides a secure means of tripping for weak- and/or zero-infeed line terminals.

Use Existing SEL-321 Relay POTT Application Guide for the SEL-351R Recloser Control

Use the existing SEL-321 Relay POTT application guide (AG95-29) to help set up the SEL-351R in a POTT scheme (see preceding subsection *Communications-Assisted Trip Logic—General Overview* for more setting comparison information on the SEL-321/SEL-351R).

External Inputs

See *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on optoisolated inputs.

PT1 - Received Permissive Trip Signal(s)

In two-terminal line POTT applications, a permissive trip signal is received from <u>one</u> remote terminal. One optoisolated input on the SEL-351R (e.g., input IN104) is driven by a communications equipment receiver output (see Figure 5.8). Make SELOGIC control equation setting PT1:

```
PT1 = IN104 (two-terminal line application)
```

In three-terminal line POTT applications, permissive trip signals are received from <u>two</u> remote terminals. Two optoisolated inputs on the SEL-351R (e.g., input IN104 and IN106) are driven by communications equipment receiver outputs (see Figure 5.9). Make SELOGIC control equation setting PT1 as follows:

PT1 = IN104 * IN106 (three-terminal line application)

SELOGIC control equation setting PT1 in Figure 5.5 is routed to control Relay Word bit PT if enable setting ECOMM = POTT. Relay Word bit PT is then an input into the POTT logic in Figure 5.6 (for echo keying).

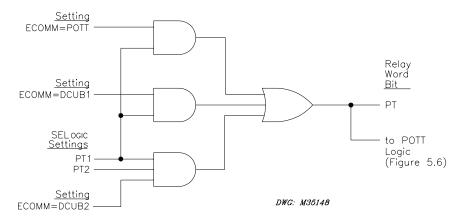


Figure 5.5: Permissive Input Logic Routing to POTT Logic

Also note that SELOGIC control equation setting PT1 in Figure 5.7 is routed to control Relay Word bit PTRX if enable setting ECOMM = POTT. Relay Word bit PTRX is then the permissive trip receive input into the trip logic in Figure 5.1.

Timer Settings

See Section 9: Setting the SEL-351R Recloser Control for setting ranges.

Z3RBD - Zone (Level) 3 Reverse Block Delay

Current-reversal guard timer—typically set at 5 cycles.

EBLKD – Echo Block Delay

Prevents echoing of received PT for settable delay after dropout of local permissive elements in trip setting TRCOMM—typically set at 10 cycles. Set to OFF to defeat EBLKD.

ETDPU – Echo Time Delay Pickup

Sets minimum time requirement for received PT, before echo begins—typically set at 2 cycles. Set to OFF for no echo.

EDURD – Echo Duration

Limits echo duration, to prevent channel lockup—typically set at 3.5 cycles.

Logic Outputs

The following logic outputs can be tested by assigning them to output contacts. See *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on output contacts.

Z3RB - Zone (Level) 3 Reverse Block

Current-reversal guard asserted (operates as an input into the trip logic in Figure 5.1 and the DCUB logic in Figure 5.10).

ECTT – Echo Conversion to Trip

PT received, converted to a trip condition for a Weak-Infeed Condition (operates as an input into the trip logic in Figure 5.1).

KEY – Key Permissive Trip

Signals communications equipment to transmit permissive trip. For example, SELOGIC control equation setting OUT105 is set:

OUT105 = KEY

Output contact OUT105 drives a communications equipment transmitter input in a two-terminal line application (see Figure 5.8).

In a three-terminal line scheme, output contact OUT107 is set the same as OUT105 (see Figure 5.9):

OUT107 = KEY

EKEY – Echo Key Permissive Trip

Permissive trip signal keyed by Echo logic (used in testing).

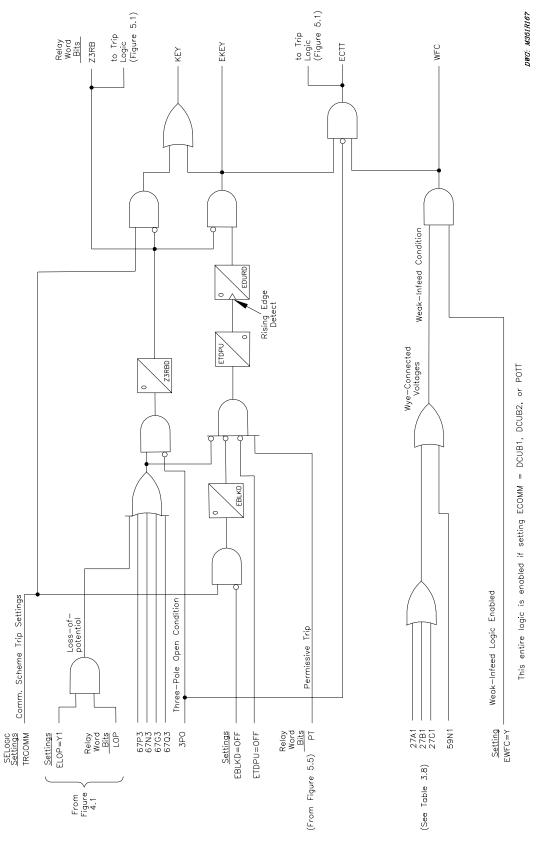


Figure 5.6: POTT Logic

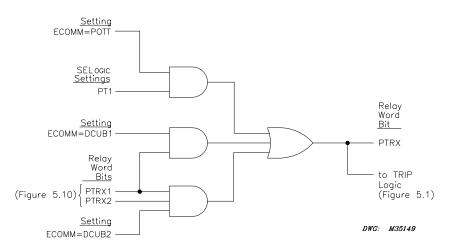


Figure 5.7: Permissive Input Logic Routing to Trip Logic

Variations for Permissive Underreaching Transfer Trip (PUTT) Scheme

Refer to Figure 5.4 and Figure 5.6. In a PUTT scheme, keying is provided by Level 1 underreaching overcurrent elements (set direction forward), instead of with Relay Word bit KEY. This is accomplished by setting output contact OUT105 with these elements:

- 67P1 Level 1 directional phase instantaneous overcurrent element
- 67N1 Level 1 directional neutral ground instantaneous overcurrent element
- 67G1 Level 1 directional residual ground instantaneous overcurrent element
- 67Q1 Level 1 directional negative-sequence instantaneous overcurrent element

instead of with element KEY (see Figure 5.8):

OUT105 = 67P1 + 67N1 + 67G1 + 67Q1 (Note: only use enabled elements)

If echo keying is desired, add the echo key permissive trip logic output, as follows:

OUT105 = 67P1 + 67N1 + 67G1 + 67Q1 + EKEY

In a three-terminal line scheme, output contact OUT107 is set the same as OUT105 (see Figure 5.9).

Installation Variations

Figure 5.9 shows output contacts OUT105 and OUT107 connected to separate communications equipment, for the two remote terminals. Both output contacts are programmed the same (OUT105 = KEY and OUT107 = KEY).

Depending on the installation, perhaps one output contact (e.g., OUT105 = KEY) could be connected in parallel to both transmitter inputs (TX) on the communication equipment in Figure 5.9. Then output contact OUT107 can be used for another function.

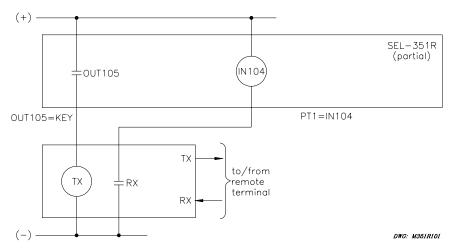


Figure 5.8: SEL-351R Recloser Control Connections to Communications Equipment for a Two-Terminal Line POTT Scheme

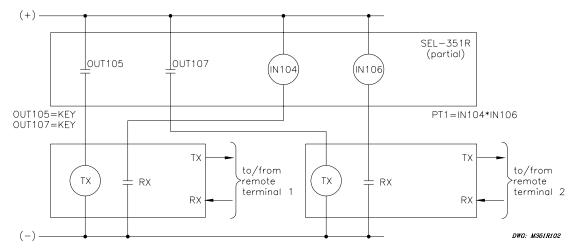


Figure 5.9: SEL-351R Recloser Control Connections to Communications Equipment for a Three-Terminal Line POTT Scheme

DIRECTIONAL COMPARISON UNBLOCKING (DCUB) LOGIC

Enable the DCUB logic by setting ECOMM = DCUB1 or ECOMM = DCUB2. The DCUB logic in Figure 5.10 is an extension of the POTT logic in Figure 5.6. Thus, the relay requires <u>all</u> the POTT settings and logic, <u>plus</u> exclusive DCUB settings and logic. The difference between setting choices DCUB1 and DCUB2 is:

- DCUB1 directional comparison unblocking scheme for two-terminal line (communications from <u>one</u> remote terminal)
- DCUB2 directional comparison unblocking scheme for three-terminal line (communications from <u>two</u> remote terminals)

The DCUB logic in Figure 5.10 takes in the loss-of-guard and permissive trip outputs from the communication receivers (see Figure 5.12 and Figure 5.13) and makes permissive (PTRX1/PTRX2) and unblocking block (UBB1/UBB2) logic output decisions.

DCUB schemes are typically implemented with FSK (frequency shift carrier) or analog microwave as the communications medium.

Use Existing SEL-321 Relay DCUB Application Guide for the SEL-351R Recloser Control

Use the existing SEL-321 Relay DCUB application guide (AG96-19) to help set up the SEL-351R in a DCUB scheme (see preceding subsection *Communications-Assisted Trip Logic—General Overview* for more setting comparison information on the SEL-321/SEL-351Rs).

External Inputs

See *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on optoisolated inputs.

PT1, PT2 - Received Permissive Trip Signal(s)

In two-terminal line DCUB applications (setting ECOMM = DCUB1), a permissive trip signal is received from <u>one</u> remote terminal. One optoisolated input on the SEL-351R (e.g., input IN104) is driven by a communications equipment receiver output (see Figure 5.12). Make SELOGIC control equation setting PT1:

PT1 = IN104 (two-terminal line application)

In three-terminal line DCUB applications (setting ECOMM = DCUB2), permissive trip signals are received from <u>two</u> remote terminals. Two optoisolated inputs on the SEL-351R (e.g., inputs IN104 and IN106) are driven by communications equipment receiver outputs (see Figure 5.13). Make SELOGIC control equation settings PT1 and PT2 as follows:

PT1 = IN104	(three-terminal line application)
PT2 = IN106	

SELOGIC control equation settings PT1 and PT2 are routed into the DCUB logic in Figure 5.10 for "unblocking block" and "permissive trip receive" logic decisions.

As explained in the preceding POTT subsection, the SELOGIC control equation settings PT1 and PT2 in Figure 5.5 are routed in various combinations to control Relay Word bit PT, depending on enable setting ECOMM = DCUB1 or DCUB2. Relay Word bit PT is then an input into the POTT logic in Figure 5.6 (for echo keying).

LOG1, LOG2 - Loss-of-Guard Signal(s)

In two-terminal line DCUB applications (setting ECOMM = DCUB1), a loss-of-guard signal is received from <u>one</u> remote terminal. One optoisolated input on the SEL-351R (e.g., input IN105) is driven by a communications equipment receiver output (see Figure 5.12). Make SELOGIC control equation setting LOG1:

LOG1 = IN105 (two-terminal line application)

In three-terminal line DCUB applications (setting ECOMM = DCUB2), loss-of-guard signals are received from <u>two</u> remote terminals. Two optoisolated inputs on the SEL-351R (e.g., input IN105 and IN107) are driven by communications equipment receiver outputs (see Figure 5.13). Make SELOGIC control equation settings LOG1 and LOG2 as follows:

LOG1 = IN105	(three-terminal line application)
LOG2 = IN107	

SELOGIC control equation settings LOG1 and LOG2 are routed into the DCUB logic in Figure 5.10 for "unblocking block" and "permissive trip receive" logic decisions.

Timer Settings

See Section 9: Setting the SEL-351R Recloser Control for setting ranges.

GARD1D - Guard-Present Delay

Sets minimum time requirement for reinstating permissive tripping following a loss-of-channel condition—typically set at 10 cycles. Channel 1 and 2 logic use separate timers but have this same delay setting.

UBDURD – DCUB Disable Delay

Prevents tripping by POTT logic after a settable time following a loss-of-channel condition—typically set at 9 cycles (150 ms). Channel 1 and 2 logic use separate timers but have this same delay setting.

UBEND – DCUB Duration Delay

Sets minimum time required to declare a loss-of-channel condition—typically set at 0.5 cycles. Channel 1 and 2 logic use separate timers but have this same delay setting.

Logic Outputs

The following logic outputs can be tested by assigning them to output contacts. See *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on output contacts.

UBB1, UBB2 - Unblocking Block Output(s)

In two-terminal line DCUB applications (setting ECOMM = DCUB1), UBB1 disables tripping if the loss-of-channel condition continues for longer than time UBDURD.

In three-terminal line DCUB applications (setting ECOMM = DCUB2), UBB1 or UBB2 disable tripping if the loss-of-channel condition (for the respective Channel 1 or 2) continues for longer than time UBDURD.

The UBB1 and UBB2 are routed in various combinations in Figure 5.11 to control Relay Word bit UBB, depending on enable setting ECOMM = DCUB1 or DCUB2. Relay Word bit UBB is the unblock block input into the trip logic in Figure 5.1. When UBB asserts to logical 1, tripping is blocked.

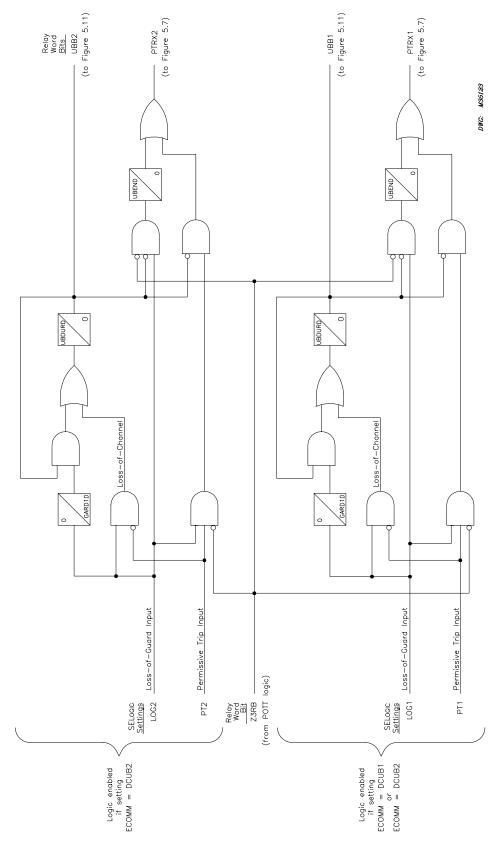


Figure 5.10: DCUB Logic

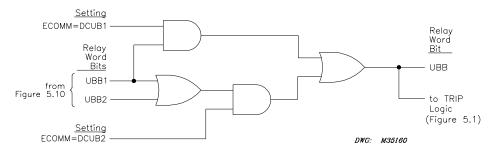


Figure 5.11: Unblocking Block Logic Routing to Trip Logic

PTRX1, PTRX2 – Permissive Trip Receive Outputs

In two-terminal line DCUB applications (setting ECOMM = DCUB1), PTRX1 asserts for lossof-channel or an actual received permissive trip.

In three-terminal line DCUB applications (setting ECOMM = DCUB2), PTRX1 or PTRX2 assert for loss-of-channel or an actual received permissive trip (for the respective Channel 1 or 2).

The PTRX1/PTRX2 Relay Word bits are then routed in various combinations in Figure 5.7 to control Relay Word bit PTRX, depending on enable setting ECOMM = DCUB1 or DCUB2. Relay Word bit PTRX is the permissive trip receive input into the trip logic in Figure 5.1.

Installation Variations

Figure 5.13 shows output contacts OUT105 and OUT107 connected to separate communications equipment, for the two remote terminals. Both output contacts are programmed the same (OUT105 = KEY and OUT107 = KEY).

Depending on the installation, perhaps one output contact (e.g., OUT105 = KEY) could be connected in parallel to both transmitter inputs (TX) on the communications equipment in Figure 5.13. Then output contact OUT107 can be used for another function.

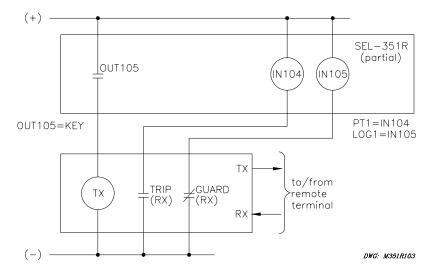


Figure 5.12: SEL-351R Recloser Control Connections to Communications Equipment for a Two-Terminal Line DCUB Scheme (setting ECOMM = DCUB1)

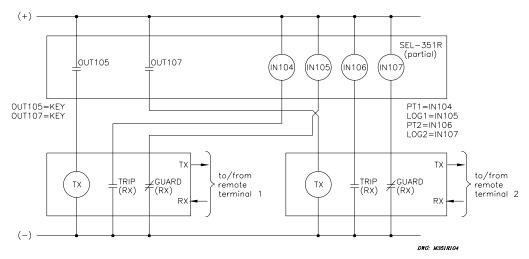


Figure 5.13: SEL-351R Recloser Control Connections to Communications Equipment for a Three-Terminal Line DCUB Scheme (setting ECOMM = DCUB2)

DIRECTIONAL COMPARISON BLOCKING (DCB) LOGIC

Enable the DCB logic by setting ECOMM = DCB. The DCB logic in Figure 5.14 performs the following tasks:

- Provides the individual carrier coordination timers for the Level 2 directional overcurrent elements 67P2S, 67N2S, 67G2S, and 67Q2S. These delays allow time for the block trip signal to arrive from the remote terminal.
- Instantaneously keys the communications equipment to transmit block trip for reverse faults and extends this signal for a settable time following the dropout of all Level 3 directional overcurrent elements 67P3, 67N3, 67G3, and 67Q3.
- Latches the block trip send condition by the directional overcurrent following a close-in zero-voltage three-phase fault where the polarizing memory expires. Latch is removed when the polarizing memory voltage returns or current is removed.
- Extends the received block signal by a settable time.

Use Existing SEL-321 Relay DCB Application Guide for the SEL-351R Recloser Control

Use the existing SEL-321 Relay DCB application guide (AG93-06) to help set up the SEL-351R in a DCB scheme (see preceding subsection *Communications-Assisted Trip Logic—General Overview* for more setting comparison information on the SEL-321/SEL-351R).

External Inputs

See *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on optoisolated inputs.

BT-Received Block Trip Signal(s)

In two-terminal line DCB applications, a block trip signal is received from <u>one</u> remote terminal. One optoisolated input on the SEL-351R (e.g., input IN104) is driven by a communications equipment receiver output (see Figure 5.15). Make SELOGIC control equation setting BT:

BT = IN104 (two-terminal line application)

In three-terminal line DCB applications, block trip signals are received from <u>two</u> remote terminals. Two optoisolated inputs on the SEL-351R (e.g., input IN104 and IN106) are driven by communications equipment receiver outputs (see Figure 5.16). Make SELOGIC control equation setting BT as follows:

BT = IN104 + IN106 (three-terminal line application)

SELOGIC control equation setting BT is routed through a dropout timer (BTXD) in the DCB logic in Figure 5.14. The timer output, Relay Word bit BTX, is routed to the trip logic in Figure 5.1.

Timer Settings

See Section 9: Setting the SEL-351R Recloser Control for setting ranges.

Z3XPU-Zone (Level) 3 Reverse Pickup Time Delay

Current-reversal guard pickup timer—typically set at 1 cycle.

Z3XD – Zone (Level) 3 Reverse Dropout Extension

Current-reversal guard dropout timer—typically set at 5 cycles.

BTXD – Block Trip Receive Extension

Sets reset time of block trip received condition (BTX) after the reset of block trip input BT.

67P2SD, 67N2SD, 67G2SD, 67Q2SD - Level 2 Short Delay

Carrier coordination delays for the output of Level 2 overreaching overcurrent elements 67P2S, 67N2S, 67G2S, and 67Q2S, respectively—typically set at 1 cycle.

Logic Outputs

The following logic outputs can be tested by assigning them to output contacts. See *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on output contacts.

DSTRT – Directional Carrier Start

Program an output contact for directional carrier start. For example, SELOGIC control equation setting OUT105 is set:

OUT105 = DSTRT

Output contact OUT105 drives a communications equipment transmitter input in a two-terminal line application (see Figure 5.15).

In a three-terminal line scheme, output contact OUT107 is set the same as OUT105 (see Figure 5.16):

OUT107 = DSTRT

DSTART includes current reversal guard logic.

NSTRT – Nondirectional Carrier Start

Program an output contact to include nondirectional carrier start, in addition to directional start. For example, SELOGIC control equation setting OUT105 is set:

OUT105 = DSTRT + NSTRT

Output contact OUT105 drives a communications equipment transmitter input in a two-terminal line application (see Figure 5.15).

In a three-terminal line scheme, output contact OUT107 is set the same as OUT105 (see Figure 5.16):

OUT107 = DSTRT + NSTRT

STOP – Stop Carrier

Program to an output contact to stop carrier. For example, SELOGIC control equation setting OUT106 is set:

OUT106 = STOP

Output contact OUT106 drives a communications equipment transmitter input in a two-terminal line application (see Figure 5.15).

In a three-terminal line scheme, output contact OUT104 is set the same as OUT106 (see Figure 5.16):

OUT104 = STOP

BTX – Block Trip Extension

The received block trip input (e.g., BT = IN104) is routed through a dropout timer (BTXD) in the DCB logic in Figure 5.14. The timer output (BTX) is routed to the trip logic in Figure 5.1.

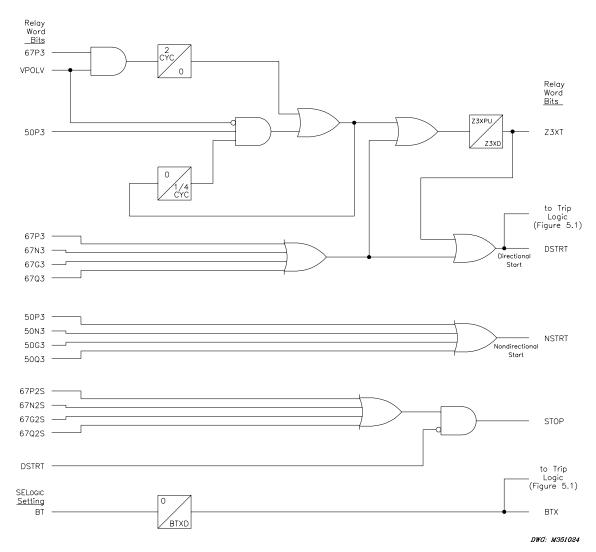


Figure 5.14: DCB Logic

Installation Variations

Figure 5.16 shows output contacts OUT104, OUT105, OUT106, and OUT107 connected to separate communications equipment for the two remote terminals. Both output contact pairs are programmed the same (OUT105 = DSTRT + NSTRT and OUT107 = DSTRT + NSTRT; OUT106 = STOP and OUT104 = STOP).

Depending on the installation, perhaps one output contact (e.g., OUT105 = DSTRT + NSTRT) can be connected in parallel to both START inputs on the communications equipment in Figure 5.16. Then output contact OUT107 can be used for another function.

Depending on the installation, perhaps one output contact (e.g., OUT106 = STOP) can be connected in parallel to both STOP inputs on the communications equipment in Figure 5.16. Then output contact OUT104 can be used for another function.

Figure 5.16 also shows communication equipment RX (receive) output contacts from each remote terminal connected to separate inputs IN104 and IN106 on the SEL-351R. The inputs

operate as block trip receive inputs for the two remote terminals and are used in the SELOGIC control equation setting:

BT = IN104 + IN106

Depending on the installation, perhaps one input (e.g., IN104) can be connected in parallel to both communication equipment RX (receive) output contacts in Figure 5.16. Then setting BT would be programmed as:

BT = IN104

and input IN106 can be used for another function.

In Figure 5.15 and Figure 5.16, the carrier scheme cutout switch contact (85CO) should be closed when the communications equipment is taken out of service so that the BT input of the relay remains asserted. An alternative to asserting the BT input is to change to a setting group where the DCB logic is not enabled.

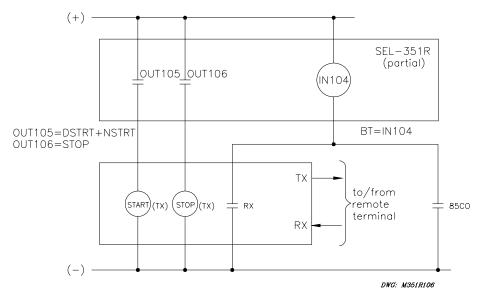


Figure 5.15: SEL-351R Recloser Control Connections to Communications Equipment for a Two-Terminal Line DCB Scheme

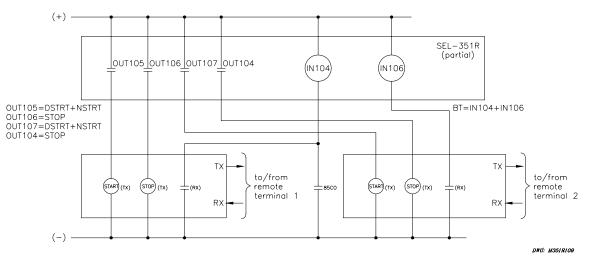


Figure 5.16: SEL-351R Recloser Control Connections to Communications Equipment for a Three-Terminal Line DCB Scheme

Additional Front-Panel Status and Target LED Information

A, B, and C Target LEDs

"A" (Phase A) target LED is illuminated at the rising edge of trip if an overcurrent element causes the trip and Phase A is involved in the fault [likewise for "B" (Phase B) and "C" (Phase C) target LEDs]. SELOGIC control equation FAULT has to be picked up for three-phase fault indication.

A, B, and C phase targeting is more secure if both the following are true:

- True three-phase voltage is connected to the SEL-351R
- Setting 3PVOLT = Y is made (SET G command)

Target Reset/Lamp Test Front-Panel Pushbutton

When the Target Reset/Lamp Test front-panel pushbutton is pressed:

- All front-panel LEDs illuminate for one (1) second.
- All latched target LEDs are extinguished (unlatched), unless a trip condition is present in which case the latched target LEDs reappear in their previous state.

Other Applications for the Target Reset Function

Refer to the bottom of Figure 5.1. The combination of the TARGET RESET Pushbutton and the TAR R (Target Reset) serial port command is available as Relay Word bit TRGTR. Relay Word bit TRGTR pulses to logical 1 for one processing interval when either the TARGET RESET Pushbutton is pushed or the TAR R (Target Reset) serial port command is executed.

Relay Word bit TRGTR can be used to unlatch logic. For example, refer to the breaker failure logic in Figure 7.25 in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*. If a breaker failure trip occurs (SV7T asserts), the occurrence can be displayed on the front panel with seal-in logic and a rotating default display (see *Rotating Default Display* in *Sections 7: Inputs, Outputs, Timers, and Other Control Logic* and *Section 11: Standard Event Reports and SER*. See Figure 5.17).

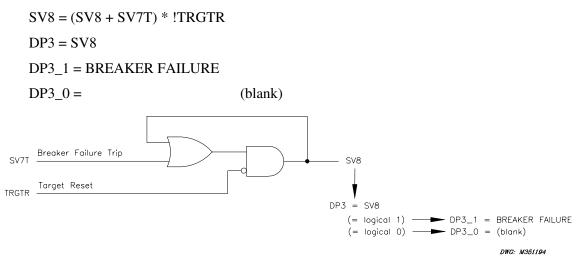


Figure 5.17: Seal-In of Breaker Failure Occurrence for Message Display

If a breaker failure trip has occurred, the momentary assertion of SV7T (breaker failure trip) will cause SV8 in Figure 5.17 to seal-in. Asserted SV8 in turn asserts DP3, causing the message:

BREAKER FAILURE

to display in the rotating default display.

This message can be removed from the display rotation by pushing the TARGET RESET Pushbutton (Relay Word bit TRGTR pulses to logical 1, unlatching SV8 and in turn deasserting DP3). Thus, front panel rotating default displays can be easily reset along with the front panel targets by pushing the TARGET RESET Pushbutton.

SELOGIC Control Equation Setting FAULT

SELOGIC control equation setting FAULT has control over or is used in the following:

- Front-panel target LEDs INST, A, B, and C. See preceding *A*, *B*, *and C Target LEDs* subsection.
- Demand Meter—FAULT is used to suspend demand metering updating and peak recording. See subsection *Demand Metering* in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions*.
- Maximum/Minimum Metering—FAULT is used to block Maximum/Minimum metering updating. See subsection *Maximum/Minimum Metering* in *Section 8: Breaker/ Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions*.

TABLE OF CONTENTS

SECTION 6:	CLOSE AND RECLOSE LOGIC6-1	I

Close Logic	6-1
Set Close	
Unlatch Close	
Factory Settings Example	
Defeat the Close Logic	
Circuit Breaker Status	
Program an Output for Closing	6-4
Reclose Supervision Logic	6-4
Settings and General Operation	6-7
Reclose Supervision Limit Time = 0 (top of Figure 6.2)	6-7
Reclose Supervision Limit Time > 0 (bottom of Figure 6.2 and Figure 6.3)	
Set Reclose Supervision Logic (bottom of Figure 6.2)	
Unlatch Reclose Supervision Logic (bottom of Figure 6.2)	
Settings Example 1	
SEL-351R(1) Recloser Control	6-9
SEL-351R(2) Recloser Control	
Other Setting Considerations for SEL-351R(1) and SEL-351R(2) Recloser	
Controls	6-10
Settings Example 2	6-11
Reclosing Relay	6-11
Reclosing Relay States and General Operation	6-12
Lockout State	
Reclosing Relay States and Settings/Setting Group Changes	6-13
Defeat the Reclosing Relay	
Close Logic Can Still Operate When the Reclosing Relay is Defeated	6-14
Reclosing Relay Timer Settings	
Open Interval Timers	6-15
Determination of Number of Reclosures (Last Shot)	6-16
Observe Shot Counter Operation	6-16
Reset Timer	6-16
Monitoring Open Interval and Reset Timing	6-17
Reclosing Relay Shot Counter	6-17
Reclosing Relay SELOGIC Control Equation Settings Overview	6-18
Reclose Initiate and Reclose Initiate Supervision Settings (79RI and 79RIS,	
respectively)	6-19
Factory Settings Example	
Additional Settings Example	6-19
Other Settings Considerations	6-20
Drive-to-Lockout and Drive-to-Last Shot Settings (79DTL and 79DLS,	
respectively)	6-21
Factory Settings Example	
Other Settings Considerations	

Skip Shot and Stall Open Interval Timing Settings (79SKP and 79STL,	
respectively)	
Factory Settings Example	
Additional Settings Example 1	
Additional Settings Example 2	
Additional Settings Example 3	6-24
Other Settings Considerations	6-24
Block Reset Timing Setting (79BRS)	
Example 1	6-24
Sequence Coordination Setting (79SEQ)	
Reclose Supervision Setting (79CLS)	

TABLES

Table 6.1:	Relay Word Bit and Front-Panel Correspondence to Reclosing Relay States	6-12
Table 6.2:	Reclosing Relay Timer Settings and Setting Ranges	6-14
Table 6.3:	Shot Counter Correspondence to Relay Word Bits and Open Interval Times	6-18
Table 6.4:	Reclosing Relay SELOGIC Control Equation Settings	6-18
Table 6.5:	Open Interval Time Example Settings	6-23

FIGURES

Figure 6.1:	Close Logic	6-2
Figure 6.2:	Reclose Supervision Logic (following open interval time-out)	6-5
Figure 6.3:	Reclose Supervision Limit Timer Operation (refer to bottom of Figure 6.2)	6-6
Figure 6.4:	SEL-351R Recloser Controls Installed at Both Ends of a Transmission Line in a	
	High-Speed Reclose Scheme	6-9
Figure 6.5:	Reclosing Relay States and General Operation	6-12
Figure 6.6:	Reclosing Sequence from Reset to Lockout with Example Settings	6-15
Figure 6.7:	Reclose Blocking for Islanded Generator	6-23
Figure 6.8:	SEL-351R Recloser Controls in Series, Requiring Sequence Coordination	6-26

This section is made up of three subsections:

Close Logic

This subsection describes the final logic that controls the close output (e.g., RCCL = CLOSE). This output closes the recloser for automatic reclosures and other close conditions (e.g., manual close initiation via serial port or optoisolated inputs).

If automatic reclosing is not needed, but the SEL-351R Recloser Control is to close the circuit breaker for other close conditions (e.g., manual close initiation via serial port or optoisolated inputs), then this subsection is the only subsection that needs to be read in this section (particularly the description of SELOGIC[®] control equation setting CL).

Reclose Supervision Logic

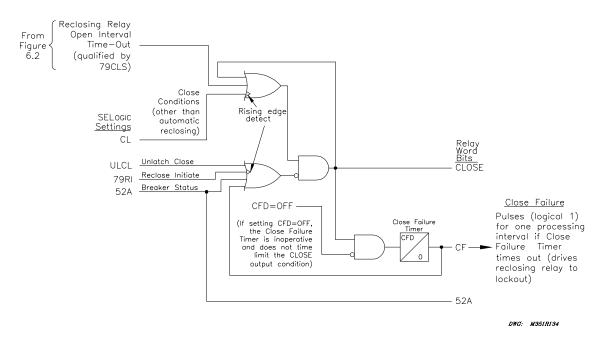
This subsection describes the logic that supervises automatic reclosing when an open interval time times out—a final condition check right before the close logic asserts the close output contact.

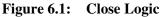
Reclose Logic

This subsection describes all the reclosing relay settings and logic needed for automatic reclosing (besides the final close logic and reclose supervision logic described in the previous subsections).

The reclose enable setting, E79, has setting choices N, 1, 2, 3, and 4. Setting E79 = N defeats the reclosing relay. Setting choices 1 through 4 are the number of desired automatic reclosures.

Note: Setting E79 = N defeats the reclosing relay, but does not defeat the ability of the close logic described in the first subsection (Figure 6.1) to close the circuit breaker for other close conditions via SELOGIC control equation setting CL (e.g., manual close initiation via serial port or optoisolated inputs).


CLOSE LOGIC


The close logic in Figure 6.1 provides flexible circuit breaker closing/automatic reclosing with SELOGIC control equation settings:

52A	(breaker status)
CL	(close conditions, other than automatic reclosing)
ULCL	(unlatch close conditions, other than circuit breaker status, close failure, or reclose initiation)

and setting:

CFD (Close Failure Time) See the settings sheets in *Section 9: Setting the SEL-351R Recloser Control* for setting ranges.

Set Close

If <u>all</u> the following are true:

- The unlatch close condition is not asserted (ULCL = logical 0).
- The circuit breaker is open (52A = logical 0).
- The reclose initiation condition (79RI) is not making a rising edge (logical 0 to logical 1) transition.
- And a close failure condition does not exist (Relay Word bit CF = 0).

Then the CLOSE Relay Word bit can be asserted to logical 1 if either of the following occurs:

- A reclosing relay open interval times out (qualified by SELOGIC control equation setting 79CLS—see Figure 6.2).
- Or SELOGIC control equation setting CL goes from logical 0 to logical 1 (rising edge transition).

Unlatch Close

If the CLOSE Relay Word bit is asserted at logical 1, it stays asserted at logical 1 until <u>one</u> of the following occurs:

- The unlatch close condition asserts (ULCL = logical 1).
- The circuit breaker closes (52A = logical 1).
- The reclose initiation condition (79RI) makes a rising edge (logical 0 to logical 1) transition.
- Or the Close Failure Timer times out (Relay Word bit CF = 1).

The Close Failure Timer is inoperative if setting CFD = OFF.

Factory Settings Example

The factory settings for the close logic SELOGIC control equation settings are:

52A	= SW1 * !CLOSE
CL	= PB8 * LT4 * LT7 + CC * LT7
ULCL	= TRIP + !PINF * SW1 + ! (LT7 + CLOSE) + ! (LT4 + CLOSE + CC + 79CY)

The factory setting for the Close Failure Timer setting is:

CFD = 60.00 cycles

With setting CFD = 60.00 cycles, once the CLOSE Relay Word bit asserts, it remains asserted at logical 1 no longer than a <u>maximum</u> of 60 cycles. If the Close Failure Timer times out, Relay Word bit CF asserts to logical 1, forcing the CLOSE Relay Word bit to logical 0.

Defeat the Close Logic

If SELOGIC control equation circuit breaker auxiliary setting 52A is set with numeral 0 (52A = 0), then the close logic is inoperable. Also, the reclosing relay is defeated (see *Reclosing Relay* later in this section).

Circuit Breaker Status

Refer to the bottom of Figure 6.1. Note that SELOGIC control equation setting 52A (circuit breaker status) is available as Relay Word bit 52A. This makes for convenience in setting other SELOGIC control equations. For example, if the following setting is made:

52A = IN101 (52a auxiliary contact wired to input IN101)

or

52A = !IN101 (52b auxiliary contact wired to input IN101)

then if breaker status is used in other SELOGIC control equations, it can be entered as 52A—the user does not have to enter IN101 (for a 52a) or !IN101 (for a 52b). For example, refer to *Rotating Default Display* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*. In the factory settings, circuit breaker status indication is controlled by display point setting DP2:

DP2 = IN101

This can be entered instead as:

DP2 = 52A

(presuming SELOGIC control equation setting 52A = IN101 is made).

Program an Output for Closing

In the factory settings, the resultant of the close logic in Figure 6.1 is routed to high voltage FET CLOSE output with the following SELOGIC control equation:

RCCL = CLOSE (see Figure 7.30)

See *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information on programming additional output contacts.

RECLOSE SUPERVISION LOGIC

Note that one of the inputs into the close logic in Figure 6.1 is:

Reclosing Relay Open Interval Time-Out (qualified by 79CLS)

This input into the close logic in Figure 6.1 is the indication that a reclosing relay open interval has timed out (see Figure 6.6), a qualifying condition (SELOGIC control equation setting 79CLS) has been met, and thus, automatic reclosing of the circuit breaker should proceed by asserting the CLOSE Relay Word bit to logical 1. This input into the close logic in Figure 6.1 is an output of the reclose supervision logic in the following Figure 6.2.

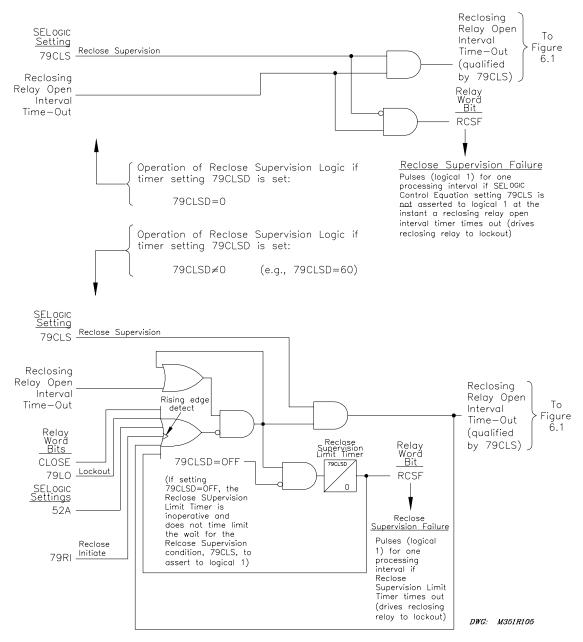


Figure 6.2: Reclose Supervision Logic (following open interval time-out)

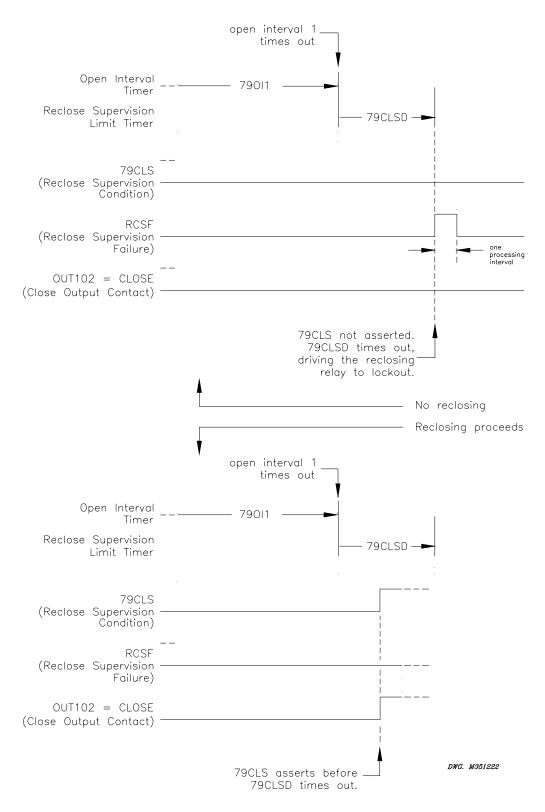


Figure 6.3: Reclose Supervision Limit Timer Operation (refer to bottom of Figure 6.2)

Settings and General Operation

Figure 6.2 contains the following SELOGIC control equation setting:

79CLS (reclose supervision conditions—checked after reclosing relay open interval time-out)

and setting:

79CLSD (Reclose Supervision Limit Time)

See the settings sheets at the end of *Section 9: Setting the SEL-351R Recloser Control* for setting ranges.

Reclose Supervision Limit Time = 0 (top of Figure 6.2)

79CLSD = 0.00

With this setting, the logic in the top of Figure 6.2 is operative. When an open interval times out, the SELOGIC control equation reclose supervision setting 79CLS is <u>checked just once</u>.

If 79CLS is <u>asserted</u> to logical 1 at the instant of an open interval time-out, then the nowqualified open interval time-out will propagate onto the final close logic in Figure 6.1 to automatically reclose the circuit breaker.

If 79CLS is <u>deasserted</u> to logical 0 at the instant of an open interval time-out, the following occurs:

- No automatic reclosing takes place.
- Relay Word bit RCSF (Reclose Supervision Failure indication) asserts to logical 1 for one processing interval.
- The reclosing relay is driven to the Lockout State.

See the previous *Factory Settings Example* and *Additional Settings Example 1* that follow in this subsection.

Reclose Supervision Limit Time > 0 (bottom of Figure 6.2 and Figure 6.3)

e.g., 79CLSD = 60.00

With this setting, the logic in the bottom of Figure 6.2 is operative. When an open interval times out, the SELOGIC control equation reclose supervision setting 79CLS is then <u>checked for a time window</u> equal to setting 79CLSD.

If 79CLS <u>asserts</u> to logical 1 at any time during this 79CLSD time window, then the nowqualified open interval time-out will propagate onto the final close logic in Figure 6.1 to automatically reclose the circuit breaker. If 79CLS remains <u>deasserted</u> to logical 0 during this entire 79CLSD time window, when the time window times out, the following occurs:

- No automatic reclosing takes place.
- Relay Word bit RCSF (Reclose Supervision Failure indication) asserts to logical 1 for one processing interval.
- The reclosing relay is driven to the Lockout State.

The logic in the bottom of Figure 6.2 is explained in more detail in the following text.

Set Reclose Supervision Logic (bottom of Figure 6.2)

Refer to the bottom of Figure 6.2. If <u>all</u> the following are true:

- The close logic output CLOSE (also see Figure 6.1) is <u>not</u> asserted (Relay Word bit CLOSE = logical 0)
- The reclosing relay is <u>not</u> in the Lockout State (Relay Word bit 79LO = logical 0).
- The circuit breaker is open (52A = logical 0)
- The reclose initiation condition (79RI) is <u>not</u> making a rising edge (logical 0 to logical 1) transition
- The Reclose Supervision Limit Timer is <u>not</u> timed out (Relay Word bit RCSF = logical 0)

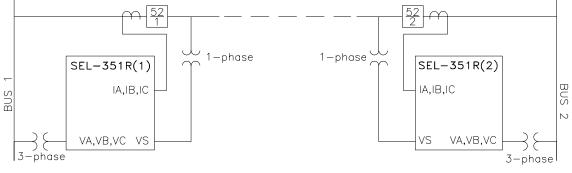
then a reclosing relay open interval time-out seals. Then, when 79CLS asserts to logical 1, the sealed-in reclosing relay open interval time-out condition will propagate through Figure 6.2 and on to the close logic in Figure 6.1.

Unlatch Reclose Supervision Logic (bottom of Figure 6.2)

Refer to the bottom of Figure 6.2. If the reclosing relay open interval time-out condition is sealed-in, it stays sealed-in until <u>one</u> of the following occurs:

- The close logic output CLOSE (also see Figure 6.1) asserts (Relay Word bit CLOSE = logical 1).
- The reclosing relay goes to the Lockout State (Relay Word bit 79LO = logical 1).
- The circuit breaker closes (52A = logical 1).
- The reclose initiation condition (79RI) makes a rising edge (logical 0 to logical 1) transition.
- SELOGIC control equation setting 79CLS asserts (79CLS = logical 1).
- Or the Reclose Supervision Limit Timer times out (Relay Word bit RCSF = logical 1 for one processing interval).

The Reclose Supervision Limit Timer is inoperative if setting 79CLSD = OFF. With 79CLSD = OFF, reclose supervision condition 79CLS is not time limited. When an open interval times out, reclose supervision condition 79CLS is checked indefinitely until one of the other above unlatch conditions comes true.


The unlatching of the sealed-in reclosing relay open interval time-out condition by the assertion of SELOGIC control equation setting 79CLS indicates successful propagation of a reclosing relay open interval time-out condition on to the close logic in Figure 6.1.

See Settings Example 2 that follows in this subsection.

Settings Example 1

Refer to the top of Figure 6.2 and Figure 6.4.

SEL-351Rs are installed at both ends of a transmission line in a high-speed reclose scheme. After both circuit breakers open for a transmission line fault, the SEL-351R(1) recloses circuit breaker 52/1 first, followed by the SEL-351R(2) reclosing circuit breaker 52/2, after a synchronism check across circuit breaker 52/2.

DWC: M351R107

Figure 6.4: SEL-351R Recloser Controls Installed at Both Ends of a Transmission Line in a High-Speed Reclose Scheme

SEL-351R(1) Recloser Control

Before allowing circuit breaker 52/1 to be reclosed after an open interval time-out, the SEL-351R(1) checks that Bus 1 voltage is hot and the transmission line voltage is dead. This requires reclose supervision settings:

79CLSD :	= 0.00 cycles	(only one check)
79CLS :	= 3P59 * 27S	

where:

3P59	= all three Bus 1 phase voltages (VA, VB, and VC) are hot
27S	= monitored single-phase transmission line voltage (channel VS) is dead

SEL-351R(2) Recloser Control

The SEL-351R(2) checks that Bus 2 voltage is hot, the transmission line voltage is hot, and in synchronism after the reclosing relay open interval times out, before allowing circuit breaker 52/2 to be reclosed. This requires reclose supervision settings:

79CLSD = 0.00 cycles (only one check) 79CLS = 25A1

where:

25A1 = selected Bus 2 phase voltage (VA, VB, or VC) is in synchronism with monitored single-phase transmission line voltage (channel VS) and both are hot

Other Setting Considerations for SEL-351R(1) and SEL-351R(2) Recloser Controls

Refer to *Skip Shot and Stall Open Interval Timing Settings (79SKP and 79STL, respectively)* in the following *Reclosing Relay* subsection.

SELOGIC control equation setting 79STL stalls open interval timing if it asserts to logical 1. If setting 79STL is deasserted to logical 0, open interval timing can continue.

The SEL-351R(1) has no intentional open interval timing stall condition (circuit breaker 52/1 closes first after a transmission line fault):

79STL = 0 (numeral 0)

The SEL-351R(2) starts open interval timing after circuit breaker 52/1 at the remote end has reenergized the line. The SEL-351R(2) has to see Bus 2 hot, transmission line hot, and in synchronism across open circuit breaker 52/2 for open interval timing to begin. Thus, SEL-351R(2) open interval timing is stalled when the transmission line voltage and Bus 2 voltage are <u>not</u> in synchronism across open circuit breaker 52/2:

79STL = !25A1 [=NOT(25A1)]

Note: A transient synchronism check condition across open circuit breaker 52/2 could possibly occur if circuit breaker 52/1 recloses into a fault on one phase of the transmission line. The other two unfaulted phases would be briefly energized until circuit breaker 52/1 is tripped again. If channel VS of the SEL-351R(2) Relay is connected to one of these briefly energized phases, synchronism check element 25A1 could momentarily assert to logical 1.

So that this possible momentary assertion of synchronism check element 25A1 does not cause any inadvertent reclose of circuit breaker 52/2, make sure the open interval timers in the SEL-351R(2) are set with some appreciable time greater than the momentary energization time of the faulted transmission line. Or, run the synchronism check element 25A1 through a programmable timer before using it in the preceding 79CLS and 79STL settings for the SEL-351R(2) (see Figure 7.23 and Figure 7.24). Note the built-in 3-cycle qualification of the synchronism check voltages shown in Figure 3.24.

Settings Example 2

Refer to subsection *Synchronism Check Elements* in *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements*. Also, refer to Figure 6.3 and Figure 6.4.

If the synchronizing voltages across open circuit breaker 52/2 are "slipping" with respect to one another, the Reclose Supervision Limit Timer setting 79CLSD should be set greater than zero so there is time for the slipping voltages to come into synchronism. For example:

79CLSD = 60.00 cycles 79CLS = 25A1

The status of synchronism check element 25A1 is checked continuously during the 60-cycle window. If the slipping voltages come into synchronism while timer 79CLSD is timing, synchronism check element 25A1 asserts to logical 1 and reclosing proceeds.

In the above referenced subsection *Synchronism Check Elements*, note item 3 under *Synchronism Check Element Outputs, Voltages V_p and V_s are "Slipping.*" Item 3 describes a last attempt for a synchronism check reclose before timer 79CLSD times out (or setting 79CLSD = 0.00 and only one check is made).

RECLOSING RELAY

Note that input:

Reclosing Relay Open Interval Time-Out

in Figure 6.2 is the logic input that is qualified by SELOGIC control equation setting 79CLS, and then propagated on to the close logic in Figure 6.1 to automatically reclose a circuit breaker. The explanation that follows in this reclosing relay subsection describes all the reclosing relay settings and logic that eventually result in this open interval time-out logic input into Figure 6.2. Other aspects of the reclosing relay are also explained. Up to four (4) automatic reclosures (shots) are available.

The reclose enable setting, E79, has setting choices N, 1, 2, 3, and 4. Setting E79 = N defeats the reclosing relay. Setting choices 1 through 4 are the number of desired automatic reclosures (see *Open Interval Timers* that follows in this subsection).

Reclosing Relay States and General Operation

Figure 6.5 explains in general the different states of the reclosing relay and its operation.

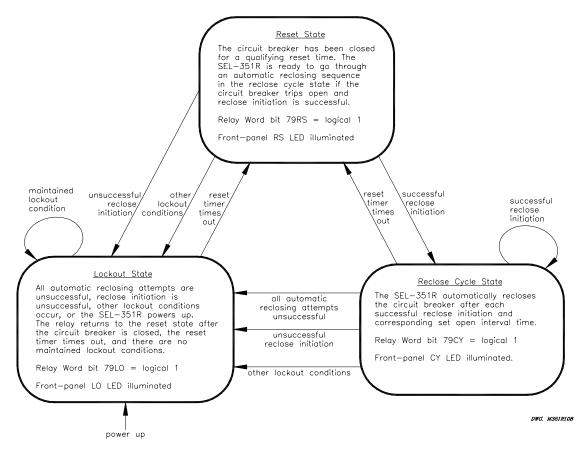


Figure 6.5: Reclosing Relay States and General Operation

Reclosing Relay State	Corresponding Relay Word Bit	Corresponding Front-Panel LED
Reset	79RS	RS
Reclose Cycle	79CY	СҮ
Lockout	79LO	LO

The reclosing relay is in one (and only one) of these states (listed in Table 6.1) at any time. When in a given state, the corresponding Relay Word bit asserts to logical 1, and the LED illuminates. Automatic reclosing only takes place when the relay is in the Reclose Cycle State.

Lockout State

The reclosing relay goes to the Lockout State if any <u>one</u> of the following occurs:

• The shot counter is equal to or greater than the last shot at time of reclose initiation (e.g., all automatic reclosing attempts are unsuccessful—see Figure 6.6).

- Reclose initiation is unsuccessful because of SELOGIC control equation setting 79RIS [see *Reclose Initiate and Reclose Initiate Supervision Settings (79RI and 79RIS, respectively)* later in this subsection].
- The circuit breaker opens without reclose initiation (e.g., an external trip).
- The shot counter is equal to or greater than last shot, and the circuit breaker is open (e.g., the shot counter is driven to last shot with SELOGIC control equation setting 79DLS while open interval timing is in progress). See *Drive-to-Lockout and Drive-to-Last Shot Settings (79DTL and 79DLS, respectively)* later in this subsection.
- The close failure timer (setting CFD) times out (see Figure 6.1).
- SELOGIC control equation setting 79DTL = logical 1 [see *Drive-to-Lockout and Drive-to-Last Shot Settings (79DTL and 79DLS, respectively)* later in this subsection].
- The Reclose Supervision Limit Timer (setting 79CLSD) times out (see Figure 6.2 and top of Figure 6.3).

Reclosing Relay States and Settings/Setting Group Changes

If individual settings are changed for the active setting group <u>or</u> the active setting group is changed, <u>all</u> of the following occur:

- The reclosing relay remains in the state it was in before the settings change.
- The shot counter is driven to last shot (last shot corresponding to the new settings; see discussion on last shot that follows).
- The reset timer is loaded with reset time setting 79RSLD (see discussion on reset timing later in this section).

If the relay happened to be in the Reclose Cycle State and was timing on an open interval before the settings change, the relay would be in the Reclose Cycle State after the settings change, but the relay would immediately go to the Lockout State. This is because the breaker is open and the relay is at last shot after the settings change, so no more automatic reclosures are available.

If the circuit breaker remains closed through the settings change, the reset timer times out on reset time setting 79RSLD after the settings change and goes to the Reset State (if it is not already in the Reset State), and the shot counter returns to shot = 0. If the relay happens to trip during this reset timing, the SEL-351R will immediately go to the Lockout State, because shot = last shot.

Defeat the Reclosing Relay

If <u>any one</u> of the following reclosing relay settings are made:

- Reclose enable setting E79 = N.
- Open Interval 1 time setting 790I1 = 0.00.

then the reclosing relay is defeated, and no automatic reclosing can occur. These settings are explained later in this section. See also the settings sheets at the end of *Section 9: Setting the SEL-351R Recloser Control*.

If the reclosing relay is defeated, the following also occur:

- All three reclosing relay state Relay Word bits (79RS, 79CY, and 79LO) are forced to logical 0 (see Table 6.1).
- All shot counter Relay Word bits (SH0, SH1, SH2, SH3, and SH4) are forced to logical 0 (the shot counter is explained later in this section).
- The front-panel LEDs RS, CY, and LO are all extinguished—a ready indication that the recloser is defeated.

Close Logic Can Still Operate When the Reclosing Relay is Defeated

If the reclosing relay is defeated, the close logic (see Figure 6.1) can still operate if SELOGIC control equation circuit breaker status setting 52A is set to something other than numeral 0. Making the setting 52A = 0 defeats the close logic and also defeats the reclosing relay.

For example, if 52A = IN101, a 52a circuit breaker auxiliary contact is connected to input IN101. If the reclosing relay does not exist, the close logic still operates, allowing closing to take place via SELOGIC control equation setting CL (close conditions, other than automatic reclosing). See *Close Logic* earlier in this section for more discussion on SELOGIC control equation settings 52A and CL. Also see *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more discussion on SELOGIC control equation setting 52A.

Reclosing Relay Timer Settings

The open interval and reset timer factory settings are shown in Table 6.2:

Timer Setting (range)	Factory Setting (in cycles)	Definition
79OI1 (0.00–9999999 cyc)	300.00	open interval 1 time
79OI2 (0.00–9999999 cyc)	600.00	open interval 2 time
79OI3 (0.00–9999999 cyc)	600.00	open interval 3 time
79OI4 (0.00–9999999 cyc)	0.00	open interval 4 time
79RSD (0.00–9999999 cyc)	1800.00	reset time from reclose cycle state
79RSLD (0.00–9999999 cyc)	600.00	reset time from lockout state

Table 6.2: Reclosing Relay Timer Settings and Setting I

The operation of these timers is affected by SELOGIC control equation settings discussed later in this section. Also, see the settings sheets at the end of *Section 9: Setting the SEL-351R Recloser Control*.

Open Interval Timers

The reclose enable setting, E79, determines the number of open interval time settings that can be set. For example, if setting E79 = 3, the first three open interval time settings in Table 6.2, are made available for setting.

If an open interval time is set to zero, then that open interval time is not operable, <u>and</u> neither are the open interval times that follow it.

In the factory settings in Table 6.2, the open interval 4 time setting 790I4 is the first open interval time setting set equal to zero:

790I4 = 0.00 cycles

Thus, open interval time 79OI4 is not operable. In the factory settings, open interval time 79OI4 is set to zero. But if the settings were:

79OI3 = 0.00 cycles
79OI4 = 900.00 cycles (set to some value other than zero)

both open interval time 790I3 and 790I4 would both be inoperative, because a preceding open interval time is set to zero (i.e., 790I3 = 0.00).

If open interval 1 time setting, 79OI1, is set to zero (79OI1 = 0.00 cycles), no open interval timing takes place, and the reclosing relay is defeated.

The open interval timers time consecutively; they do not have the same beginning time reference point. In the above factory settings, open interval 1 time setting, 79OI1, times first. If the subsequent first reclosure is not successful, then open interval 2 time setting, 79OI2, starts timing. If the subsequent second reclosure is not successful, the relay goes to the Lockout State. See the example time line in Figure 6.6.

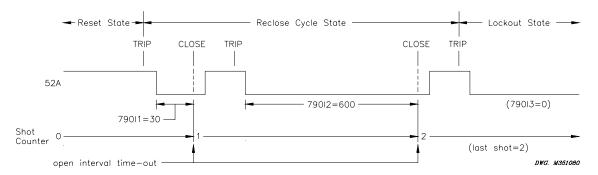


Figure 6.6: Reclosing Sequence from Reset to Lockout with Example Settings

SELOGIC control equation setting 79STL (stall open interval timing) can be set to control open interval timing [see *Skip Shot and Stall Open Interval Timing Settings (79SKP and 79STL, respectively)* later in this subsection].

Determination of Number of Reclosures (Last Shot)

The number of reclosures is equal to the number of open interval time settings that precede the first open interval time setting set equal to zero. The "last shot" value is also equal to the number of reclosures.

In the above factory settings, three set open interval times precede open interval 4 time, which is set to zero (79OI4 = 0.00):

For this example:

Number of reclosures (last shot) = 3 = the number of set open interval times that precede the first open interval set to zero.

Observe Shot Counter Operation

Observe the reclosing relay shot counter operation, especially during testing, with the frontpanel shot counter screen (accessed via the OTHER pushbutton). See *Functions Unique to the Front-Panel Interface* in *Section 11: Additional Front-Panel Interface Details*.

Reset Timer

The reset timer qualifies circuit breaker closure before taking the relay to the Reset State from the Reclose Cycle State or the Lockout State. Circuit breaker status is determined by the SELOGIC control equation setting 52A. (See *Close Logic* earlier in this section for more discussion on SELOGIC control equation setting 52A. Also see *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more discussion on SELOGIC control equation setting 52A.)

Setting 79RSD:

Qualifies closures when the SEL-351R is in the Reclose Cycle State. These closures are usually automatic reclosures resulting from open interval time-out.

It is also the reset time used in sequence coordination schemes [see *Sequence Coordination Setting (79SEQ)* discussed later in this subsection].

Setting 79RSLD:

Qualifies closures when the relay is in the Lockout State. These closures are usually manual closures. These manual closures can originate external to the SEL-351R, via the CLOSE command, or via the SELOGIC control equation setting CL (see Figure 6.1).

Setting 79RSLD is also the reset timer used when the SEL-351R powers up, has individual settings changed for the active setting group, or the active setting group is changed (see *Reclosing Relay States and Settings/Setting Group Changes* earlier in this subsection).

Typically, setting 79RSLD is set less than setting 79RSD. Setting 79RSLD emulates reclosing relays with motor-driven timers that have a relatively short reset time from the lockout position to the reset position.

The 79RSD and 79RSLD settings are set independently (setting 79RSLD can even be set greater than setting 79RSD, if desired). SELOGIC control equation setting 79BRS (block reset timing) can be set to control reset timing [see *Block Reset Timing Setting (79BRS)* later in this subsection].

Monitoring Open Interval and Reset Timing

Open interval and reset timing can be monitored with the following Relay Word bits:

<u>Relay Word Bits</u>	Definition
OPTMN	Indicates that the open interval timer is <u>actively</u> timing
RSTMN	Indicates that the reset timer is <u>actively</u> timing

If the open interval timer is actively timing, OPTMN asserts to logical 1. When the SEL-351R is not timing on an open interval (e.g., it is in the Reset State or in the Lockout State), OPTMN deasserts to logical 0. The SEL-351R can only time on an open interval when it is in the Reclose Cycle State, but just because the relay is in the Reclose Cycle State does not necessarily mean the relay is timing on an open interval. The SEL-351R only times on an open interval after successful reclose initiation and if no stall conditions are present [see *Skip Shot and Stall Open Interval Timing Settings (79SKP and 79STL, respectively)* later in this subsection].

If the reset timer is actively timing, RSTMN asserts to logical 1. If the reset timer is not timing, RSTMN deasserts to logical 0. See *Block Reset Timing Setting (79BRS)* later in this subsection.

Reclosing Relay Shot Counter

Refer to Figure 6.6.

The shot counter increments for each reclose operation. For example, when the SEL-351R is timing on open interval 1, 79OI1, it is at shot = 0. When the open interval times out, the shot counter increments to shot = 1 and so forth for the set open intervals that follow. The shot counter cannot increment beyond the last shot for automatic reclosing [see *Determination of Number of Reclosures (Last Shot)* earlier in this subsection]. The shot counter resets back to shot = 0 when the reclosing relay returns to the Reset State.

Shot	Corresponding Relay Word Bit	Corresponding Open Interval
0	SH0	79OI1
1	SH1	79012
2	SH2	79013
3	SH3	79014
4	SH4	

 Table 6.3: Shot Counter Correspondence to Relay Word Bits and Open Interval Times

When the shot counter is at a particular shot value (e.g., shot = 2), the corresponding Relay Word bit asserts to logical 1 (e.g., SH2 = logical 1).

The shot counter also increments for sequence coordination operation. The shot counter can increment beyond the last shot for sequence coordination [see *Sequence Coordination Setting* (79SEQ) later in this subsection].

Reclosing Relay SELOGIC Control Equation Settings Overview

SELOGIC Control Equation Setting	Factory Setting	Definition
79RI	TRIP	Reclose Initiate
79RIS	52A + 79CY	Reclose Initiate Supervision
79DTL	67N3T * OLS + (67P1 + 67G1 + 67N1) * TRIP + (!LT2 + !LT7) * (TRIP + !52A) + 81D1T + PB9 + OC + SV16	Drive-to-Lockout
79DLS	79LO	Drive-to-Last Shot
79SKP	0	Skip Shot
79STL	TRIP	Stall Open Interval Timing
79BRS	51P1 + 51P2 + 51G1 + 51G2 + 51N1 + 51N2 + 67N3 + TRIP	Block Reset Timing
79SEQ	79RS * (51P1 + 51G1 + 51N1) * SEQC	Sequence Coordination
79CLS	59A1 * !NOBATT * BCBOK * !DTFAIL	Reclose Supervision

 Table 6.4: Reclosing Relay SELOGIC Control Equation Settings

These settings are discussed in detail in the remainder of this subsection.

The longer factory settings are explained in Section 1: Factory-Set Logic.

<u>Reclose Initiate and Reclose Initiate Supervision Settings (79RI and 79RIS, respectively)</u>

The reclose initiate setting 79RI is a rising-edge detect setting. The reclose initiate supervision setting 79RIS supervises setting 79RI. When setting 79RI senses a rising edge (logical 0 to logical 1 transition), setting 79RIS has to be at logical 1 (79RIS = logical 1) in order for open interval timing to be initiated.

If 79RIS = logical 0 when setting 79RI senses a rising edge (logical 0 to logical 1 transition), the relay goes to the Lockout State.

Factory Settings Example

With factory settings:

79RI = TRIP79RIS = 52A + 79CY

the transition of the TRIP Relay Word bit from logical 0 to logical 1 initiates open interval timing only if the 52A or 79CY Relay Word bit is at logical 1 (52A = logical 1, or 79CY = logical 1).

The recloser has to be closed (recloser status 52A = logical 1) at the instant of the first trip operation of the auto-reclose cycle in order for the SEL-351R to successfully initiate reclosing and start timing on the first open interval. The SEL-351R is not yet in the reclose cycle state (79CY = logical 0) at the instant of the first trip operation.

Then for any subsequent trip operations in the auto-reclose cycle, the SEL-351R is in the reclose cycle state (79CY = logical 1) and the SEL-351R successfully initiates reclosing for each trip operation. Because of factory setting 79RIS = 52A + 79CY, successful reclose initiation in the reclose cycle state (79CY = logical 1) is not dependent on the recloser status (52A). This allows successful reclose initiation for the case of a fast curve/instantaneous trip operation, but the recloser status indication is slow—the fast curve/instantaneous trip operation (reclose initiation) occurs before the SEL-351R sees the recloser close.

If a flashover occurs in a recloser tank during an open interval (recloser open and the SEL-351R calls for a trip), the SEL-351R goes immediately to lockout.

Additional Settings Example

The preceding settings example initiates open interval timing on rising edge of the TRIP Relay Word bit. The following is an example of reclose initiation on the opening of a circuit breaker.

Presume input IN101 is connected to a 52a circuit breaker auxiliary contact (52A = IN101).

With setting:

79RI = !52A

the transition of the 52A Relay Word bit from logical 1 to logical 0 (breaker opening) initiates open interval timing. Setting 79RI looks for a logical 0 to logical 1 transition, thus Relay Word bit 52A is inverted in the 79RI setting [!52A = NOT(52A)].

The reclose initiate supervision setting 79RIS supervises setting 79RI. With settings:

79RI = !52A 79RIS = TRIP

the transition of the 52A Relay Word bit from logical 1 to logical 0 initiates open interval timing only if the TRIP Relay Word bit is at logical 1 (TRIP = logical 1). Thus, the TRIP Relay Word bit has to be asserted when the circuit breaker opens in order to initiate open interval timing. With a long enough setting of the Minimum Trip Duration Timer (TDURD), the TRIP Relay Word bit will still be asserted to logical 1 when the circuit breaker opens (see Figure 5.1 and Figure 5.2 in *Section 5: Trip and Target Logic*).

If the TRIP Relay Word bit is at logical 0 (TRIP = logical 0) when the circuit breaker opens (logical 1 to logical 0 transition), the relay goes to the Lockout State. This helps prevent reclose initiation for circuit breaker openings caused by trips external to the relay.

If circuit breaker status indication (52A) is slow, the TRIP Relay Word bit should be removed from ULCL setting (unlatch close; see Figures 1.21 and 6.1 and accompanying explanation) when 79RI = !52A. Making this change to the ULCL setting keeps the SEL-351R from going to lockout prematurely for an instantaneous trip after an auto-reclose; by not turning CLOSE off until the circuit breaker status indication tells the relay that the breaker is closed. The circuit breaker anti-pump circuitry should take care of the TRIP and CLOSE being on together for a short period of time.

Other Settings Considerations

1. In the preceding additional setting example, the reclose initiate setting (79RI) includes input IN101, that is connected to a 52a breaker auxiliary contact (52A = IN101).

79RI = !52A

If a 52b breaker auxiliary contact is connected to input IN101 (52A = !IN101), the reclose initiate setting (79RI) remains the same.

2. If no reclose initiate supervision is desired, make the following setting:

79RIS = 1 (numeral 1)

Setting 79RIS = logical 1 at all times. Any time a logical 0 to logical 1 transition is detected by setting 79RI, open interval timing will be initiated (unless prevented by other means).

3. If the following setting is made:

79RI = 0 (numeral 0)

reclosing will never take place (reclosing is never initiated). The reclosing relay is effectively inoperative.

4. If the following setting is made:

79RIS = 0 (numeral 0)

reclosing will never take place (the reclosing relay goes directly to the lockout state any time reclosing is initiated). The reclosing relay is effectively inoperative.

Drive-to-Lockout and Drive-to-Last Shot Settings (79DTL and 79DLS, respectively)

When 79DTL = logical 1, the reclosing relay goes to the Lockout State (Relay Word bit 79LO = logical 1), and the front-panel Lockout LED illuminates.

79DTL has a 60-cycle dropout time. This keeps the drive-to-lockout condition up 60 more cycles after 79DTL has reverted back to 79DTL = logical 0. This is useful for situations where both the following are true:

- any of the trip and drive-to-lockout conditions are "pulsed" conditions (e.g., the OPEN Command Relay Word bit, OC, asserts for only a ¹/₄ cycle—see Figure 1.25)
- reclose initiation is by the breaker contact opening (e.g., 79RI = !52A—see *Additional Settings Example* in the preceding setting 79RI [reclose initiation] discussion.

Then the drive-to-lockout condition overlaps reclose initiation and the SEL-351R stays in lockout after the breaker trips open.

When 79DLS = logical 1, the reclosing relay goes to the last shot, if the shot counter is not at a shot value greater than or equal to the calculated last shot (see *Reclosing Relay Shot Counter* earlier in this subsection).

Factory Settings Example

The drive-to-last shot factory setting is:

79DLS = 79LO

Three open intervals are also set in the factory settings, resulting in last shot = 3. Any time the SEL-351R is in the lockout state (Relay Word bit 79LO = logical 1), the SEL-351R is driven to last shot (if the shot counter is not already at a shot value greater than or equal to shot = 3):

79DLS = 79LO = logical 1

Other Settings Considerations

If no special drive-to-lockout or drive-to-last shot conditions are desired, make the following settings:

79DTL	= 0	(numeral 0)
79DLS	= 0	(numeral 0)

With settings 79DTL and 79DLS inoperative, the relay still goes to the Lockout State (and to last shot) if an entire automatic reclose sequence is unsuccessful.

Overall, settings 79DTL or 79DLS are needed to take the relay to the Lockout State (or to last shot) for immediate circumstances.

Skip Shot and Stall Open Interval Timing Settings (79SKP and 79STL, respectively)

The skip shot setting 79SKP causes a reclose shot to be skipped. Thus, an open interval time is skipped, and the next open interval time is used instead.

If 79SKP = logical 1 at the instant of successful reclose initiation (see preceding discussion on settings 79RI and 79RIS), the relay increments the shot counter to the next shot and then loads the open interval time corresponding to the new shot (see Table 6.3). If the new shot is the "last shot," no open interval timing takes place, and the relay goes to the Lockout State if the circuit breaker is open (see *Lockout State* earlier in this subsection).

After successful reclose initiation, open interval timing does not start until allowed by the stall open interval timing setting 79STL. If 79STL = logical 1, open interval timing is stalled. If 79STL = logical 0, open interval timing can proceed.

If an open interval time has not yet started timing (79STL = logical 1 still), the 79SKP setting is still processed. In such conditions (open interval timing has not yet started timing), if 79SKP = logical 1, the relay increments the shot counter to the next shot and then loads the open interval time corresponding to the new shot (see Table 6.3). If the new shot turns out to be the "last shot," no open interval timing takes place, and the relay goes to the Lockout State if the circuit breaker is open (see *Lockout State* earlier in this subsection).

If the relay is in the middle of timing on an open interval and 79STL changes state to 79STL = logical 1, open interval timing stops where it is. If 79STL changes state back to 79STL = logical 0, open interval timing resumes where it left off. Use the OPTMN Relay Word bit to monitor open interval timing (see *Monitoring Open Interval and Reset Timing* earlier in this subsection).

Factory Settings Example

The skip shot function is not enabled in the factory settings:

79SKP = 0 (numeral 0)

The stall open interval timing factory setting is:

79STL = TRIP

After successful reclose initiation, open interval timing does not start as long as the trip condition is present (Relay Word bit TRIP = logical 1). As discussed previously, if an open interval time has not yet started timing (79STL = logical 1 still), the 79SKP setting is still processed. Once the trip condition goes away (Relay Word bit TRIP = logical 0), open interval timing can proceed.

Additional Settings Example 1

With skip shot setting:

79SKP = 50P2 * SH0

if shot = 0 (Relay Word bit SH0 = logical 1) and phase current is above the phase instantaneous overcurrent element 50P2 threshold (Relay Word bit 50P2 = logical 1), at the instant of successful reclose initiation, the shot counter is incremented from shot = 0 to shot = 1. Then, open interval 1 time (setting 79OI1) is skipped, and the relay times on the open interval 2 time (setting 79OI2) instead.

Shot	Corresponding Relay Word Bit	Corresponding Open Interval	Open Interval Time Example Setting
0	SH0	79OI1	30 cycles
1	SH1	79012	600 cycles

 Table 6.5: Open Interval Time Example Settings

In Table 6.5, note that the open interval 1 time (setting 79OI1) is a short time, while the following open interval 2 time (setting 79OI2) is significantly longer. For a high magnitude fault (greater than the phase instantaneous overcurrent element 50P2 threshold), open interval 1 time is skipped, and open interval timing proceeds on the following open interval 2 time.

Once the shot is incremented to shot = 1, Relay Word bit SH0 = logical 0 and then setting 79SKP = logical 0, regardless of Relay Word bit 50P2.

Additional Settings Example 2

If the SEL-351R is used on a feeder with a line-side independent power producer (cogenerator), the utility should not reclose into a line still energized by an islanded generator. To monitor line voltage and block reclosing, connect a line-side single-phase potential transformer to channel VS on the SEL-351R as shown in Figure 6.7.

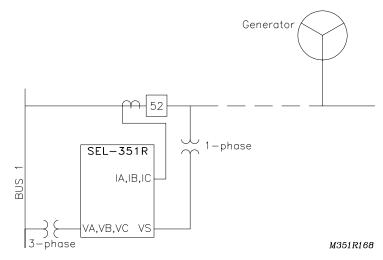


 Figure 6.7:
 Reclose Blocking for Islanded Generator

If the line is energized, channel VS overvoltage element 59S1 can be set to assert. Make the following setting:

79STL = 59S1 + ...

If line voltage is present, Relay Word bit 59S1 asserts, stalling open interval timing (reclose block). If line voltage is not present, Relay Word bit 59S1 deasserts, allowing open interval timing to proceed (unless some other set condition stalls open interval timing).

Additional Settings Example 3

Refer to Figure 6.4 and accompanying setting example, showing an application for setting 79STL.

Other Settings Considerations

If no special skip shot or stall open interval timing conditions are desired, make the following settings:

79SKP	= 0	(numeral 0)
79STL	= 0	(numeral 0)

Block Reset Timing Setting (79BRS)

The block reset timing setting 79BRS keeps the reset timer from timing. Depending on the reclosing relay state, the reset timer can be loaded with either reset time:

79RSD (Reset Time from Reclose Cycle) or 79RSLD (Reset Time from Lockout)

Depending on how setting 79BRS is set, none, one, or both of these reset times can be controlled. If the reset timer is timing and then 79BRS asserts to:

79BRS = logical 1

reset timing is stopped and does not begin timing again until 79BRS deasserts to:

79BRS = logical 0

When reset timing starts again, the reset timer is fully loaded. Thus, successful reset timing has to be continuous. Use the RSTMN Relay Word bit to monitor reset timing (see *Monitoring Open Interval and Reset Timing* earlier in this subsection).

Example 1

The block reset timing setting is:

79BRS = (51P + 51G) * 79CY

Relay Word bit 79CY corresponds to the Reclose Cycle State. The reclosing relay is in one of the three reclosing relay states at any one time (see Figure 6.5 and Table 6.1).

When the relay is in the Reset or Lockout States, Relay Word bit 79CY is deasserted to logical 0. Thus, the 79BRS setting has no effect when the relay is in the Reset or Lockout States. When a circuit breaker is closed from lockout, there could be cold load inrush current that momentarily picks up a time-overcurrent element [e.g., phase time-overcurrent element 51PT pickup (51P) asserts momentarily]. But, this assertion of pickup 51P has no effect on reset timing because the relay is in the Lockout State (79CY = logical 0). The relay will time immediately on reset time 79RSLD and take the relay from the Lockout State to the Reset State with no additional delay because 79BRS is deasserted to logical 0.

When the relay is in the Reclose Cycle State, Relay Word bit 79CY is asserted to logical 1. Thus, the factory 79BRS setting can function to block reset timing if time-overcurrent pickup 51P or 51G is picked up while the relay is in the Reclose Cycle State. This helps prevent repetitive "trip-reclose" cycling.

Sequence Coordination Setting (79SEQ)

Sequence coordination keeps the SEL-351R in step with a downstream recloser control (another SEL-351R or otherwise; see Figure 6.8). Sequence coordination prevents overreaching SEL-351R fast curves from tripping for faults beyond the downstream recloser control. This is accomplished by incrementing the shot counter and controlling fast curves with resultant shot counter elements.

Refer to Figure 6.8. In order for the sequence coordination logic in SEL-351R (1) to increment the shot counter by one count to keep in step with the operation of downstream SEL-351R (2), <u>all</u> the following have to occur in SEL-351R (1):

- No trip present (Relay Word bit TRIP = logical 0)
- Recloser closed (Relay Word bit 52A = logical 1)
- Sequence coordination SELOGIC setting 79SEQ asserts to logical 1 for at least 1.25 cycles and then deasserts to logical 0

Every time the sequence coordination logic increments the shot counter (e.g., from 0 to 1), the reset timer is loaded up with reset time 79RSD (EZ setting Reset time for auto reclose). The reset timer starts timing—when it times out, the shot counter returns back to shot = 0. But if during this reset timer timing, the sequence coordination logic causes the shot counter to increment again (e.g., from 1 to 2), the reset timer is fully loaded up again with reset time 79RSD.

Sequence coordination can increment the shot counter beyond last shot (unless limited by SELOGIC setting 79SEQ), but no further than shot = 4. The reset timer timing is subject to SELOGIC setting 79BRS [see *Block Reset Timing Setting* (79BRS) earlier in this subsection].

See Figure 1.27 in *Section 1: Factory-Set Logic* for the 79SEQ factory settings and accompanying example.

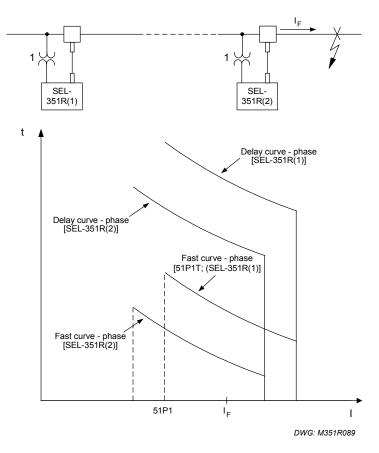


Figure 6.8: SEL-351R Recloser Controls in Series, Requiring Sequence Coordination

Reclose Supervision Setting (79CLS)

See *Reclose Supervision Logic* earlier in this section.

TABLE OF CONTENTS

SECTION 7:	INPUTS, OUTPUTS, TIMERS, AND OTHER CONTROL LOGIC	7-1
-	Inputs	
1	ebounce Timers	
	inctions	
-	Examples	
-	ut IN101	
	ut IN102	
	l Switches	
	ontrol Switch Types	
	I/OFF Switch	
	F/MOMENTARY Switch	
	V/OFF/MOMENTARY Switch	
	Examples	
	nal Local Control Switch Application Ideas	
	ontrol Switch States Retained	
	wer Loss	
	tings Change or Active Setting Group Change	
	Bit Application Ideas	
	Bit States Not Retained When Power Is Lost	
	Bit States Retained When Settings Changed or Active Setting Group	
	anged	7-11
	I Switches	
	ontrol Switch Application Ideas	
	ng Relay Enable/Disable Setting Example	
	edback Control	
	ing Edge Operators	
	e a Remote Bit Instead to Enable/Disable the Reclosing Relay	
	ontrol Switch States Retained.	
	wer Loss	
	tings Change or Active Setting Group Change	
	atch Bits for Active Setting Group Change	
Note: N	Take Latch Control Switch Settings With Care	7-18
	ing Groups	
Active S	Setting Group Indication	7-20
Selectin	g the Active Setting Group	7-20
Operatio	on of SELOGIC Control Equation Settings SS1 Through SS6	7-21
	on of Serial Port GROUP Command and Front-Panel GROUP Pushbutton.	
	1R Disabled Momentarily During Active Setting Group Change	
	Setting Group Switching Example 1	
	rt Out in Setting Group 1	
	itch to Setting Group 4	
Sw	itch Back to Setting Group 1	7-24

Active Setting Group Switching Example 2	7-25
Selector Switch Starts Out in Position 3	7-26
Selector Switch Switched to Position 5	
Selector Switch Now Rests on Position REMOTE	7-27
Active Setting Group Retained	7-28
Power Loss	7-28
Settings Change	7-28
Note: Make Active Setting Group Switching Settings With Care	7-29
SELOGIC Control Equation Variables/Timers	
Settings Example 1	
Settings Example 2	
Settings Example 3	7-32
Timers Reset When Power Is Lost, Settings Are Changed, or Active Setting Group	
Is Changed	
SELOGIC Counters (SEL-351R-2 only)	
Output Contacts	
Settings Example	
Operation of Output Contacts for Different Output Contact Types	
Output Contacts OUT101 Through OUT107	
ALARM Output Contact	
Rotating Default Display	
Traditional Indicating Panel Lights	
Reclosing Relay Status Indication	
Circuit Breaker Status Indication	
Traditional Indicating Panel Lights Replaced With Rotating Default Display	
General Operation of Rotating Default Display Settings	
Settings Examples	
Reclosing Relay Status Indication	
Reclosing Relay Enabled	
Reclosing Relay Disabled	
Circuit Breaker Status Indication	
Circuit Breaker Closed	
Circuit Breaker Open	
Additional Settings Examples	
Display Only One Message	
Circuit Breaker Closed	
Circuit Breaker Open	
Continually Display a Message	
Active Setting Group Switching Considerations	
Setting Group 1 Is the Active Setting Group	
Reclosing Relay Enabled	
Reclosing Relay Disabled	
Switch to Setting Group 4 as the Active Setting Group	
Additional Rotating Default Display Example	
Displaying Values (other than user-entered text) on the Rotating Default Display	
Values Displayed for Incorrect Settings	
Metering Values on the Rotating Default Display	
Self-Check Status Values on the Rotating Default Display	
Breaker Wear/Counter Values on the Rotating Default Display	/-44

ii

Same Display Values/Different Settings	7-45
Combined Display Values	7-45
Time-Overcurrent Element Pickup Values on the Rotating Default Display	7-45
Precede Pickup Display With Explanatory Text	7-46
Element Turned OFF	7-46
Channel IN Elements Use CTRN Multiplier	7-47
Recloser Trip and Close Circuits	7-51

TABLES

Table 7.1:	Correspondence Between Local Control Switch Positions and Label Settings	7-5
Table 7.2:	Correspondence Between Local Control Switch Types and Required Label Settings	7-7
Table 7.3:	Definitions for Active Setting Group Indication Relay Word Bits SG1 Through SG6	7-20
Table 7.4:	Definitions for Active Setting Group Switching SELOGIC Control Equation Settings	
	SS1 Through SS6	7-21
Table 7.5:	SELOGIC Control Equation Settings for Switching Active Setting Group Between	
	Setting Groups 1 and 4	7-23
Table 7.6:	Active Setting Group Switching Input Logic	7-25
Table 7.7:	SELOGIC Control Equation Settings for Rotating Selector Switch Active Setting	
	Group Switching	7-26
Table 7.8:	Mnemonic Settings for Metering on the Rotating Default Display	7-47
Table 7.9:	Mnemonic Settings for Self-Check Status on the Rotating Default Display	7-49
Table 7.10:	Mnemonic Settings for Breaker Wear/Counters on the Rotating Default Display	7-50
Table 7.11:	Mnemonic Settings for Time-Overcurrent (TOC) Element Pickups on the Rotating	
	Default Display	7-51

FIGURES

Figure 7.1:	Example Operation of Optoisolated Inputs IN101 Through IN106	7-2
Figure 7.2:	Circuit Breaker Auxiliary Contact and Reclose Enable Switch Connected to	
-	Optoisolated Inputs IN101 and IN102	7-3
Figure 7.3:	Local Control Switches Drive Local Bits LB1 Through LB8 (LB1 Through LB16	
	for the SEL-351R-2)	7-5
Figure 7.4:	Local Control Switch Configured as an ON/OFF Switch	7-6
Figure 7.5:	Local Control Switch Configured as an OFF/MOMENTARY Switch	7-6
Figure 7.6:	Local Control Switch Configured as an ON/OFF/MOMENTARY Switch	7-7
Figure 7.7:	Configured Manual Trip Switch Drives Local Bit LB3	7-8
Figure 7.8:	Configured Manual Close Switch Drives Local Bit LB4	7-9
Figure 7.9:	Remote Control Switches Drive Remote Bits RB1 Through RB8 (RB1 Through	
	RB16 for the SEL-351R-2)	7-10
Figure 7.10:	Traditional Latching Relay	7-12
Figure 7.11:	Latch Control Switches Drive Latch Bits LT1 Through LT8 (LT1 Through LT16	
	for the SEL-351R-2)	7-12
Figure 7.12:	SCADA Contact Pulses Input IN4 to Enable/Disable Reclosing Relay	7-13
Figure 7.13:	Latch Control Switch Controlled by a Single Input to Enable/Disable Reclosing	7-14
Figure 7.14:	Latch Control Switch Operation Time Line	7-16
Figure 7.15:	Time Line for Reset of Latch Bit LT2 After Active Setting Group Change	7-18
-	• • •	

Figure 7.16: Latch Control Switch (with Time Delay Feedback) Controlled by a Single Input to	
Enable/Disable Reclosing	7-19
Figure 7.17: Latch Control Switch (with Time Delay Feedback) Operation Time Line	7-19
Figure 7.18: SCADA Contact Pulses Input IN105 to Switch Active Setting Group Between	
Setting Groups 1 and 4	7-22
Figure 7.19: SELOGIC Control Equation Variable Timer SV8T Used in Setting Group Switching	7-23
Figure 7.20: Active Setting Group Switching (with Single Input) Time Line	7-25
Figure 7.21: Rotating Selector Switch Connected to Inputs IN101, IN102, and IN103 for Active	
Setting Group Switching	7-26
Figure 7.22: Active Setting Group Switching (with Rotating Selector Switch) Time Line	7-28
Figure 7.23: SELOGIC Control Equation Variables/Timers SV1/SV1T Through SV6/SV6T	7-30
Figure 7.24: SELOGIC Control Equation Variables/Timers SV7/SV7T Through SV16/SV16T	7-30
Figure 7.25: Dedicated Breaker Failure Scheme Created with SELOGIC Control Equation	
Variables/Timers	7-31
Figure 7.27: Logic Flow for Example Output Contact Operation	7-36
Figure 7.28: Traditional Panel Light Installations	7-37
Figure 7.29: Rotating Default Display Replaces Traditional Panel Light Installations	7-38
Figure 7.30: Recloser Trip and Close Circuit Connections	7-52

SECTION 7: INPUTS, OUTPUTS, TIMERS, AND OTHER CONTROL LOGIC

This section explains the settings and operation of:

Optoisolated inputs	IN101–IN106
• Extra local control switches	local bits LB1–LB8 (LB1–LB16 for the SEL-351R-2)
• Remote control switches	remote bits RB1–RB8 (RB1–RB16 for the SEL-351R-2)
• Latch control switches	latch bits LT1–LT8 (LT1–LT16 for the SEL-351R-2)
• SELOGIC [®] counters	counters SC1-SC8 (SEL-351R-2 only)
• Multiple setting groups	group switching settings SS1-SS6
• SELOGIC control equations variables/timers	SV1/SV1T–SV16/SV16T
Output contacts	OUT101–OUT107 and ALARM
• Rotating default displays	display points DP1–DP8 (DP1–DP16 for the SEL-351R-2)

The above items are all the logic input/output of the relay. They are combined with the overcurrent, voltage, frequency, and reclosing elements in SELOGIC control equation settings to realize numerous protection and control schemes.

Relay Word bits and SELOGIC control equation setting examples are used throughout this section. See *Section 9: Setting the SEL-351R Recloser Control* for more information on Relay Word bits and SELOGIC control equation settings. See *Section 10: Serial Port Communications and Commands* for more information on viewing and making SELOGIC control equation settings (commands *SHO L* and *SET L*).

OPTOISOLATED INPUTS

Figure 7.1 shows the resultant Relay Word bits (e.g., Relay Word bits IN101 through IN106 in Figure 7.1) that follow corresponding optoisolated inputs (e.g., optoisolated inputs IN101 through IN106 in Figure 7.1) for the different SEL-351R Recloser Control models. The figures show examples of energized and deenergized optoisolated inputs and corresponding Relay Word bit states. To assert an input, apply rated control voltage to the appropriate terminal pair (see Figure 2.1 in *Section 2: Additional Installation Details* and Figure 12 in the *Installation* section of the *SEL-351R Quick-Start Installation and User's Guide*).

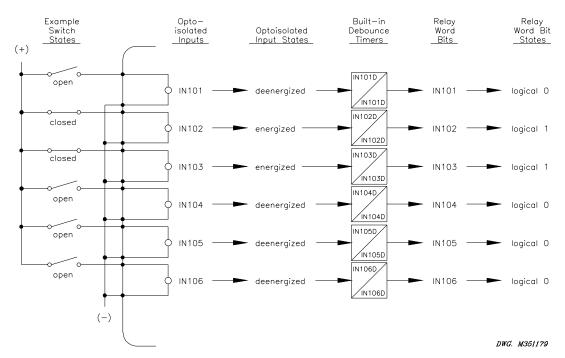


Figure 7.1: Example Operation of Optoisolated Inputs IN101 Through IN106

Input Debounce Timers

See Figure 7.1.

Each input has settable pickup/dropout timers (IN101D through IN106D) for input energization/deenergization debounce. Note that a given time setting (e.g., IN101D = 0.50) is applied to both the pickup and dropout time for the corresponding input.

Time settings IN101D through IN106D are settable from 0.00 to 1.00 cycles (or to "AC"—discussed below). The SEL-351R takes the entered time setting and internally runs the timer at the nearest 1/16-cycle. For example, if setting IN5D = 0.80, internally the timer runs at the nearest 1/16-cycle: 13/16-cycles (13/16 = 0.8125).

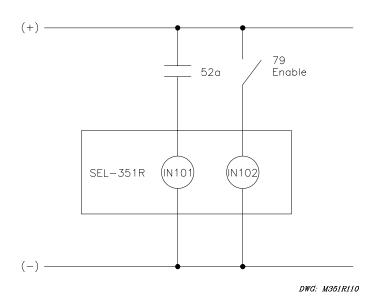
The "AC" setting (e.g., IN101D = AC) allows the optoisolated inputs to sense ac voltage correctly. In this "AC" operation mode, an optoisolated input has a maximum pickup time of 0.75 cycles and a maximum dropout time of 1.25 cycles for the application or removal, respectively, of ac voltage on the input.

For <u>most dc applications</u>, the input pickup/dropout debounce timers should be set in 1/4-cycle increments. For example, in the <u>factory default settings</u>, all the optoisolated input pickup/dropout debounce timers are set at 1/2-cycle (e.g., IN104D = 0.50). See *SHO Command* (*Show/View Settings*) in *Section 10: Serial Port Communications and Commands* for a list of the factory default settings.

Only a <u>few applications</u> (e.g., communications-assisted tripping schemes) might require input pickup/dropout debounce timers set less than 1/4-cycle [e.g., if setting IN105D = 0.13, internally the timer runs at the nearest 1/16-cycle: 2/16-cycles (2/16 = 0.1250)].

The relay processing interval is 1/4-cycle, so Relay Word bits IN101 through IN106 are updated every 1/4-cycle. The optoisolated input status may have made it through the pickup/dropout debounce timer (for settings less than 1/4-cycle) because these timers run each 1/16-cycle, but Relay Word bits IN101 through IN106 are updated every 1/4-cycle.

If more than 1 cycle of debounce is needed, run Relay Word bit INn (n = 101 through 106) through a SELOGIC control equation variable timer and use the output of the timer for input functions (see Figure 7.23 and Figure 7.24).


Input Functions

There are **no** optoisolated input settings such as:

IN101 = IN102 =

Optoisolated inputs IN101 through IN106 receive their function by the way their corresponding Relay Word bits IN101 through IN106 are used in SELOGIC control equations.

Settings Examples

The example functions for inputs IN101 and IN102 are described in the following discussions.

Input IN101

In this example, Relay Word bit IN101 is used in the SELOGIC control equation circuit breaker status setting:

52A = IN101

Connect input IN101 to a 52a circuit breaker auxiliary contact.

```
Date Code 20020215
```

If a 52b circuit breaker auxiliary contact is connected to input IN101, the setting is changed to:

52A = !IN101 [!IN101 = NOT(IN101)]

See *Close Logic* in *Section 6: Close and Reclose Logic* for more information on SELOGIC control equation setting 52A.

The pickup/dropout timer for input IN101 (IN101D) is set at:

IN101D = 0.75 cycles

to provide input energization/deenergization debounce.

Input IN101 is also used in other example settings [i.e., SELOGIC control equation settings BSYNCH (see *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements*), 79RIS (see *Section 6: Close and Reclose Logic*), and DP2 (see *Rotating Default Display* at the end of this section)]. Using Relay Word bit IN101 for the circuit breaker status setting 52A does <u>not</u> prevent using Relay Word bit IN101 in other SELOGIC control equation settings.

Input IN102

In this example, Relay Word bit IN102 is used in the SELOGIC control equation drive-to-lockout setting:

79DTL = !IN102 + ... [=NOT(IN102) + ...]

Connect input IN102 to a reclose enable switch.

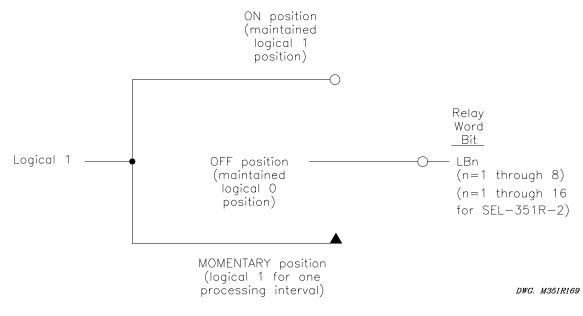
When the reclose enable switch is open, input IN102 is deenergized and the reclosing relay is driven to lockout:

79DTL = !IN102 + ... = NOT(IN102) + ... = NOT(logical 0) +... = logical 1

When the reclose enable switch is closed, input IN102 is energized and the reclosing relay is enabled, if no other setting condition is driving the reclosing relay to lockout:

79DTL = !IN102 + ... = NOT(IN102) + ... = NOT(logical 1) +... = logical 0 + ...

See *Section 6: Close and Reclose Logic* for more information on SELOGIC control equation setting 79DTL.


The pickup/dropout timer for input IN102 (IN102D) is set at:

IN102D = 1.00 cycle

to provide input energization/deenergization debounce.

LOCAL CONTROL SWITCHES

In addition to the 10 operator control pushbuttons on the bottom half of the front panel, the SEL-351R contains eight (8) local control switches (16 for the SEL-351R-2). Control of these local switches is through the front-panel keyboard/display (see *Section 11: Additional Front-Panel Interface Details*).

The switch representation in this figure is derived from the standard:

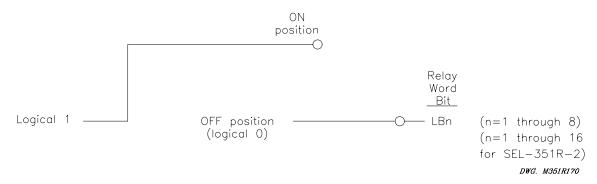
Graphics Symbols for Electrical and Electronics Diagrams IEEE Std 315-1975, CSA Z99-1975, ANSI Y32.2-1975, 4.11 Combination Locking and Nonlocking Switch, Item 4.11.1

Figure 7.3: Local Control Switches Drive Local Bits LB1 Through LB8 (LB1 Through LB16 for the SEL-351R-2)

The output of the local control switch in Figure 7.3 is a Relay Word bit LBn called a local bit, where n = 1 through 8 (1 through 16 for the SEL-351R-2). The local control switch logic in Figure 7.3 repeats for each local bit LB1 through LB8 (LB1 through LB16 for the SEL-351R-2). Use these local bits in SELogic control equations. For a given local control switch, the local control switch positions are enabled by making corresponding label settings.

Switch Position	Label Setting	Setting Definition	Logic State
not applicable	NLBn	Name of Local Control Switch	not applicable
ON	SLBn	"Set" Local bit LBn	logical 1
OFF	CLBn	"Clear" Local bit LBn	logical 0
MOMENTARY	PLBn	"Pulse" Local bit LBn	logical 1 for one processing interval

Table 7.1: Correspondence Between Local Control Switch Positions and Label Settings


Note the first setting in Table 7.1 (NLBn) is the overall switch name setting. Make each label setting through the serial port using the command **SET T**. View these settings using the serial port command **SHO T** (see *Section 9: Setting the SEL-351R Recloser Control* and *Section 10: Serial Port Communications and Commands*).

Local Control Switch Types

Configure any local control switch as one of the following three switch types:

ON/OFF Switch

Local bit LBn is in either the ON (LBn = logical 1) or OFF (LBn = logical 0) position.

OFF/MOMENTARY Switch

The local bit LBn is maintained in the OFF (LBn = logical 0) position and pulses to the MOMENTARY (LBn = logical 1) position for one processing interval (1/4 cycle).

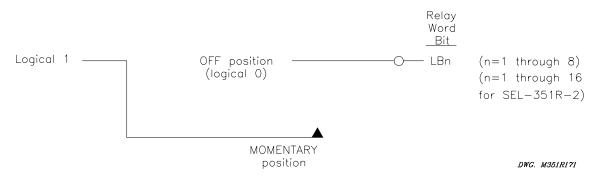
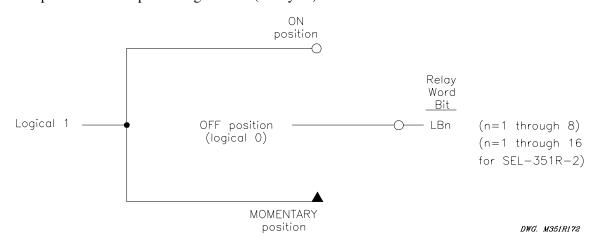


Figure 7.5: Local Control Switch Configured as an OFF/MOMENTARY Switch


ON/OFF/MOMENTARY Switch

The local bit LBn:

is in either the ON (LBn = logical 1) or OFF (LBn = logical 0) position

or

is in the OFF (LBn = logical 0) position and pulses to the MOMENTARY (LBn = logical 1) position for one processing interval (1/4 cycle).

Figure 7.6: Local Control Switch Configured as an ON/OFF/MOMENTARY Switch

Table 7.2:	Correspondence Between Local Control Switch Types
	and Required Label Settings

Local Switch Type	Label NLBn	Label CLBn	Label SLBn	Label PLBn
ON/OFF	Х	Х	Х	
OFF/MOMENTARY	Х	Х		Х
ON/OFF/MOMENTARY	Х	Х	Х	Х

Disable local control switches by "nulling out" all the label settings for that switch (see *Section 9: Setting the SEL-351R Recloser Control*). The local bit associated with this disabled local control switch is then fixed at logical 0.

Settings Examples

Local bits LB3 and LB4 are used in a few of the factory SELOGIC control equation settings for manual trip and close functions. Their corresponding local control switch position labels are set to configure the switches as OFF/MOMENTARY switches:

<u>Local Bit</u>	Label Settings	Function
LB3	NLB3 = MANUAL TRIP	trips breaker and drives reclosing relay to lockout
	CLB3 = RETURN	OFF position ("return" from MOMENTARY position)
	SLB3 =	ON position—not used (left "blank")
	PLB3 = TRIP	MOMENTARY position
LB4	NLB4 = MANUAL CLOSE	closes breaker, separate from automatic reclosing
	CLB4 = RETURN	OFF position ("return" from MOMENTARY position)
	SLB4 =	ON position—not used (left "blank")
	PLB3 = CLOSE	MOMENTARY position

Figure 7.7 and Figure 7.8 show local control switches with factory settings.

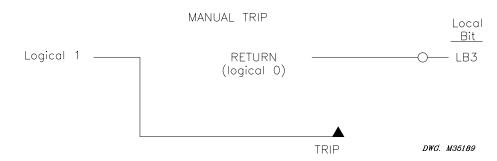


Figure 7.7: Configured Manual Trip Switch Drives Local Bit LB3

Local bit LB3 is set to trip in the following SELOGIC control equation trip setting example (see Figure 5.1 in *Section 5: Trip and Target Logic*):

 $TR = \dots + LB3 + \dots$

To keep reclosing from being initiated for this trip example, set local bit LB3 to drive the reclosing relay to lockout for a manual trip example (see *Section 6: Close and Reclose Logic*):

79DTL = ... + LB3

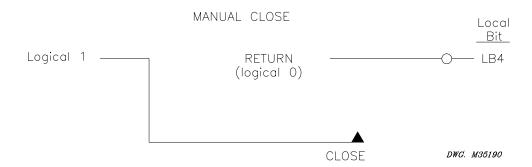


Figure 7.8: Configured Manual Close Switch Drives Local Bit LB4

Local bit LB4 is set to close the circuit breaker in the following SELOGIC control equation setting example:

CL = LB4

SELOGIC control equation setting CL is for close conditions, other than automatic reclosing or serial port CLOSE command (see Figure 6.1 in *Section 6: Close and Reclose Logic*).

Additional Local Control Switch Application Ideas

The preceding factory settings examples are OFF/MOMENTARY switches. Local control switches configured as ON/OFF switches can be used for such applications as:

- Reclosing relay enable/disable
- Ground relay enable/disable
- Remote control supervision
- Sequence coordination enable/disable

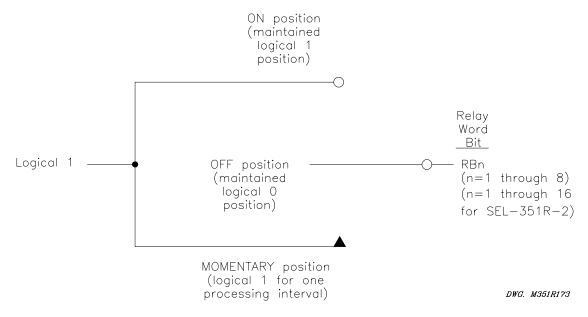
Local control switches can also be configured as ON/OFF/MOMENTARY switches for applications that require such. Local control switches can be applied to almost any control scheme that traditionally requires front-panel switches.

Local Control Switch States Retained

Power Loss

The state of each local bit LB1 through LB8 (LB1 through LB16 for the SEL-351R-2) is retained if power to the relay is lost and restored. This feature makes the local bit feature behave the same as a traditional installation with panel mounted control switches. If power is lost to the panel, the front-panel control switch positions remain unchanged.

Settings Change or Active Setting Group Change


If settings are changed (for the active setting group or one of the other setting groups) or the active setting group is changed, the states of the local bits LB1 through LB8 (LB1 through LB16 for the SEL-351R-2) are retained, much like in the preceding *Power Loss* explanation.

If settings are changed for a setting group other than the active setting group, there is no interruption of the local bits (the relay is not momentarily disabled).

If a local control switch is made inoperable because of a settings change (i.e., the corresponding label settings are nulled), the corresponding local bit is then fixed at logical 0, regardless of the local bit state before the settings change. If a local control switch is made newly operable because of a settings change (i.e., the corresponding label settings are set), the corresponding local bit starts out at logical 0.

REMOTE CONTROL SWITCHES

Remote control switches are operated via the serial communications port only (see CON Command (Control Remote Bit) in Section 10: Serial Port Communications and Commands).

The switch representation in this figure is derived from the standard:

Graphic Symbols for Electrical and Electronics Diagrams IEEE Std 315-1975, CSA Z99-1975, ANSI Y32.2-1975 4.11 Combination Locking and Nonlocking Switch, Item 4.11.1

Figure 7.9: Remote Control Switches Drive Remote Bits RB1 Through RB8 (RB1 Through RB16 for the SEL-351R-2)

The outputs of the remote control switches in Figure 7.9 are Relay Word bits RBn called remote bits, where n = 1 through 8 (1 through 16 for the SEL-351R-2), Use these remote bits in SELOGIC control equations.

Any given remote control switch can be put in one of the following three positions:

ON	(logical 1)
OFF	(logical 0)
MOMENTARY	(logical 1 for one processing interval)

Remote Bit Application Ideas

With SELOGIC control equations, the remote bits can be used in applications similar to those in which local bits are used (see the preceding section on *Local Control Switches*).

Remote bits can be used much as optoisolated inputs are used in operating latch control switches (see discussion following Figure 7.14). Pulse (momentarily operate) the remote bits for this application.

Remote Bit States Not Retained When Power Is Lost

The states of the remote bits RB1 through RB8 (RB1 through RB16 for the SEL-351R-2) are not retained if power to the relay is lost and then restored. The remote control switches always come back in the OFF position (corresponding remote bit is deasserted to logical 0) when power is restored to the relay.

Remote Bit States Retained When Settings Changed or Active Setting Group Changed

The state of each remote bit RB1 through RB8 (RB1 through RB16 for the SEL-351R-2) is retained if a relay setting within any group, or the active setting group, is changed. If a remote control switch is in the ON position (remote bit is a logical 1) before a setting change or an active setting group change, it comes back in the ON position after the change. If a remote control switch is in the OFF position (remote bit is a logical 0) before a settings change or an active setting group change, it comes back in the OFF position after the change.

If settings are changed for a setting group other than the active setting group, there is no interruption of the remote bits; the relay is not momentarily disabled.

LATCH CONTROL SWITCHES

The latch control switch feature of this relay replaces latching relays. Traditional latching relays maintain their output contact state when set. The SEL-351R latch bit retains memory even when control power is lost. If the latch bit is set to a programmable output contact and control power is lost, the state of the latch bit is stored in nonvolatile memory but the output contact will go into its de-energized state. When control power is applied back to the relay, the programmed output contact will go back to the state of the latch bit.

The state of a traditional latching relay output contact is changed by pulsing the latching relay inputs (see Figure 7.10). Pulse the set input to close ("set") the latching relay output contact. Pulse the reset input to open ("reset") the latching relay output contact. Often the external contacts wired to the latching relay inputs are from remote control equipment (e.g., SCADA, RTU).

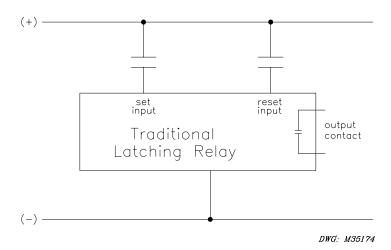



Figure 7.10: Traditional Latching Relay

The eight (8) (sixteen (16) for the SEL-351R-2) latch control switches in the SEL-351R provide latching relay type functions.

Figure 7.11: Latch Control Switches Drive Latch Bits LT1 Through LT8 (LT1 Through LT16 for the SEL-351R-2)

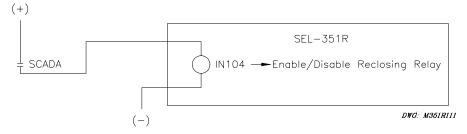
The output of the latch control switch in Figure 7.11 is a Relay Word bit LTn called a latch bit, where n = 1 through 8 (1 through 16 for the SEL-351R-2). The latch control switch logic in Figure 7.11 repeats for each latch bit LT1 through LT8 (LT1 through LT16 for the SEL-351R-2). Use these latch bits in SELOGIC control equations.

These latch control switches each have the following SELOGIC control equation settings:

SETn	(set latch bit LTn to logical 1)
RSTn	(reset latch bit LTn to logical 0)

If setting SETn asserts to logical 1, latch bit LTn asserts to logical 1. If setting RSTn asserts to logical 1, latch bit LTn deasserts to logical 0. If both settings SETn and RSTn assert to logical 1, setting RSTn has priority and latch bit LTn deasserts to logical 0.

Latch Control Switch Application Ideas


Latch control switches can be used for such applications as:

- Reclosing relay enable/disable
- Ground relay enable/disable
- Sequence coordination enable/disable

Latch control switches can be applied to almost any control scheme. The following is an example of using a latch control switch to enable/disable the reclosing relay in the SEL-351R.

Reclosing Relay Enable/Disable Setting Example

Use a latch control switch to enable/disable the reclosing relay in the SEL-351R. In this example, a SCADA contact is connected to optoisolated input IN104. Each pulse of the SCADA contact changes the state of the reclosing relay. The SCADA contact is not maintained, just pulsed to enable/disable the reclosing relay.

Figure 7.12: SCADA Contact Pulses Input IN4 to Enable/Disable Reclosing Relay

If the reclosing relay is enabled and the SCADA contact is pulsed, the reclosing relay is then disabled. If the SCADA contact is pulsed again, the reclosing relay is enabled again. The control operates in a cyclic manner:

pulse to enable ... pulse to disable ... pulse to enable ... pulse to disable ...

This reclosing relay logic is implemented in the following SELOGIC control equation settings and displayed in Figure 7.13.

SET1 = /IN104 * !LT1	[= (rising edge of input IN104) <u>AND</u> NOT(LT1)]
RST1 = /IN104 * LT1	[= (rising edge of input IN104) <u>AND</u> LT1]
79DTL = !LT1	[= NOT(LT1); drive-to-lockout setting]

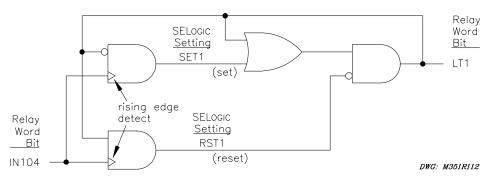


Figure 7.13: Latch Control Switch Controlled by a Single Input to Enable/Disable Reclosing

Feedback Control

Note in Figure 7.13 that the latch control switch output (latch bit LT1) is effectively used as feedback for SELOGIC control equation settings SET1 and RST1. The feedback of latch bit LT1 "guides" input IN104 to the correct latch control switch input.

If latch bit LT1 = logical 0, input IN104 is routed to setting SET1 (set latch bit LT1):

SET1 = /IN104 * !LT1 = /IN104 * NOT(LT1) = /IN104 * NOT(logical 0) = /IN104 = rising edge of input IN104

RST1 = /IN104 * LT1 = /IN104 * (logical 0) = logical 0

If latch bit LT1 = logical 1, input IN104 is routed to setting RST1 (reset latch bit LT1):

SET1 = /IN104 * !LT1 = /IN104 * NOT(LT1) = /IN104 * NOT(logical 1) = /IN104 * (logical 0) = logical 0

RST1 = /IN104 * LT1 = /IN104 * (logical 1) = /IN104 = rising edge of input IN104

Rising Edge Operators

Refer to Figure 7.13 and Figure 7.14.

The rising edge operator in front of Relay Word bit IN104 (/IN104) sees a logical 0 to logical 1 transition as a "rising edge," and /IN104 asserts to logical 1 for one processing interval.

The rising edge operator on input IN104 is necessary because any single assertion of optoisolated input IN104 by the SCADA contact will last for at least a few cycles, and each individual assertion of input IN104 should only change the state of the latch control switch once (e.g., latch bit LT1 changes state from logical 0 to logical 1).

For example in Figure 7.13, if:

LT1 = logical 0

input IN104 is routed to setting SET1 (as discussed previously):

SET1 = /IN104 = rising edge of input IN104

If input IN104 is then asserted for a few cycles by the SCADA contact (see Pulse 1 in Figure 7.14), SET1 is asserted to logical 1 for one processing interval. This causes latch bit LT1 to change state to:

LT1 = logical 1

the next processing interval.

With latch bit LT1 now at logical 1 for the next processing interval, input IN104 is routed to setting RST1 (as discussed previously):

RST1 = /IN104 = rising edge of input IN104

This would then appear to enable the "reset" input (setting RST1), the next processing interval. However, the "rising edge" condition occurred in the preceding processing interval, causing /IN104 to then deassert to logical 0. So, since /IN104 is now at logical 0, setting RST1 does not assert, even though input IN104 remains asserted for at least a few cycles by the SCADA contact.

If the SCADA contact deasserts and then asserts again (new rising edge—see Pulse 2 in Figure 7.14), the "reset" input (setting RST1) asserts and latch bit LT1 deasserts back to logical 0 again. Thus, each individual assertion of input IN104 (Pulse 1, Pulse 2, Pulse 3, and Pulse 4 in Figure 7.14) changes the state of latch control switch just once.

Note: Refer to preceding subsection *Optoisolated Inputs* and Figure 7.1. Relay Word bit IN104 shows the state of optoisolated input IN104 <u>after</u> the input pickup/dropout debounce timer IN104D. Thus, when using Relay Word bit IN104 in Figure 7.11 and Figure 7.12 and associated SELOGIC control equations, keep in mind any time delay produced by the input pickup/dropout debounce timer IN104D.

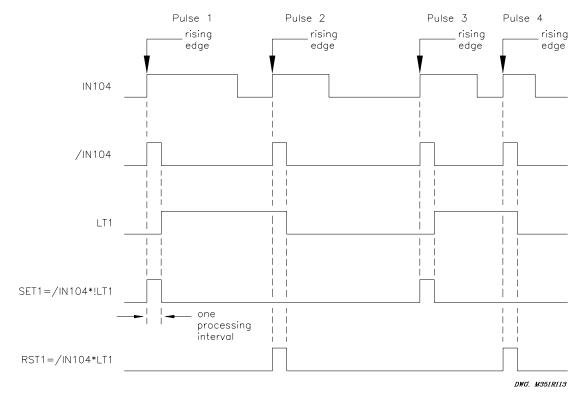


Figure 7.14: Latch Control Switch Operation Time Line

Use a Remote Bit Instead to Enable/Disable the Reclosing Relay

Use a remote bit to enable/disable the reclosing relay, instead of an optoisolated input. For example, substitute remote bit RB1 for optoisolated input IN104 in the settings accompanying Figure 7.13:

SET1 = /RB1 * !LT1	[= (rising edge of remote bit RB1) <u>AND</u> NOT(LT1)]
RST1 = /RB1 * LT1	[= (rising edge of remote bit RB1) <u>AND</u> LT1]
79DTL = !LT1	[= NOT(LT1); drive-to-lockout setting]

Pulse remote bit RB1 to enable reclosing, pulse remote bit RB1 to disable reclosing, etc.—much like the operation of optoisolated input IN104 in the previous example. Remote bits RB1 through RB8 (RB1 through RB16 for the SEL-351R-2) are operated through the serial port. See Figure 7.9 and *Section 10: Serial Port Communications and Commands* for more information on remote bits.

These are just a few control logic examples—many variations are possible.

Latch Control Switch States Retained

Power Loss

The states of the latch bits LT1 through LT8 (LT1 through LT16 for the SEL-351R-2) are retained if power to the relay is lost and then restored. If a latch bit is asserted (e.g., LT2 = logical 1) when power is lost, it comes back asserted when power is restored. If a latch bit is deasserted (e.g., LT3 = logical 0) when power is lost, it comes back deasserted when power is restored. This feature makes the latch bit feature behave the same as traditional latching relays. In a traditional installation, if power is lost to the panel, the latching relay output contact position remains unchanged.

Note: Although the relay retains the state of a latched bit when power is cycled, the relay cannot hold contact closure when power is removed from the relay.

Settings Change or Active Setting Group Change

If individual settings are changed (for the active setting group or for one of the other setting groups) or the active setting group is changed, then the states of the latch bits LT1 through LT8 (LT1 through LT16 for the SEL-351R-2) are retained, much like in the preceding "Power Loss" explanation.

If individual settings are changed for a setting group other than the active setting group, there is no interruption of the latch bits (the relay is not momentarily disabled).

If the individual settings change or an active setting group change causes a change in SELOGIC control equation settings SETn or RSTn, where n = 1 through 8 (1 through 16 for the SEL-351R-2), then the retained states of the latch bits can be changed, subject to the newly enabled settings SETn or RSTn.

Reset Latch Bits for Active Setting Group Change

If desired, the latch bits can be reset to logical 0 right after a settings group change, using SELOGIC control equation setting RSTn, where n = 1 through 8 (1 through 16 for the SEL-351R-2). Relay Word bits SG1 through SG6 indicate the active setting Group 1 through 6, respectively (see Table 7.3).

For example, when setting Group 4 becomes the active setting group, latch bit LT2 should be reset. Make the following SELOGIC control equation settings in setting Group 4:

SV7 = SG4 RST2 = !SV7T + ... [= NOT(SV7T) + ...]

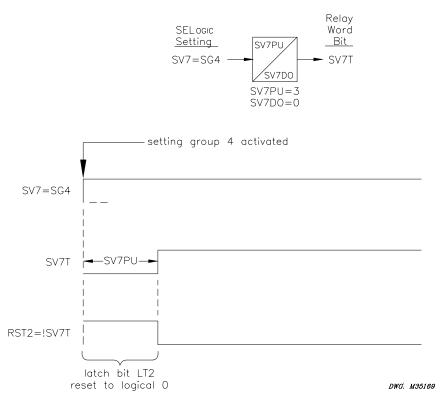


Figure 7.15: Time Line for Reset of Latch Bit LT2 After Active Setting Group Change

In Figure 7.15, latch bit LT2 is reset (deasserted to logical 0) when reset setting RST2 asserts to logical 1 for the short time right after setting Group 4 is activated. This logic can be repeated for other latch bits.

Note: Make Latch Control Switch Settings With Care

The latch bit states are stored in nonvolatile memory so they can be retained during power loss, settings change, or active setting group change. The nonvolatile memory is rated for a finite number of "writes" for all cumulative latch bit state changes. Exceeding this limit can result in an EEPROM self-test failure. <u>This limit translates to an average of 70 cumulative latch bit state changes per day for a 25-year relay service life</u>. Therefore, set equations SETn and RSTn with care so continuous cyclical operation of latch bit LTn does not occur. Use timers to qualify conditions set in settings SETn and RSTn. If any optoisolated inputs IN101 through IN106 are used in settings SETn and RSTn, the inputs have their own debounce timer that can help in providing the necessary time qualification (see Figure 7.1).

In the preceding reclosing relay enable/disable example application (Figure 7.13 and Figure 7.14), the SCADA contact cannot be asserting/deasserting continuously, thus causing latch bit LT1 to change state continuously. Note that the rising edge operators in the SET1 and RST1 settings keep latch bit LT1 from cyclically operating for any single assertion of the SCADA contact.

Another variation to the example application in Figure 7.13 and Figure 7.14 that adds more security is a timer with pickup/dropout times set the same (see Figure 7.16 and Figure 7.17). Suppose that SV6PU and SV6DO are both set to 300 cycles. Then the SV6T timer keeps the

state of latch bit LT1 from being able to be changed at a rate faster than once every 300 cycles (5 seconds).

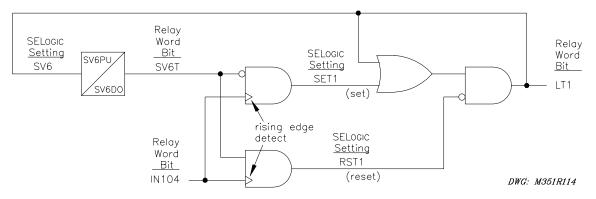


Figure 7.16: Latch Control Switch (with Time Delay Feedback) Controlled by a Single Input to Enable/Disable Reclosing

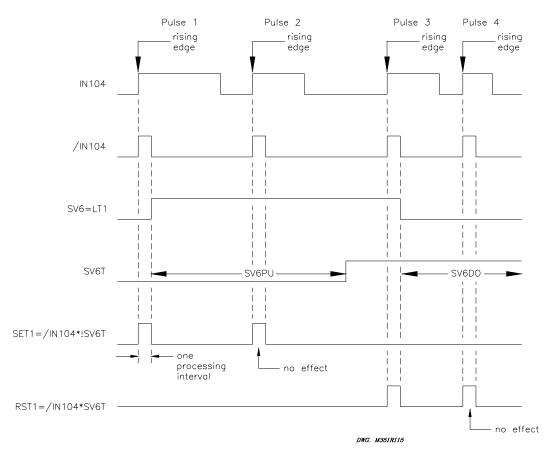


Figure 7.17: Latch Control Switch (with Time Delay Feedback) Operation Time Line

MULTIPLE SETTING GROUPS

The relay has six (6) independent setting groups. Each setting group has complete relay (overcurrent, reclosing, frequency, etc.) and SELOGIC control equation settings.

Active Setting Group Indication

Only one setting group can be active at a time. Relay Word bits SG1 through SG6 indicate the active setting group:

Relay Word bit	Definition
SG1	Indication that setting Group 1 is the active setting group
SG2	Indication that setting Group 2 is the active setting group
SG3	Indication that setting Group 3 is the active setting group
SG4	Indication that setting Group 4 is the active setting group
SG5	Indication that setting Group 5 is the active setting group
SG6	Indication that setting Group 6 is the active setting group

Table 7.3:	Definitions for Active Setting Group Indication
	Relay Word Bits SG1 Through SG6

For example, if setting Group 4 is the active setting group, Relay Word bit SG4 asserts to logical 1, and the other Relay Word bits SG1, SG2, SG3, SG5, and SG6 are all deasserted to logical 0.

Selecting the Active Setting Group

The active setting group is selected with:

- SELOGIC control equation settings SS1 through SS6.
- The serial port GROUP command (see *Section 10: Serial Port Communications and Commands*).
- Or the front-panel GROUP pushbutton (see *Section 11: Additional Front-Panel Interface Details*).

SELOGIC control equation settings SS1 through SS6 have priority over the serial port GROUP command and the front-panel GROUP pushbutton in selecting the active setting group.

Operation of SELOGIC Control Equation Settings SS1 Through SS6

Each setting group has its own set of SELOGIC control equation settings SS1 through SS6.

Setting	Definition
SS1	go to (or remain in) setting Group 1
SS2	go to (or remain in) setting Group 2
SS3	go to (or remain in) setting Group 3
SS4	go to (or remain in) setting Group 4
SS5	go to (or remain in) setting Group 5
SS6	go to (or remain in) setting Group 6

Table 7.4: Definitions for Active Setting Group SwitchingSELOGIC Control Equation Settings SS1 Through SS6

The operation of these settings is explained with the following example:

Assume the active setting group starts out as setting Group 3. Corresponding Relay Word bit SG3 is asserted to logical 1 as an indication that setting Group 3 is the active setting group (see Table 7.3).

With setting Group 3 as the active setting group, setting SS3 has priority. If setting SS3 is asserted to logical 1, setting Group 3 remains the active setting group, regardless of the activity of settings SS1, SS2, SS4, SS5, and SS6. With settings SS1 through SS6 all deasserted to logical 0, setting Group 3 still remains the active setting group.

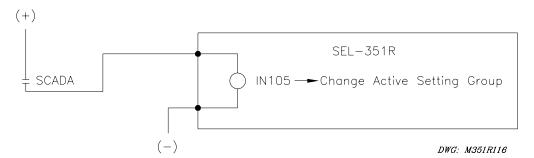
With setting Group 3 as the active setting group, if setting SS3 is deasserted to logical 0 and one of the other settings (e.g., setting SS5) asserts to logical 1, the relay switches from setting Group 3 as the active setting group to another setting group (e.g., setting Group 5) as the active setting group, after qualifying time setting TGR:

TGR Group Change Delay Setting (settable from 0.00 to 16000.00 cycles)

In this example, TGR qualifies the assertion of setting SS5 before it can change the active setting group.

Operation of Serial Port GROUP Command and Front-Panel GROUP Pushbutton

SELOGIC control equation settings SS1 through SS6 have priority over the serial port GROUP command and the front-panel GROUP pushbutton in selecting the active setting group. If any <u>one</u> of SS1 through SS6 asserts to logical 1, neither the serial port GROUP command nor the front-panel GROUP pushbutton can be used to switch the active setting group. But if SS1 through SS6 <u>all</u> deassert to logical 0, the serial port GROUP command or the front-panel GROUP pushbutton can be used to switch the active setting group.


See Section 10: Serial Port Communications and Commands for more information on the serial port GROUP command. See Section 11: Additional Front-Panel Interface Details for more information on the front-panel GROUP pushbutton.

SEL-351R Disabled Momentarily During Active Setting Group Change

The SEL-351R is disabled for a **few seconds** while in the process of changing active setting groups. SEL-351R elements, timers, and logic are reset, unless indicated otherwise in the specific logic description. For example, during an active setting group change, the SEL-351R retains states for local bits LB1 through LB8 (LB1 through LB16 for the SEL-351R-2) and latch bits LT1 through LT8 (LT1 through LT16 for the SEL-351R-2). The output contacts go to their deenergized state during an active setting group change, regardless of their corresponding SELOGIC control equation settings. See Figure 7.27 for examples of output contacts in the deenergized state (i.e., corresponding output contact coils deenergized).

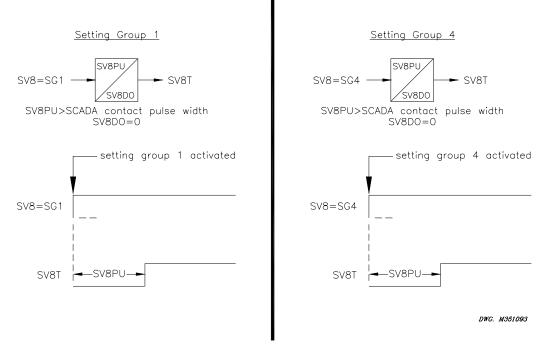
Active Setting Group Switching Example 1

Use a single optoisolated input to switch between two setting groups in the SEL-351R. In this example, optoisolated input IN105 on the relay is connected to a SCADA contact in Figure 7.18. Each pulse of the SCADA contact changes the active setting group from one setting group (e.g., setting Group 1) to another (e.g., setting Group 4). The SCADA contact is not maintained, just pulsed to switch from one active setting group to another.

Figure 7.18: SCADA Contact Pulses Input IN105 to Switch Active Setting Group Between Setting Groups 1 and 4

If setting Group 1 is the active setting group and the SCADA contact is pulsed, setting Group 4 becomes the active setting group. If the SCADA contact is pulsed again, setting Group 1 becomes the active setting group again. The setting group control operates in a cyclical manner:

pulse to activate setting Group 4 ... pulse to activate setting Group 1 ... pulse to activate setting Group 4 ... pulse to activate setting Group 1 ...


This logic is implemented in the SELOGIC control equation settings in Table 7.5.

Setting Group 1	Setting Group 4
SV8 = SG1	SV8 = SG4
SS1 = 0	SS1 = IN5 * SV8T
SS2 = 0	SS2 = 0
SS3 = 0	SS3 = 0
SS4 = IN5 * SV8T	SS4 = 0
SS5 = 0	SS5 = 0
SS6 = 0	SS6 = 0

 Table 7.5: SELOGIC Control Equation Settings for Switching Active Setting Group

 Between Setting Groups 1 and 4

SELOGIC control equation timer input setting SV8 in Table 7.5 has logic output SV8T, shown in operation in Figure 7.19 for both setting groups 1 and 4.

Figure 7.19: SELOGIC Control Equation Variable Timer SV8T Used in Setting Group Switching

In this example, timer SV8T is used in both setting groups—different timers could have been used with the same operational result. The timers reset during the setting group change, allowing the same timer to be used in both setting groups.

Timer pickup setting SV8PU is set greater than the pulse width of the SCADA contact (Figure 7.18). This allows only one active setting group change (e.g., from setting Group 1 to 4) for each pulse of the SCADA contact (and subsequent assertion of input IN105). The function of the SELOGIC control equations in Table 7.5 becomes more apparent in the following example scenario.

Start Out in Setting Group 1

Refer to Figure 7.20.

The relay has been in setting Group 1 for some time, with timer logic output SV8T asserted to logical 1, thus enabling SELOGIC control equation setting SS4 for the assertion of input IN105.

Switch to Setting Group 4

Refer to Figure 7.20.

The SCADA contact pulses input IN105, and the active setting group changes to setting Group 4 after qualifying time setting TGR (perhaps set at a cycle or so to qualify the assertion of setting SS4). Optoisolated input IN105 also has its own built-in debounce timer (IN105D) available (see Figure 7.1).

Note that Figure 7.20 shows both setting Group 1 and setting Group 4 settings. The setting Group 1 settings (top of Figure 7.20) are enabled only when setting Group 1 is the active setting group and likewise for the setting Group 4 settings at the bottom of the figure.

Setting Group 4 is now the active setting group, and Relay Word bit SG4 asserts to logical 1. After the relay has been in setting Group 4 for a time period equal to SV8PU, the timer logic output SV8T asserts to logical 1, thus enabling SELOGIC control equation setting SS1 for a new assertion of input IN105.

Note that input IN105 is still asserted as setting Group 4 is activated. Pickup time SV8PU keeps the continued assertion of input IN105 from causing the active setting group to revert back again to setting Group 1 for a single assertion of input IN105. This keeps the active setting group from being changed at a time interval less than time SV8PU.

Switch Back to Setting Group 1

Refer to Figure 7.20.

The SCADA contact pulses input IN105 a second time, and the active setting group changes back to setting Group 1 after qualifying time setting TGR (perhaps set at a cycle or so to qualify the assertion of setting SS1). Optoisolated input IN105 also has its own built-in debounce timer (IN105D) available (see Figure 7.1).

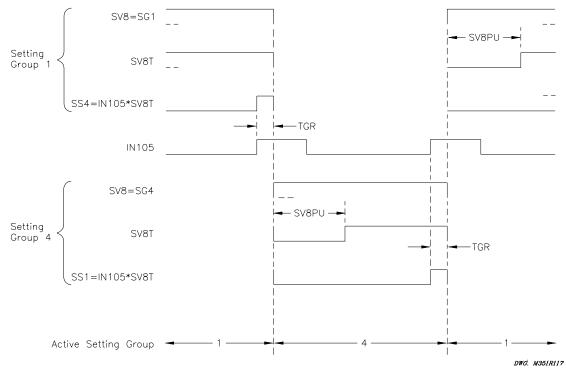
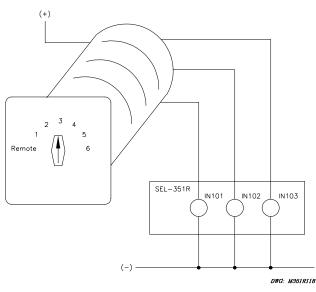


Figure 7.20: Active Setting Group Switching (with Single Input) Time Line


Active Setting Group Switching Example 2

Previous SEL relays (e.g., SEL-321 and SEL-251 Relays) have multiple settings groups controlled by the assertion of three optoisolated inputs (e.g., IN101, IN102, and IN103) in different combinations as shown in Table 7.6.

I	nput State	es	Active
IN103	IN102	IN101	Setting Group
0	0	0	Remote
0	0	1	Group 1
0	1	0	Group 2
0	1	1	Group 3
1	0	0	Group 4
1	0	1	Group 5
1	1	0	Group 6

 Table 7.6: Active Setting Group Switching Input Logic

The SEL-351R can be programmed to operate similarly. Use three optoisolated inputs to switch between the six setting groups in the SEL-351R. In this example, optoisolated inputs IN101, IN102, and IN103 on the relay are connected to a rotating selector switch in Figure 7.21.

Figure 7.21: Rotating Selector Switch Connected to Inputs IN101, IN102, and IN103 for Active Setting Group Switching

The selector switch has multiple internal contacts arranged to assert inputs IN101, IN102, and IN103, dependent on the switch position. As shown in Table 7.7, when the selector switch is moved from one position to another, a different setting group is activated. The logic in Table 7.6 is implemented in the SELOGIC control equation settings in Table 7.7.

SS1 = !IN103 * !IN102 * IN101	= NOT(IN103) * NOT(IN102) * IN101
SS2 = !IN103 * IN102 * !IN101	= NOT(IN103) * IN102 * NOT(IN101)
SS3 = !IN103 * IN102 * IN101	= NOT(IN103) * IN102 * IN101
SS4 = IN103 * !IN102 * !IN101	= IN103 * NOT(IN102) * NOT(IN101)
SS5 = IN103 * !IN102 * IN101	= IN103 * NOT(IN102) * IN101
SS6 = IN103 * IN102 * !IN101	= IN103 * IN102 * NOT(IN101)

 Table 7.7: SELOGIC Control Equation Settings for Rotating Selector Switch

 Active Setting Group Switching

The settings in Table 7.7 are made in each setting Group 1 through 6.

Selector Switch Starts Out in Position 3

Refer to Table 7.7 and Figure 7.22.

If the selector switch is in position 3 in Figure 7.21, setting Group 3 is the active setting group (Relay Word bit SG3 = logical 1). Inputs IN101 and IN102 are energized and IN103 is deenergized:

SS3 = !IN103 * IN102 * IN101 = NOT(IN103) * IN102 * IN101 = NOT(logical 0) * logical 1 * logical 1 = logical 1 To get from the position 3 to position 5 on the selector switch, the switch passes through the position 4. The switch is only briefly in position 4:

SS4 = IN103 * !IN102 * !IN101 = IN103 * NOT(IN102) * NOT(IN101) = logical 1 * NOT(logical 0) * NOT(logical 0) = logical 1

but not long enough to be qualified by time setting TGR in order to change the active setting group to setting Group 4. For such a rotating selector switch application, qualifying time setting TGR is typically set at 180 to 300 cycles. Set TGR long enough to allow the selector switch to pass through intermediate positions without changing the active setting group, until the switch rests on the desired setting group position.

Selector Switch Switched to Position 5

Refer to Figure 7.22.

If the selector switch is rested on position 5 in Figure 7.21, setting Group 5 becomes the active setting group (after qualifying time setting TGR; Relay Word bit SG5 = logical 1). Inputs IN101 and IN103 are energized and IN102 is deenergized:

SS5 = IN103 * !IN102 * IN101 = IN103 * NOT(IN102) * IN101 = logical 1 * NOT(logical 0) * logical 1 = logical 1

To get from position 5 to position REMOTE on the selector switch, the switch passes through the positions 4, 3, 2, and 1. The switch is only briefly in the these positions, but not long enough to be qualified by time setting TGR in order to change the active setting group to any one of these setting groups.

Selector Switch Now Rests on Position REMOTE

Refer to Figure 7.22.

If the selector switch is rested on position REMOTE in Figure 7.19, all inputs IN101, IN102, and IN103 are deenergized and all settings SS1 through SS6 in Table 7.7 are at logical 0. The last active setting group (Group 5 in this example) remains the active setting group (Relay Word bit SG5 = logical 1).

With settings SS1 through SS6 all at logical 0, the serial port GROUP command or the frontpanel GROUP pushbutton can be used to switch the active setting group from Group 5, in this example, to another desired setting group.

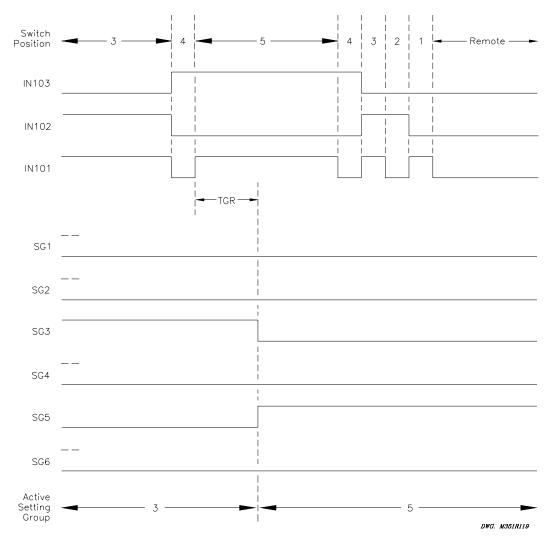


Figure 7.22: Active Setting Group Switching (with Rotating Selector Switch) Time Line

Active Setting Group Retained

Power Loss

The active setting group is retained if power to the relay is lost and then restored. If a particular setting group is active (e.g., setting Group 5) when power is lost, it comes back with the same setting group active when power is restored.

Settings Change

If individual settings are changed (for the active setting group or one of the other setting groups), the active setting group is retained, much like in the preceding *Power Loss* explanation.

If individual settings are changed for a setting group other than the active setting group, there is no interruption of the active setting group (the relay is not momentarily disabled).

If the individual settings change causes a change in one or more SELOGIC control equation settings SS1 through SS6, the active setting group can be changed, subject to the newly enabled SS1 through SS6 settings.

Note: Make Active Setting Group Switching Settings With Care

The active setting group is stored in nonvolatile memory so it can be retained during power loss or settings change. The nonvolatile memory is rated for a finite number of "writes" for all setting group changes. Exceeding this limit can result in an EEPROM self-test failure. <u>This limit translates to an average of 1 setting group change per day for a 25-year relay service life</u>. Therefore, set equations SS1 through SS6 with care so continuous cyclical changing of the active setting group does not occur. Time setting TGR qualifies settings SS1 through SS6 before changing the active setting group. If optoisolated inputs IN101 through IN106 are used in settings SS1 through SS6, the inputs have their own built-in debounce timer that can help in providing the necessary time qualification (see Figure 7.1).

SELOGIC CONTROL EQUATION VARIABLES/TIMERS

Sixteen (16) SELOGIC control equation variables/timers are available. Each SELOGIC control equation variable/timer has a SELOGIC control equation setting input and variable/timer outputs as shown in Figure 7.23 and Figure 7.24.

Timers SV1T through SV6T in Figure 7.23 have a setting range of a little over 4.5 hours:

0.00–999999.00 cycles in 0.25-cycle increments

Timers SV7T through SV16T in Figure 7.24 have a setting range of almost 4.5 minutes:

0.00-16000.00 cycles in 0.25-cycle increments

These timer setting ranges apply to both pickup and dropout times (SVnPU and SVnDO, n = 1 through 16).

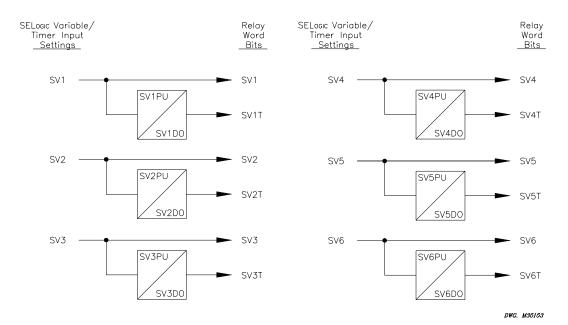
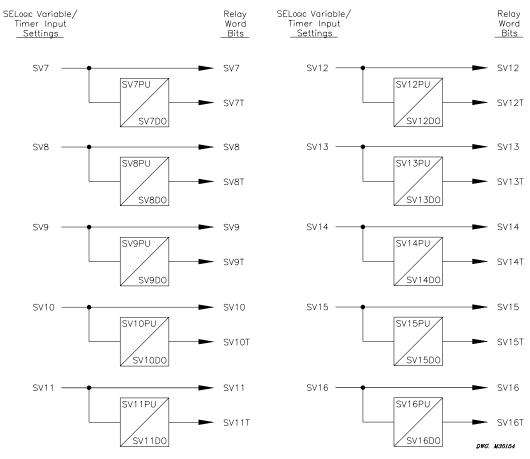
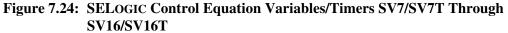




Figure 7.23: SELOGIC Control Equation Variables/Timers SV1/SV1T Through SV6/SV6T

Settings Example 1

A SELOGIC control equation timer can be used for a simple breaker failure scheme:

SV1 = TRIP

The TRIP Relay Word bit is run through a timer for breaker failure timing. Timer pickup setting SV1PU is set to the breaker failure time (SV1PU = 12 cycles). Timer dropout setting SV1DO is set for a 2-cycle dropout (SV1DO = 2 cycles). The output of the timer (Relay Word bit SV1T) operates output contact OUT103.

OUT103 = SV1T

Settings Example 2

Another application idea is dedicated breaker failure protection (see Figure 7.25):

SV6 = IN101(breaker failure initiate) SV7 = (SV7 + IN101) * (50P1 + 50N1)OUT101 = SV6T(retrip) OUT102 = SV7T(breaker failure trip) SV6PU SV6 SV6T OUT101 (Retrip` SV6DO SV7PU SV7 SV7T IN101 OUT102 (Breaker SV7DO Failure Trip) 50P1 OUT103 50N1 OUT104

Figure 7.25: Dedicated Breaker Failure Scheme Created with SELOGIC Control Equation Variables/Timers

Note that the above SELOGIC control equation setting SV7 creates a seal-in logic circuit (as shown in Figure 7.25) by virtue of SELOGIC control equation setting SV7 being set equal to Relay Word bit SV7 (SELOGIC control equation variable SV7):

SV7 = (SV7 + IN101) * (50P1 + 50N1)

Optoisolated input IN101 functions as a breaker failure initiate input. Phase instantaneous overcurrent element 50P1 and neutral ground instantaneous overcurrent element 50N1 function as fault detectors.

Timer pickup setting SV6PU provides retrip delay, if desired (can be set to zero). Timer dropout setting SV6DO holds the retrip output (output contact OUT101) closed for extra time if needed after the breaker failure initiate signal (IN101) goes away.

Timer pickup setting SV7PU provides breaker failure timing. Timer dropout setting SV7DO holds the breaker failure trip output (output contact OUT102) closed for extra time if needed after the breaker failure logic unlatches (fault detectors 50P1 and 50N1 dropout).

Note that Figure 7.25 suggests the option of having output contacts OUT103 and OUT104 operate as additional breaker failure trip outputs. This is done by making the following SELOGIC control equation settings:

OUT103 = SV7T	(breaker failure trip)
OUT104 = SV7T	(breaker failure trip)

Settings Example 3

The seal-in logic circuit in the dedicated breaker failure scheme in Figure 7.25 can be removed by changing the SELOGIC control equation setting SV7 to:

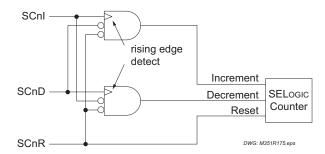
SV7 = IN101 * (50P1 + 50N1)

If the seal-in logic circuit is removed, optoisolated input IN101 (breaker failure initiate) has to be continually asserted for a breaker failure time-out.

<u>Timers Reset When Power Is Lost, Settings Are Changed, or Active Setting Group Is</u> <u>Changed</u>

If power is lost to the relay, settings are changed (for the active setting group), or the active setting group is changed, then the SELOGIC control equation variables/timers are reset. Relay Word bits SVn and SVnT (n = 1 through 16) are reset to logical 0 and corresponding timer settings SVnPU and SVnDO load up again after power restoration, settings change, or active setting group switch.

Preceding Figure 7.25 shows an effective seal-in logic circuit, created by use of Relay Word bit SV7 (SELOGIC control equation variable SV7) in SELOGIC control equation SV7:


$$SV7 = (SV7 + IN101) * (50P1 + 50N1)$$

If power is lost to the relay, settings are changed (for the active setting group), or the active setting group is changed, then the seal-in logic circuit is "broken" by virtue of Relay Word bit SV7 being reset to logical 0 (assuming input IN101 is not asserted). Relay Word bit SV7T is also reset to logical 0, and timer settings SV7PU and SV7DO load up again.

SELOGIC COUNTERS (SEL-351R-2 ONLY)

Eight (8) SELOGIC counters are available in the SEL-351R-2. Three SELOGIC control equations per counter define when the counter increments, decrements, or resets to zero, see Figure 7.26. Each rising edge of SCnI increments the counter as long as SCnD (decrement equation) and SCnR (reset equation) are not asserted, and the counter has not reached 999,999 counts. Similarly, the counter decrements on each rising edge of SCnD as long as SCnI and SCnR are not asserted, and the counter has not reached –999,999 counts. If SCnR asserts, the counter resets to zero.

Note: The SELOGIC counters also reset to zero if power is lost to the relay. The values are maintained if a setting, or the active setting group is changed. If it is necessary to reset the counter after a setting group change, include the rising edge of the target group in the reset equation. For example, if SC1 in group 1 must be reset when going to group 2, then OR /SG2 into the SC1R equation.

Figure 7.26: SELOGIC Counter

The value of each SELOGIC counter is accessible through a comparison statement within a SELOGIC control equation; see *SELOGIC Control Equation Analog Compares* in *Appendix G: Setting SELOGIC*[®] *Control Equations*.

OUTPUT CONTACTS

Figure 7.27 shows an example operation of output contact Relay Word bits (e.g., Relay Word bits OUT101 through OUT107 in Figure 7.27) due to:

SELOGIC control equation operation (e.g., SELOGIC control equation settings OUT101 through OUT107 in Figure 7.27)

or

PULSE command execution

The output contact Relay Word bits in turn control the output contacts (e.g., output contacts OUT101 through OUT107 in Figure 7.27).

Alarm logic/circuitry controls the ALARM output contact (see Figure 7.27)

Figure 7.27 is used for following discussion/examples.

Settings Example

Three output contacts can be used for the following functions:

OUT101 = TRIP	(overcurrent tripping/manual tripping; see Section 5: Trip and Target Logic)
OUT102 = CLOSE	(automatic reclosing/manual closing; see <i>Section 6: Close and Reclose Logic</i>)
OUT103 = SV1T	(breaker failure trip; see <i>SELOGIC Control Equation Variables/Timers</i> earlier in this section)
OUT104 = 0	(output contact OUT104 not used—set equal to zero)
•	
•	
•	
OUT107 = 0	(output contact OUT107 not used—set equal to zero)

Operation of Output Contacts for Different Output Contact Types

Output Contacts OUT101 Through OUT107

Refer to Figure 7.27.

The execution of the serial port command PULSE n (n = OUT101 through OUT107) asserts the corresponding Relay Word bit (OUT101 through OUT107) to logical 1. The assertion of SELOGIC control equation setting OUTm (m = 101 through 107) to logical 1 also asserts the corresponding Relay Word bit OUTm (m = 101 through 107) to logical 1.

The assertion of Relay Word bit OUTm (m = 101 through 107) to logical 1 causes the energization of the corresponding output contact OUTm coil. Depending on the contact type (a or b), the output contact closes or opens as demonstrated in Figure 7.27. An "a" type output contact is open when the output contact coil is deenergized and closed when the output contact coil is energized. A "b" type output contact is closed when the output contact coil is deenergized and open when the output contact coil is energized.

Notice in Figure 7.27 that all four possible combinations of output contact coil states (energized or deenergized) and output contact types (a or b) are demonstrated. See *Output Contact Jumpers* in *Section 2: Additional Installation Details* for output contact type options.

Output contact pickup/dropout time is 4 ms.

ALARM Output Contact

Refer to Figure 7.27 and Relay Self-Tests in Section 13: Testing and Troubleshooting.

When the relay is operational, the ALARM output contact coil is energized. The alarm logic/circuitry keeps the ALARM output contact coil energized. Depending on the ALARM output contact type (a or b), the ALARM output contact closes or opens as demonstrated in Figure 7.27. An "a" type output contact is open when the output contact coil is deenergized and

closed when the output contact coil is energized. A "b" type output contact is closed when the output contact coil is deenergized and open when the output contact coil is energized.

To verify ALARM output contact mechanical integrity, execute the serial port command PULSE ALARM. Execution of this command momentarily deenergizes the ALARM output contact coil.

The Relay Word bit ALARM is deasserted to logical 0 when the relay is operational. When the serial port command PULSE ALARM is executed, the ALARM Relay Word bit momentarily asserts to logical 1. Also, when the relay enters Access Level 2, the ALARM Relay Word bit momentarily asserts to logical 1 (and the ALARM output contact coil is deenergized momentarily).

Notice in Figure 7.27 that all possible combinations of ALARM output contact coil states (energized or deenergized) and output contact types (a or b) are demonstrated. See *Output Contact Jumpers* in *Section 2: Additional Installation Details* for output contact type options.

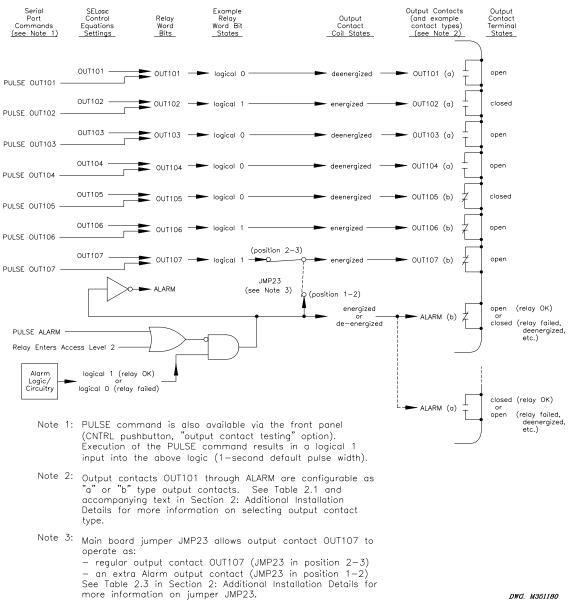
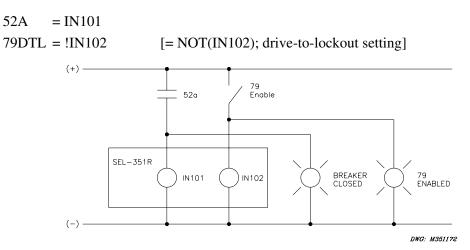


Figure 7.27: Logic Flow for Example Output Contact Operation


ROTATING DEFAULT DISPLAY

The rotating default display on the relay front-panel replaces indicating panel lights. Traditional indicating panel lights are turned on and off by circuit breaker auxiliary contacts, front-panel switches, SCADA contacts, etc. They indicate such conditions as:

circuit breaker open/closed reclosing relay enabled/disabled

Traditional Indicating Panel Lights

Figure 7.28 shows traditional indicating panel lights wired in parallel with SEL-351R optoisolated inputs. Input IN101 provides circuit breaker status to the relay, and input IN102 enables/disables reclosing in the relay via the following SELOGIC control equation settings:

Figure 7.28: Traditional Panel Light Installations

Note that Figure 7.28 corresponds to Figure 7.2 (settings example).

Reclosing Relay Status Indication

In Figure 7.28, the 79 ENABLED panel light illuminates when the "79 Enable" switch is closed. When the "79 Enable" switch is open, the 79 ENABLED panel light extinguishes, and it is understood that the reclosing relay is disabled.

Circuit Breaker Status Indication

In Figure 7.28, the BREAKER CLOSED panel light illuminates when the 52a circuit breaker auxiliary contact is closed. When the 52a circuit breaker auxiliary contact is open, the BREAKER CLOSED panel light extinguishes, and it is understood that the breaker is open.

Traditional Indicating Panel Lights Replaced With Rotating Default Display

The indicating panel lights are not needed if the rotating default display feature in the SEL-351R is used. Figure 7.29 shows the elimination of the indicating panel lights by using the rotating default display.

Figure 7.29: Rotating Default Display Replaces Traditional Panel Light Installations

There are eight (8) (16 on the SEL-351R-2) default displays available in the SEL-351R. Each default display has two complementary screens (e.g., BREAKER CLOSED and BREAKER OPEN) available.

General Operation of Rotating Default Display Settings

SELOGIC control equation display point setting DPn, where n = 1 through 8 (1 through 16 for the SEL-351R-2), controls the display of corresponding, complementary text settings:

DPn_1	(displayed when $DPn = logical 1$)
DPn_0	(displayed when $DPn = logical 0$)

Make each text setting through the serial port using the command *SET T*. View these text settings using the serial port command *SHO T* (see *Section 9: Setting the SEL-351R Recloser Control* and *Section 10: Serial Port Communications and Commands*). These text settings are displayed on the SEL-351R front-panel display on a 2-second rotation (see *Rotating Default Display* in *Section 11: Additional Front-Panel Interface Details* for more specific operation information).

The following factory settings examples use optoisolated inputs IN101 and IN102 in the display points settings. Local bits LB1 through LB4, latch bits LT1 through LT4, remote bits RB1 through RB8 (RB1 through RB16 for the SEL-351R-2), setting group indicators SG1 through SG6, and any other combination of Relay Word bits in a SELOGIC control equation setting can also be used in display point setting DPn.

Settings Examples

The following example settings provide the replacement solution shown in Figure 7.29 for the traditional indicating panel lights in Figure 7.28.

Reclosing Relay Status Indication

Make SELOGIC control equation display point setting DP1:

DP1 = IN102

Make corresponding, complementary text settings:

DP1_1 = 79 ENABLED DP1_0 = 79 DISABLED

Display point setting DP1 controls the display of the text settings.

Reclosing Relay Enabled

In Figure 7.29, optoisolated input IN102 is energized to enable the reclosing relay, resulting in:

DP1 = IN102 = logical 1

This results in the display of corresponding text setting DP1_1 on the front-panel display:

79 ENABLED

Reclosing Relay Disabled

In Figure 7.29, optoisolated input IN102 is deenergized to disable the reclosing relay, resulting in:

DP1 = IN102 = logical 0

This results in the display of corresponding text setting DP1_0 on the front-panel display:

79 DISABLED

Circuit Breaker Status Indication

Make SELOGIC control equation display point setting DP2:

DP2 = IN101

Make corresponding, complementary text settings:

DP2_1 = BREAKER CLOSED DP2_0 = BREAKER OPEN

Display point setting DP2 controls the display of the text settings.

Circuit Breaker Closed

In Figure 7.29, optoisolated input IN101 is energized when the 52a circuit breaker auxiliary contact is closed, resulting in:

DP2 = IN101 = logical 1

This results in the display of corresponding text setting DP2_1 on the front-panel display:

BREAKER CLOSED

Circuit Breaker Open

In Figure 7.29, optoisolated input IN101 is deenergized when the 52a circuit breaker auxiliary contact is open, resulting in:

DP2 = IN101 = logical 0

This results in the display of corresponding text setting DP2_0 on the front-panel display:

BREAKER OPEN

Additional Settings Examples

Display Only One Message

To display just one screen, but not its complement, set only one of the text settings. For example, to display just the "breaker closed" condition, but not the "breaker open" condition, make the following settings:

DP2 = IN101	(52a circuit breaker auxiliary contact connected to input IN101—see Figure 7.29)
DP2_1 = BREAKER CLOSED	(displays when $DP2 = logical 1$)
DP2_0 =	(blank)

Circuit Breaker Closed

In Figure 7.29, optoisolated input IN101 is energized when the 52a circuit breaker auxiliary contact is closed, resulting in:

DP2 = IN101 = logical 1

This results in the display of corresponding text setting DP2_1 on the front-panel display:

```
BREAKER CLOSED
```

Circuit Breaker Open

In Figure 7.29, optoisolated input IN101 is deenergized when the 52a circuit breaker auxiliary contact is open, resulting in:

DP2 = IN101 = logical 0

Corresponding text setting DP2_0 is not set (it is "blank"), so no message is displayed on the front-panel display.

Continually Display a Message

To continually display a message in the rotation, set the SELOGIC control equation display point setting directly to 0 (logical 0) or 1 (logical 1) and the corresponding text setting. For example, if an SEL-351R is protecting a 12 kV distribution feeder, labeled "Feeder 1204," the feeder name can be continually displayed with the following settings

DP5 = 1	(set directly to logical 1)
$DP5_1 = FEEDER 1204$	(displays when $DP5 = logical 1$)
DP5_0 =	("blank")

This results in the continual display of text setting DP5_1 on the front-panel display:

FEEDER 1204

This can also be realized with the following settings:

DP5 = 0	(set directly to logical 0)
DP5_1 =	("blank")
$DP5_0 = FEEDER 1204$	(displays when $DP5 = logical 0$)

This results in the continual display of text setting DP5_0 on the front-panel display:

```
FEEDER 1204
```

Active Setting Group Switching Considerations

The SELOGIC control equation display point setting DPn, where n = 1 through 8 (1 through 16 for the SEL-351R-2), are available separately in each setting group. The corresponding text settings DPn_1 and DPn_0 are made only once and used in all setting groups.

Refer to Figure 7.29 and the following example setting group switching discussion.

Setting Group 1 Is the Active Setting Group

When setting Group 1 is the active setting group, optoisolated input IN102 operates as a reclose enable/disable switch with the following settings:

SELOGIC control equation settings:

79DTL = !IN102 + ...; drive-to-lockout setting] DP1 = IN102

Text settings:

 $DP1_1 = 79 ENABLED$

(displayed when DP1 = logical 1)

Reclosing Relay Enabled

In Figure 7.29, optoisolated input IN102 is energized to enable the reclosing relay, resulting in:

DP1 = IN102 = logical 1

This results in the display of corresponding text setting DP1_1 on the front-panel display:

79	ENABLED

Reclosing Relay Disabled

In Figure 7.29, optoisolated input IN102 is deenergized to disable the reclosing relay, resulting in:

DP1 = IN102 = logical 0

This results in the display of corresponding text setting DP1_0 on the front-panel display:

79 DISABLED

Now the active setting group is switched from setting Group 1 to 4.

Switch to Setting Group 4 as the Active Setting Group

When setting Group 4 is the active setting group, the reclosing relay is always disabled and optoisolated input IN102 has no control over the reclosing relay. The text settings cannot be changed (they are used in all setting groups), but the SELOGIC control equation settings can be changed:

SELOGIC control equation settings:

79DTL	= 1	(set directly to logical 1—reclosing relay	
		permanently "driven-to-lockout")	
DP1	= 0	(set directly to logical 0)	

Text settings (remain the same for all setting groups):

DP1_1	= 79 ENABLED	(displayed when $DP1 = logical 1$)
DP1_0	= 79 DISABLED	(displayed when $DP1 = logical 0$)

Because SELOGIC control equation display point setting DP1 is always at logical 0, the corresponding text setting DP1_0 continually displays in the rotating default displays:

79 DISABLED

Additional Rotating Default Display Example

See Figure 5.17 and accompanying text in *Section 5: Trip and Target Logic* for an example of resetting a rotating default display with the TARGET RESET pushbutton.

Displaying Values (other than user-entered text) on the Rotating Default Display

Table 7.8 through Table 7.11 list the values available for the rotating default display. These available values cover metering (Table 7.8), self-check status (Table 7.9), breaker wear/counters (Table 7.10), and time-overcurrent element pickups (Table 7.11). In general, any of these values can be selected for the rotating default display by entering a double colon followed by the mnemonic. For example, to display peak demand currents (Table 7.8) for currents IA, IB, IC, and IN, make the following text (SET T command) and logic (SET L command) settings:

SET T	SET L
DP1_0 = ::IAPK	DP1 = 0
DP2_0 = ::IBPK	DP2 = 0
DP3_0 = ::ICPK	DP3 = 0
DP4 $0 = ::INPK$	DP4 = 0

Logic settings DP1 through DP4 above are permanently set to logical 0 in this example. This causes the corresponding DPn_0 value to permanently rotate in the display (the mnemonics in the DPn_0 settings indicate the value displayed, per Table 7.8):

then,

The *Rotating Default Display* subsection in *Section 11: Additional Front-Panel Interface Details* explains pictorially which display setting gets displayed (DPn_0 or DPn_1), depending on the logic state (logical 0 or 1) of corresponding logic setting DPn.

Values Displayed for Incorrect Settings

If the display point setting does not match the format correctly, the relay displays the setting text string as it was actually entered, without substituting the display value. For example:

SET T		SET L
$DP1_0 = :IAPK$	(missing ":")	DP1 = 0
DP2_0 = ::IBPJ	(misspelled mnemonic)	DP2 = 0

Again, logic settings DP1 and DP2 are permanently set to logical 0. This causes the corresponding DPn_0 value to permanently rotate in the display. With the above DPn_0 setting problems, the relay displays the setting text string as it was actually entered, without substituting the intended display value from Table 7.8:

:IAPK ::IBPJ

Metering Values on the Rotating Default Display

Table 7.8 lists the metering values available for the rotating default display. These values correspond to the primary metering values available via the METER command (MET [Instantaneous], MET X [Extended Instantaneous], MET D [Demand], and MET E [Energy]; see *Section 10: Serial Port Communications and Commands* for serial port commands).

Note in Table 7.8 that many of the magnitude values are listed with three digits behind the decimal point. For example, the first value in Table 7.8 is shown generically as below:

IA= x.xxxA yyy°

If the magnitude is less than 10, it displays with three digits behind the decimal point:

IA= 8.32A 0°

(three digits behind the decimal point)

If the magnitude is greater than or equal to 10, it displays with two or less digits behind the decimal point:

IA= 52.37A	0°	(two digits behind the decimal point)
IB= 635.8A	-120°	(one digit behind the decimal point)
IC= 1173A	120°	

The above IA, IB, IC example is perhaps absurd in magnitude difference, but demonstrates the automatic decimal point shifting in the rotating default display for these values.

Self-Check Status Values on the Rotating Default Display

Table 7.9 lists the self-check status values available for the rotating default display. These values correspond to the self-check status values available via the STATUS command (STA; see *Section 10: Serial Port Communications and Commands* for serial port commands).

Breaker Wear/Counter Values on the Rotating Default Display

Table 7.10 lists the breaker wear/counter values available for the rotating default display. These values correspond to the breaker wear/counter values available via the BREAKER A command (BRE A; see *Section 10* for serial port commands).

Same Display Values/Different Settings

In Table 7.10, the following display choices (shown with example values):

CTRL TRIPS= 1043 OPS CNTR= 1043	(corresponding mnemonic CTRLTR)
0F3 CNTR- 1043	(corresponding mnemonic OPSCNTR)

display the same value—the number of trips issued by the SEL-351R Recloser Control. The display "OPS CNTR" is more akin to the displays used in traditional recloser controls.

Also, the following display pair (shown with example values):

FF/G TRIPS=	845	(correspo
GND CNTR=	845	(correspo
on b on n	0.0	(COHESDC

(corresponding mnemonic EFGTR) (corresponding mnemonic GNDCNTR)

display the same value—the number of trips, involving ground, issued by the SEL-351R Recloser Control.

Combined Display Values

Note that the following display choices from Table 7.10 (shown with example values):

2 72%	A-0PS= 752	(corresponding mnemonic ATRWR)
9 78%	B-0PS= 829	(corresponding mnemonic BTRWR)
81%	C-0PS= 861	(corresponding mnemonic CTRWR)

are a combination of the information available through respective, individual display choices:

A-PH TRIPS= 752	(corresponding mnemonic APHTR)
WEAR A= 72%	(corresponding mnemonic WEARA)
B-PH TRIPS= 829	(corresponding mnemonic BPHTR)
WEAR B= 78%	(corresponding mnemonic WEARB)
B-PH TRIPS= 861	(corresponding mnemonic CPHTR)
WEAR B= 81%	(corresponding mnemonic WEARC)

Time-Overcurrent Element Pickup Values on the Rotating Default Display

Table 7.11 lists the time-overcurrent element pickup values available for the rotating default display. The mnemonics in Table 7.11 correspond exactly to the time-overcurrent element pickup settings, set with the SET command (see *Section 9: Setting the SEL-351R Recloser Control* for serial port SET commands explanation).

The time-overcurrent element pickup settings are made in Amps secondary (e.g., 51P1P = 0.5 A secondary). What gets displayed on the screen is the pickup in terms of Amps primary—the difference factor being the current transformer ratio setting (neutral current transformer ratio setting CTRN for the neutral-ground time-overcurrent element pickups 51N1P and 51N2P, operating off of the IN channel; all the other time-overcurrent element pickups use the phase

current transformer ratio setting CTR). If phase time-overcurrent element pickup 51P1P is set for display:

SET	SET T	SET L
CTR = 1000	DP2_0 = ::51P1P	DP2 = 0
51P1P = 0.50		

then the following gets displayed:

500.00 A pri

The "A pri" is automatically added at the end. The "500.00" is computed from:

setting CTR x setting 51P1P = 1000 x 0.50 = 500.00

Precede Pickup Display With Explanatory Text

To have some text precede the time-overcurrent element pickup in the rotating default display (to define what the displayed pickup is), make settings as follows (again, the phase time-overcurrent element pickup example):

SET	SET T	SET L
CTR = 1000	DP1_0 = PHASE TRIPS AT	DP1 = 0
51P1P = 0.5	DP2_0 = ::51P1P	DP2 = 0

then the following gets displayed:

PHASE	TRIPS AT	
500.00		

With the text strings displaying on "odd" settings:

 $DP1_0 = PHASE TRIPS AT$ DP1 = 0

and the pickup settings displaying on the "even" settings:

 $DP2_0 = ::51P1P$ DP2 = 0

the two lines will always display together in the rotation, as shown above.

Element Turned OFF

If the time-overcurrent pickup is set off (e.g., 51P1P = OFF):

SET	SET T	SET L
CTR = 1000 51P1P = OFF	$DP1_0 = PHASE TRIPS AT$ $DP2_0 = ::51P1P$	DP1 = 0 $DP2 = 0$

then the following gets displayed:

PHASE TRIPS AT DFF

Channel IN Elements Use CTRN Multiplier

Again, neutral current transformer ratio setting CTRN is the multiplier (instead of setting CTR) applied to the 51N1P and 51N2P pickups for the neutral-ground time-overcurrent elements (operating off of channel IN). If neutral-ground time-overcurrent element pickup 51N1P is set for display (note the preceding text in setting DP3_0):

SET	SET T	SET L
CTRN = 100	DP3_0 = NEUTRAL TRIPS AT	DP3 = 0
51N1P = 0.5	DP4_0 = ::51N1P	DP4 = 0

then the following gets displayed:

NEUTRAL TI 50.00 A pr	
--------------------------	--

The "A pri" is automatically added at the end. The "50.00" is computed from:

setting CTRN x setting $51N1P = 100 \times 0.50 = 50.00$

Note: Typically, the CTR and CTRN settings would have the same value (e.g., CTR = 1000 and CTRN = 1000) in a recloser application (channel IN wired residually with the phase current inputs—factory standard for the SEL-351R). The above examples (where CTR = 1000 and CTRN = 100) are for demonstration purposes only.

Table 7.8:	Mnemonic Settings	for Metering on	the Rotating Defau	lt Display

Mnemonic	Display	Description
IA	I A = x . x x x A v v v °	IA input current
IB	I B = x . x x A y y o	IB input current
IC	$IC = x \cdot x \cdot x \cdot A \cdot y \cdot y \cdot \gamma$	IC input current
IN	$I N = x \cdot x x x A y y y ^{\circ}$	
VA	$\mathbf{V}\mathbf{A} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{K} \mathbf{V} \mathbf{y} \mathbf{y} \mathbf{y}^{\circ}$	
VB	VB=x.xxxKV yyy°	VB input voltage
VC	VC=x.xxxKV yyy °	VC input voltage
VS	$\mathbf{V}\mathbf{S} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{K} \mathbf{V} \mathbf{y} \mathbf{y} \mathbf{y}^{\circ}$	VS input voltage
IG	I G = x . x x A y y o	
3IO	3 I 0 = x . x x A y y o	3IO=IG (zero-sequence)
I1	I 1 = x . x x A y y v °	positive-sequence current
3I2	3 I 2 = x . x x A y y o	negative-sequence current

Mnemonic	Display	Description
3V0	$3 V 0 = x . x x K V v v ^{\circ}$	zero-sequence voltage
V1	V 1 = x . x x K V y y o	positive-sequence voltage
V2	$V_2 = x \cdot x \cdot x \cdot x \cdot K \cdot V \cdot y \cdot y \cdot y \cdot v$	negative-sequence voltage
MWA	$\mathbf{M} \mathbf{W} = \mathbf{A} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	A megawatts
MWB	$\mathbf{M}\mathbf{W} \mathbf{B} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B megawatts
MWC	MW C = x x . x x x	C megawatts
MW3	$\mathbf{MW} \mathbf{3P} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x}$	three-phase megawatts
MVARA	$MVAR \qquad A = xx . x x x$	A megavars
MVARB	$\mathbf{M}\mathbf{V}\mathbf{A}\mathbf{R} \qquad \mathbf{B} = \mathbf{x}\mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B megavars
MVARC	MVAR C = x x . x x x	C megavars
MVAR3	MVAR 3P = x x . x x x	three-phase megavars
PFA	$PF \qquad A = x \cdot x \cdot x LEAD$	A power factor
PFB	PF B= x.xx LAG	B power factor
PFC	PF C= x.xx LAG	C power factor
PF3	$PF 3P = x \cdot x x LEAD$	
FREQ	$\mathbf{FRQ} = \mathbf{x} \mathbf{x} \cdot \mathbf{x}$	system frequency from VA
VAB	$VAB = x \cdot x \cdot x \cdot x \cdot K \cdot V \cdot y \cdot y \cdot y \cdot v$	AB voltage
VBC	$VBC = x \cdot x \cdot x \cdot x \cdot KV y \cdot y \cdot y \circ$	BC voltage
VCA	$VCA = x \cdot x \cdot x \cdot x \cdot KV \cdot y \cdot y \cdot y \circ$	CA voltage
IADEM	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IA demand current
IAPK	$I A PEAK = x \cdot x x x$	
IBDEM	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IA peak current IB demand current
IBPK	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IB peak current
ICDEM		IC demand current
ICDEM	$I C DEM = x \cdot x$	
INDEM		IC peak current
INDEM		IN demand current
		IN peak current
IGDEM	$I G DEM = x \cdot x x x$	IG demand current
IGPK		IG peak current
3I2DEM	$3 I 2 DEM = x \cdot x x x$	3I2 demand current
3I2PK	$3 I 2 PEAK = x \cdot x x x$	3I2 peak current
MWADI	$MWA I N DEM = x \cdot x \cdot x \cdot x$	A demand megawatts in
MWAPI	MWA IN PK = x . x x x	A peak megawatts in
MWBDI	MWB IN DEM=x . x x x	B demand megawatts in
MWBPI	MWB I N P K = x x x x x	B peak megawatts in
MWCDI	$\mathbf{MWC} \mathbf{I} \mathbf{N} \mathbf{DEM} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	C demand megawatts in
MWCPI	$MWC I N P K = x \cdot x \cdot x \cdot x$	C peak megawatts in
MW3DI	$\mathbf{MW3} \mathbf{IN} \mathbf{DEM} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase demand megawatts in
MW3PI	$\mathbf{MW3} \mathbf{IN} \mathbf{PK} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	three-phase peak megawatts in
MVRADI	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{A} \mathbf{I} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	A demand megavars in
MVRAPI	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{A} \mathbf{I} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	A peak megavars in
MVRBDI	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{B} \mathbf{I} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B demand megavars in
MVRBPI	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{B} \mathbf{I} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B peak megavars in
MVRCDI	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{C} \mathbf{I} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C demand megavars in

Mnemonic	Display	Description
MVRCPI	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{C} \mathbf{I} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C peak megavars in
MVR3DI	$\mathbf{M}\mathbf{V}\mathbf{R}3 \mathbf{I} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase demand megavars in
MVR3PI	$\mathbf{M}\mathbf{V}\mathbf{R}3 \mathbf{I} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase peak megavars in
MWADO	$\mathbf{MWA} \mathbf{O} \mathbf{DEM} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	A demand megawatts out
MWAPO	$MWA = O PK = x \cdot x \cdot x \cdot x$	A peak megawatts out
MWBDO	$\mathbf{M}\mathbf{W}\mathbf{B} \qquad \mathbf{O} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B demand megawatts out
MWBPO	$\mathbf{M}\mathbf{W}\mathbf{B} \mathbf{O} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B peak megawatts out
MWCDO	$\mathbf{MWC} \qquad \mathbf{O} \qquad \mathbf{DEM} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C demand megawatts out
MWCPO	$MWC \qquad O \qquad PK \qquad = x \ . \ x \ x \ x$	C peak megawatts out
MW3DO	$\mathbf{MW3} \mathbf{O} \mathbf{DEM} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase demand megawatts out
MW3PO	$\mathbf{M} \mathbf{w} 3 \qquad \mathbf{O} \mathbf{P} \mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase peak megawatts out
MVRADO	$MVRA O DEM = x \cdot x \cdot x \cdot x$	A demand megavars out
MVRAPO	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{A} \mathbf{O} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	A peak megavars out
MVRBDO	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{B} \mathbf{O} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	B demand megavars out
MVRBPO	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{B} \mathbf{O} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	B peak megavars out
MVRCDO	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{C} \mathbf{O} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C demand megavars out
MVRCPO	$\mathbf{M}\mathbf{V}\mathbf{R}\mathbf{C} \mathbf{O} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C peak megavars out
MVR3DO	$\mathbf{M}\mathbf{V}\mathbf{R}3 \mathbf{O} \mathbf{D}\mathbf{E}\mathbf{M} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase demand megavars out
MVR3PO	$\mathbf{M}\mathbf{V}\mathbf{R}3 \mathbf{O} \mathbf{P}\mathbf{K} = \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase peak megavars out
MWHAI	$\mathbf{M}\mathbf{W}\mathbf{h} \mathbf{A} \mathbf{I} \mathbf{N} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	A megawatt-hours in
MWHAO	$\mathbf{MW}\mathbf{h} \mathbf{A} \mathbf{OUT} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	A megawatt-hours out
MWHBI	$\mathbf{MW}\mathbf{h} \mathbf{B} \mathbf{I} \mathbf{N} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B megawatt-hours in
MWHBO	$\mathbf{MW}\mathbf{h} \mathbf{B} \mathbf{OUT} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	B megawatt-hours out
MWHCI	$\mathbf{MW}\mathbf{h} \mathbf{C} \mathbf{I} \mathbf{N} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	C megawatt-hours in
MWHCO	$\mathbf{MW}\mathbf{h} \mathbf{C} \mathbf{OUT} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C megawatt-hours out
MWH3I	$\mathbf{MWh} 3 \mathbf{IN} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase megawatt-hours in
MWH3O	$\mathbf{MW}\mathbf{h} 3 \mathbf{OUT} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase megawatt-hours out
MVRHAI	$\mathbf{M}\mathbf{V}\mathbf{A}\mathbf{R}\mathbf{h} \mathbf{A} \mathbf{I} = \mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}$	A megavar-hours in
MVRHAO	$\mathbf{M}\mathbf{V}\mathbf{A}\mathbf{R}\mathbf{h} \mathbf{A} \mathbf{O} = \mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}$	A megavar-hours out
MVRHBI	$\mathbf{M}\mathbf{V}\mathbf{A}\mathbf{R}\mathbf{h} \mathbf{B} \mathbf{I} = \mathbf{x}\mathbf{x} \cdot \mathbf{x}\mathbf{x}\mathbf{x}$	B megavar-hours in
MVRHBO	$\mathbf{M}\mathbf{V}\mathbf{A}\mathbf{R}\mathbf{h} \mathbf{B} \mathbf{O} = \mathbf{x}\mathbf{x} \cdot \mathbf{x}\mathbf{x}\mathbf{x}$	B megavar-hours out
MVRHCI	$\mathbf{M} \mathbf{V} \mathbf{A} \mathbf{R} \mathbf{h} \mathbf{C} \mathbf{I} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C megavar-hours in
MVRHCO	$\mathbf{MVAR} \mathbf{h} \mathbf{C} \mathbf{O} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	C megavar-hours out
MVRH3I	$\mathbf{M}\mathbf{V}\mathbf{A}\mathbf{R}\mathbf{h} 3 \mathbf{I} = \mathbf{x}\mathbf{x} \cdot \mathbf{x}\mathbf{x}\mathbf{x}$	three-phase megavar-hours in
MVRH3O	$\mathbf{MV}\mathbf{AR}\mathbf{h} 3 \mathbf{O} = \mathbf{x} \mathbf{x} \cdot \mathbf{x} \mathbf{x} \mathbf{x}$	three-phase megavar-hours out

Table 7.9:	Mnemonic Settings for	Self-Check Status on the Rotating
	Default	Display

Mnemonic	Display	Description
5VPS	+5 V PS = x . x x	5V supply
5VREG	+5 V REG = x . x x	A/D 5 V supply
-5VREG	$-5V_REG = -x.xx$	A/D -5 V supply
12VPS	$+12V_PS = xx.xx$	12 V supply

Mnemonic	Display	Description
-12VPS	-12VPS = -xxx. x x	-12 V supply
15VPS	+15V PS = xx.xx	15 V supply
-15VPS	-15VPS=-xxx. x x	-15 V supply
TEMP	TEMP = x x . x	mainboard temperature
MODE	MODE = NOBATT	battery charger mode
BATCAP	%CAP	percent battery capacity
HOURS	$HRS_{L}FT = hh: ss$	battery hours left
HC5VPS	$5 V P S B C = x \cdot x x$	battery charger 5 V supply
12VAUX	1 2 A U X = x x . x x	battery charger 12 V aux. supply
BATTV	VBATT = xx.xx	battery voltage
CHARGE	I BAT = - x x x x	(dis)charge current

Table 7.10: Mnemonic Settings for Breaker Wear/Counters on the Rotating
Default Display

Mnemonic Display		Description
BRKDATE	R S T D A T : mm / d d / y y	last reset date
BRKTIME	RST TIM: hh:mm: ss	
CTRLTR	$\mathbf{C} \mathbf{T} \mathbf{R} \mathbf{L} \mathbf{T} \mathbf{R} \mathbf{I} \mathbf{P} \mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	internal trip count
OPSCNTR	OPS CNTR = xxxxxx	internal trip count
CTRLIA	$\mathbf{C} \mathbf{T} \mathbf{R} \mathbf{L} \mid \mathbf{I} \mathbf{A} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mid \mathbf{k} \mathbf{A}$	internal trip Σ IA
CTRLIB	CTRL IB = x x x x k A	internal trip Σ IB
CTRLIC	$\mathbf{C} \mathbf{T} \mathbf{R} \mathbf{L} \mathbf{I} \mathbf{C} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{A} \mathbf{k} \mathbf{A}$	internal trip Σ IC
EXTTR	$\mathbf{E} \mathbf{X} \mathbf{T} \mathbf{T} \mathbf{R} \mathbf{I} \mathbf{P} \mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	
EXTIA	EXT IA= xxxx kA	external trip Σ IA
EXTIB	$\mathbf{E} \mathbf{X} \mathbf{T} \mathbf{I} \mathbf{B} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{A}$	external trip Σ IB
EXTIC	EXT IC= xxxxx kA	external trip Σ IC
APHTR	A - PH TR I PS = x x x x x	A phase trip count
BPHTR	$\mathbf{B} - \mathbf{P}\mathbf{H} \mathbf{T}\mathbf{R} \mathbf{I} \mathbf{P}\mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	B phase trip count
CPHTR	C - PH $TRIPS = x x x x x$	C phase trip count
EFGTR	E F / G T R I P S = x x x x x	Ground trip count
GNDCNTR	GND CNTR = xxxxx	Ground trip count
SEFTR	$\mathbf{S} \mathbf{E} \mathbf{F} \mathbf{T} \mathbf{R} \mathbf{I} \mathbf{P} \mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	SEF trip count
WEARA	WEAR A = y y y %	A phase wear monitor
WEARB	WE AR B = y y y %	B phase wear monitor
WEARC	WEAR C= yyy%	C phase wear monitor
ATRWR	$\mathbf{A} - \mathbf{O} \mathbf{P} \mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{y} \%$	A phase trip & wear
BTRWR	$\mathbf{B} - \mathbf{O}\mathbf{P}\mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} - \mathbf{y} \mathbf{y} \mathbf{y}$	B phase trip & wear
CTRWR	$\mathbf{C} - \mathbf{O} \mathbf{P} \mathbf{S} = \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{y} \mathbf{y} \mathbf{y} \%$	

Mnemonic	Display	Description
51P1P	x x x . x x A p r i	pickup for phase TOC element 51P1T
51P2P	x x x . x x A p r i	pickup for phase TOC element 51P2T
51N1P	x x x . x x A p r i	pickup for neutral ground TOC element 51N1T
51N2P	x x x . x x A p r	pickup for neutral ground TOC element 51N2T
51G1P	x x x . x x A p r i	pickup for residual ground TOC element 51G1T
51G2P	x x x . x x A p r i	pickup for residual ground TOC element 51G2T
51QP	x x x . x x A p r I	pickup for negative-sequence TOC element 51QT

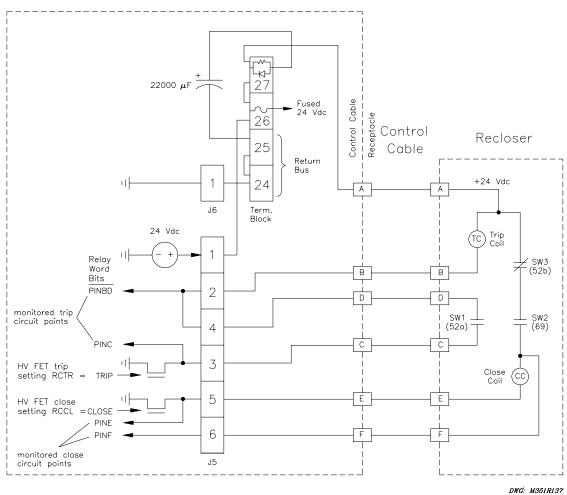
 Table 7.11: Mnemonic Settings for Time-Overcurrent (TOC) Element Pickups on the Rotating Default Display

Recloser Trip and Close Circuits

Figure 7.30 is similar to Figure 17 in the *Installation* section in the *SEL-351R Quick-Start Installation and User's Guide*, with additional detail:

- Relay Word Bits: PINBD, PINC, PINE, and PINF (all debounced for three quarter cycles)
- SELOGIC control equations: RCTR and RCCL
- 22000 µF capacitor and portion of the terminal block—see subsection *Battery System Monitor* in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions* for information on the application of the capacitor.

When a monitored trip or close circuit point is energized, the corresponding Relay Word bit asserts to logical 1 (e.g., PINBD = logical 1). When deenergized, they deassert to logical 0.


When a high-voltage FET is turned "on" to

- trip (RCTR = TRIP = logical 1)
- or close (RCCL = CLOSE = logical 1)

the recloser, the FET makes an effective short circuit to ground to energize the corresponding trip or close coil. Otherwise, the FETs are an effective open circuit.

Note: The recloser trip and close circuit in Figure 7.30 is unique to Cooper reclosers. To trip and close a conventional circuit breaker, use programmable output contacts (e.g., OUT101 = TRIP, OUT102 = CLOSE). See preceding subsection *Output Contacts* in this section.

Also, the trip circuit differs for motor-operated Cooper reclosers (as compared to Figure 7.30), requiring a few SEL-351R settings to be modified. Refer to *SEL Application Guide AG99-10, Change Logic in SEL-351R Recloser Control for Motor-Operated Reclosers*.

SEL-351R Recloser Control

Figure 7.30: Recloser Trip and Close Circuit Connections

TABLE OF CONTENTS

SECTION 8:	BREAKER/RECLOSER MONITOR, BATTERY	
	SYSTEM MONITOR, METERING, AND LOAD	
	PROFILE FUNCTIONS	8-1
Introduction	1	
Breaker/Red	closer Contact Wear Monitor	8-1
Breake	r Monitor Setting Example	
Bi	reaker Maintenance Curve Details	
O	peration of SELOGIC Control Equation Breaker Monitor Initiation Setting	
	BKMON	8-9
Breake	r Monitor Operation Example	8-10
06	% to 10% Breaker Wear	8-10
10	0% to 25% Breaker Wear	8-10
25	5% to 50% Breaker Wear	8-10
50	0% to 100% Breaker Wear	8-10
Breake	r Monitor Output	8-12
Ex	cample Applications	8-12
View o	r Reset Breaker Monitor Information	8-12
V	ia Serial Port	8-12
V	ia Front Panel	8-13
Determ	ination of Relay Initiated Trips and Externally Initiated Trips	8-13
Fa	actory Default Setting Example	8-14
A	dditional Example	8-14
Battery Syst	tem Monitor	8-15
Battery	V System Operation	8-15
SI	EL-351R Puts Itself "To Sleep"	8-16
K	eep 12 Vdc on While SEL-351R is "Asleep"	8-17
ľ"	Vake Up" the SEL-351R	8-17
Battery	V System Diagnostics	8-17
A	utomatic Battery Load Test	8-18
Ba	attery Load Test via Front Panel	8-18
Ba	attery Load Test via Serial Port	8-19
Battery	7 Status	8-20
Additio	onal Application	8-20
Metering		8-21
Phanto	m Voltages	8-22
Deman	d Metering	8-22
Co	omparison of Thermal and Rolling Demand Meters	8-22
TI	nermal Demand Meter Response (EDEM = THM)	8-24
Re	olling Demand Meter Response (EDEM = ROL)	
	Time = 0 Minutes	
	Time = 5 Minutes	8-25
	Time = 10 Minutes	8-26
	Time = 15 Minutes	8-26
De	emand Meter Settings	8-26

Demand Current Logic Output Application—Raise Pickup for Unbalance	
Current	. 8-28
Residual Ground Demand Current Below Pickup GDEMP	. 8-29
Residual Ground Demand Current Goes Above Pickup GDEMP	. 8-29
Residual Ground Demand Current Goes Below Pickup GDEMP Again	. 8-29
View or Reset Demand Metering Information	. 8-30
Via Serial Port	. 8-30
Via Front Panel	. 8-30
Demand Metering Updating and Storage	. 8-30
Energy Metering	. 8-30
View or Reset Energy Metering Information	. 8-30
Via Serial Port	. 8-30
Via Front Panel	. 8-31
Energy Metering Updating and Storage	. 8-31
Maximum/Minimum Metering	. 8-31
View or Reset Maximum/Minimum Metering Information	. 8-31
Via Serial Port	. 8-31
Via Front Panel	. 8-31
Maximum/Minimum Metering Updating and Storage	. 8-32
Load Profile Report (Only Available in Firmware Versions 1 and Greater)	. 8-33
Determining the Size of the Load Profile Buffer	. 8-35
Clearing the Load Profile Buffer	. 8-35

TABLES

Table 8.1:	Access Level 2 Global Settings for Contact Wear Monitor	8-2
Table 8.2:	Access Level E (EZ) Global Settings for Contact Wear Monitor	8-3
Table 8.3:	Parameters Used to Automatically Set Contact Wear Monitor	8-3
Table 8.4:	Breaker Maintenance Information for a 25 kV Circuit Breaker	8-5
Table 8.5:	Demand Meter Settings and Settings Range	8-26

FIGURES

Figure 8.1:	Plotted Breaker Maintenance Points for a 25 kV Circuit Breaker	8-6
Figure 8.2:	SEL-351R Recloser Control Breaker Maintenance Curve for a 25 kV Circuit	
-	Breaker	8-8
Figure 8.3:	Operation of SELOGIC Control Equation Breaker Monitor Initiation Setting	8-9
Figure 8.4:	Breaker Monitor Accumulates 10% Wear	8-11
Figure 8.5:	Breaker Monitor Accumulates 25% Wear	8-11
Figure 8.6:	Breaker Monitor Accumulates 50% Wear	8-11
Figure 8.7:	Breaker Monitor Accumulates 100% Wear	8-11
Figure 8.8:	Input IN102 Connected to Trip Bus for Breaker Monitor Initiation	8-14
Figure 8.9:	Response of Thermal and Rolling Demand Meters to a Step Input (setting	
C	DMTC = 15 minutes)	8-23
Figure 8.10:	Voltage V _s Applied to Series RC Circuit	8-24
-	Demand Current Logic Outputs	
-	Raise Pickup of Residual Ground Time-Overcurrent Element for Unbalance	
-	Current	8-28

SECTION 8: BREAKER/RECLOSER MONITOR, BATTERY SYSTEM MONITOR, METERING, AND LOAD PROFILE FUNCTIONS

INTRODUCTION

The SEL-351R Recloser Control monitoring functions include:

- Breaker/Recloser Contact Wear Monitor
- Battery System Monitor

In addition to instantaneous metering, the SEL-351R metering functions include:

- Demand Metering
- Energy Metering
- Maximum/Minimum Metering

This section explains these functions in detail.

BREAKER/RECLOSER CONTACT WEAR MONITOR

The breaker/recloser contact wear monitor in the SEL-351R provides information that helps in scheduling circuit breaker or recloser maintenance. This monitoring function accumulates the number of internal and external trip operations and integrates the number of close-open operations and the per-phase current during each opening operation. The SEL-351R compares the integrated close-open information to a pre-defined breaker or recloser maintenance curve to calculate the percent contact wear on a per-pole basis. The SEL-351R updates and stores the contact wear information, and the number of trip operations, in non-volatile memory. You can view this information through the front-panel display and by communicating with the SEL-351R through any serial communication port with a computer.

Individual phase Breaker Contact Wear bits, BCWA, BCWB, and BCWC, assert when the contact wear percentage on their respective phases reaches 100%. You can use these individual phase elements or the combined result of these elements, BCW (asserts when BCWA or BCWB or BCWC assert), in a SELOGIC[®] control equation to alarm or control other functions, such as block reclosing.

Enable the breaker/recloser contact wear monitor with the global EZ setting *Recloser Wear Monitor (AUTO, Y, N)*. Access this setting with the SET FZ (global EZ settings) command from Access Level E (EZ) or Access Level 2. The contact wear monitor is configured as follows:

- *Recloser Wear Monitor (AUTO, Y, N)* = N disables the contact wear monitor. Setting EBMON in Table 8.1 is automatically set EBMON = N and the rest of the settings in Table 8.1 are hidden.
- *Recloser Wear Monitor (AUTO, Y, N)* = Y enables the contact wear monitor. Setting EBMON in Table 8.1 is automatically set EBMON = Y, but you must then use the

Date Code 20020215

SET G command (global settings) in Access Level 2 to enter the rest of the settings in Table 8.1 that define the maintenance curve (see Figure 8.2).

• *Recloser Wear Monitor (AUTO, Y, N)* = AUTO presents you with subsequent global EZ settings:

Recloser type (OIL, VAC1, VAC2)

Interrupt rating (500–20000 A pri.)

Use Table 8.2 to make these two settings. The settings in Table 8.1 are then made automatically, in accordance with the parameters in Table 8.3.

Note: The Access Level E (EZ) global settings override the corresponding Access Level 2 global settings when the Access Level E (EZ) global setting "Recloser Wear Monitor (AUTO, Y, N)" is set to "AUTO" or "N".

Table 8.1: Access Level 2 Global Settings for Contact Wear Monitor	

Setting	Definition	Range
EBMON	Enable Breaker/Recloser Monitor	Y (Yes) or N (No)
COSP1	Close/Open set point 1-maximum	0-65000 close/open operations
COSP2	Close/Open set point 2-middle	0-65000 close/open operations
COSP3	Close/Open set point 3—minimum	0-65000 close/open operations
KASP1*	kA Interrupted set point 1-minimum	0.10–999.00 kA in 0.01 kA steps
KASP2	kA Interrupted set point 2-middle	0.10–999.00 kA in 0.01 kA steps
KASP3*	kA Interrupted set point 3-maximum	0.10–999.00 kA in 0.01 kA steps

*The ratio of settings KASP3/KASP1 must be: $5 \le KASP3/KASP1 \le 100$

Recloser Model	Setting: Recloser Type	Setting: Interrupt Rating (Amps primary)
RXE	OIL	6000
RVE	OIL	6000
WE	OIL	12000 (@ 4.8 kV)
WE	OIL	10000 (@ 14.4 kV)
VWE	VAC2	12000
VWVE27	VAC2	12000
VWVE38X	VAC2	12000
WVE27	OIL	8000
WVE38X	OIL	8000
VSA12	VAC2	12000
VSA16	VAC2	16000
VSA20	VAC2	20000
VSA20A	VAC2	20000
VSA20B	VAC2	20000
VSO12	VAC2	12000
VSO16	VAC2	16000

 Table 8.2: Access Level E (EZ) Global Settings for Contact Wear Monitor

 Table 8.3: Parameters Used to Automatically Set Contact Wear Monitor

Table 8.1 Settings	Recloser Type = OIL	Recloser Type = VAC1	Recloser Type = VAC2
EBMON =	Y	Y	Y
COSP1 =	10000	10000	10000
COSP2 =	20	40	80
COSP3 =	20	40	80
KASP1 =	Interrupt Rating/63	Interrupt Rating/40	Interrupt Rating/25
KASP2 =	Interrupt Rating	Interrupt Rating	Interrupt Rating
KASP3 =	Interrupt Rating	Interrupt Rating	Interrupt Rating

The parameters in Table 8.3 are derived from ANSI C37.61-1973/IEEE Standard 321-1973, IEEE Standard Guide for the Application, Operation, and Maintenance of Automatic Circuit Reclosers. These parameters are used in automatically making the settings in Table 8.1, when

global EZ setting *Recloser Wear Monitor (AUTO, Y, N)* = AUTO is made, as described previously.

For example, if the SEL-351R is connected to a type WVE27 Oil Circuit Recloser, use the SET FZ command to enter and save the following Access Level E (EZ) global settings for the contact wear monitor:

- Recloser Wear Monitor (AUTO, Y, N) = AUTO
- Recloser Type (OIL, VAC1, VAC2) = OIL
- Interrupt Rating (500–20000 A pri.) = 8000

When you enter and save the above global EZ settings, the SEL-351R automatically sets the following set points in the Access Level 2 global settings:

- EBMON = Y
- COSP1 = 10000
- COSP2 = 20
- COSP3 = 20
- KASP1 = 0.10
- KASP2 = 8.00
- KASP3 = 8.00

The SEL-351R integrates current and increments the trip counters for the contact wear monitor each time the logical function BKMON asserts. Set the logic for this function using the Access Level 2 SET L command. The default setting is BKMON = TRIP, which causes the contact wear monitor to integrate and increment each time the SEL-351R trip logic asserts.

For more information on the SET G and SET L commands, see Table 9.1 in Section 9: Setting the SEL-351R Recloser. Also, refer to BRE Command (Breaker Monitor Data) and BRE n Command (Preload/Reset Breaker Wear) in Section 10: Serial Port Communications and Commands.

Breaker Monitor Setting Example

If your recloser is not included in Table 8.2, or you adapt the SEL-351R to operate a breaker, you can create a contact wear monitor curve for your specific breaker or recloser. The breaker/recloser contact wear monitor is set with breaker or recloser maintenance information provided by circuit breaker and recloser manufacturers. This maintenance information lists the number of close/open operations that are permitted for a given current interruption level. The following is an example of breaker maintenance information for a 25 kV circuit breaker.

Current Interruption Level (kA)	Permissible Number of Close/Open Operations*
0.0–1.2	10,000
2.0	3,700
3.0	1,500
5.0	400
8.0	150
10.0	85
20.0	12

Table 8.4: Breaker Maintenance Information for a 25 kV Circuit Breaker

* The action of a circuit breaker closing and then later opening is counted as <u>one</u> close/open operation.

The breaker maintenance information in Table 8.4 is plotted in Figure 8.1.

Connect the plotted points in Figure 8.1 for a breaker maintenance curve. To estimate this breaker maintenance curve in the SEL-351R contact wear monitor, three set points are entered:

Set Point 1	<u>maximum</u> number of close/open operations with corresponding current interruption level.
Set Point 2	number of close/open operations that correspond to some <u>midpoint</u> current interruption level.
Set Point 3	number of close/open operations that correspond to the <u>maximum</u> current interruption level.

These three set points are entered with the settings in Table 8.1.

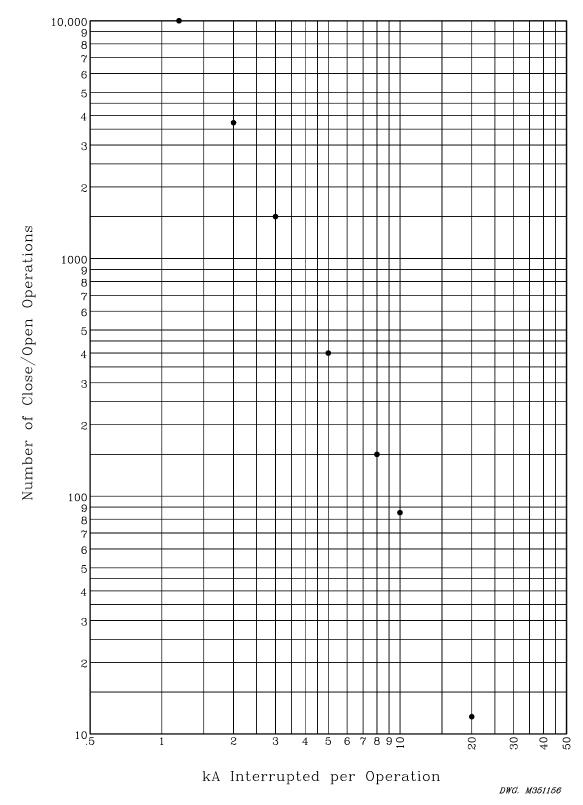


Figure 8.1: Plotted Breaker Maintenance Points for a 25 kV Circuit Breaker

First, use the SET FZ (global EZ settings) command in Access Level E (EZ) or Access Level 2 to make setting Recloser Wear Monitor (AUTO, Y, N) = Y. Then, in Access Level 2, use the SET G (global settings) command to make the following SEL-351R contact wear monitor settings:

Figure 8.2 shows the resultant breaker maintenance curve.

Breaker Maintenance Curve Details

In Figure 8.2, note that set points KASP1, COSP1 and KASP3, COSP3 are set with breaker maintenance information from the two extremes in Table 8.4 and Figure 8.1.

In this example, set point KASP2, COSP2 provides an intermediate breaker maintenance point in the breaker maintenance information in Table 8.4 and Figure 8.1. Set point KASP2, COSP2 should be set to provide the best "curve-fit" with the plotted breaker maintenance points in Figure 8.1.

Each phase (A, B, and C) has its own breaker maintenance curve (like that in Figure 8.2), because the separate circuit breaker interrupting contacts for Phases A, B, and C don't necessarily interrupt the same magnitude current (depending on fault type and loading).

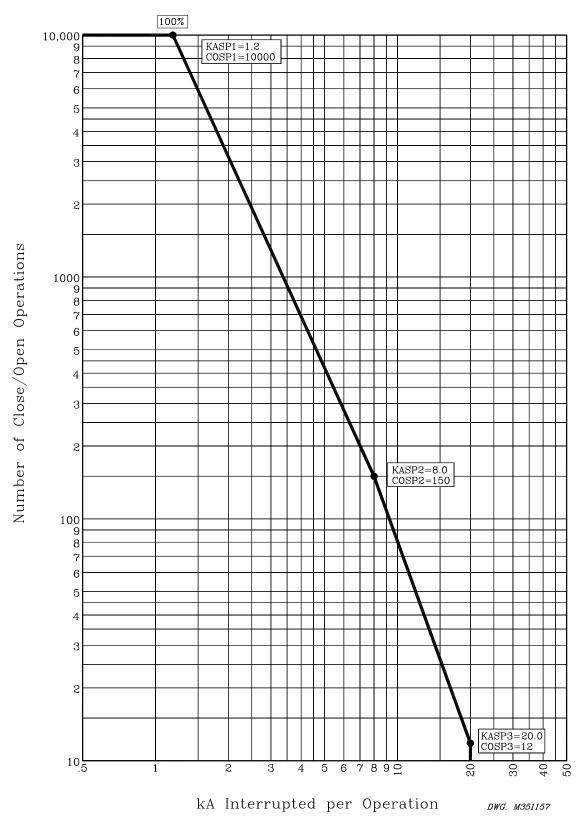


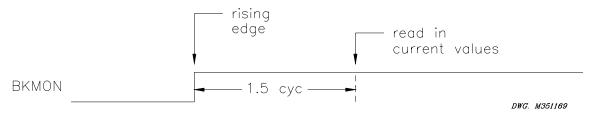
Figure 8.2: SEL-351R Recloser Control Breaker Maintenance Curve for a 25 kV Circuit Breaker

In Figure 8.2, note that the breaker maintenance curve levels off horizontally below set point KASP1, COSP1. This is the close/open operation limit of the circuit breaker (COSP1 = 10000), regardless of interrupted current value.

Also, note that the breaker maintenance curve falls vertically above set point KASP3, COSP3. This is the maximum interrupted current limit of the circuit breaker (KASP3 = 20.0 kA). If the interrupted current is greater than setting KASP3, the interrupted current is accumulated as a current value equal to setting KASP3.

Operation of SELOGIC Control Equation Breaker Monitor Initiation Setting BKMON

The SELOGIC control equation breaker monitor initiation setting BKMON determines when the breaker/recloser monitor reads in current values (Phases A, B, and C) for the breaker maintenance curve (see Figure 8.2) and the breaker monitor accumulated currents/trips [see *BRE Command (Breaker Monitor Data)* in *Section 10: Serial Port Communications and Commands*].


The BKMON setting looks for a rising edge (logical 0 to logical 1 transition) in its associated logic equation as the trigger to read in current values. The acquired current values are then applied to the breaker maintenance curve and the breaker monitor accumulated currents/trips (see references in previous paragraph).

In the factory default settings, the SELOGIC control equation breaker monitor initiation setting is set:

BKMON = TRIP (TRIP is the logic output of Figure 5.1)

Refer to Figure 8.3. When BKMON asserts (Relay Word bit TRIP goes from logical 0 to logical 1), the breaker monitor reads in the current values and applies them to the breaker monitor maintenance curve and the breaker monitor accumulated currents/trips.

As detailed in Figure 8.3, the breaker/recloser monitor actually reads in the current values 1.5 cycles after BKMON asserts. This delay ensures that the current has reached its peak value, especially for an instantaneous trip operation. The instantaneous element trips when the fault current reaches its pickup setting level. The fault current may still be "climbing" to its full value and then will level off. The 1.5-cycle delay allows time for the fault current to level off before the current values are recorded by the contact wear monitor.

Figure 8.3: Operation of SELOGIC Control Equation Breaker Monitor Initiation Setting

See Figure 8.8 and accompanying text for more information on setting BKMON. The operation of the breaker monitor maintenance curve, when new current values are read in, is explained in the following example.

Breaker Monitor Operation Example

As stated earlier, each phase (A, B, and C) has its own breaker maintenance curve. For this example, presume that the interrupted current values occur on a single phase in Figure 8.4 through Figure 8.7. Also, presume that the circuit breaker interrupting contacts have no wear at first (brand new or recent maintenance performed).

Note in each of the following four figures (Figure 8.4 through Figure 8.7) that the interrupted current is the same magnitude for all the interruptions (e.g., in Figure 8.5, 2.5 kA is interrupted 290 times). This is not realistic but helps to demonstrate the operation of the breaker maintenance curve and how it integrates for various current levels.

0% to 10% Breaker Wear

Refer to Figure 8.4. 7.0 kA is interrupted 20 times (20 close/open operations = 20 - 0), integrating the contact wear curve from 0% to the 10% wear level.

Compare the 100% and 10% curves and note that for a given current value, the 10% curve has only 1/10 of the close/open operations of the 100% curve.

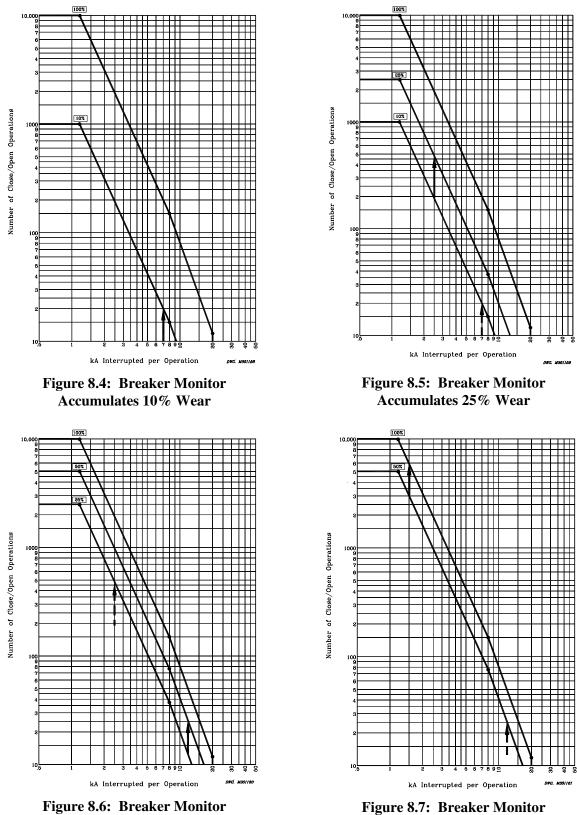
10% to 25% Breaker Wear

Refer to Figure 8.5. The current value changes from 7.0 kA to 2.5 kA. 2.5 kA is interrupted 290 times (290 close/open operations = 480 - 190), pushing the breaker maintenance curve from the 10% wear level to the 25% wear level.

Compare the 100% and 25% curves and note that for a given current value, the 25% curve has only 1/4 of the close/open operations of the 100% curve.

25% to 50% Breaker Wear

Refer to Figure 8.6. The current value changes from 2.5 kA to 12.0 kA. 12.0 kA is interrupted 11 times (11 close/open operations = 24 - 13), pushing the breaker maintenance curve from the 25% wear level to the 50% wear level.


Compare the 100% and 50% curves and note that for a given current value, the 50% curve has only 1/2 of the close/open operations of the 100% curve.

50% to 100% Breaker Wear

Refer to Figure 8.7. The current value changes from 12.0 kA to 1.5 kA. 1.5 kA is interrupted 3000 times (3000 close/open operations = 6000 - 3000), pushing the breaker maintenance curve from the 50% wear level to the 100% wear level.

When the breaker maintenance curve reaches 100% for a particular phase, the percentage wear remains at 100% (even if additional current is interrupted) until reset by the BRE R command (see *View or Reset Breaker Monitor Information* that follows later). However, the current and trip counts continue to be accumulated until reset by the BRE R command.

Additionally, logic outputs assert for alarm or other control applications—see the following discussion.

Accumulates 100% Wear

Accumulates 50% Wear

Breaker Monitor Output

When the breaker maintenance curve for a particular phase (A, B, or C) reaches the 100% wear level (see Figure 8.7), a corresponding Relay Word bit (BCWA, BCWB, or BCWC) asserts.

Relay Word bit	Definition
BCWA	Phase A breaker contact wear has reached the 100% wear level
BCWB	Phase B breaker contact wear has reached the 100% wear level
BCWC	Phase C breaker contact wear has reached the 100% wear level
BCW	BCWA + BCWB + BCWC

Example Applications

These logic outputs can be used to alarm:

OUT105 = BCW

or drive the relay to lockout the next time the relay trips:

 $79DTL = \dots + TRIP * BCW$

View or Reset Breaker Monitor Information

Accumulated breaker wear/operations data are retained if the relay loses power or the breaker monitor is disabled (setting EBMON = N). The accumulated data can only be reset if the BRE R command is executed (see the following discussion on the BRE R command).

Via Serial Port

See *BRE Command (Breaker Monitor Data)* in *Section 10: Serial Port Communications and Commands*. The BRE command displays the following information:

- Accumulated number of relay initiated trips
- Accumulated interrupted current from relay initiated trips
- Accumulated number of externally initiated trips
- Accumulated interrupted current from externally initiated trips
- Percent contact wear for each phase
- Date when the preceding items were last reset via the BRE R command

The BRE A command displays the above listed information and the following additional information:

- Accumulated number of trips involving A-phase
- Accumulated number of trips involving B-phase
- Accumulated number of trips involving C-phase
- Accumulated number of trips involving ground (G)
- Accumulated number of trips involving SEF element

A-phase, B-phase, or C-phase involvement is determined by checking if respective elements 50A4, 50B4, or 50C4 are picked up when setting BKMON asserts for a trip.

Ground involvement is determined by checking if elements 50G6, 50N6, 51N1, or 51N2 are picked up when setting BKMON asserts for a trip (this corresponds to the operation of the G LED).

SEF involvement is determined by checking if SEF element 67N3T is picked up when setting BKMON asserts for a trip (this corresponds to the operation of the SEF LED).

See *BRE n Command (Preload/Reset Breaker Wear)* in *Section 10: Serial Port Communications and Commands*. The BRE W command allows the percent breaker wear to be preloaded for each individual phase. The BRE W A command allows the percent breaker wear

and trip operation counters to be preloaded for each individual phase/value.

The BRE R command resets the accumulated values and the percent wear for all three phases. For example, if contact wear has reached the 100% wear level for A-phase, the corresponding Relay Word bit BCWA asserts (BCWA = logical 1). Execution of the BRE R command resets the wear levels for all three phases back to 0% and consequently causes Relay Word bit BCWA to deassert (BCWA = logical 0).

Via Front Panel

The information and reset functions available via the previously discussed serial port commands BRE A and BRE R are also available via the front-panel OTHER pushbutton. See the OTHER pushbutton in the *Pushbutton Primary Functions* subsection in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*.

Determination of Relay Initiated Trips and Externally Initiated Trips

See *BRE Command* (*Breaker Monitor Data*) in *Section 10: Serial Port Communications and Commands*. Note in the BRE command response that the accumulated number of trips and accumulated interrupted current are separated into two groups of data: that generated by <u>recloser</u> <u>control initiated trips</u> (Cntrl Trips) and that generated by <u>externally initiated trips</u> (Ext Trips). The categorization of this data is determined by the status of the TRIP Relay Word bit when the SELOGIC control equation breaker monitor initiation setting BKMON operates.

Refer to Figure 8.3 and accompanying explanation. When BKMON asserts (logical 0 to logical 1 transition), the relay reads in the current values (Phases A, B, and C). Now the decision

has to be made: where is this current and trip count information accumulated? Is it under <u>relay</u> <u>initiated trips</u> or <u>externally initiated trips</u>?

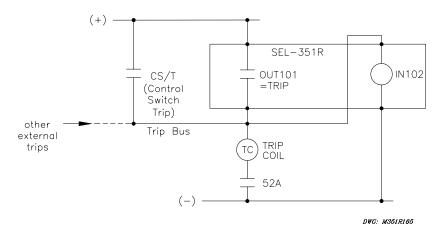
To make this determination, the status of the TRIP Relay Word bit is checked at the instant BKMON asserts (TRIP is the logic output of Figure 5.1). If TRIP is asserted (TRIP = logical 1), the current and trip count information is accumulated under <u>recloser control initiated trips</u> (Cntrl Trips). If TRIP is deasserted (TRIP = logical 0), the current and trip count information is accumulated under <u>externally initiated trips</u> (Ext Trips).

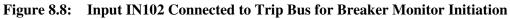
Regardless of whether the current and trip count information is accumulated under relay initiated trips or externally initiated trips, this same information is routed to the breaker maintenance curve for continued breaker wear integration (see Figure 8.3 through Figure 8.7).

Factory Default Setting Example

Previously as discussed, the SELOGIC control equation breaker monitor initiation factory default setting is:

BKMON = TRIP


Thus, any new assertion of BKMON is classified as a recloser control trip, and the current and trip count information is accumulated under <u>recloser control initiated trips</u> (Cntrl Trip).


Additional Example

Refer to Figure 8.8. Output contact OUT101 is set to provide tripping:

OUT101 = TRIP

Note that optoisolated input IN102 monitors the trip bus. If the trip bus is energized by output contact OUT101, an external control switch, or some other external trip, then IN102 is asserted.

If the SELOGIC control equation breaker monitor initiation setting is set:

BKMON = IN102

then the SEL-351R monitor sees all trips.

If output contact OUT101 asserts, energizing the trip bus, the contact wear monitor classifies it as a <u>recloser control initiated trip</u>. This is because when BKMON is newly asserted (input IN102 energized), the TRIP Relay Word bit is asserted. Thus, the current and trip count information is accumulated under <u>recloser control initiated trip</u> (Cntrl Trips).

If the control switch trip (or some other external trip) asserts, energizing the trip bus, the breaker monitor classifies it as an <u>externally initiated trip</u> because the TRIP Relay Word bit is not asserted when BKMON asserts (input IN102 energized). Thus, the current and trip count information is accumulated under <u>externally initiated trips</u> (Ext Trips).

BATTERY SYSTEM MONITOR

The SEL-351R monitors the internal battery system, which includes the battery charger and batteries. This subsection describes how the battery system operates, how the battery system is automatically and manually checked, and what the SEL-351R does when the battery system is OK or when it detects a problem.

The following settings are discussed in this subsection:

• Battery Amp-hours (6.5–20)	AMPHR	=
• % Battery capacity for sleep (0–100)	SLPCAP	=
• Turn on the 12 V power (Y,N)	ON12V	=
• Keep the 12 V power on while asleep (Y,N)	12VSLP	=

These settings are available via the SET FZ (EZ global settings) or the SET G (global settings) commands. See the *Settings* section in the *SEL-351R Quick-Start Installation and User's Guide* for more information on the EZ global settings.

Battery System Operation

The two series connected 12 V, 8.0 Ah sealed lead-acid batteries create a 24 Vdc battery system that powers the SEL-351R and provides trip and close power to the recloser when the 120 Vac source is deenergized. The SEL-351R includes a temperature-compensated, dual rate, 24 V battery charger powered from an external 120 Vac source. If the 120 Vac source is deenergized, a fully-charged battery can sustain operation of the SEL-351R for about 20 hours at 25°C.

When the 120 Vac source is energized, the SEL-351R built-in battery monitor/charger controls charging current to the battery system. The SEL-351R monitors the battery charge/discharge current, battery voltage, and internal control temperature. The SEL-351R calculates the capacity of the batteries based on these measured values. If the calculated battery capacity is 90% or higher, the SEL-351R charges the batteries at a low charge rate of 15 mA. If the calculated battery capacity is less than 90%, the SEL-351R charges the batteries at a high charge rate of 150 mA.

The **CHRGG** Relay Word bit asserts when the batteries are charging (when the 120 Vac source is energized). The **DISCHG** Relay Word bit asserts when the batteries are discharging (when the 120 Vac source is deenergized and the SEL-351R is operating from battery power). If the charging current drops below 5 mA, or the discharge current drops below 100 mA, the battery is considered failed or disconnected. In either case, the **NOBATT** Relay Word bit asserts. If the

battery monitor/charger board is OK inside the SEL-351R, the **BCBOK** Relay Word bit remains asserted.

The SEL-351R also periodically tests the batteries by subjecting them to a 1-A load for 5 seconds. During the test, the "discharge test in progress" Relay Word bit **DISTST** asserts. If the battery voltage remains above a preset temperature-compensated threshold of 80%, the battery is OK. If the battery voltage falls below this threshold during the test, the "discharge test failure" Relay Word bit **DTFAIL** asserts, and the "Battery Problem" LED illuminates on the front panel. **DTFAIL** remains asserted until the next successful battery load test.

If the batteries fail, or when you remove them temporarily during replacement, the 120 Vac source and battery charging system provide sufficient source to trip and close most reclosers. However, the 120 Vac may dip significantly during a fault, reducing or eliminating the source needed to power the SEL-351R and trip the recloser. A 22000 μ F capacitor is therefore included in the battery system to maintain power to the SEL-351R and provide energy to trip the recloser. The capacitor is sized to provide at least 0.5 seconds of control power and trip energy after 120 Vac power is lost and with the batteries failed or disconnected—enough time for a high-current instantaneous or fast curve operation. Figure 7.30 shows how the capacitor fits in to the 24 Vdc trip/close system: it is effectively in parallel with the 24 Vdc supply.

SEL-351R Puts Itself "To Sleep"

If the 120 Vac source is deenergized, the SEL-351R operates off of battery power and continually calculates remaining battery capacity, as discussed previously. The SEL-351R puts itself to sleep during an extended outage (it shuts down to conserve battery energy—the front panel goes dark, too) if <u>either</u> of the following occur:

- The % Battery capacity for sleep setting (e.g., 20% capacity) is reached
- Or the temperature-compensated battery voltage falls below 80%

If the TOSLP Relay Word bit asserts and stays asserted for 10 minutes, the SEL-351R puts itself to sleep. This bit can be used to trigger a row in the SER report. See *Section 12: Standard Event Reports and SER* for information on the SER report. If a serial port is active or the front panel is in use (i.e., the front-panel pushbuttons are being pressed), the 10-minute time period is extended. If the temperature-compensated battery voltage then falls below 70%, the SEL-351R puts itself to sleep immediately, regardless of any other conditions.

Assuming healthy, charged batteries, the SEL-351R will operate from batteries for up to 20 hours at 25°C. Factors that may shorten this time are:

- The % *Battery capacity for sleep* setting is set greater than the default 20% setting
- The installed battery amp-hour rating or the *Battery Amp-hours* setting is less than 8.0
- Battery capacity is reduced because of extreme temperature
- Battery is defective or nearing the end of its useful life
- Recloser trip and close operations

Keep 12 Vdc on While SEL-351R is "Asleep"

If <u>both</u> the following conditions are true when the SEL-351R puts itself to sleep, due to having reached the % *Battery capacity for sleep* setting (e.g., 20% capacity):

- Setting Keep the 12 V power on while asleep = Y
- And the temperature-compensated battery voltage is above 80%

then the 12 Vdc power is kept on. This 12 Vdc power is available at the terminal block (see Figure 9 in the *SEL-351R Quick-Start Installation and User's Guide*). Use the 12 Vdc power for such applications as keeping a radio on. If the temperature-compensated battery voltage falls below 80%, the 12 Vdc power is shut off.

"Wake Up" the SEL-351R

When the SEL-351R is in the sleep mode, it wakes up when any of the following occur:

- The 120 Vac source is reenergized
- The front-panel WAKE UP pushbutton is operated
- A "wake-up" message is received via the side panel Wake-up port

If the SEL-351R went to sleep because the temperature-compensated battery voltage fell below 80%, the Wake-up port is dead and cannot receive the wake-up message to wake up the SEL-351R.

The wake-up message is a character string matching the *CHWAKE* global setting (SET G command; default is CHWAKE = ABCD). When the SEL-351R receives this character string, the SEL-351R wakes up and resumes its protection and control functions. The wake-up message feature is intended to be used with remote communication via a radio connected to the Wake-up port. The SEL-351R includes a 12 Vdc output to supply a radio—see preceding subsection *Keep 12 Vdc on While SEL-351R is "Asleep"* See the *Introduction* subsection and Table 10.1 in *Section 10: Serial Port Communications and Commands* for more information on the Wake-up port.

After the SEL-351R is awakened via the front-panel WAKE UP pushbutton, or the wake-up message via the Wake-up port, the SEL-351R stays awake for 10 minutes after the last serial port or front-panel port activity, unless the battery voltage falls below 70% of nominal, at which time the SEL-351R puts itself to sleep again immediately, regardless of any other conditions.

Battery System Diagnostics

The SEL-351R monitors the 24 V battery system, including charge/discharge current, battery voltage, and temperature. The SEL-351R calculates the capacity of the batteries based on these measured values. The SEL-351R automatically applies a battery load test once per day and includes provisions to manually perform a battery load test via the front-panel and serial communication ports. You can obtain vital battery system information from the SEL-351R status report via the front-panel and serial communication ports.

Automatic Battery Load Test

The SEL-351R automatically load tests the 24 V battery about every 24 hours. An internal 24-hour timer cumulatively times whenever the SEL-351R is in the charge mode (e.g., 120 Vac is powering the SEL-351R and charging the battery). Even if the battery is fully charged, the SEL-351R maintains a low-rate charging current, so it is still in the charge mode.

After the 24-hour timer runs out and the SEL-351R is still in the charge mode, a 1-A load is automatically paralleled with the battery for 5 seconds. If battery voltage drops below 80% nominal (temperature-compensated voltage level) during this load test, the BATTERY PROBLEM LED illuminates and stays illuminated until the next battery test is successful. The "discharge test failure" Relay Word bit **DTFAIL** also asserts. Use DTFAIL in a SELOGIC control equation to assert an output contact or perform other control functions, if desired, or set to generate a row in the SER report.

Battery Load Test via Front Panel

You can initiate a battery load test through the front-panel pushbuttons located just below the liquid crystal display. Press the OTHER pushbutton; a new screen appears, with "BTT" (battery test) as one of the choices. Using the secondary function arrow pushbuttons, move the underscore to BTT. To test the battery, press the secondary function SELECT pushbutton. The SEL-351R responds with one of the following results:

1. If the battery monitor/charger has a problem, the following message is displayed:

Battery Charger Board FAILED

The BATTERY PROBLEM LED already would be illuminated for this condition. The battery load test is not performed.

2. If the battery is damaged or disconnected so it cannot charge or discharge, the following message is displayed:

Battery failed or not present

The BATTERY PROBLEM LED already would be illuminated for this condition. The battery load test is not performed.

3. If the battery is charging or discharging, the battery load test proceeds, and the following message is displayed:

Testing Battery

The periods on the second line appear consecutively at each second of the 5-second load test. At the end of the test, OK or FAIL is displayed. If the battery fails the 1-A load test (same criterion as described in the preceding *Automatic Battery Load Test* subsection), the BATTERY PROBLEM LED illuminates and stays illuminated until a subsequent battery load test is successful. The "discharge test failure" Relay Word bit **DTFAIL** also asserts. Use DTFAIL in a SELOGIC control equation to assert an output contact or perform other control functions, if desired, or set to generate a row in the SER report.

Battery Load Test via Serial Port

You can initiate a battery load test via the serial communication port by sending the BTT NOW command. The SEL-351R responds with one of the following results:

1. If the battery monitor/charger has a problem, the following message is displayed:

Battery Charger Board FAILED

The BATTERY PROBLEM LED already would be illuminated for this condition. The battery load test is not performed for the execution of the BTT NOW command.

2. If the battery is damaged or disconnected (it cannot charge or discharge), the following message is displayed:

Battery failed or not present

The BATTERY PROBLEM LED already would be illuminated for this condition. The battery load test is not performed for the execution of the BTT NOW command.

3. If the battery is charging or discharging, the battery load test proceeds, and the following message is displayed:

Battery test initiated. Duration 5 seconds

· · ·

Battery test state is: OK/FAILED

The periods appear on each consecutive line at each second of the 5-second battery load test. At the end of the test, OK or FAILED is displayed. If the battery fails the 1-A load test (same criterion as described in the preceding *Automatic Battery Load Test* subsection), the BATTERY PROBLEM LED illuminates and stays illuminated until the next battery load test is successful. The "discharge test failure" Relay Word bit **DTFAIL** also asserts. Use this DTFAIL in a SELOGIC control equation to assert an output contact or perform other control functions, if desired, or set to generate a row in the SER report.

Execute the BTT command to see how much time remains until the next automatic battery discharge test. If the battery is charging or discharging, the following message is displayed:

Battery test state is: OK/FAILED Time until next battery test: XX hours

The "next battery test" is the automatic load test described in the preceding *Automatic Battery Load Test* subsection.

Battery Status

You can check the battery status in several ways. On the front panel, the BATTERY PROBLEM LED (see Figure 1.51) illuminates for any of the following battery problems:

- Load test failure (Relay Word bit DTFAIL = logical 1)
- Damaged, disconnected, or fuse is blown (battery cannot charge or discharge; Relay Word bit NO BATT = logical 1)
- Battery monitor/charger failure (Relay Word bit BCBOK = logical 0)

You also can press the STATUS pushbutton on the front panel of the SEL-351R to access more battery status information. Use the secondary function up/down arrow pushbuttons to move to different status screens. Those status elements of interest for the battery are the following:

MODE =	CHARGE – HICHRG – DISCHRG – DISTST – NOBATT – FAIL –	battery is charged ≥ 90% (trickle charging). battery is charged < 90% (high charging). battery is discharging. battery load test in progress. battery is damaged or disconnected (it cannot charge or discharge). battery monitor/charger has failed or communications with the battery monitor/charger are temporarily interrupted.	
%CAP =	0 to 100 -	battery charge level (independent of temperature).	
HRS_LFT =	hh:mm—hours and minutes left to run on battery in discharge mode before the SEL-351R puts itself to sleep (dependent on setting "% Battery capacity for sleep [0-100]"). Shows XX:XX if battery is charging.		
5V_PSBC	internal 5 V power supply level for battery monitor/charger.		
12V_AUX	voltage level of 12 V auxiliary output—available via terminal block positions 23 and 24—controlled by two 12 V settings in the EZ Level Global Settings.		
VBAT =	voltage level of 24 V battery.		
IBAT =	current level (in mA) at which the 24 V battery is charging or discharging (preceded by a minus sign for discharging).		

You can obtain the same battery status information as described above via serial port communication using the STATUS command.

Additional Application

In addition to alarming, you can use the relay elements associated with the battery and charging system to perform control functions, such as to disable or block reclosing. For example, the factory default logic settings include the following automatic reclose supervision setting:

79CLS = 59A1 * BCBOK * !NOBATT * !DTFAIL

This SELOGIC control equation permits automatic reclosing to proceed after a reclose interval time out only if <u>all</u> the following conditions are present:

- The phase A, 120 Vac source voltage is present and above the 59P1P pickup setting (default setting = 104 V secondary); 59A1 = logical 1; this assumes the traditional installation, with 120 Vac close power and without three-phase voltage—see Figure 1.31.
- The battery charging board is okay; BCBOK = logical 1
- The battery is connected/not failed; NOBATT = logical 0
- The battery has not failed the load test; DTFAIL = logical 0

This is a factory default setting because recloser tripping and closing requires dc battery energy. Therefore, if the batteries or charging system are not functioning properly, the control should not reclose after a trip because there might not be enough dc battery energy to trip again after a reclose. See Figure 1.30 in *Section 1: Factory-Set Logic*.

METERING

The SEL-351R reports metered values in several formats through the front panel and through serial communication port interrogation. You can use the front-panel METER pushbutton and select INST, or use the serial port METER command to view instantaneous values of phase and residual current, phase voltage, per phase and three phase real and reactive power, per phase and three-phase power factor, current and voltage sequence components, and frequency.

If you need accurate voltage and power metering, you must connect three-phase voltage to the control from a set of potential instrument transformers. You use the EZ Level SET EZ command to set the PT Ratio to reflect the ratio of these potential instrument transformers. If you connect only single phase, 120 Vac to power the SEL-351R, the factory-wired terminal strip jumpers route this voltage to the VA phase voltage input. The VA phase voltage input is needed to measure system frequency, but the 120 Vac power source may not reflect accurately the primary voltage and may not even be connected to primary Phase A. Therefore, with only single-phase voltage connected to the SEL-351R, the voltage and power metering values reported by the SEL-351R will not represent accurately primary voltage and power flow. See *Phantom Voltages* below.

The metered values of current reflect the primary current scaled through the current transformers in, or on, the recloser. You use the EZ Level SET EZ command to set the CT Ratio of these current transformers. The factory wiring in the SEL-351R assumes that the Phase 1–2 recloser bushings are connected to primary Phase A, Phase 3–4 to primary Phase B, and Phase 5-6 to primary Phase C. If this is not the case, you will need to modify the SEL-351R terminal strip connections to obtain the proper phase and phase polarity.

In addition to instantaneous metering, the SEL-351R metering functions include Demand Metering, Energy Metering, and Maximum/Minimum Metering.

Phantom Voltages

The SEL-351R-2 can generate phantom voltages from a single voltage connected to the VA input. First, the SEL-351R-2 rotates the phasor of the system voltage to coincide with the fact that it is measured as VA. Next, if the voltage is a phase-to-phase quantity, the SEL-351R-2 divides the magnitude by the square root of 3. Finally, the phasor is copied to VB and VC, which are then rotated –120 degrees and +120 degrees, respectively, to generate a balanced system; the rotation is reversed for a relay set to ACB rotation. For details on enabling phantom voltages, see *Global EZ Settings* in the *Settings* section of the *SEL-351R Quick-Start Installation and User's Guide* or *Other Global Settings* in the *Settings Sheet* section of *Section 9: Setting the SEL-351R Recloser Control*.

Demand Metering

The SEL-351R factory default settings enable the control to provide Thermal Demand Metering. The SEL-351R offers the choice between two types of demand metering, set with the Access Level 2 enable setting:

EDEM = THM (Thermal Demand Meter) or EDEM = ROL (Rolling Demand Meter)

The demand metering settings in Table 8.5 are available via the Access Level 2 SET command (see Table 9.1 in *Section 9: Setting the SEL-351R Recloser Control* and also Settings Sheet 10 of 28 at the end of *Section 9.* Also, refer to *MET D—Demand Metering* in *MET Command (Metering Data)*, in *Section 10: Serial Port Communications and Commands*).

With either Thermal Demand, or Rolling Average Demand enabled, the SEL-351R provides demand and peak demand metering for the following values:

Currents	I _{A,B,C,N}	Input currents (A primary)
	I _G	Residual ground current (A primary; $IG = 3I0 = IA + IB + IC$)
	$3I_2$	Negative-sequence current (A primary)
Power	MW _{A,B,C,3P}	Single- and three-phase megawatts
	MVAR _{A,B,C,3P}	Single- and three-phase megavars

Depending on enable setting EDEM, these demand and peak demand values are thermal demand or rolling demand values. The differences between thermal and rolling demand metering are explained in the following discussion.

Comparison of Thermal and Rolling Demand Meters

The example in Figure 8.9 shows the response of thermal and rolling demand meters to a step current input. The current input is at a magnitude of zero and then suddenly goes to an instantaneous level of 1.0 per unit (a "step").

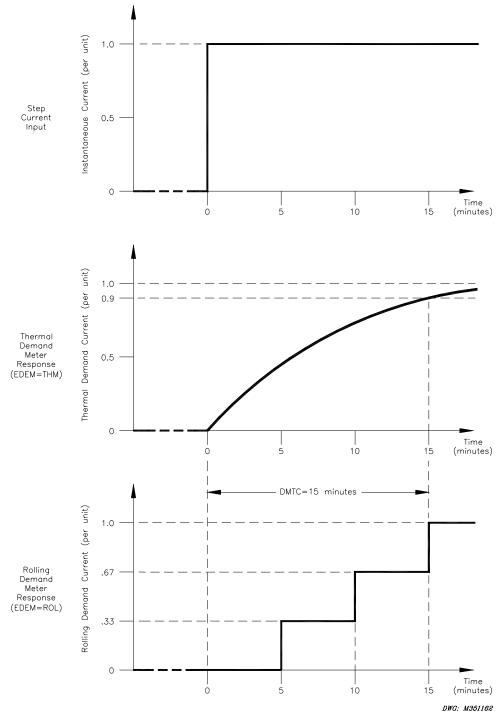


Figure 8.9: Response of Thermal and Rolling Demand Meters to a Step Input (setting DMTC = 15 minutes)

Thermal Demand Meter Response (EDEM = THM)

The response of the thermal demand meter in Figure 8.9 (middle) to the step current input (top) is analogous to the series RC circuit in Figure 8.10.

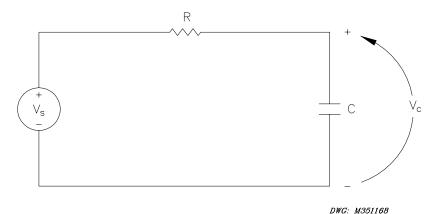


Figure 8.10: Voltage V_s Applied to Series RC Circuit

In the analogy:

Voltage V_s in Figure 8.10 corresponds to the step current input in Figure 8.9 (top).

Voltage V_c across the capacitor in Figure 8.10 corresponds to the response of the thermal demand meter in Figure 8.9 (middle).

If voltage V_s in Figure 8.10 has been at zero ($V_s = 0.0$ per unit) for some time, voltage V_c across the capacitor in Figure 8.10 is also at zero ($V_c = 0.0$ per unit). If voltage V_s is suddenly stepped up to some constant value ($V_s = 1.0$ per unit), voltage V_c across the capacitor starts to rise toward the 1.0 per unit value. This voltage rise across the capacitor is analogous to the response of the thermal demand meter in Figure 8.9 (middle) to the step current input (top).

In general, since voltage V_c across the capacitor in Figure 8.10 cannot change instantaneously, the thermal demand meter response is not immediate either for the increasing or decreasing applied instantaneous current. The thermal demand meter response time is based on the demand meter time constant setting DMTC (see Table 8.5). Note in Figure 8.9, the thermal demand meter response (middle) is at 90% (0.9 per unit) of full applied value (1.0 per unit) after a time period equal to setting DMTC = 15 minutes, referenced to when the step current input is first applied.

The SEL-351R updates thermal demand values approximately every 2 seconds. The factory default Access Level 2 Demand Meter Time Constant setting is DMTC = 5 minutes.

Rolling Demand Meter Response (EDEM = ROL)

The response of the rolling demand meter in Figure 8.9 (bottom) to the step current input (top) is calculated with a sliding time-window arithmetic average calculation. The width of the sliding time-window is equal to the demand meter time constant setting DMTC (see Table 8.5). Note in Figure 8.9, the rolling demand meter response (bottom) is at 100% (1.0 per unit) of full applied value (1.0 per unit) after a time period equal to setting DMTC = 15 minutes, referenced to when the step current input is first applied.

The rolling demand meter integrates the applied signal (e.g., step current) input in 5-minute intervals. The integration is performed approximately every 2 seconds. The average value for an integrated 5-minute interval is derived and stored as a 5-minute total. The rolling demand meter then averages a number of the 5-minute totals to produce the rolling demand meter response. In the Figure 8.9 example, the rolling demand meter averages the three latest 5-minute totals because setting DMTC = 15 (15/5 = 3). The rolling demand meter response is updated every 5 minutes, after a new 5-minute total is calculated.

The following is a step-by-step calculation of the rolling demand response example in Figure 8.9 (bottom).

Time = 0 Minutes

Presume that the instantaneous current has been at zero for quite some time before "Time = 0 minutes" (or the demand meters were reset). The three 5-minute intervals in the sliding time-window at "Time = 0 minutes" each integrate into the following 5-minute totals:

5-Minute Totals	Corresponding_ <u>5-Minute Interval</u>
0.0 per unit	-15 to -10 minutes
0.0 per unit	-10 to -5 minutes
<u>0.0 per unit</u>	-5 to 0 minutes
0.0 per unit	

Rolling demand meter response at "Time = 0 minutes" = 0.0/3 = 0.0 per unit

Time = 5 Minutes

The three 5-minute intervals in the sliding time-window at "Time = 5 minutes" each integrate into the following 5-minute totals:

5-Minute Totals	Corresponding <u>5-Minute Interval</u>
0.0 per unit	-10 to -5 minutes
0.0 per unit	-5 to 0 minutes
1.0 per unit	0 to 5 minutes
1.0 per unit	

Rolling demand meter response at "Time = 5 minutes" = 1.0/3 = 0.33 per unit

Time = 10 Minutes

The three 5-minute intervals in the sliding time-window at "Time = 10 minutes" each integrate into the following 5-minute totals:

5-Minute Totals	Corresponding_ <u>5-Minute Interval</u>
0.0 per unit	-5 to 0 minutes
1.0 per unit	0 to 5 minutes
1.0 per unit	5 to 10 minutes
2.0 per unit	

Rolling demand meter response at "Time = 10 minutes" = 2.0/3 = 0.67 per unit

Time = 15 Minutes

The three 5-minute intervals in the sliding time-window at "Time = 15 minutes" each integrate into the following 5-minute totals:

	Corresponding_
5-Minute Totals	5-Minute Interval
1.0 per unit	0 to 5 minutes
1.0 per unit	5 to 10 minutes
<u>1.0 per unit</u>	10 to 15 minutes
3.0 per unit	

Rolling demand meter response at "Time = 15 minutes" = 3.0/3 = 1.0 per unit

Demand Meter Settings

Setting	Definition	Range
EDEM	Demand meter type	THM = thermal ROL = rolling
DMTC	Demand meter time constant	5, 10, 15, 30, or 60 minutes
PDEMP	Phase demand current pickup	OFF
NDEMP*	Neutral ground demand current pickup	0.10-3.20 A (1 A nominal)
GDEMP	Residual ground demand current pickup	in 0.01 A steps
QDEMP	Negative-sequence demand current pickup	

 Table 8.5: Demand Meter Settings and Settings Range

*0.005–0.160A (0.05 A nominal channel IN current input)

Note: Changing setting EDEM or DMTC resets the demand meter values to zero. This also applies to changing the active setting group, and setting EDEM or DMTC is different in

the new active setting group. Demand current pickup settings PDEMP, NDEMP, GDEMP, and QDEMP can be changed without affecting the demand meters.

The examples in this section discuss demand current, but MW and MVAR demand values are also available, as stated at the beginning of this subsection.

The demand current pickup settings in Table 8.5 are applied to demand current meter outputs as shown in Figure 8.11. For example, when residual ground demand current $I_{G(DEM)}$ goes above corresponding demand pickup GDEMP, Relay Word bit GDEM asserts to logical 1. Use these demand current logic outputs (PDEM, NDEM, GDEM, and QDEM) to alarm for high loading or unbalance conditions. Use in other schemes such as the following example.

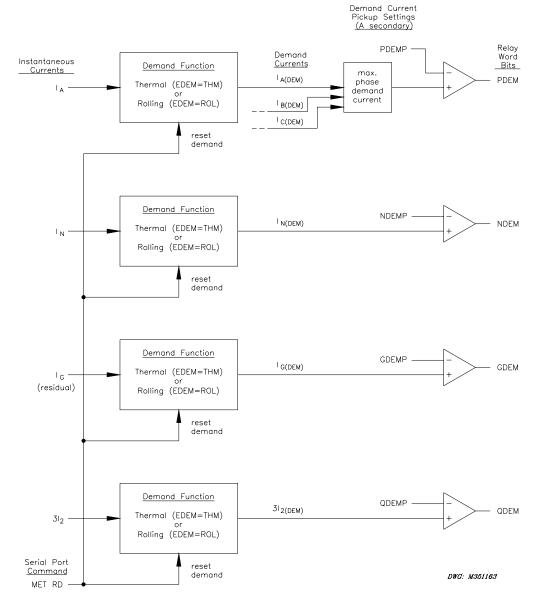


Figure 8.11: Demand Current Logic Outputs

Demand Current Logic Output Application-Raise Pickup for Unbalance Current

During times of high loading, the residual ground overcurrent elements can see relatively high unbalance current I_G ($I_G = 3I_0$). To avoid tripping on unbalance current I_G , use Relay Word bit GDEM to detect the residual ground (unbalance) demand current $I_{G(DEM)}$ and effectively raise the pickup of the residual ground time-overcurrent element 51G1T. This is accomplished with the following settings from Table 8.5, pertinent residual ground overcurrent element settings, and SELOGIC control equation torque control setting 51G1TC:

EDEM = THM DMTC = 5 GDEMP = 1.0 51G1P = 1.50 50G5P = 2.30 51G1TC = !GDEM + GDEM * 50G5

Refer to Figure 8.11, Figure 8.12, and Figure 3.19.

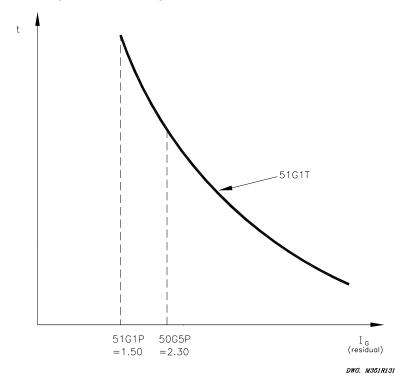


Figure 8.12: Raise Pickup of Residual Ground Time-Overcurrent Element for Unbalance Current

Residual Ground Demand Current Below Pickup GDEMP

When unbalance current I_G is low, unbalance demand current $I_{G(DEM)}$ is below corresponding demand pickup GDEMP = 1.00 A secondary, and Relay Word bit GDEM is deasserted to logical 0. This results in SELOGIC control equation torque control setting 51G1TC being in the state:

51G1TC = !GDEM + GDEM * 50G5 = NOT(GDEM) + GDEM * 50G5 = NOT(logical 0) + (logical 0) * 50G5 = logical 1

Thus, the residual ground time-overcurrent element 51G1T operates on its standard pickup:

51G1P = 1.50 A secondary

If a ground fault occurs, the residual ground time-overcurrent element 51G1T operates with the sensitivity provided by pickup 51G1P = 1.50 A secondary. The thermal demand meter, even with setting DMTC = 5 minutes, does not respond fast enough to the ground fault to make a change to the effective residual ground time-overcurrent element pickup—it remains at 1.50 A secondary. Demand meters respond to more "slow moving" general trends.

Residual Ground Demand Current Goes Above Pickup GDEMP

When unbalance current I_{G} increases, unbalance demand current $I_{G(DEM)}$ follows, going above corresponding demand pickup GDEMP = 1.00 A secondary, and Relay Word bit GDEM asserts to logical 1. This results in SELOGIC control equation torque control setting 51G1TC being in the state:

51G1TC = !GDEM + GDEM * 50G5 = NOT(GDEM) + GDEM * 50G5 = NOT(logical 1) + (logical 1) * 50G5 = logical 0 + 50G5 = 50G5

Thus, the residual ground time-overcurrent element 51G1T operates with an effective, less-sensitive pickup:

50G5P = 2.30 A secondary

The reduced sensitivity keeps the residual ground time-overcurrent element 51G1T from tripping on higher unbalance current I_{c} .

Residual Ground Demand Current Goes Below Pickup GDEMP Again

When unbalance current I_{G} decreases again, unbalance demand current $I_{G(DEM)}$ follows, going below corresponding demand pickup GDEMP = 1.00 A secondary, and Relay Word bit GDEM deasserts to logical 0. This results in SELOGIC control equation torque control setting 51G1TC being in the state:

51G1TC = !GDEM + GDEM * 50G5 = NOT(GDEM) + GDEM * 50G5 = NOT(logical 0) + (logical 0) * 50G5 = logical 1

Thus, the residual ground time-overcurrent element 51G1T operates on its standard pickup again:

51G1P = 1.50 A secondary

View or Reset Demand Metering Information

Via Serial Port

See *MET D—Demand Metering* in subsection *MET Command (Metering Data)*, in *Section 10: Serial Port Communications and Commands*. The MET D command displays demand and peak demand metering for the following values:

Currents	I _{A.B.C.N}	Input currents (A primary)
	I _G	Residual ground current (A primary; $IG = 3I0 = IA + IB + IC$)
	3I ₂	Negative-sequence current (A primary)
Power	MW _{A,B,C}	Single-phase megawatts (wye-connected voltages only)
	MVAR _{A,B,C}	Single-phase megavars (wye-connected voltages only)
	MW _{3P}	Three-phase megawatts
	MVAR _{3P}	Three-phase megavars

The MET RD command resets the demand metering values. The MET RP command resets the peak demand metering values.

Via Front Panel

The information and reset functions available via the previously discussed serial port commands MET D, MET RD, and MET RP are also available via the front-panel METER pushbutton. See the METER pushbutton in the *Pushbutton Primary Functions* subsection in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*.

Demand Metering Updating and Storage

The SEL-351R updates demand values approximately every 2 seconds.

The relay stores peak demand values to nonvolatile storage once per day (it overwrites the previous stored value if it is exceeded). Should the control completely lose control power or go into the "sleep" mode, when power is restored, the control will restore the peak demand values saved at 23:50 hours on the previous day.

Demand metering updating and peak recording is momentarily suspended when SELOGIC control equation setting FAULT is asserted (= logical 1). See the explanation for the FAULT setting in the following *Maximum/Minimum Metering* subsection.

Energy Metering

View or Reset Energy Metering Information

Via Serial Port

See *MET E—Energy Metering* in subsection *MET Command (Metering Data)* in *Section 10: Serial Port Communications and Commands*. The MET E command displays accumulated single- and three-phase megawatt and megavar hours. The MET RE command resets the accumulated single- and three-phase megawatt and megavar hours.

Via Front Panel

The information and reset functions available via the previously discussed serial port commands MET E and MET RE are also available via the front-panel METER pushbutton. See the METER pushbutton in the *Pushbutton Primary Functions* subsection in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*.

Energy Metering Updating and Storage

The SEL-351R updates energy values approximately every 2 seconds.

The control stores energy values to nonvolatile memory once per day (it overwrites the previous stored value). Should the control completely lose control power or go into the "sleep" mode, when power is restored, the control will restore the energy values saved at 23:50 hours on the previous day.

Maximum/Minimum Metering

View or Reset Maximum/Minimum Metering Information

Via Serial Port

See *MET M—Maximum/Minimum Metering* in subsection *MET Command (Metering Data)* in *Section 10: Serial Port Communications and Commands*. The MET M command displays maximum/minimum metering for the following values:

Currents $I_{A,B,C,N}$	Input currents (A primary)
I_{G}	Residual ground current (A primary; IG = 3I0 = IA + IB + IC)
Voltages $V_{A,B,C}$	Input voltages (kV primary)
V_{s}	Input voltage (kV primary)
Power MW _{3P}	Three-phase megawatts
MVAR _{3P}	Three-phase megavars

The MET RM command resets the maximum/minimum metering values.

Via Front Panel

The information and reset functions available via the previously discussed serial port commands MET M and MET RM are also available via the front-panel METER pushbutton. See the METER pushbutton in the *Pushbutton Primary Functions* subsection in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*.

Maximum/Minimum Metering Updating and Storage

The SEL-351R updates maximum/minimum values, if the following conditions are met:

• Access Level 2 SELOGIC control equation setting FAULT is deasserted (= logical 0).

[The factory default setting is set with time-overcurrent element pickups:

FAULT = 51P1 + 51P2 + 51G1 + 51G2 + 51N1 + 51N2 + 67N3

If a fault picks up any of the elements in the above FAULT setting, the control blocks updating of maximum/minimum metering values.

SELOGIC control equation setting FAULT also has control over front-panel target LEDs A, B, and C (see *Front-Panel Target LEDs* in *Section 5: Trip and Target Logic*).]

- The metering value is above the previous maximum or below the previous minimum for 2 cycles.
- For voltage values, the voltage is above 13 V secondary.
- For current values, the currents are above:
 - 0.05 A secondary (1 A nominal)
- Megawatt and megavar values are subject to the above voltage and current thresholds.

The SEL-351R stores maximum/minimum values to nonvolatile memory once per day (it overwrites the previous stored value if it is exceeded). Should the control completely lose control power or go into the "sleep" mode, when power is restored, the control will restore the maximum/minimum values saved at 23:50 hours on the previous day.

LOAD PROFILE REPORT (ONLY AVAILABLE IN FIRMWARE VERSIONS 1 AND GREATER)

At the interval given by load profile acquisition rate setting LDAR, the SEL-351R adds a record to the load profile buffer. This record contains the time stamp, the present value of each of the analog quantities listed in the load profile list setting LDLIST and a checksum. These settings are made and reviewed with the SET R and SHO R serial port commands, respectively. LDAR can be set to any of the following values: 5, 10, 15, 30, and 60 minutes. LDLIST may contain any of the following labels.

QUANTITY RECORDED
Phase and neutral current magnitudes
Phase and sync voltage magnitudes
Sequence current and voltage magnitudes
Phase frequency
Phase and 3 phase megaWATTs
Phase and 3 phase megaVARs
Phase and 3 phase power factor
Phase and 3 phase power factor lead/lag status ($0 = lag$,
1 = lead)
Demand ammeter quantities
Phase and 3 phase demand megaWATTs in
Phase and 3 phase demand megaWATTs out
Phase and 3 phase demand megaVARs in
Phase and 3 phase demand megaVARs out
Phase and 3 phase megaWATT hours in
Phase and 3 phase megaWATT hours out
Phase and 3 phase megaVAR hours in
Phase and 3 phase megaVAR hours out

Labels are entered into the setting, either comma or space delimited, but are displayed as space delimited. Load profiling is disabled if the LDLIST setting is empty (i.e., set to NA or 0), which is displayed as LDLIST = 0. The load buffer is stored in non-volatile memory and the acquisition is synchronized to the time of day, with a resolution of \pm 5 seconds. Changing the LDAR setting may result in up to two acquisition intervals before resynchronization occurs. If the LDAR setting is increased, the next acquisition time does not have a complete interval, therefore, no record is saved until the second acquisition time, which is a complete cycle. When the buffer fills up, newer records overwrite older records. The SEL-351R is able to store at least 13 days of data at an LDAR of 5 minutes, if all 15 values are used. If less than 15 values are specified, the SEL-351R will be able to store more days of data before data overwrite occurs. Likewise, if the interval is set longer, the SEL-351R will be able to store more days of data before data overwrite occurs.

The load profile report is retrieved via the LDP command, which has the following format:

LDP [a] [b]

If the command is entered without parameters (i.e., LDP), the SEL-351R displays all records in the load buffer. If the command is entered with a single numeric parameter [a] (i.e., LDP 10), the SEL-351R displays the most recent [a] records in the buffer. If the command is entered with two numeric parameters [a] [b] (i.e., LDP 10 20), the SEL-351R displays load buffer records [a] through [b]. If the command is entered with a single data parameter [a] (i.e., LDP 7/7/96), the

SEL-351R displays all load buffer records for the specified date. If the command is entered with two date parameters [a] [b] (i.e., LDP 7/7/96 8/8/96), the SEL-351R displays all load records occurring from date [a] through date [b] inclusive.

Example LDP Serial Port	
<u>Commands</u>	<u>Format</u>
LDP	If LDP is entered with no numbers following it, all available rows are displayed. They display with the oldest row at the beginning (top) of the report and the latest row (row 1) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
LDP 17	If LDP is entered with a single number following it (17 in this example), the first 17 rows are displayed, if they exist. They display with the oldest row (row 17) at the beginning (top) of the report and the latest row (row 1) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
LDP 10 33	If LDP is entered with two numbers following it (10 and 33 in this example; $10 < 33$), all the rows between (and including) rows 10 and 33 are displayed, if they exist. They display with the oldest row (row 33) at the beginning (top) of the report and the latest row (row 10) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
LDP 47 22	If LDP is entered with two numbers following it (47 and 22 in this example; 47 > 22), all the rows between (and including) rows 47 and 22 are displayed, if they exist. They display with the newest row (row 22) at the beginning (top) of the report and the oldest row (row 47) at the end (bottom) of the report. <u>Reverse</u> chronological progression through the report is down the page and in ascending row number.
LDP 3/30/97	If LDP is entered with one date following it (date 3/30/97 in this example), all the rows on that date are displayed, if they exist. They display with the oldest row at the beginning (top) of the report and the latest row at the end (bottom) of the report, for the given date. Chronological progression through the report is down the page and in descending row number.
LDP 2/17/97 3/23/97	If LDP is entered with two dates following it (date 2/17/97 chronologically <u>precedes</u> date 3/23/97 in this example), all the rows between (and including) dates 2/17/97 and 3/23/97 are displayed, if they exist. They display with the oldest row (date 2/17/97) at the beginning (top) of the report and the latest row (date 3/23/97) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.

LDP 3/16/97 1/5/97 If LDP is entered with two dates following it (date 3/16/97 chronologically <u>follows</u> date 1/5/97 in this example), all the rows between (and including) dates 1/5/97 and 3/16/97 are displayed, if they exist. They display with the latest row (date 3/16/97) at the beginning (top) of the report and the oldest row (date 1/5/97) at the end (bottom) of the report. <u>Reverse</u> chronological progression through the report is down the page and in ascending row number.

The date entries in the above example LDP commands are dependent on the Date Format setting DATE_F. If setting DATE_F = MDY, then the dates are entered as in the above examples (Month/Day/Year). If setting DATE_F = YMD, then the dates are entered Year/Month/Day.

The load profile output has the following format:

```
-----
=>LDP 7/23/96<ENTER>
<STX>
FEEDER 1
                    Date: mm/dd/yy Time: hh:mm:ss.sss
STATION A
FID=SEL-351-R105-VM-D980417
                        CID=ABCD
#
    DATE
          TIME
                 label1
                        labe12
                              label3 label4 label5
                                                   ... labeln
512
   07/23/96 07:00:35 xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx ... xxxxx.xxx
511
    07/23/96 08:00:15 xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx ... xxxxx.xxx
510
   07/23/96 09:00:01 xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx
<ETX>
=>
```

If the requested load profile report rows do not exist, the relay responds:

No Load Profile Data

Determining the Size of the Load Profile Buffer

The LDP D command displays maximum number of days of data the SEL-351R may acquire with the present settings, before data overwrite will occur.

```
=>LDP D <ENTER>
There is room for a total of 45 days of data in the load profile buffer,
with room for 21 days of data remaining.
```

Clearing the Load Profile Buffer

Clear the load profile report from nonvolatile memory with the LDP C command as shown in the following example:

```
=>LDP C <ENTER>
Clear the load profile buffer
Are you sure (Y/N) ? Y <ENTER>
Clearing Complete
```

Changing the LDLIST setting also will clear the buffer.

TABLE OF CONTENTS

SECTION 9: SETTING THE SEL-351R RECLOSER CONTROL......9-1

Introduction	9-1
Settings Changes via the Front Panel	9-2
Settings Changes via the Serial Port	9-2
Time-Overcurrent Curves	9-4
Relay Word Bits (used in SELOGIC [®] Control Equations)	9-18
Settings Explanations	9-42
Identifier Labels	9-43
Current Transformer Ratios	9-43
Line Settings	9-43
Enable Settings	
Other System Parameters	9-44
Settings Sheets	9-44
Settings Sheets	9-45

TABLES

Table 9.1:	Serial Port SET Commands	9-1
Table 9.2:	Set Command Editing Keystrokes	9-3
Table 9.3:	SEL-351R Recloser Control Relay Word Bits	9-18
Table 9.4:	Relay Word Bit Definitions for SEL-351R Recloser Control	9-19

FIGURES

Figure 9.1:	U.S. Moderately Inverse Curve: U1	9-5
Figure 9.2:	U.S. Inverse Curve: U2	9-5
Figure 9.3:	U.S. Very Inverse Curve: U3	9-5
Figure 9.4:	U.S. Extremely Inverse Curve: U4	9-5
Figure 9.5:	U.S. Short-Time Inverse Curve: U5	9-6
Figure 9.6:	I.E.C. Class A Curve (Standard Inverse): C1	9-6
Figure 9.7:	I.E.C. Class B Curve (Very Inverse): C2	9-6
	I.E.C. Class C Curve (Extremely Inverse): C3	
Figure 9.9:	I.E.C. Long-Time Inverse Curve: C4	9-7
Figure 9.10:	I.E.C. Short-Time Inverse Curve: C5	9-7
Figure 9.11:	Recloser Control Response Curves A, C, N, and W	9-8
Figure 9.12:	Recloser Control Response Curves B, R, 2, and 3	9-9
	Recloser Control Response Curves D, 8PLUS, and 16	
	Recloser Control Response Curves F, H, J, and 1	
Figure 9.15:	Recloser Control Response Curves G, V, 6, and 13	9-12
Figure 9.16:	Recloser Control Response Curves E, P, and 18) -13
Figure 9.17:	Recloser Control Response Curves KG, Y, Z, and 5) -14
Figure 9.18:	Recloser Control Response Curves KP, M, T, and 17	€-15
Figure 9.19:	Recloser Control Response Curves 4, 9, 11, and 14	9-16
	Recloser Control Response Curves L, 7, 8, and 15	

INTRODUCTION

Change or view settings with the SET and SHOWSET serial port commands and the front-panel SET pushbutton. Table 9.1 lists the serial port SET commands.

Command	Settings Type	Description	Settings Sheets
SET n	Group	"Regular" settings (e.g., overcurrent elements, voltage elements, reclose timers) for settings group n $(n = 1, 2, 3, 4, 5, 6)$.	1-12*
SET L n	Logic	SELOGIC [®] control equations for settings group n $(n = 1, 2, 3, 4, 5, 6)$.	13–19*
SET G	Global	Breaker monitor, battery monitor, optoisolated input debounce timers, etc.	20-22*
SET R	SER	Sequential Events Recorder trigger conditions and Load Profile settings.	23*
SET T	Text	Front-panel default display and local control text.	24-27*
SET P n	Port	Serial port settings for serial port n ($n = 1, 2, 3, or F$).	28*
SET EZ n	EZ Recloser Control	Traditional recloser control settings (e.g., minimum trips, fast/delay curves, reclose intervals) for settings group n (n = 1, 2, 3, 4, 5, 6)	1–3**
SET FZ	EZ Global	Automatic recloser monitor, battery monitor, etc.	3**

Table 9.1:	Serial Port SET Commands
1 and 7.1.	

* located at the end of this section

** located at the end of the Settings section in the SEL-351R Quick-Start Installation and User's Guide.

View settings with the respective serial port SHOWSET commands (SHO, SHO L, SHO G, SHO R, SHO T, SHO P, SHO EZ, SHO FZ). See *SHO Command (Showset)* in *Section 10: Serial Port Communications and Commands*.

Refer to the *Settings* section in the *SEL-351R Quick-Start Installation and User's Guide* for information on setting traditional recloser control settings with the SET EZ n and SET FZ commands. See *SET EZ and SET FZ Commands* (*Change EZ Settings*) in the *Access Level E* (*EZ*) *Commands* subsection of *Section 10: Serial Port Communications and Commands* for information on EZ recloser control and EZ global settings (SET EZ n and SET FZ, respectively), and on overriding certain "regular" group settings and global settings (SET n and SET G, respectively).

SETTINGS CHANGES VIA THE FRONT PANEL

Most of the settings that can be made with the SET commands in Table 9.1 also can be made with the SEL-351R front-panel SET pushbutton. The exceptions are settings corresponding to the SET L n, SET R, and SET T commands. See the SET pushbutton in the *Pushbutton Primary Functions* subsection in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide* for more information on making settings via the front-panel interface.

SETTINGS CHANGES VIA THE SERIAL PORT

Note: In this manual, commands you type appear in bold/uppercase: **OTTER**. Computer keys you press appear in bold/uppercase/brackets: **<ENTER>**.

See *Section 10: Serial Port Communications and Commands* for information on serial port communications and access levels. The SET EZ n and SET FZ commands in Table 9.1 operate at Access Level E (screen prompt: =+>). All other SET commands in Table 9.1 operate at Access Level 2 (screen prompt: =>>). To change a specific setting, enter the command:

SET m n s TERSE

where

- m = L, G, R, T, P, EZ, or FZ (parameter m is not entered for the Group settings).
- n = group (1....6) or port (1, 2, 3, F). The SEL-351R selects the active group or port if n is not specified.
- s = the name of the specific setting you wish to jump to and begin setting. If s is not entered, the control starts at the first setting (does not work with the EZ or FZ parameters).
- TERSE = instructs the control to skip the SHOWSET display after the last setting. Use this parameter to speed up the SET command. If you wish to review the settings before saving, do not use the TERSE option.

When you issue the SET command, the SEL-351R presents a list of settings, one at a time. Enter a new setting, or press **<ENTER>** to accept the existing setting. Editing keystrokes are shown in Table 9.2.

Press Key(s)	Results				
<enter></enter>	Retains setting and moves to the next setting.				
^ <enter> Returns to previous setting.</enter>					
< <enter></enter>	Returns to previous setting.				
> <enter></enter>	Moves to next setting.				
END <enter></enter>	Exits editing session, then prompts you to save the settings.				
<ctrl> X</ctrl>	Aborts editing session without saving changes.				

Table 9.2: Set Command Editing Keystrokes

The SEL-351R checks each entry to ensure that it is within the setting range. If it is not, an "Out of Range" message is generated, and the control prompts for the setting again.

When all the settings are entered, the control displays the new settings and prompts for approval to enable them. Answer **Y**<**ENTER>** to enable the new settings. If changes are made to Global, EZ Global, SER, Text, or Port settings (see Table 9.1), the SEL-351R is disabled while it saves the new settings. If changes are made to the EZ Recloser Control, Group, or Logic settings for the active setting group (see Table 9.1), the SEL-351R is disabled while it saves the new settings. The ALARM contact closes momentarily for "b" contact (opens for an "a"; see Figure 7.27), and the CONTROL ENABLED LED extinguishes while the control is disabled. The SEL-351R is disabled for about 1 second. If Logic settings are changed for the active group, the SEL-351R can be disabled for up to 15 seconds.

If changes are made to the EZ Recloser Control, Group, or Logic settings for a setting group other than the active setting group (see Table 9.1), the SEL-351R is not disabled while it saves the new settings. The ALARM contact closes momentarily for "b" contact (opens for an "a"; see Figure 7.27), but the CONTROL ENABLED LED remains on while the new settings are saved.

TIME-OVERCURRENT CURVES

The following information describes the curve timing for the curve and time dial settings made for the time-overcurrent elements (see Figure 3.14 through Figure 3.20). The time-overcurrent relay curves in Figure 9.1 through Figure 9.10 conform to IEEE C37.112-1996 IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays.

- tp = operating time in seconds
- tr = electromechanical induction-disk emulation reset time in seconds (if electromechanical reset setting is made)
- TD = time dial setting
- M = applied multiples of pickup current [for operating time (tp), M>1; for reset time (tr), M \leq 1].

U.S. Moderately Inverse Curve: U1

 $tp = TD^*(0.0226 + 0.0104/(M^{0.02} - 1))$ $tr = TD^*(1.08/(1 - M^2))$

U.S. Very Inverse Curve: U3

 $tp = TD^*(0.0963 + 3.88/(M^2 - 1))$ $tr = TD^*(3.88/(1 - M^2))$

U.S. Short-Time Inverse Curve: U5

 $tp = TD^*(0.00262 + 0.00342/(M^{0.02} - 1))$ $tr = TD^*(0.323/(1 - M^2))$

I.E.C. Class A Curve (Standard Inverse): C1 tp = $TD^*(0.14/(M^{0.02} - 1))$ tr = $TD^*(13.5/(1 - M^2))$

I.E.C. Class C Curve (Extremely Inverse): C3 tp = $TD^*(80.0/(M^2 - 1))$ tr = $TD^*(80.0/(1 - M^2))$

I.E.C. Short-Time Inverse Curve: C5

 $tp = TD^*(0.05/(M^{0.04} - 1))$ $tr = TD^*(4.85/(1 - M^2))$ U.S. Inverse Curve: U2 $tp = TD^*(0.180 + 5.95/(M^2 - 1))$ $tr = TD^*(5.95/(1 - M^2))$

U.S. Extremely Inverse Curve: U4 tp = $TD^*(0.0352 + 5.67/(M^2 - 1))$ tr = $TD^*(5.67/(1 - M^2))$

I.E.C. Class B Curve (Very Inverse): C2) tp = $TD^*(13.5/(M-1))$ tr = $TD^*(47.3/(1-M^2))$

I.E.C. Long-Time Inverse Curve: C4 tp = $TD^*(120.0/(M-1))$ tr = $TD^*(120.0/(1-M))$

All 38 traditional recloser control response curves are available and shown in Figure 9.11 through Figure 9.20. Each curve has two designations. For example, the bottom curve in Figure 9.11 has the following two designations:

Older electronic control designation: A

Newer microprocessor-based control designation 101

Use either designation in making curve settings in the SEL-351R.

See Table 8 and Table 9 and following text in the *Settings* section of the *SEL-351R Quick-Start Installation and User's Guide* for more information on available time-overcurrent curves, including user-programmable curves.

Figure 9.1: U.S. Moderately Inverse Curve: U1

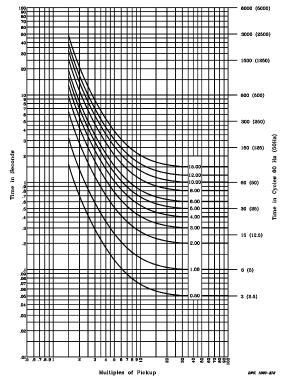


Figure 9.3: U.S. Very Inverse Curve: U3

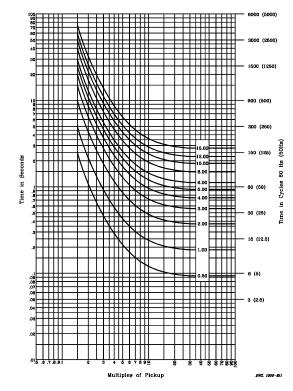
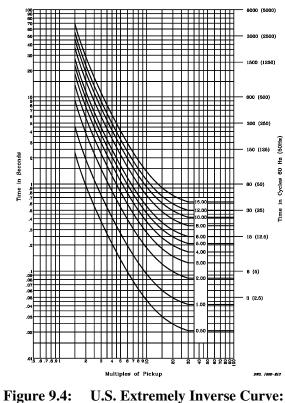



Figure 9.2: U.S. Inverse Curve: U2

ure 9.4: U.S. Extremely Inverse Curve: U4



Figure 9.5: U.S. Short-Time Inverse Curve: U5

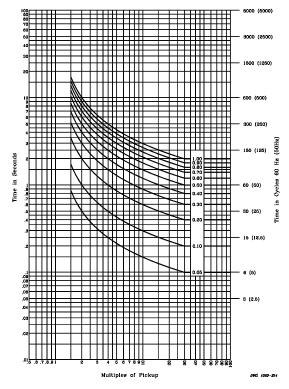


Figure 9.6: I.E.C. Class A Curve (Standard Inverse): C1

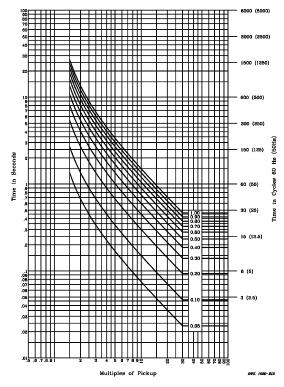


Figure 9.7: I.E.C. Class B Curve (Very Inverse): C2

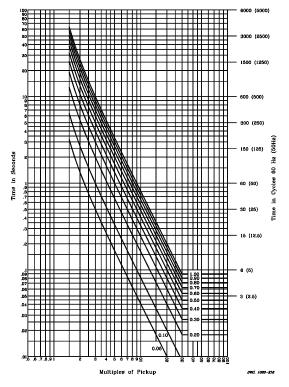


Figure 9.8: I.E.C. Class C Curve (Extremely Inverse): C3

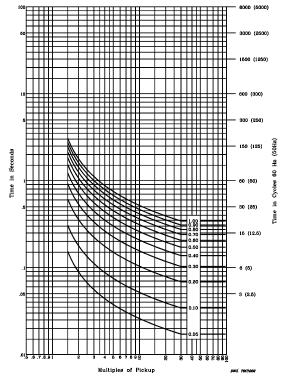


Figure 9.10: I.E.C. Short-Time Inverse Curve: C5

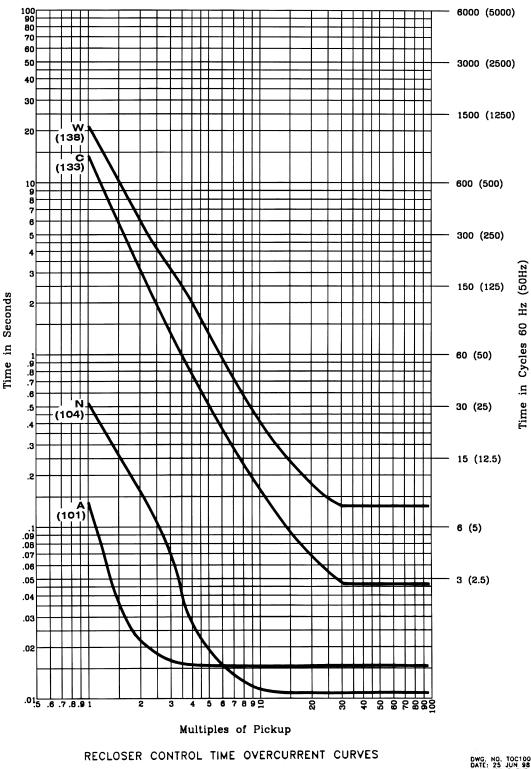
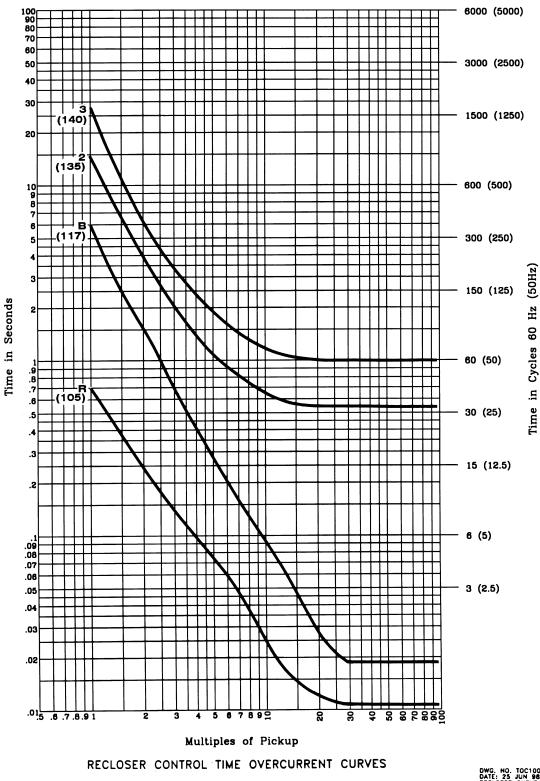
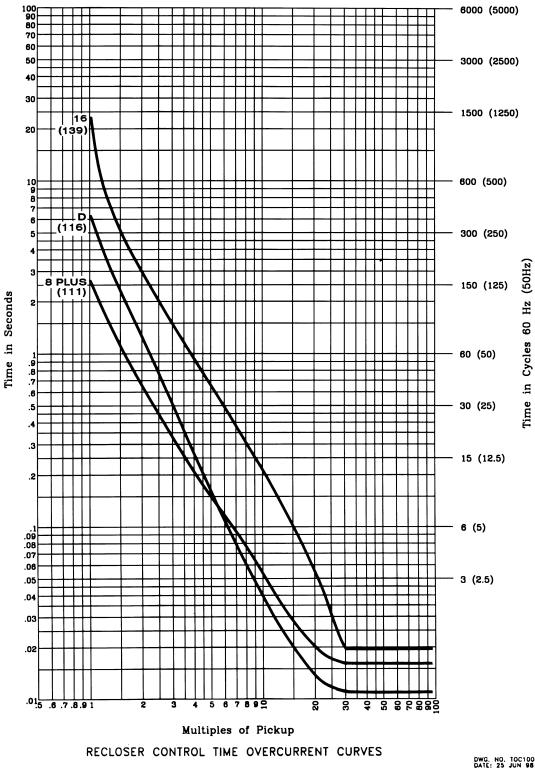
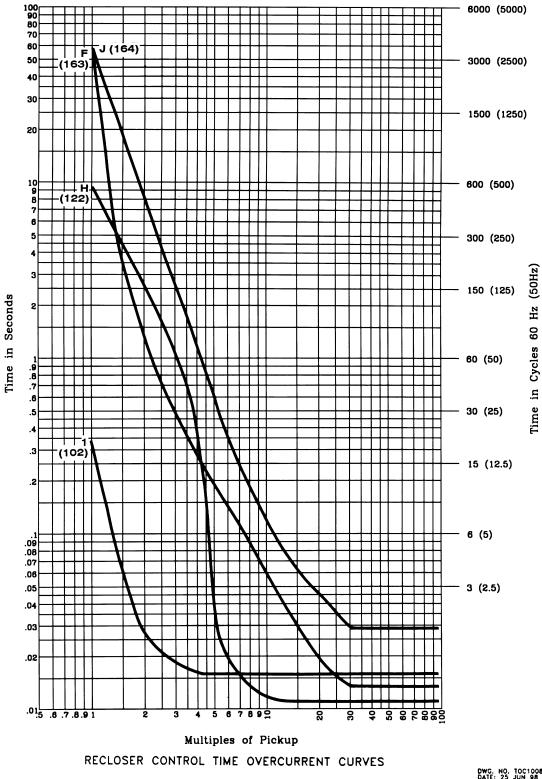




Figure 9.9: I.E.C. Long-Time Inverse Curve: C4

DWG. NO. TOC1005 DATE: 25 JUN 98 RECLOSER CURVE 1 DECADE SCALE 2.213


Figure 9.11: Recloser Control Response Curves A, C, N, and W

DWG. NO. TOC1006 DATE: 25 JUN 98 RECLOSER CURVE 2 DECADE SCALE 2.213


Figure 9.12: Recloser Control Response Curves B, R, 2, and 3

Date Code 20020215

RECLOSER CURVE 3 DECADE SCALE 2.21

Figure 9.13: Recloser Control Response Curves D, 8PLUS, and 16

DATE: 25 JUN 98 RECLOSER CURVE 4 DECADE SCALE 2.213

Figure 9.14: Recloser Control Response Curves F, H, J, and 1

Date Code 20020215

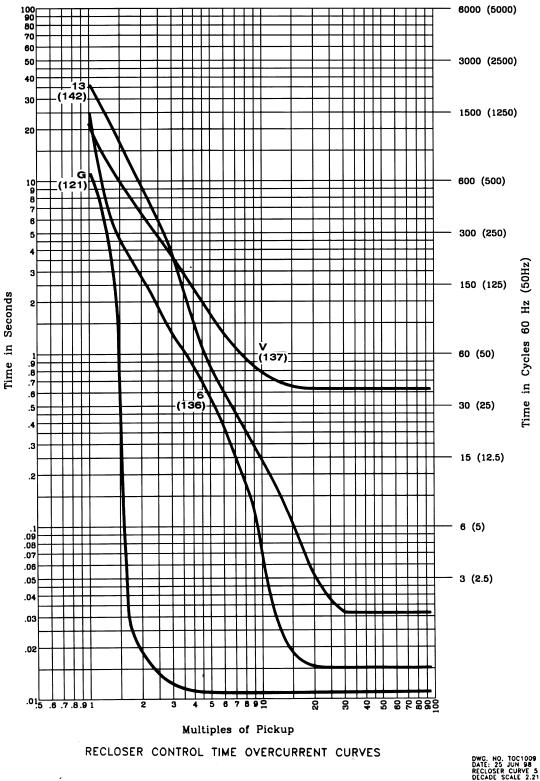
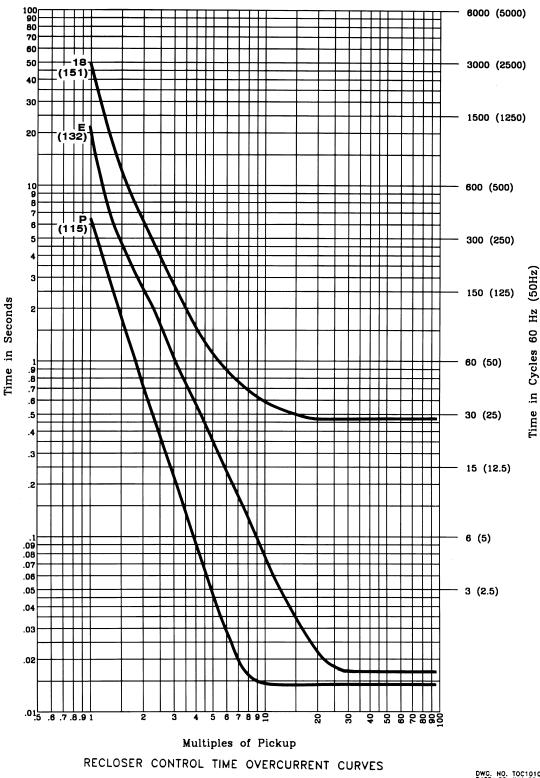
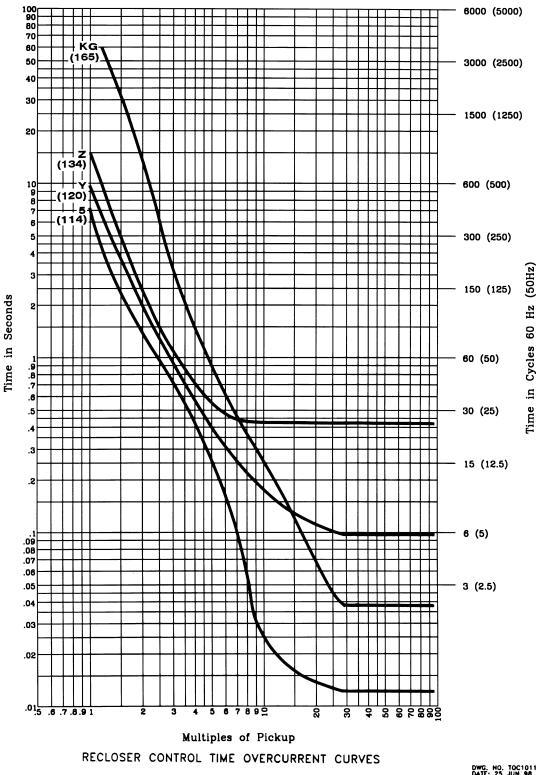




Figure 9.15: Recloser Control Response Curves G, V, 6, and 13

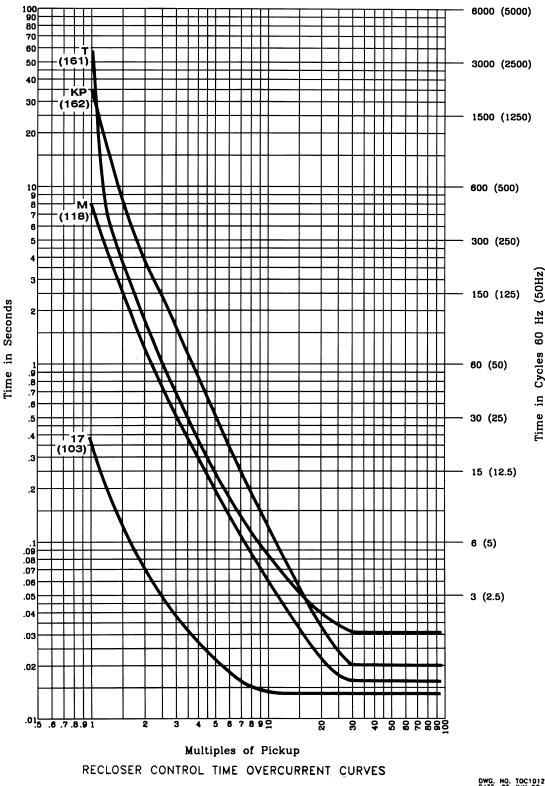
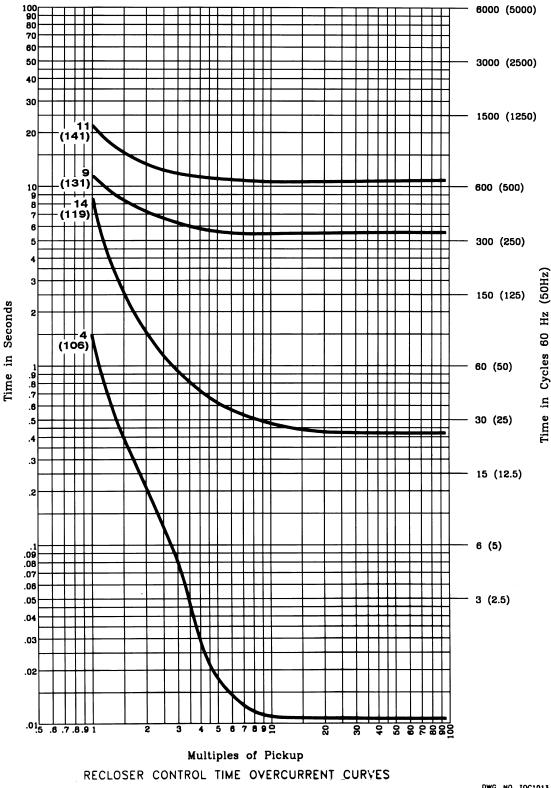
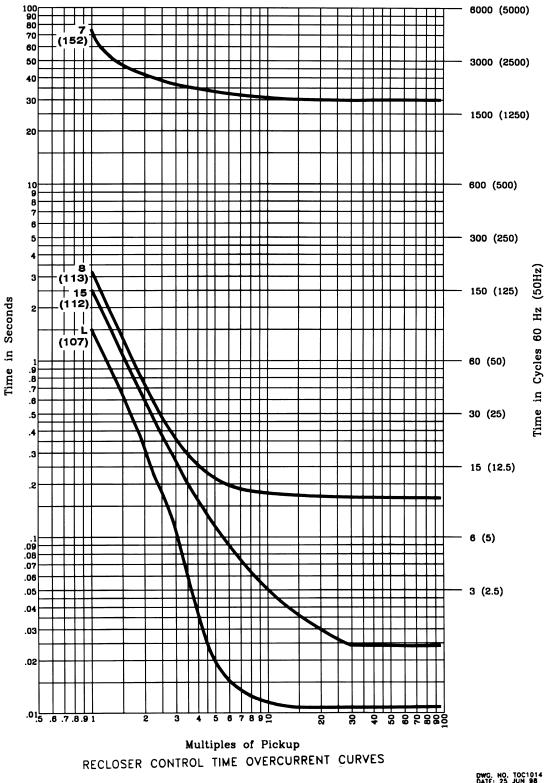

DWG. NO. TOC1010 DATE: 25 JUN 98 RECLOSER CURVE 6 DECADE SCALE 2.213

Figure 9.16: Recloser Control Response Curves E, P, and 18

DATE: 25 JUN 98 RECLOSER CURVE 7 DECADE SCALE 2.213


Figure 9.17: Recloser Control Response Curves KG, Y, Z, and 5

DATE: 25 JUN 98 RECLOSER CURVE 8 DECADE SCALE 2.213


Figure 9.18: Recloser Control Response Curves KP, M, T, and 17

Date Code 20020215

DWG. NO. TOC1013 DATE: 25 JUN 98 RECLOSER CURVE 9 DECADE SCALE 2.213

Figure 9.19: Recloser Control Response Curves 4, 9, 11, and 14

DWG. NO. TOCTUT4 DATE: 25 JUN 98 RECLOSER CURVE 10 DECADE SCALE 2.213

Figure 9.20: Recloser Control Response Curves L, 7, 8, and 15

RELAY WORD BITS (USED IN SELOGIC CONTROL EQUATIONS)

Relay Word bits are used in SELOGIC control equation settings. Factory-set SELOGIC control equation settings are explained in *Section 1: Factory-Set Logic*. Numerous SELOGIC control equation settings examples are given in *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements* through *Section 8: Breaker/Recloser Monitor, Battery System* Monitor, Metering, and Load Profile Functions. SELOGIC control equation settings can also be <u>set directly</u> to 1 (logical 1) or 0 (logical 0). Appendix G: Setting SELOGIC[®] Control Equations gives SELOGIC control equation details, examples, and limitations.

The Relay Word bit row numbers correspond to the row numbers used in the TAR command [see *TAR Command (Target)* in *Section 10: Serial Port Communications and Commands*]. Rows 0 and 1 are reserved for the display of the two front-panel target LED rows.

Row	Relay Word Bits							
2	50A1	50B1	50C1	50A2	50B2	50C2	50A3	50B3
3	50C3	50A4	50B4	50C4	50AB1	50BC1	50CA1	50AB2
4	50BC2	50CA2	50AB3	50BC3	50CA3	50AB4	50BC4	50CA4
5	50A	50B	50C	51P1	51P1T	51P1R	51N1	51N1T
6	51N1R	51G1	51G1T	51G1R	51P2	51P2T	51P2R	51N2
7	51N2T	51N2R	51G2	51G2T	51G2R	51Q	51QT	51QR
8	50P1	50P2	50P3	50P4	50N1	50N2	50N3	50N4
9	67P1	67P2	67P3	67P4	67N1	67N2	67N3	67N4
10	67P1T	67P2T	67P3T	67P4T	67N1T	67N2T	67N3T	67N4T
11	50G1	50G2	50G3	50G4	50Q1	50Q2	50Q3	50Q4
12	67G1	67G2	67G3	67G4	67Q1	67Q2	67Q3	67Q4
13	67G1T	67G2T	67G3T	67G4T	67Q1T	67Q2T	67Q3T	67Q4T
14	50P5	50P6	50N5	50N6	50G5	50G6	50Q5	50Q6
15	50QF	50QR	50GF	50GR	32VE	32QGE	32NE	32QE
16	F32P	R32P	F32Q	R32Q	F32QG	R32QG	F32V	R32V
17	F32N	R32N	32PF	32PR	32QF	32QR	32GF	32GR
18	27A1	27B1	27C1	27A2	27B2	27C2	59A1	59B1
19	59C1	59A2	59B2	59C2	27AB	27BC	27CA	59AB
20	59BC	59CA	59N1	59N2	59Q	59V1	27S	59S1
21	59S2	59VP	59VS	SF	25A1	25A2	3P27	3P59
22	81D1	81D2	81D3	81D4	81D5	81D6	27B81	50L
23	81D1T	81D2T	81D3T	81D4T	81D5T	81D6T	VPOLV	LOP
24	RCTR	RCCL	IN106	IN105	IN104	IN103	IN102	IN101
25	LB1	LB2	LB3	LB4	LB5	LB6	LB7	LB8
26	RB1	RB2	RB3	RB4	RB5	RB6	RB7	RB8
27	LT1	LT2	LT3	LT4	LT5	LT6	LT7	LT8
28	SV1	SV2	SV3	SV4	SV1T	SV2T	SV3T	SV4T
29	SV5	SV6	SV7	SV8	SV5T	SV6T	SV7T	SV8T
30	SV9	SV10	SV11	SV12	SV9T	SV10T	SV11T	SV12T
31	SV13	SV14	SV15	SV16	SV13T	SV14T	SV15T	SV16T

 Table 9.3:
 SEL-351R Recloser Control Relay Word Bits

Row		Relay Word Bits						
32	79RS	79CY	79LO	SH0	SH1	SH2	SH3	SH4
		CF	RCSF	OPTMN	RSTMN		FSB	FSC SH4
33	CLOSE					FSA		
34	BCW	50P32	NOBATT	59VA	TRGTR	52A	COMMT	CHRGG
35	SG1	SG2	SG3	SG4	SG5	SG6	ZLOUT	ZLIN
36	ZLOAD	BCWA	BCWB	BCWC	BCBOK	TOSLP	DISTST	DTFAIL
37	ALARM	OUT107	OUT106	OUT105	OUT104	OUT103	OUT102	OUT101
38	3PO	SOTFE	Z3RB	KEY	EKEY	ECTT	WFC	PT
39	PTRX2	PTRX	PTRX1	UBB1	UBB2	UBB	Z3XT	DSTRT
40	NSTRT	STOP	BTX	TRIP	OC	CC	CLG	NOMSG
41	67P2S	67N2S	67G2S	67Q2S	PDEM	NDEM	GDEM	QDEM
42	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8
43	PB9	PINBD	PINC	PINE	PINF	SW1	DISCHG	LED9
44	LED1	LED2	LED3	LED4	LED5	LED6	LED7	LED8
45	OCP	OCG	OLP	OLG	OLS	HTP	HTG	HLP
46	HLG	CLP	RPP	RPG	RPS	SEQC	3PHV	GTP
47 ¹	RMB8A	RMB7A	RMB6A	RMB5A	RMB4A	RMB3A	RMB2A	RMB1A
48 ¹	TMB8A	TMB7A	TMB6A	TMB5A	TMB4A	TMB3A	TMB2A	TMB1A
49 ¹	RMB8B	RMB7B	RMB6B	RMB5B	RMB4B	RMB3B	RMB2B	RMB1B
50 ¹	TMB8B	TMB7B	TMB6B	TMB5B	TMB4B	TMB3B	TMB2B	TMB1B
51 ¹	LBOKB	CBADB	RBADB	ROKB	LBOKA	CBADA	RBADA	ROKA
52	*	*	*	*	*	*	*	*
53	*	*	*	*	*	*	*	*
54	*	*	*	*	*	*	*	*
55	*	*	*	*	*	*	*	*
56	50NF	50NR	32NF	32NR	*	*	DCONN	DDATA
57	*	*	*	*	*	*	*	*
58 ²	LB9	LB10	LB11	LB12	LB13	LB14	LB15	LB16
59 ²	RB9	RB10	RB11	RB12	RB13	RB14	RB15	RB16
60 ²	LT9	LT10	LT11	LT12	LT13	LT14	LT15	LT16

¹ MIRRORED BITSTM not available in SEL-351R-0. ² Only available in SEL-351R-2.

Row	Bit	Definition	Primary Application
2	50A1	Level 1 A-phase instantaneous overcurrent element (A-phase current above pickup setting 50P1P; see Figure 3.1)	Tripping, Control
	50B1	Level 1 B-phase instantaneous overcurrent element (B-phase current above pickup setting 50P1P; see Figure 3.1)	

Row	Bit	Definition	Primary Application
	50C1	Level 1 C-phase instantaneous overcurrent element (C-phase current above pickup setting 50P1P; see Figure 3.1)	
	50A2	Level 2 A-phase instantaneous overcurrent element (A-phase current above pickup setting 50P2P; see Figure 3.1)	
	50B2	Level 2 B-phase instantaneous overcurrent element (B-phase current above pickup setting 50P2P; see Figure 3.1)	
	50C2	Level 2 C-phase instantaneous overcurrent element (C-phase current above pickup setting 50P2P; see Figure 3.1)	
	50A3	Level 3 A-phase instantaneous overcurrent element (A-phase current above pickup setting 50P3P; see Figure 3.1)	
	50B3	Level 3 B-phase instantaneous overcurrent element (B-phase current above pickup setting 50P3P; see Figure 3.1)	
3	50C3	Level 3 C-phase instantaneous overcurrent element (C-phase current above pickup setting 50P3P; see Figure 3.1)	
	50A4	Level 4 A-phase instantaneous overcurrent element (A-phase current above pickup setting 50P4P; see Figure 3.1)	
	 (B-phase current above pickup setting 50P4P; Figure 3.1) 50C4 Level 4 C-phase instantaneous overcurrent ele (C-phase current above pickup setting 50P4P; Figure 3.1) 50AB1 Level 1 AB-phase-to-phase instantaneous overcurrent element (AB-phase-to-phase current above pickup setting 50PP1P; see Figure 3.7) 50BC1 Level 1 BC-phase-to-phase instantaneous 	Level 4 B-phase instantaneous overcurrent element (B-phase current above pickup setting 50P4P; see Figure 3.1)	
		Level 4 C-phase instantaneous overcurrent element (C-phase current above pickup setting 50P4P; see Figure 3.1)	
		overcurrent element (AB-phase-to-phase current	
		overcurrent element (BC-phase-to-phase current	
	50CA1	Level 1 CA-phase-to-phase instantaneous overcurrent element (CA-phase-to-phase current above pickup setting 50PP1P; see Figure 3.7)	

Row	Bit	Definition	Primary Application
	50AB2	Level 2 AB-phase-to-phase instantaneous overcurrent element (AB-phase-to-phase current above pickup setting 50PP2P; see Figure 3.7)	
4	50BC2	Level 2 BC-phase-to-phase instantaneous overcurrent element (BC-phase-to-phase current above pickup setting 50PP2P; see Figure 3.7)	
	50CA2	Level 2 CA-phase-to-phase instantaneous overcurrent element (CA-phase-to-phase current above pickup setting 50PP2P; see Figure 3.7)	
	50AB3	Level 3 AB-phase-to-phase instantaneous overcurrent element (AB-phase-to-phase current above pickup setting 50PP3P; see Figure 3.7)	
	50BC3	Level 3 BC-phase-to-phase instantaneous overcurrent element (BC-phase-to-phase current above pickup setting 50PP3P; see Figure 3.7)	
	50CA3	Level 3 CA-phase-to-phase instantaneous overcurrent element (CA-phase-to-phase current above pickup setting 50PP3P; see Figure 3.7)	
	50AB4	Level 4 AB-phase-to-phase instantaneous overcurrent element (AB-phase-to-phase current above pickup setting 50PP4P; see Figure 3.7)	
	50BC4	Level 4 BC-phase-to-phase instantaneous overcurrent element (BC-phase-to-phase current above pickup setting 50PP4P; see Figure 3.7)	
	50CA4	Level 4 CA-phase-to-phase instantaneous overcurrent element (CA-phase-to-phase current above pickup setting 50PP4P; see Figure 3.7)	
5	50A	50A1 + 50A2 + 50A3 + 50A4 (see Figure 3.4)	
	50B	50B1 + 50B2 + 50B3 + 50B4 (see Figure 3.4)	
	50C	50C1 + 50C2 + 50C3 + 50C4 (see Figure 3.4)	
	51P1	Maximum phase current above pickup setting 51P1P for phase time-overcurrent element 51P1T (see Figure 3.14)	Testing, Control
	51P1T	Phase time-overcurrent element 51P1T timed out (see Figure 3.14)	Tripping
	51P1R	Phase time-overcurrent element 51P1T reset (see Figure 3.14)	Testing

Row	Bit	Definition	Primary Application
	51N1	Neutral ground current (channel IN) above pickup setting 51N1P for neutral ground time-overcurrent element 51N1T (see Figure 3.16)	Testing, Control
	51N1T	Neutral ground time-overcurrent element 51N1T timed out (see Figure 3.16)	Tripping
6	51N1R	Neutral ground time-overcurrent element 51N1T reset (see Figure 3.16)	Testing
	51G1	Residual ground current above pickup setting 51G1P for residual ground time-overcurrent element 51G1T (see Figure 3.18)	Testing, Control
	51G1T	Residual ground time-overcurrent element 51G1T timed out (see Figure 3.18)	Tripping
	51G1R	Residual ground time-overcurrent element 51G1T reset (see Figure 3.18)	Testing
	51P2	Maximum phase current above pickup setting 51P2P for phase time-overcurrent element 51P2T (see Figure 3.15)	Testing, Control
	51P2T	Phase time-overcurrent element 51P2T timed out (see Figure 3.15)	Tripping
	51P2R	Phase time-overcurrent element 51P2T reset (see Figure 3.15)	Testing
	51N2	Neutral ground current (channel IN) above pickup setting 51N2P for neutral ground time-overcurrent element 51N2T (see Figure 3.17)	Testing, Control
7	51N2T	Neutral ground time-overcurrent element 51N2T timed out (see Figure 3.17)	Tripping
	51N2R	Neutral ground time-overcurrent element 51N2T reset (see Figure 3.17)	Testing
	51G2	Residual ground current above pickup setting 51G2P for residual ground time-overcurrent element 51G2T (see Figure 3.19)	Testing, Control
	51G2T	Residual ground time-overcurrent element 51G2T timed out (see Figure 3.19)	Tripping
	51G2R	Residual ground time-overcurrent element 51G2T reset (see Figure 3.19)	Testing
	51Q**	Negative-sequence current above pickup setting 51QP for negative-sequence time-overcurrent element 51QT (see Figure 3.20)	Testing, Control

Row	Bit	Definition	Primary Application
	51QT**	Negative-sequence time-overcurrent element 51QT timed out (see Figure 3.20)	Tripping
	51QR	Negative-sequence time-overcurrent element 51QT reset (see Figure 3.20)	Testing
8	50P1	Level 1 phase instantaneous overcurrent element (= 50A1 + 50B1 + 50C1; see Figure 3.1)	Tripping, Testing, Control
	50P2	Level 2 phase instantaneous overcurrent element (= 50A2 + 50B2 + 50C2; see Figure 3.1)	
	50P3	Level 3 phase instantaneous overcurrent element (= 50A3 + 50B3 + 50C3; see Figure 3.1)	
	50P4	Level 4 phase instantaneous overcurrent element (= 50A4 + 50B4 + 50C4; see Figure 3.1)	
	50N1	Level 1 neutral ground instantaneous overcurrent element (neutral ground current [channel IN] above pickup setting 50N1P; see Figure 3.8)	
	50N2	Level 2 neutral ground instantaneous overcurrent element (neutral ground current [channel IN] above pickup setting 50N2P; see Figure 3.8)	
	50N3	Level 3 neutral ground instantaneous overcurrent element (neutral ground current [channel IN] above pickup setting 50N3P; see Figure 3.8)	
	50N4	Level 4 neutral ground instantaneous overcurrent element (neutral ground current [channel IN] above pickup setting 50N4P; see Figure 3.8)	
9	67P1	Level 1 phase instantaneous overcurrent element (derived from 50P1; see Figure 3.3)	
	67P2	Level 2 phase instantaneous overcurrent element (derived from 50P2; see Figure 3.3)	
	67P3	Level 3 phase instantaneous overcurrent element (derived from 50P3; see Figure 3.3)	
	67P4	Level 4 phase instantaneous overcurrent element (derived from 50P4; see Figure 3.3)	
	67N1	Level 1 neutral ground instantaneous overcurrent element (derived from 50N1; see Figure 3.8)	
	67N2	Level 2 neutral ground instantaneous overcurrent element (derived from 50N2; see Figure 3.8)	
	67N3	Level 3 neutral ground instantaneous overcurrent element (derived from 50N3; see Figure 3.8)	

Row	Bit	Definition	Primary Application
	67N4	Level 4 neutral ground instantaneous overcurrent element (derived from 50N4; see Figure 3.8)	
10	67P1T	Level 1 phase definite-time overcurrent element 67P1T timed out (derived from 67P1; see Figure 3.3)	Tripping
	67P2T	Level 2 phase definite-time overcurrent element 67P2T timed out (derived from 67P2; see Figure 3.3)	
	67P3T	Level 3 phase definite-time overcurrent element 67P3T timed out (derived from 67P3; see Figure 3.3)	
	67P4T	Level 4 phase definite-time overcurrent element 67P4T timed out (derived from 67P4; see Figure 3.3)	
	67N1T	Level 1 neutral ground definite-time overcurrent element 67NIT timed out (derived from 67N1; see Figure 3.8)	
	67N2T	Level 2 neutral ground definite-time overcurrent element 67N2T timed out (derived from 67N2; see Figure 3.8)	
	67N3T	Level 3 neutral ground definite-time overcurrent element 67N3T timed out (derived from 67N3; see Figure 3.8)	
	67N4T	Level 4 neutral ground definite-time overcurrent element 67N4T timed out (derived from 67N4; see Figure 3.8)	
11	50G1	Level 1 residual ground instantaneous overcurrent element (residual ground current above pickup setting 50G1P; see Figure 3.10)	Tripping, Testing, Control
	50G2	Level 2 residual ground instantaneous overcurrent element (residual ground current above pickup setting 50G2P; see Figure 3.10)	
	50G3	Level 3 residual ground instantaneous overcurrent element (residual ground current above pickup setting 50G3P; see Figure 3.10)	
	50G4	Level 4 residual ground instantaneous overcurrent element (residual ground current above pickup setting 50G4P; see Figure 3.10)	
	50Q1**	Level 1 negative-sequence instantaneous overcurrent element (negative-sequence current above pickup setting 50Q1P; see Figure 3.12)	Testing, Control

Row	Bit	Definition	Primary Application
	50Q2**	Level 2 negative-sequence instantaneous overcurrent element (negative-sequence current above pickup setting 50Q2P; see Figure 3.12)	
	50Q3**	Level 3 negative-sequence instantaneous overcurrent element (negative-sequence current above pickup setting 50Q3P; see Figure 3.12)	
	50Q4**	Level 4 negative-sequence instantaneous overcurrent element (negative-sequence current above pickup setting 50Q4P; see Figure 3.12)	
12	67G1	Level 1 residual ground instantaneous overcurrent element (derived from 50G1; see Figure 3.10)	Tripping, Testing, Control
	67G2	Level 2 residual ground instantaneous overcurrent element (derived from 50G2; see Figure 3.10)	
	67G3	Level 3 residual ground instantaneous overcurrent element (derived from 50G3; see Figure 3.10)	
	67G4	Level 4 residual ground instantaneous overcurrent element (derived from 50G4; see Figure 3.10)	
	67Q1**	Level 1 negative-sequence instantaneous overcurrent element (derived from 50Q1; see Figure 3.12)	Testing, Control
	67Q2**	Level 2 negative-sequence instantaneous overcurrent element (derived from 50Q2; see Figure 3.12)	
	67Q3**	Level 3 negative-sequence instantaneous overcurrent element (derived from 50Q3; see Figure 3.12)	
	67Q4**	Level 4 negative-sequence instantaneous overcurrent element (derived from 50Q4; see Figure 3.12)	
13	67G1T	Level 1 residual ground definite-time overcurrent element 67G1T timed out (derived from 67G1; see Figure 3.10)	Tripping
	67G2T	Level 2 residual ground definite-time overcurrent element 67G2T timed out (derived from 67G2; see Figure 3.10)	
	67G3T	Level 3 residual ground definite-time overcurrent element 67G3T timed out (derived from 67G3; see Figure 3.10)	
	67G4T	Level 4 residual ground definite-time overcurrent element 67G4T timed out (derived from 67G4; see Figure 3.10)	

Row	Bit	Definition	Primary Application
	67Q1T**	Level 1 negative-sequence definite-time overcurrent element 67Q1T timed out (derived from 67Q1; see Figure 3.12)	
	67Q2T**	Level 2 negative-sequence definite-time overcurrent element 67Q2T timed out (derived from 67Q2; see Figure 3.12)	
	67Q3T**	Level 3 negative-sequence definite-time overcurrent element 67Q3T timed out (derived from 67Q3; see Figure 3.12)	
	67Q4T**	Level 4 negative-sequence definite-time overcurrent element 67Q4T timed out (derived from 67Q4; see Figure 3.12)	
14	50P5	Level 5 phase instantaneous overcurrent element (maximum phase current above pickup setting 50P5P; see Figure 3.2)	Tripping, Control
	50P6	Level 6 phase instantaneous overcurrent element (maximum phase current above pickup setting 50P6P; see Figure 3.2)	
	50N5	Level 5 neutral ground instantaneous overcurrent element (neutral ground current [channel IN] above pickup setting 50N5P; see Figure 3.9)	
	50N6	Level 6 neutral ground instantaneous overcurrent element (neutral ground current [channel IN] above pickup setting 50N6P; see Figure 3.9)	
	50G5	Level 5 residual ground instantaneous overcurrent element (residual ground current above pickup setting 50G5P; see Figure 3.11)	
	50G6	Level 6 residual ground instantaneous overcurrent element (residual ground current above pickup setting 50G6P; see Figure 3.11)	
	50Q5**	Level 5 negative-sequence instantaneous overcurrent element (negative-sequence current above pickup setting 50Q5P; see Figure 3.13)	Control

Row	Bit	Definition	Primary Application
	50Q6**	Level 6 negative-sequence instantaneous overcurrent element (negative-sequence current above pickup setting 50Q6P; see Figure 3.13)	
15	50QF	Forward direction negative-sequence overcurrent threshold exceeded (see Figures 4.4, 4.5, 4.9, 4.16, and 4.17)	Testing
	50QR	Reverse direction negative-sequence overcurrent threshold exceeded (see Figures 4.4, 4.5, 4.9, 4.16, and 4.17)	
	50GF	Forward direction residual ground overcurrent threshold exceeded (see Figures 4.4, 4.6, and 4.10)	
	50GR	Reverse direction residual ground overcurrent threshold exceeded (see Figures 4.4, 4.6, and 4.10)	
	32VE	Internal enable for zero-sequence voltage-polarized, residual-current directional element (see Figures 4.4, 4.6, 4.8, and 4.10)	
	32QGE	Internal enable for negative-sequence voltage- polarized directional element (for ground; see Figures 4.4, 4.5 and 4.8)	
	32NE	Internal enable for zero-sequence voltage-polarized, neutral-current directional element (see Figures 4.4, 4.7, and 4.11)	
	32QE	Internal enable for negative-sequence voltage- polarized neutral-current directional element (see Figures 4.4, 4.5, 4.16, and 4.17)	
16	F32P	Forward positive-sequence voltage-polarized directional element (see Figures 4.16, 4.18 and 4.19)	Testing, Special directional
	R32P	Reverse positive-sequence voltage-polarized directional element (see Figures 4.16, 4.18 and 4.19)	control schemes
	F32Q	Forward negative-sequence voltage-polarized directional element (see Figures 4.16, 4.17 and 4.19)	
	R32Q	Reverse negative-sequence voltage-polarized directional element (see Figures 4.16, 4.17 and 4.19)	
	F32QG	Forward negative-sequence voltage-polarized directional element (for ground; see Figures 4.4, 4.9, 4.12, and 4.13)	
	R32QG	Reverse negative-sequence voltage-polarized directional element (for ground; see Figures 4.4, 4.9, 4.12, and 4.13)	

Row	Bit	Definition	Primary Application
	F32V	Forward zero-sequence voltage-polarized residual- current directional element (see Figures 4.4, 4.10, 4.12, and 4.13)	
	R32V	Reverse zero-sequence voltage-polarized residual- current directional element (see Figures 4.4, 4.10, 4.12, and 4.13)	
17	F32N	Forward zero-sequence, voltage-polarized, neutral current directional element (see Figures 4.4, 4.11, and 4.13)	
	R32N	Reverse zero-sequence, voltage-polarized, neutral current directional element (see Figures 4.4, 4.11, and 4.13)	
	32PF	Forward directional control routed to phase overcurrent elements (see Figures 4.19 and 4.21)	
	32PR	Reverse directional control routed to phase overcurrent elements (see Figures 4.19 and 4.21)	
	32QF	Forward directional control routed to negative- sequence overcurrent elements (see Figures 4.19 and 4.20)	
	32QR	Reverse directional control routed to negative- sequence overcurrent elements (see Figures 4.19 and 4.20)	
	32GF	Forward directional control routed to residual ground overcurrent elements (see Figures 4.4, 4.12, and 4.14)	
	32GR	Reverse directional control routed to residual ground overcurrent elements (see Figures 4.4, 4.12, and 4.14)	
18	27A1	A-phase instantaneous undervoltage element A-phase voltage below pickup setting 27P1P; see Figure 3.21)	Control
	27B1	B-phase instantaneous undervoltage element (B-phase voltage below pickup setting 27P1P; see Figure 3.21)	
	27C1	C-phase instantaneous undervoltage element (C-phase voltage below pickup setting 27P1P; see Figure 3.21)	
	27A2	A-phase instantaneous undervoltage element (A-phase voltage below pickup setting 27P2P; see Figure 3.21)	

Row	Bit	Definition	Primary Application
	27B2	B-phase instantaneous undervoltage element (B-phase voltage below pickup setting 27P2P; see Figure 3.21)	
	27C2	C-phase instantaneous undervoltage element (C-phase voltage below pickup setting 27P2P; see Figure 3.21)	
	59A1	A-phase instantaneous overvoltage element (A-phase voltage above pickup setting 59P1P; see Figure 3.21)	
	59B1	B-phase instantaneous overvoltage element (B-phase voltage above pickup setting 59P1P; see Figure 3.21)	
19	59C1	C-phase instantaneous overvoltage element (C-phase voltage above pickup setting 59P1P; see Figure 3.21)	
	59A2	A-phase instantaneous overvoltage element (A-phase voltage above pickup setting 59P2P; see Figure 3.21)	
	59B2	B-phase instantaneous overvoltage element (B-phase voltage above pickup setting 59P2P; see Figure 3.21)	
	59C2	C-phase instantaneous overvoltage element (C-phase voltage above pickup setting 59P2P; see Figure 3.21)	
	27AB	AB-phase-to-phase instantaneous undervoltage element (AB-phase-to-phase voltage below pickup setting 27PP; see Figure 3.22)	
	27BC	BC-phase-to-phase instantaneous undervoltage element (BC-phase-to-phase voltage below pickup setting 27PP; see Figure 3.22)	
	27CA	CA-phase-to-phase instantaneous undervoltage element (CA-phase-to-phase voltage below pickup setting 27PP; see Figure 3.22)	
	59AB	AB-phase-to-phase instantaneous overvoltage element (AB-phase-to-phase voltage above pickup setting 59PP; see Figure 3.22)	
20	59BC	BC-phase-to-phase instantaneous overvoltage element (BC-phase-to-phase voltage above pickup setting 59PP; see Figure 3.22)	
	59CA	CA-phase-to-phase instantaneous overvoltage element (CA-phase-to-phase voltage above pickup setting 59PP; see Figure 3.22)	
	59N1	Zero-sequence instantaneous overvoltage element (zero-sequence voltage above pickup setting 59N1P; see Figure 3.22)	

Row	Bit	Definition	Primary Application
	59N2	Zero-sequence instantaneous overvoltage element (zero-sequence voltage above pickup setting 59N2P; see Figure 3.22)	
	59Q	Negative-sequence instantaneous overvoltage element (negative-sequence voltage above pickup setting 59QP; see Figure 3.22)	
	59V1	Positive-sequence instantaneous overvoltage element (positive-sequence voltage above pickup setting 59V1P; see Figure 3.22)	
	275	Channel VS instantaneous undervoltage element (channel VS voltage below pickup setting 27SP; see Figure 3.23)	
	5981	Channel VS instantaneous overvoltage element (channel VS voltage above pickup setting 59S1P; see Figure 3.23)	
21	5982	Channel VS instantaneous overvoltage element (channel VS voltage above pickup setting 59S2P; see Figure 3.23)	
	59VP	Phase voltage window element (selected phase voltage [VP] between threshold settings 25VLO and 25VHI; see Figure 3.24)	Testing
	59VS	Channel VS voltage window element (channel VS voltage between threshold settings 25VLO and 25VHI; see Figure 3.24)	
	SF	Slip frequency between voltages VP and VS less than setting 25SF (see Figure 3.24)	
	25A1	Synchronism check element (see Figure 3.25)	Control
	25A2	Synchronism check element (see Figure 3.25)	
	3P27	27A1 * 27B1 * 27C1 (see Figure 3.21)	
	3P59	59A1 * 59B1 * 59C1 (see Figure 3.21)	
22	81D1	Level 1 instantaneous frequency element (with corresponding pickup setting 81D1P; see Figure 3.28)	Testing
	81D2	Level 2 instantaneous frequency element (with corresponding pickup setting 81D2P; see Figure 3.28)	
	81D3	Level 3 instantaneous frequency element (with corresponding pickup setting 81D3P; see Figure 3.28)	

Row	Bit	Definition	Primary Application
	81D4	Level 4 instantaneous frequency element (with corresponding pickup setting 81D4P; see Figure 3.28)	
	81D5	Level 5 instantaneous frequency element (with corresponding pickup setting 81D5P; see Figure 3.28)	
	81D6	Level 6 instantaneous frequency element (with corresponding pickup setting 81D6P; see Figure 3.28)	
	27B81	Undervoltage element for frequency element blocking (any phase voltage below pickup setting 27B81P; see Figure 3.27)	
	50L	Phase instantaneous overcurrent element for load detection (maximum phase current above pickup setting 50LP; see Figure 5.3)	
23	81D1T	Level 1 definite-time frequency element 81D1T timed out (derived from 81D1; see Figure 3.28)	Tripping, Control
	81D2T	Level 2 definite-time frequency element 81D2T timed out (derived from 81D2; see Figure 3.28)	
	81D3T	Level 3 definite-time frequency element 81D3T timed out (derived from 81D3; see Figure 3.28)	
	81D4T	Level 4 definite-time frequency element 81D4T timed out (derived from 81D4; see Figure 3.28)	
	81D5T	Level 5 definite-time frequency element 81D5T timed out (derived from 81D5; see Figure 3.28)	
	81D6T	Level 6 definite-time frequency element 81D6T timed out (derived from 81D6; see Figure 3.28)	
	VPOLV	Positive-sequence polarization voltage valid (see Figure 4.18)	Testing
	LOP	Loss-of-potential (see Figure 4.1)	Testing, Special directional control schemes

Row	Bit	Definition	Primary Application
24	RCTR	High-voltage FET trip (see Figure 7.30)	Recloser Trip
	RCCL	High-voltage FET trip (see Figure 7.30)	Recloser Close
	IN106	Optoisolated input IN106 asserted (see Figure 7.1)	Circuit breaker
	IN105	Optoisolated input IN105 asserted (see Figure 7.1)	status, Control via optoisolated
	IN104	Optoisolated input IN104 asserted (see Figure 7.1)	inputs
	IN103	Optoisolated input IN103 asserted (see Figure 7.1)	
	IN102	Optoisolated input IN102 asserted (see Figure 7.1)	
	IN101	Optoisolated input IN101 asserted (see Figure 7.1)	
25	LB1	Local Bit 1 asserted (see Figure 7.3)	Control via front
	LB2	Local Bit 2 asserted (see Figure 7.3)	panel—replacing traditional panel-
	LB3	Local Bit 3 asserted (see Figure 7.3)	mounted control
	LB4	Local Bit 4 asserted (see Figure 7.3)	switches
	LB5	Local Bit 5 asserted (see Figure 7.3)	
	LB6	Local Bit 6 asserted (see Figure 7.3)	
	LB7	Local Bit 7 asserted (see Figure 7.3)	
	LB8	Local Bit 8 asserted (see Figure 7.3)	
26	RB1	Remote Bit 1 asserted (see Figure 7.9)	Control via
	RB2	Remote Bit 2 asserted (see Figure 7.9)	serial port
	RB3	Remote Bit 3 asserted (see Figure 7.9)	
	RB4	Remote Bit 4 asserted (see Figure 7.9)	
	RB5	Remote Bit 5 asserted (see Figure 7.9)	
	RB6	Remote Bit 6 asserted (see Figure 7.9)	
	RB7	Remote Bit 7 asserted (see Figure 7.9)	
	RB8	Remote Bit 8 asserted (see Figure 7.9)	

Row	Bit	Definition	Primary Application
27	LT1	Latch Bit 1 asserted (see Figure 7.11)	Control—
	LT2	Latch Bit 2 asserted (see Figure 7.11)	replacing traditional
	LT3	Latch Bit 3 asserted (see Figure 7.11)	latching relays
	LT4	Latch Bit 4 asserted (see Figure 7.11)	
	LT5	Latch Bit 5 asserted (see Figure 7.11)	
	LT6	Latch Bit 6 asserted (see Figure 7.11)	
	LT7	Latch Bit 7 asserted (see Figure 7.11)	
	LT8	Latch Bit 8 asserted (see Figure 7.11)	
28	SV1	SELOGIC control equation variable timer input SV1 asserted (see Figure 7.23)	Testing, Seal-in functions, etc.
	SV2	SELOGIC control equation variable timer input SV2 asserted (see Figure 7.23)	(see Figure 7.25)
	SV3	SELOGIC control equation variable timer input SV3 asserted (see Figure 7.23)	
	SV4	SELOGIC control equation variable timer input SV4 asserted (see Figure 7.23)	
	SV1T	SELOGIC control equation variable timer output SV1T asserted (see Figure 7.23)	Control
	SV2T	SELOGIC control equation variable timer output SV2T asserted (see Figure 7.23)	
	SV3T	SELOGIC control equation variable timer output SV3T asserted (see Figure 7.23)	
	SV4T	SELOGIC control equation variable timer output SV4T asserted (see Figure 7.23)	
29	SV5	SELOGIC control equation variable timer input SV5 asserted (see Figure 7.23)	Testing, Seal-in functions, etc.
	SV6	SELOGIC control equation variable timer input SV6 asserted (see Figure 7.23)	(see Figure 7.25)
	SV7	SELOGIC control equation variable timer input SV7 asserted (see Figure 7.24)	
	SV8	SELOGIC control equation variable timer input SV8 asserted (see Figure 7.24)	
	SV5T	SELOGIC control equation variable timer output SV5T asserted (see Figure 7.23)	Control
	SV6T	SELOGIC control equation variable timer output SV6T asserted (see Figure 7.23)	

Row	Bit	Definition	Primary Application
	SV7T	SELOGIC control equation variable timer output SV7T asserted (see Figure 7.24)	
	SV8T	SELOGIC control equation variable timer output SV8T asserted (see Figure 7.24)	
30	SV9	SELOGIC control equation variable timer input SV9 asserted (see Figure 7.24)	Testing, Seal-in functions, etc.
	SV10	SELOGIC control equation variable timer input SV10 asserted (see Figure 7.24)	(see Figure 7.25)
	SV11	SELOGIC control equation variable timer input SV11 asserted (see Figure 7.24)	
	SV12	SELOGIC control equation variable timer input SV12 asserted (see Figure 7.24)	
	SV9T	SELOGIC control equation variable timer output SV9T asserted (see Figure 7.24)	Control
	SV10T	SELOGIC control equation variable timer output SV10T asserted (see Figure 7.24)	
	SV11T	SELOGIC control equation variable timer output SV11T asserted (see Figure 7.24)	
	SV12T	SELOGIC control equation variable timer output SV12T asserted (see Figure 7.24)	
31	SV13	SELOGIC control equation variable timer input SV13 asserted (see Figure 7.24)	Testing, Seal-in functions, etc.
	SV14	SELOGIC control equation variable timer input SV14 asserted (see Figure 7.24)	(see Figure 7.25)
	SV15	SELOGIC control equation variable timer input SV15 asserted (see Figure 7.24)	
	SV16	SELOGIC control equation variable timer input SV16 asserted (see Figure 7.24)	
	SV13T	SELOGIC control equation variable timer output SV13T asserted (see Figure 7.24)	Control
	SV14T	SELOGIC control equation variable timer output SV14T asserted (see Figure 7.24)	
	SV15T	SELOGIC control equation variable timer output SV15T asserted (see Figure 7.24)	
	SV16T	SELOGIC control equation variable timer output SV16T asserted (see Figure 7.24)	
32	79RS	Reclosing relay in the Reset State (see Figure 6.5 and Table 6.1)	
	79CY	Reclosing relay in the Reclose Cycle State (see Figure 6.5 and Table 6.1)	

Row	Bit	Definition	Primary Application
	79LO	Reclosing relay in the Lockout State (see Figure 6.5 and Table 6.1)	
	SH0	Reclosing relay shot counter = 0 (see Table 6.3)	
	SH1	Reclosing relay shot counter = 1 (see Table 6.3)	
	SH2	Reclosing relay shot counter = 2 (see Table 6.3)	
	SH3	Reclosing relay shot counter = 3 (see Table 6.3)	
	SH4	Reclosing relay shot counter = 4 (see Table 6.3)	
33	CLOSE	Close logic output asserted (see Figure 6.1)	Output contact assignment
	CF	Close Failure condition (asserts for 1/4 cycle; see Figure 6.1)	Indication
	RCSF	Reclose supervision failure (asserts for 1/4 cycle; see Figure 6.2)	
	OPTMN	Open interval timer is timing (see <i>Reclosing Relay</i> in <i>Section 6: Close and Reclose Logic</i>)	Testing
	RSTMN	Reset timer is timing (see <i>Reclosing Relay</i> in <i>Section 6: Close and Reclose Logic</i>)	
	FSA	A-phase fault identification logic output used in A-phase targeting (see Table 5.1)	Control
	FSB	B-phase fault identification logic output used in B-phase targeting (see Table 5.1)	
	FSC	C-phase fault identification logic output used in C-phase targeting (see Table 5.1)	
34	BCW	BCWA + BCWB + BCWC	Indication
	50P32	Three-phase overcurrent threshold exceeded (see Figure 4.18)	Testing
	NOBATT	Battery is either not present or failed (see <i>Battery System Monitor</i> in <i>Section 8</i>)	Indication
	59VA	Channel VA voltage window element (channel VA voltage between threshold settings 25VLO and 25VHI; see Figure 3.24)	
	TRGTR	Target Reset. TRGTR pulses to logical 1 for one processing interval when either the TARGET RESET Pushbutton is pushed or the TAR R (Target Reset) serial port command is executed (see Figures 5.1 and 5.17)	Control

Row	Bit	Definition	Primary Application
	52A	Circuit breaker status (asserts to logical 1 when recloser is closed; see Figure 6.1)	Indication
	COMMT	Communication Scheme Trip (see Figure 5.1)	Tripping
	CHRGG	Battery is Charging (see <i>Battery System Monitor</i> in <i>Section 8</i>)	Indication
35	SG1	Setting group 1 active (see Table 7.3)	Indication
	SG2	Setting group 2 active (see Table 7.3)	
	SG3	Setting group 3 active (see Table 7.3)	
	SG4	Setting group 4 active (see Table 7.3)	
	SG5	Setting group 5 active (see Table 7.3)	
	SG6	Setting group 6 active (see Table 7.3)	
	ZLOUT ZLIN	Load encroachment "load out" element (see Figure 4.2)	Special phase overcurrent element control
		Load encroachment "load in" element (see Figure 4.2)	
36	ZLOAD	ZLOUT + ZLIN (see Figure 4.2)	
	BCWA	A-phase breaker contact wear has reached 100% wear level (see <i>Breaker/Recloser Contact Wear Monitor</i> in <i>Section 8</i>)	Indication
	BCWB	B-phase breaker contact wear has reached 100% wear level (see <i>Breaker/Recloser Contact Wear Monitor</i> in <i>Section 8</i>)	
	BCWC	C-phase breaker contact wear has reached 100% wear level (see <i>Breaker/Recloser Contact Wear Monitor</i> in <i>Section 8</i>)	
	ВСВОК	Battery charge board is OK (enabled) (see <i>Battery System Monitor</i> in <i>Section 8</i>)	
	TOSLP	Battery capacity has gone below user-set capacity threshold and recloser control will shut down (go to sleep) (see <i>Battery System Monitor</i> in <i>Section 8</i>)	Indication, event or SER trigger
	DISTST	Battery discharge test in progress (see <i>Battery System Monitor</i> in <i>Section 8</i>)	Indication
	DTFAIL	Battery discharge test has failed (see <i>Battery System Monitor</i> in <i>Section 8</i>)	Alarm, indication
37	ALARM	Output contact ALARM asserted (see Figure 7.27)	

Row	Bit	Definition	Primary Application
	OUT107	Output contact OUT107 asserted (see Figure 7.27)	
	OUT106	Output contact OUT106 asserted (see Figure 7.27)	
	OUT105	Output contact OUT105 asserted (see Figure 7.27)	
	OUT104	Output contact OUT104 asserted (see Figure 7.27)	
	OUT103	Output contact OUT103 asserted (see Figure 7.27)	
	OUT102	Output contact OUT102 asserted (see Figure 7.27)	
	OUT101	Output contact OUT101 asserted (see Figure 7.27)	
38	3PO	Three pole open condition (see Figure 5.3)	Testing
	SOTFE	Switch-onto-fault condition (see Figure 5.3)	
	Z3RB	Zone (level) 3 reverse block (see Figure 5.6)	
	KEY	Key permissive trip signal start (see Figure 5.6)	Output contact assignment
	EKEY	Echo key (see Figure 5.6)	Testing
	ECTT	Echo conversion to trip condition (see Figure 5.6)	
	WFC	Weak infeed condition (see Figure 5.6)	
	РТ	Permissive trip signal to POTT logic (see Figure 5.5)	
39	PTRX2	Permissive trip 2 signal from DCUB logic (see Figure 5.10)	
	PTRX	Permissive trip signal to Trip logic (see Figure 5.7)	
	PTRX1	Permissive trip 2 signal from DCUB logic (see Figure 5.10)	
	UBB1	Unblocking block 1 from DCUB logic (see Figure 5.10)	
	UBB2	Unblocking block 2 from DCUB logic (see Figure 5.10)	
	UBB	Unblocking block to Trip logic (see Figure 5.11)	
	Z3XT	Logic output from zone (level) 3 extension timer (see Figure 5.14)	
	DSTRT	Directional carrier start (see Figure 5.14)	Output contact assignment
40	NSTRT	Nondirectional carrier start (see Figure 5.14)	
	STOP	Carrier stop (see Figure 5.14)	
	BTX	Block trip input extension (see Figure 5.14)	Testing

Row	Bit	Definition	Primary Application
	TRIP	Trip logic output asserted (see Figure 5.1)	Output contact assignment
	OC**	Asserts 1/4 cycle for Open Command execution (see Figure 1.19)	Tripping, Control
	CC**	Asserts 1/4 cycle for Close Command execution (see Figure 1.20)	
	CLG	Ground cold load pickup scheme enabled (see Figures 1.3 and 1.4)	Control
	NOMSG	Recloser control mainboard hasn't received message from battery charger board for more than 10 seconds	
41	67P2S	Level 2 directional phase definite-time (short delay) overcurrent element 67P2S timed out (derived from 67P2; see Figures 3.3 and 5.14)	Tripping in DCB schemes
	67N2S	Level 2 directional neutral ground definite-time (short delay) overcurrent element 67N2S timed out (derived from 67N2; see Figures 3.8 and 5.14)	
	67G2S	Level 2 directional residual ground definite-time (short delay) overcurrent element 67G2S timed out (derived from 67G2; see Figures 3.10 and 5.14)	
	67Q2S	Level 2 directional negative-sequence definite-time (short delay) overcurrent element 67Q2S timed out (derived from 67Q2; see Figures 3.12 and 5.14)	
	PDEM	Phase demand current above pickup setting PDEMP (see Figure 8.11)	Indication
	NDEM	Neutral ground demand current above pickup setting NDEMP (see Figure 8.11)	
	GDEM	Residual ground demand current above pickup setting GDEMP (see Figure 8.11)	
	QDEM	Negative-sequence demand current above pickup setting QDEMP (see Figure 8.11)	
42	PB1	Ground Enabled pushbutton output (see Figure 1.35)	Control
	PB2	Reclose Enabled pushbutton output (see Figure 1.35)	
	PB3	Remote Enabled pushbutton output (see Figure 1.35)	
	PB4	Alternate Settings pushbutton output (see Figure 1.35)	
	PB5	Lock pushbutton output (see Figure 1.35)	
	PB6	Aux. 1 pushbutton output (see Figure 1.36)	

Row	Bit	Definition	Primary Application
	PB7	Aux. 2 pushbutton output (see Figure 1.36)	
	PB8	Close pushbutton output (see Figure 1.36)	
43	PB9	Trip pushbutton output (see Figure 1.36)	
	PINBD	Control cable pin BD input asserted (see Figure 7.30)	Indication
	PINC	Control cable pin C input asserted (see Figure 7.30)	
	PINE	Control cable pin E input asserted (see Figure 7.30)	
	PINF	Control cable pin F input asserted (see Figure 7.30)	
	SW1	Internally derived recloser breaker status (see Figure 1.22)	Indication
	DISCHG	Battery is discharging (see <i>Battery System Monitor</i> in <i>Section 8</i>)	
	LED9	Recloser Open LED (see Figure 1.36)	
44	LED1	Ground Enabled LED (see Figure 1.35)	
	LED2	Reclose Enabled LED (see Figure 1.35)	
	LED3	Remote Enabled LED (see Figure 1.35)	
	LED4	Alternate Settings LED (see Figure 1.35)	
	LED5	Lock LED (see Figure 1.35)	
	LED6	Aux. 1 LED (see Figure 1.36)	
	LED7	Aux. 2 LED (see Figure 1.36)	
	LED8	Recloser Closed LED (see Figure 1.36)	
45	OCP	Operations—phase fast curve (see Figure 1.6)	Control
	OCG	Operations—ground fast curve (see Figure 1.7)	
	OLP	Operations to lockout—phase (see Figure 1.8)	
	OLG	Operations to lockout—ground (see Figure 1.9)	
	OLS	Operations to lockout—Sensitive earth fault (see Figure 1.10)	
	HTP	High current trip—phase (see Figure 1.11)	
	HTG	High current trip—ground (see Figure 1.12)	
	HLP	High current lockout—phase (see Figure 1.13)	
46	HLG	High current lockout—ground (see Figure 1.14)	
	CLP	Phase cold load pickup scheme enabled (see Figure 1.2	

Row	Bit	Definition	Primary Application
	RPP	Restore pickup—phase (see Figures 1.1 and 1.2)	
	RPG	Restore pickup—ground (see Figures 1.1 and 1.3)	
	RPS	Restore pickup—Sensitive earth fault (see Figure 1.1 and Figure 1.4)	
	SEQC	Sequence coordination enabled (see Figure 1.27)	
	3PHV	Three phase voltage hooked up to control (see Figure 4.1)	
	GTP	Ground trip precedence enabled (see Figure 1.24)	
Note:	Refer to <i>Appe</i> bits.	ndix I: MIRRORED BITS for a description of the followir	ng Relay Word
47	RMB8A	Channel A, received bit 8	MIRRORED BITS
	RMB7A	Channel A, received bit 7	(only operable in firmware
	RMB6A	Channel A, received bit 6	versions 1 and greater)
	RMB5A	Channel A, received bit 5	
	RMB4A	Channel A, received bit 4	
	RMB3A	Channel A, received bit 3	
	RMB2A	Channel A, received bit 2	
	RMB1A	Channel A, received bit 1	
48	TMB8A	Channel A, transmit bit 8	
	TMB7A	Channel A, transmit bit 7	
	TMB6A	Channel A, transmit bit 6	
	TMB5A	Channel A, transmit bit 5	
	TMB4A	Channel A, transmit bit 4	
	TMB3A	Channel A, transmit bit 3	
	TMB2A	Channel A, transmit bit 2	
	TMB1A	Channel A, transmit bit 1	
49	RMB8B	Channel B, received bit 8	
	RMB7B	Channel B, received bit 7	
	RMB6B	Channel B, received bit 6	
	RMB5B	Channel B, received bit 5	
	RMB4B	Channel B, received bit 4	
	RMB3B	Channel B, received bit 3	

Row	Bit	Definition	Primary Application
	RMB2B	Channel B, received bit 2	
	RMB1B	Channel B, received bit 1	
50	TMB8B	Channel B, transmit bit 8	
	TMB7B	Channel B, transmit bit 7	
	TMB6B	Channel B, transmit bit 6	
	TMB5B	Channel B, transmit bit 5	
	TMB4B	Channel B, transmit bit 4	
	TMB3B	Channel B, transmit bit 3	
	TMB2B	Channel B, transmit bit 2	
	TMB1B	Channel B, transmit bit 1	
51	LBOKB	Channel B, looped back ok	
	CBADB	Channel B, channel unavailability over threshold	
	RBADB	Channel B, outage duration over threshold	
	ROKB	Channel B, received data ok	
	LBOKA	Channel A, looped back ok	
	CBADA	Channel A, channel unavailability over threshold	
	RBADA	Channel A, outage duration over threshold	
	ROKA	Channel A, received data ok	
56	50NF	Forward direction neutral ground overcurrent threshold exceeded (see Figures 4.4, 4.7, and 4.11)	Testing
	50NR	Reverse direction neutral ground overcurrent threshold exceeded (see Figures 4.4, 4.7, and 4.11)	
	32NF	Forward directional control routed to neutral ground overcurrent elements(see Figures 4.4, 4.13, and 4.15)	Testing, Special Directional
	32NR	Reverse directional control routed to neutral ground overcurrent elements(see Figures 4.4, 4.13, and 4.15)	Control Schemes
	DCONN	DNP port is connected	Automatic
	DDATA	DNP has unsolicited data ready to send	Dial-Out
57	*	*	*

Row	Bit	Definition	Primary Application
58	LB9	Local Bit 9 asserted (see Figure 7.3)	Control via front
	LB10	Local Bit 10 asserted (see Figure 7.3)	panel – replacing traditional panel-
	LB11	Local Bit 11 asserted (see Figure 7.3)	mounted control switches
	LB12	Local Bit 12 asserted (see Figure 7.3)	switches
	LB13	Local Bit 13 asserted (see Figure 7.3)	Only available in
	LB14	Local Bit 14 asserted (see Figure 7.3)	the SEL-351R-2.
	LB15	Local Bit 15 asserted (see Figure 7.3)	
	LB16	Local Bit 16 asserted (see Figure 7.3)	
59	RB9	Remote Bit 9 asserted (see Figure 7.9)	Control via
	RB10	Remote Bit 10 asserted (see Figure 7.9)	serial port
	RB11	Remote Bit 11 asserted (see Figure 7.9)	0.1
	RB12	Remote Bit 12 asserted (see Figure 7.9)	Only available in the SEL-351R-2.
	RB13	Remote Bit 13 asserted (see Figure 7.9)	
	RB14	Remote Bit 14 asserted (see Figure 7.9)	
	RB15	Remote Bit 15 asserted (see Figure 7.9)	
	RB16	Remote Bit 16 asserted (see Figure 7.9)	
60	LT9	Latch Bit 9 asserted (see Figure 7.11)	Control—
	LT10	Latch Bit 10 asserted (see Figure 7.11)	replacing traditional
	LT11	Latch Bit 11 asserted (see Figure 7.11)	latching relays
	LT12	Latch Bit 12 asserted (see Figure 7.11)	
	LT13	Latch Bit 13 asserted (see Figure 7.11)	Only available in
	LT14	Latch Bit 14 asserted (see Figure 7.11)	the SEL-351R-2.
	LT15	Latch Bit 15 asserted (see Figure 7.11)	
	LT16	Latch Bit 16 asserted (see Figure 7.11)	

** **IMPORTANT**: See *Appendix F*: *Setting Negative-Sequence Overcurrent Elements* for special instructions on setting negative-sequence overcurrent elements.

SETTINGS EXPLANATIONS

Note that most of the settings in the settings sheets that follow include references for additional information. The following explanations are for settings that do not have reference information anywhere else in the instruction manual.

Identifier Labels

Refer to Settings Sheet 1 of 28.

The SEL-351R has two identifier labels: the Relay Identifier (RID) and the Terminal Identifier (TID). The Relay Identifier typically is used to identify the recloser control or the type of protection scheme. Typical Terminal Identifiers include an abbreviation of the substation name and line terminal.

The SEL-351R tags each report (event report, meter report, etc.) with the Relay Identifier and Terminal Identifier. This allows you to distinguish the report as one generated for a specific breaker and substation.

RID and TID settings may include the following characters: 0–9, A–Z, -, /, ., space. These two settings cannot be made via the front-panel interface.

Current Transformer Ratios

Refer to Settings Sheet 1 of 28.

Phase and neutral current transformer ratios are set independently. The IN channel is wired up as a sensitive residual current channel in the SEL-351R. The neutral current transformer ratio will be set equal to the phase current transformer ratio. The neutral current channel is scaled to measure sensitive residual currents (less than 1.5 A secondary). The internally derived residual elements (G elements) are scaled the same as the phase channels and measure larger currents (up to 150 A secondary).

Line Settings

Refer to Settings Sheet 1 of 28.

Line impedance settings Z1MAG, Z1ANG, Z0MAG, and Z0ANG are used in the fault locator (see *Fault Location* in *Section 12: Standard Event Reports and SER*) and in automatically making directional element settings Z2F, Z2R, Z0F, and Z0R (see *Settings Made Automatically* in *Section 4: Loss-of-Potential, Load Encroachment, and Directional Element Logic*). A corresponding line length setting (LL) is also used in the fault locator.

The line impedance settings Z1MAG, Z1ANG, Z0MAG, and Z0ANG are set in Ω secondary. Line impedance (Ω primary) is converted to Ω secondary:

 Ω primary • (CTR/PTR) = Ω secondary

where:

CTR = phase (IA, IB, IC) current transformer ratio

PTR = phase (VA, VB, VC) potential transformer ratio

Line length setting LL is unitless and corresponds to the line impedance settings. For example, if a particular line length is 15 miles, enter the line impedance values (Ω secondary) and then enter the corresponding line length:

LL = 15.00 (miles)

If this length of line is measured in kilometers rather than miles, then enter:

LL = 24.14 (kilometers)

Enable Settings

Refer to Settings Sheets 1, 2, and 20 of 28.

The enable settings on Settings Sheets 1 and 2 (E50P through EDEM) control the settings that follow, through Sheet 11. Enable setting EBMON on Settings Sheet 20 controls the settings that immediately follow it. This helps limit the number of settings that need to be made.

Each setting subgroup on Settings Sheets 2 through 12 has a reference back to the controlling enable setting. For example, the neutral ground time-overcurrent elements settings on Sheet 5 (settings 51N1P through 51N1RS and 51N2P through 51N2RS) are controlled by enable setting E51N.

Other System Parameters

Refer to Settings Sheet 20 of 28.

The global settings NFREQ and PHROT allow you to configure the SEL-351R to your specific system.

Set NFREQ equal to your nominal power system frequency, either 50 Hz or 60 Hz.

Set PHROT equal to your power system phase rotation, either ABC or ACB.

Set DATE_F to format the date displayed in relay reports and the front-panel display. Set DATE_F to MDY to display dates in Month/Day/Year format; set DATE_F to YMD to display dates in Year/Month/Day format.

SETTINGS SHEETS

The settings sheets that follow include the definition and input range for most of the settings in the SEL-351R. The settings sheets for the EZ settings are located at the end of the *Settings* section in the *SEL-351R Quick-Start Installation and User's Guide*. See Table 9.1 for settings sheets references.

SETTINGS SHEET SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Date _____

Identifier Labels (see <i>Settings Explanat</i> Relay Identifier (30 characters)	RID =		
Terminal Identifier (30 characters)	TID =		
	· · · · · · · · · · · · · · · · · · ·		
Current and Potential Transformer Rati	os (see <i>Settings Expla</i>	<i>nations</i> in Section 9))
Phase (IA, IB, IC) Current Transformer Ratio	(1.0-6000.0)	CTR =	
Neutral (IN) Current Transformer Ratio (1.0-	10000.0)	CTRN =	
Phase (VA, VB, VC) Potential Transformer R	atio (1.0–10000.0)	PTR =	
Synchronism Voltage (VS) Potential Transfor	mer Ratio (1.0–10000.0)	PTRS =	
Line Settings (see Settings Explanation	<u>s in Section 9)</u>		
Positive-sequence line impedance magnitude	$(0.50-2550.00 \ \Omega \text{ secondary})$	/) Z1MAG =	
Positive-sequence line impedance angle (40.0	0–90.00 degrees)	Z1ANG =	
Zero-sequence line impedance magnitude (0.5	$0-2550.00 \Omega$ secondary)	Z0MAG =	
Zero-sequence line impedance angle (40.00-9	0.00 degrees)	Z0ANG =	
Line length (0.10–999.00, unitless)		LL =	
Instantaneous/Definite-Time Overcurre	nt Enable Settings		
Phase element levels (N, 1-6) (see Figures 3.1	, 3.2, 3.3, and 3.7)	E50P =	
Neutral ground element levels-channel IN (N	N, 1–6)		
(see Figures 3.8 and 3.9)		E50N =	
Residual ground element levels (N, 1-6) (see	Figures 3.10 and 3.11)	E50G =	
Negative-sequence element levels (N, 1-6) (se	ee Figures 3.12 and 3.13)	E50Q =	
Time-Overcurrent Enable Settings			
Phase elements (N, 1, 2) (see Table 3.1, Figure	es 3.14 and 3.15)	E51P =	
Neutral ground elements—channel IN (N, 1, 2	2)		
(see Figures 3.16 and 3.17)		E51N =	
Residual ground elements (N, 1, 2) (see Figure	es 3.18 and 3.19)	E51G =	
Negative-sequence elements (Y, N) (see Figure	re 3.20)	E51Q =	
Other Enable Settings			
Directional control (Y, AUTO, N) (see <i>Directional Control Settings</i> in Section	n 4)	E32 =	
Load encroachment (Y, N) (see Figure 4.2)	1 7)	E32 = ELOAD =	
Switch-onto-fault (Y, N) (see Figure 5.3)		$ELOAD = _$	
	22 and 3(22)	EVOLT =	
Voltage elements (Y, N) (see Figures 3.21, 3.2	22, aliu 5.25)	E V OL I =	

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTI GROUP SETTINGS (SERIAL PORT COMMAND SET AND FF	Page <u>2 of 28</u> Date	
Synchronism check (Y, N) (see Figures 3.24 and 3.25)	E25 =	
Fault location (Y, N) (see Table 12.1 and <i>Fault Location</i> in Section 12)	EFLOC =	
Loss-of-potential (Y, Y1, N) (see Figure 4.1)	ELOP =	
Communications-assisted trip scheme (N, DCB, POTT, DCUB1, DCUB2) (see <i>Communications-Assisted Trip Logic—General Overview</i> in		
Section 5)	ECOMM =	
Frequency elements (N, 1–6) (see Figure 3.28)	E81 =	

Reclosures (N, 1-4) (see <i>Reclosing Relay</i> in Section 6)	E79 =	
SELOGIC [®] Control Equation Variable Timers (N, 1–16)		
(see Figures 7.23 and 7.24)	ESV =	
Demand Metering (THM = Thermal, ROL = Rolling) (see Figure 8.9)	EDEM =	

Phase Inst./Def.-Time Overcurrent Elements (see Figures 3.1, 3.2, and 3.3)

(Number of phase element pickup settings dependent on preceding enable setting E50P = 1-6)

Pickup (OFF, 0.05–20.00 A)	50P1P =
Pickup (OFF, 0.05–20.00 A)	50P2P =
Pickup (OFF, 0.05–20.00 A)	50P3P =
Pickup (OFF, 0.05–20.00 A)	50P4P =
Pickup (OFF, 0.05–20.00 A)	50P5P =
Pickup (OFF, 0.05–20.00 A)	50P6P =

Phase Definite-Time Overcurrent Elements (see Figure 3.3)

(Number of phase element time delay settings dependent on preceding enable setting E50P = 1-6; all four time delay settings are enabled if $E50P \ge 4$)

Time delay (0.00–16000.00 cycles in 0.25-cycle	steps) 67	7P1D =
Time delay (0.00–16000.00 cycles in 0.25-cycle	steps) 67	7P2D =
Time delay (0.00–16000.00 cycles in 0.25-cycle	steps) 67	7P3D =
Time delay (0.00–16000.00 cycles in 0.25-cycle	steps) 67	7P4D =

Phase-to-Phase Instantaneous Overcurrent Elements (see Figure 3.7)

(Number of phase-to-phase element pickup settings dependent on preceding enable setting E50P = 1-6; all four pickup settings are enabled if $E50P \ge 4$)

Pickup (OFF, 0.20–34.00 A)	50PP1P =	
Pickup (OFF, 0.20–34.00 A)	50PP2P =	
Pickup (OFF, 0.20–34.00 A)	50PP3P =	
Pickup (OFF, 0.20–34.00 A)	50PP4P =	

Page <u>3 of 28</u>

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Date _____

<u>Neutral Ground Inst./Def.-Time Overcurrent Elements-Channel IN (see Figures 3.8 and 3.9)</u>

(Number of neutral ground element pickup settings dependent on preceding enable setting E50N = 1-6)

Pickup (OFF, 0.005–1.500A)	50N1P =
Pickup (OFF, 0.005–1.500A)	50N2P =
Pickup (OFF, 0.005–1.500A)	50N3P =
Pickup (OFF, 0.005–1.500A)	50N4P =
Pickup (OFF, 0.005–1.500A)	50N5P =
Pickup (OFF, 0.005–1.500A)	50N6P =

Neutral Ground Definite-Time Overcurrent Elements (see Figure 3.8)

(Number of neutral ground element time delay settings dependent on preceding enable setting E50N = 1-6; all four time delay settings are enabled if $E50N \ge 4$)

Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67N1D =	
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67N2D =	
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67N3D =	
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67N4D =	

Residual Ground Inst./Def.-Time Overcurrent Elements (see Figures 3.10 and 3.11)

(Number of residual ground element pickup settings dependent on preceding enable setting E50G = 1-6)

Pickup (OFF, 0.05–20.00 A)	50G1P =	
Pickup (OFF, 0.05–20.00 A)	50G2P =	
Pickup (OFF, 0.05–20.00 A)	50G3P =	
Pickup (OFF, 0.05–20.00 A)	50G4P =	
Pickup (OFF, 0.05–20.00 A)	50G5P =	
Pickup (OFF, 0.05–20.00 A)	50G6P =	

Residual Ground Definite-Time Overcurrent Elements (see Figure 3.10)

(Number of residual ground element time delay settings dependent on preceding enable setting E50G = 1-6; all four time delay settings are enabled if E50G > 4)

2000 $100, an 100 and 0000 50000 gs are endeded in 2000 \pm 10$		
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67G1D =	
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67G2D =	
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67G3D =	
Time delay (0.00–16000.00 cycles in 0.25-cycle steps)	67G4D =	

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Date **GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)**

Negative-Sequence Inst./Def.-Time Overcurrent Elements (see Figures 3.12 and 3.13)*

(Number of negative-sequence element time delay setting $E50Q = 1-6$)	s dependent on preceding enable setting
Pickup (OFF, 0.05–20.00 A)	50Q1P =
Pickup (OFF, 0.05–20.00 A)	50Q2P =
Pickup (OFF, 0.05–20.00 A)	50Q3P =
Pickup (OFF, 0.05–20.00 A)	50Q4P =
Pickup (OFF, 0.05–20.00 A)	50Q5P =
Pickup (OFF, 0.05–20.00 A)	50Q6P =

Negative-Sequence Definite-Time Overcurrent Elements (see Figure 3.12)*

(Number of negative-sequence element time delay settings dependent on preceding enable setting E50Q = 1–6; all four time delay settings are enabled if E50Q \ge 4)

Time delay (0.00–16000.00 cycles in 0.25-cyc	le steps)	67Q1D =	
Time delay (0.00–16000.00 cycles in 0.25-cyc	ele steps)	67Q2D =	
Time delay (0.00–16000.00 cycles in 0.25-cyc	ele steps)	67Q3D =	
Time delay (0.00–16000.00 cycles in 0.25-cyc	ele steps)	67Q4D =	

* **IMPORTANT**: See *Appendix F* for information on setting negativesequence overcurrent elements.

Phase Time-Overcurrent Elements (see Figure 3.14 and Figure 3.15)

(Make the following settings if preceding enable setting $E51P = 1$ or 2)	
Pickup (OFF, 0.10–3.20 A)	51P1P =
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51P1C =
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51P1TD =
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51P1RS =
Constant time adder (0.00-60.00 cyc.)	51P1CT =
Minimum response (0.00–60.00 cyc.)	51P1MR =
(Make the following settings if preceding enable setting $E51P = 2$)	
Pickup (OFF, 0.10–3.20 A)	51P2P =
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51P2C =
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51P2TD =
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51P2RS =

Date Code 20020215

Page <u>4 of 28</u>

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)		Page <u>5 of 28</u> Date
Constant time adder (0.00–60.00 cyc.)	51P2CT =	
Minimum response (0.00–60.00 cyc.)	51P2MR =	
Neutral Ground Time-Overcurrent Elements-Channel IN (see Fig	jure 3.16 ai	nd 3.17)
(Make the following settings if preceding enable setting $E51N = 1$ or 2)		
Pickup (OFF, 0.005–0.160 A)	51N1P =	
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51N1C =	
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51N1TD =	
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51N1RS =	
Constant time adder (0.00–60.00 cyc.)	51N1CT =	
Minimum response (0.00–60.00 cyc.)	51N1MR =	
(Make the following settings if preceding enable setting $E51N = 2$) Pickup (OFF, 0.005–0.160 A)	51N2P =	
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51N2C =	
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51N2TD =	
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51N2RS =	
Constant time adder (0.00–60.00 cyc.)	51N2CT=	
Minimum response (0.00–60.00 cyc.)	51N2MR=	
Residual Ground Time-Overcurrent Elements (see Figure 3.18 an	d Figure 3.	.19)
(Make the following settings if preceding enable setting $E51G = 1$ or 2)		
Pickup (OFF, 0.10–3.20 A)	51G1P =	
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51G1C =	
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51G1TD =	
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51G1RS =	
Constant time adder (0.00–60.00 cyc.)	51G1CT =	
Minimum response (0.00–60.00 cyc.)	51G1MR =	

SETTINGS SHEET	Page <u>6 of 28</u>
FOR THE SEL-351R RECLOSER CONTROL	Date
GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PAN	NEL)

(Make the following settings if preceding enable setting $E51G = 2$)		
Pickup (OFF, 0.10–3.20 A)	51G2P =	
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51G2C =	
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51G2TD =	
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51G2RS =	
Constant time adder (0.00–60.00 cyc.)	51G2CT =	
Minimum response (0.00–60.00 cyc.)	51G2MR =	

Negative-Sequence Time-Overcurrent Element (see Figure 3.20)*

(Make the following settings if preceding enable setting $E51Q = Y$)	
Pickup (OFF, 0.10–3.20 A)	51QP =
Curve (U1–U5, C1–C5, recloser or user curve; see Figures 9.1 through 9.20)	51QC =
Time-Dial (0.50–15.00 for curves U1–U5, 0.05–1.00 for curves C1–C5, 0.10–2.00 for recloser and user curves)	51QTD =
Electromechanical Reset (Y,N; applicable only to curves U1–U5, C1–C5)	51QRS =
Constant time adder (0.00-60.00 cyc.)	51QCT=
Minimum response (0.00–60.00 cyc.)	51QMR=

* **IMPORTANT**: See *Appendix F* for information on setting negativesequence overcurrent elements.

Load-Encroachment Elements (see Figure 4.2)

(Make the following settings if preceding enable setting ELOAD = Y)		
Forward load impedance (0.50–640.00 Ω secondary)	ZLF =	
Reverse load impedance (0.50–640.00 Ω secondary)	ZLR =	
Positive forward load angle $(-90^{\circ} \text{ to } +90^{\circ})$	PLAF =	
Negative forward load angle $(-90^{\circ} \text{ to } +90^{\circ})$	NLAF =	
Positive reverse load angle $(+90^{\circ} \text{ to } +270^{\circ})$	PLAR =	
Negative reverse load angle $(+90^{\circ} \text{ to } +270^{\circ})$	NLAR =	

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Directional Elements (see <i>Directional Control Settings</i> in Section	n 4)
(Make settings DIR1–DIR4 and ORDER if preceding enable setting E32 = `	Y or AUTO)
Level 1 direction: Forward, Reverse, None (F, R, N)	DIR1 =
Level 2 direction: Forward, Reverse, None (F, R, N)	DIR2 =
Level 3 direction: Forward, Reverse, None (F, R, N)	DIR3 =
Level 4 direction: Forward, Reverse, None (F, R, N)	DIR4 =
Ground directional element priority: combination of Q, V, or OFF	ORDER =
(Make setting 50P32P if preceding enable settings $E32 = Y$ or AUTO and E	LOAD = N)
Phase directional element 3-phase current pickup (0.10–2.00 A)	50P32P =
(Make settings Z2F, Z2R, 50QFP, 50QRP, a2 and k2 if preceding enable set If E32 = AUTO, these settings are made automatically)	tting $E32 = Y$.
Forward directional Z2 threshold (-640.00 to +640.00 Ω secondary)	Z2F =
Reverse directional Z2 threshold (-640.00 to +640.00 Ω secondary)	Z2R =
Forward directional negative-sequence current pickup (0.05–1.00 A)	50QFP =
Reverse directional negative-sequence current pickup (0.05–1.00 A)	50QRP =
Positive-sequence current restraint factor, I2/I1 (0.02–0.50, unitless)	a2 =
Zero-sequence current restraint factor, I2/I0 (0.10–1.20, unitless)	k2 =
(Make settings 50GFP, 50GRP, a0, Z0F, and Z0R if preceding enable setting setting ORDER contains V. If E32 = AUTO and ORDER contains V, these automatically.)	
Forward directional residual ground pickup (0.05–1.00 A)	50GFP =
Reverse directional residual ground pickup (0.05–1.00 A)	50GRP =
Positive-sequence current restraint factor, I0/I1 (0.02–0.50, unitless)	a0 =

Forward directional Z0 threshold (-640.00 to +640.00Ω secondary)Z0F =Reverse directional Z0 threshold (-640.00 to +640.00 Ω secondary)Z0R =

Voltage Elements (see Figures 3.21, 3.22, and 3.23)

(Make the following settings if preceding enable setting EVOLT = Y)		
Phase undervoltage pickup (OFF, 0.0–300.0 V secondary)	27P1P =	
Phase undervoltage pickup (OFF, 0.0-300.0 V secondary)	27P2P =	
Phase overvoltage pickup (OFF, 0.0–300.0 V secondary)	59P1P =	
Phase overvoltage pickup (OFF, 0.0–300.0 V secondary)	59P2P =	
Zero-sequence (3V0) overvoltage pickup (OFF, 0.0–300.0 V secondary)	59N1P =	
Zero-sequence (3V0) overvoltage pickup (OFF, 0.0–300.0 V secondary)	59N2P =	

Page <u>8 of 28</u>

Date _____

SETTINGS SHEET SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Negative-sequence (V2) overvoltage pickup (OFF, 0.0–200.0 V secondary)	59QP =
Positive-sequence (V1) overvoltage pickup (OFF, 0.0–300.0 V secondary)	59V1P =
Channel VS undervoltage pickup (OFF, 0.0–300.0 V secondary)	27SP =
Channel VS overvoltage pickup (OFF, 0.0–300.0 V secondary)	59S1P =
Channel VS overvoltage pickup (OFF, 0.0–300.0 V secondary)	59S2P =
Phase-to-phase undervoltage pickup (OFF, 0.0–520.0 V secondary)	27PP =
Phase-to-phase overvoltage pickup (OFF, 0.0–520.0 V secondary)	59PP =
Synchronism Check Elements (see Figures 3.24 and 3.25)	
(Make the following settings if preceding enable setting $E25 = Y$)	
Voltage window—low threshold (0.0–300.0 V secondary)	25VLO =
Voltage window—high threshold (0.0–300.0 V secondary)	25VHI =
Maximum slip frequency (0.005–0.500 Hz)	25SF =
Maximum angle 1 (0° -80° in 1-degree steps)	25ANG1 =
Maximum angle 2 (0° -80° in 1-degree steps)	25ANG2 =
Synchronizing phase (VA, VB, VC, or 0°–330°, in 30-degree steps; degree option is for VS not in phase with VA, VB, or VC—set with respect to VS constantly lagging VA)	SYNCP =
Breaker close time for angle compensation (0.00–60.00 cycles in 0.25-cycle steps)	TCLOSD=
Frequency Element (see Figures 3.27 and 3.28)	
(Make the following settings if preceding enable setting $E81 = Y$)	
Phase undervoltage block (20.0–300.0 V secondary)	27B81P =
Level 1 pickup (OFF, 40.10–65.00 Hz)	81D1P =
Level 1 time delay (2.00–16000.00 cycles in 0.25-cycle steps)	81D1D =
Level 2 pickup (OFF, 40.10–65.00 Hz)	81D2P =
Level 2 time delay (2.00–16000.00 cycles in 0.25-cycle steps)	81D2D =
Level 3 pickup (OFF, 40.10–65.00 Hz)	81D3P =
Level 3 time delay (2.00–16000.00 cycles in 0.25-cycle steps)	81D3D =
Level 4 pickup (OFF, 40.10–65.00 Hz)	81D4P =
Level 4 time delay (2.00–16000.00 cycles in 0.25-cycle steps)	81D4D =
Level 5 pickup (OFF, 40.10–65.00 Hz)	81D5P =
Level 5 time delay (2.00–16000.00 cycles in 0.25-cycle steps)	81D5D =
Level 6 pickup (OFF, 40.10–65.00 Hz)	81D6P =
Level 6 time delay (2.00–16000.00 cycles in 0.25-cycle steps)	81D6D =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Date _____

Reclosing Relay (see Tables 6.2 and 6.3)

(Make the following settings if preceding enable setting $E79 = Y$)		
Open interval 1 time (0.00–999999.00 cycles in 0.25-cycle steps)	79OI1 =	
Open interval 2 time (0.00–999999.00 cycles in 0.25-cycle steps)	79OI2 =	
Open interval 3 time (0.00–999999.00 cycles in 0.25-cycle steps)	79OI3 =	
Open interval 4 time (0.00–999999.00 cycles in 0.25-cycle steps)	790I4 =	
Reset time from reclose cycle (0.00–999999.00 cycles in 0.25-cycle steps)	79RSD =	
Reset time from lockout (0.00–999999.00 cycles in 0.25-cycle steps)	79RSLD =	
Reclose supervision time limit (OFF, 0.00–999999.00 cycles in 0.25-cycle steps) (see Figure 6.2)	79CLSD =	

Switch-Onto-Fault (see Figure 5.3)

(Make the following settings if preceding enable setting $ESOTF = Y$)		
Close enable time delay (OFF, 0.00–16000.00 cycles in 0.25-cycle steps)	CLOEND =	
52 A enable time delay (OFF, 0.00–16000.00 cycles in 0.25-cycle steps)	52AEND =	
SOTF duration (0.50–16000.00 cycles in 0.25-cycle steps)	SOTFD =	

POTT Trip Scheme Settings (also used in DCUB Trip Schemes) (see Figure 5.6)

(Make the following settings if preceding enable setting ECOMM = POTT, DCUB1, or DCUB2)

Zone (level) 3 reverse block time delay (0.00–16000.00 cycles in	
0.25-cycle steps)	Z3RBD =
Echo block time delay (OFF, 0.00-16000.00 cycles in 0.25-cycle steps)	EBLKD =
Echo time delay pickup (OFF, 0.00–16000.00 cycles in 0.25-cycle steps)	ETDPU =
Echo duration time delay (0.00–16000.00 cycles in 0.25-cycle steps)	EDURD =
Weak-infeed enable (Y, N)	EWFC =

Additional DCUB Trip Scheme Settings (see Figure 5.10)

(Make the following settings if preceding enable setting ECOMM = DCUB1 or DCUB2)		
Guard present security time delay (0.00–16000.00 cycles in 0.25-cycle		
steps)	GARD1D =	
DCUB disabling time delay (0.25–16000.00 cycles in 0.25-cycle steps)	UBDURD =	
DCUB duration time delay (0.00–16000.00 cycles in 0.25-cycle steps)	UBEND =	

SETTINGS SHEET SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Date _____

DCB Trip Scheme Settings (see Figure 5.14)

(Make the following settings if preceding enable setting ECOMM = DCB)		
Zone (level) 3 reverse pickup time delay (0.00–16000.00 cycles in 0.25-cycle steps)	Z3XPU =	
Zone (level) 3 reverse dropout extension (0.00–16000.00 cycles in 0.25-cycle steps)	Z3XD =	
Block trip receive extension (0.00–16000.00 cycles in 0.25-cycle steps)	BTXD =	
Level 2 phase short delay (0.00–60.00 cycles in 0.25-cycle steps)	67P2SD =	
Level 2 neutral ground short delay (0.00–60.00 cycles in 0.25-cycle steps)	67N2SD =	
Level 2 residual ground short delay (0.00–60.00 cycles in 0.25-cycle steps)	67G2SD =	
Level 2 negative-sequence short delay (0.00–60.00 cycles in 0.25-cycle steps)	67Q2SD =	

Demand Metering Settings (see Figures 8.9 and 8.11)

(Make the following settings, whether preceding enable setting EDEM = THM or ROL)		
Time constant (5, 10, 15, 30, 60 minutes)	DMTC =	
Phase pickup: (OFF, 0.10–3.20 A)	PDEMP =	
Neutral ground pickup—channel IN: (OFF, 0.005–0.160 A)	NDEMP =	
Residual ground pickup: (OFF, 0.10–3.20 A)	GDEMP =	
Negative-sequence pickup: (OFF, 0.10–3.20 A)	QDEMP =	

Other Settings

(Make the following settings—they have no controlling enable setting)		
Minimum trip duration time (4.00–16000.00 cycles in 0.25-cycle steps) (see Figure 5.1)	TDURD =	
Close failure time delay (OFF, 0.00–16000.00 cycles in 0.25-cycle steps) (see Figure 6.1)	CFD =	
Three-pole open time delay (0.00–60.00 cycles in 0.25-cycle steps) (usually set for no more than a cycle; see Figure 5.3)	3POD =	
Load detection phase pickup (OFF, 0.05–20.00 A) (see Figure 5.3)	50LP =	

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

SELOGIC Control Equation Variable Timers (see Figures 7.23 and 7.24)

	<u> </u>
(Number of timer pickup/dropout settings dependent on preceding enable	setting $ESV = 1-16$)
SV1 Pickup Time (0–999999.00 cycles in 0.25-cycle steps)	SV1PU =
SV1 Dropout Time (0–999999.00 cycles in 0.25-cycle steps)	SV1DO =
SV2 Pickup Time (0–999999.00 cycles in 0.25-cycle steps)	SV2PU =
SV2 Dropout Time (0–999999.00 cycles in 0.25-cycle steps)	SV2DO =
SV3 Pickup Time (0–999999.00 cycles in 0.25-cycle steps)	SV3PU =
SV3 Dropout Time (0–999999.00 cycles in 0.25-cycle steps)	SV3DO =
SV4 Pickup Time (0–999999.00 cycles in 0.25-cycle steps)	SV4PU =
SV4 Dropout Time (0–999999.00 cycles in 0.25-cycle steps)	SV4DO =
SV5 Pickup Time (0–999999.00 cycles in 0.25-cycle steps)	SV5PU =
SV5 Dropout Time (0–999999.00 cycles in 0.25-cycle steps)	SV5DO =
SV6 Pickup Time (0–999999.00 cycles in 0.25-cycle steps)	SV6PU =
SV6 Dropout Time (0–999999.00 cycles in 0.25-cycle steps)	SV6DO =
SV7 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV7PU =
SV7 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV7DO =
SV8 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV8PU =
SV8 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV8DO =
SV9 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV9PU =
SV9 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV9DO =
SV10 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV10PU =
SV10 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV10DO =
SV11 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV11PU =
SV11 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV11DO =
SV12 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV12PU =
SV12 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV12DO =
SV13 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV13PU =
SV13 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV13DO =
SV14 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV14PU =
SV14 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV14DO =
SV15 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV15PU =
SV15 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV15DO =
SV16 Pickup Time (0–16000.00 cycles in 0.25-cycle steps)	SV16PU =
SV16 Dropout Time (0–16000.00 cycles in 0.25-cycle steps)	SV16DO =

SETTINGS SHEET SEL-351R RECLOSER CONTROL GROUP SETTINGS (SERIAL PORT COMMAND SET AND FRONT PANEL)

Date _____

Recloser Control Logic Enable Settings (see Section 1)

Operations—phase fast curve (OFF, 1–5)	OPPH =
Operations—ground fast curve (OFF, 1–5)	OPGR =
Operations to lockout—phase (OFF, 1–5)	OPLKPH =
Operations to lockout—ground (OFF, 1–5)	OPLKGR =
Operations to lockout—SEF (OFF, 1–5)	OPLKSF =
Activate high current trip—phase (OFF, 1–5)	HITRPH =
Activate high current trip—ground (OFF, 1–5)	HITRGR =
Activate high current lockout—phase (OFF, 1–5)	HILKPH =
Activate high current lockout—ground (OFF, 1–5)	HILKGR =
Cold load pickup scheme—phase (Y,N)	ECOLDP =
Cold load pickup scheme—ground (Y,N)	ECOLDG =
Restore min. trip—phase (Y,N)	RPPH =
Restore min. trip—ground (Y,N)	RPGR =
Restore min. trip—SEF (Y,N)	RPSEF =
Sequence coordination (Y,N)	ESEQ =
Ground trip precedence (Y,N)	PRECED =

SETTINGS SHEET Page 13 of 28 FOR THE SEL-351R RECLOSER CONTROL Date SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)

SELOGIC control equation settings consist of Relay Word bits (see Table 9.3) and SELOGIC control equation operators * (AND), + (OR), ! (NOT), / (rising edge), \ (falling edge), and () (parentheses). Numerous SELOGIC control equation settings examples are given in Section 1, and 3 through 8. SELOGIC control equation settings can also be <u>set directly</u> to 1 (logical 1) or 0 (logical 0). *Appendix G: Setting SELOGIC*[®] *Control Equations* gives SELOGIC control equation details, examples, and limitations.

Trip Logic Equations (see Figure 5.1)

Other trip conditions	TR =
Communications-assisted trip conditions	TRCOMM=
Switch-onto-fault trip conditions	TRSOTF =
Direct transfer trip conditions	DTT =
Unlatch trip conditions	ULTR =
Communications-Assisted Trip Scheme Input Equations	
Permissive trip 1 (used for ECOMM = POTT, DCUB1, or DCUB2; see Figures 5.5, 5.7, and 5.10)	PT1 =
Loss-of-guard 1 (used for ECOMM = DCUB1 or DCUB2; see Figure 5.10)	LOG1 =
Permissive trip 2 (used for ECOMM = DCUB2; see Figures 5.5 and 5.10)	PT2 =
Loss of guard 2 (used for ECOMM = DCUB2; see Figure 5.10)	LOG2 =
Block trip (used for ECOMM = DCB; see Figure 5.14)	BT =
Close Logic Equations (see Figure 6.1)	
Circuit breaker status (used in Figure 5.3, also)	52A =
Close conditions (other than automatic reclosing or CLOSE command)	CL =
Unlatch close conditions	ULCL =
Reclosing Relay Equations (see <i>Reclosing Relay</i> in Section 6)	

Reclose initiate	79RI =
Reclose initiate supervision	79RIS =
Drive-to-lockout	79DTL =
Drive-to-last shot	79DLS =
Skip shot	79SKP =
Stall open interval timing	79STL =
Block reset timing	79BRS =
Sequence coordination	79SEQ =
Reclose supervision (see Figure 6.2)	79CLS =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL

Date _____

SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)

Latch Bits Set/Reset Equations (See Figure 7.11) [Note: LT9 through LT16 for the SEL-351R-2 only]

Set Latch Bit LT1	SET1 =
Reset Latch Bit LT1	RST1 =
Set Latch Bit LT2	SET2 =
Reset Latch Bit LT2	RST2 =
Set Latch Bit LT3	SET3 =
Reset Latch Bit LT3	RST3 =
Set Latch Bit LT4	SET4 =
Reset Latch Bit LT4	RST4 =
Set Latch Bit LT5	SET5 =
Reset Latch Bit LT5	RST5 =
Set Latch Bit LT6	SET6 =
Reset Latch Bit LT6	RST6 =
Set Latch Bit LT7	SET7 =
Reset Latch Bit LT7	RST7 =
Set Latch Bit LT8	SET8 =
Reset Latch Bit LT8	RST8 =
Set Latch Bit LT9	SET9 =
Reset Latch Bit LT9	RST9 =
Set Latch Bit LT10	SET10 =
Reset Latch Bit LT10	RST10 =
Set Latch Bit LT11	SET11 =
Reset Latch Bit LT11	RST11 =
Set Latch Bit LT12	SET12 =
Reset Latch Bit LT12	RST12 =
Set Latch Bit LT13	SET13 =
Reset Latch Bit LT13	RST13 =
Set Latch Bit LT14	SET14 =
Reset Latch Bit LT14	RST14 =
Set Latch Bit LT15	SET15 =
Reset Latch Bit LT15	RST15 =
Set Latch Bit LT16	SET16 =
Reset Latch Bit LT16	RST16 =

|--|

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Date

SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)

Torque Control Equations for Inst./Def.-Time Overcurrent Elements [Note: torque control equation settings cannot be set directly to logical O]

Level 1 phase (see Figure 3.3)	67P1TC =
Level 2 phase (see Figure 3.3)	67P2TC =
Level 3 phase (see Figure 3.3)	67P3TC =
Level 4 phase (see Figure 3.3)	67P4TC =
Level 1 neutral ground (see Figure 3.8)	67N1TC =
Level 2 neutral ground (see Figure 3.8)	67N2TC =
Level 3 neutral ground (see Figure 3.8)	67N3TC =
Level 4 neutral ground (see Figure 3.8)	67N4TC =
Level 1 residual ground (see Figure 3.10)	67G1TC =
Level 2 residual ground (see Figure 3.10)	67G2TC =
Level 3 residual ground (see Figure 3.10)	67G3TC =
Level 4 residual ground (see Figure 3.10)	67G4TC =
Level 1 negative-sequence (see Figure 3.12)	67Q1TC =
Level 2 negative-sequence (see Figure 3.12)	67Q2TC =
Level 3 negative-sequence (see Figure 3.12)	67Q3TC =
Level 4 negative-sequence (see Figure 3.12)	67Q4TC =

Torque Control Equations for Time-Overcurrent Elements [Note: torque control equation settings cannot be set directly to logical O]

Phase (see Figure 3.14)	51P1TC =
Neutral Ground (see Figure 3.16)	51N1TC =
Residual Ground (see Figure 3.18)	51G1TC =
Phase (see Figure 3.15)	51P2TC =
Neutral Ground (see Figure 3.17)	51N2TC =
Residual Ground (see Figure 3.19)	51G2TC =
Negative-Sequence (see Figure 3.20)	51QTC =

SELOGIC Control Equation Variable Timer Input Equations (see Figures 7.23 and 7.24)

SELOGIC Control Equation Variable SV1	SV1 =	
SELOGIC Control Equation Variable SV2	SV2 =	
SELOGIC Control Equation Variable SV3	SV3 =	
SELOGIC Control Equation Variable SV4	SV4 =	
SELOGIC Control Equation Variable SV5	SV5 =	
SELOGIC Control Equation Variable SV6	SV6 =	
SELOGIC Control Equation Variable SV7	SV7 =	

SETTINGS SHEETPage16 of 28FOR THE SEL-351R RECLOSER CONTROLDate_____SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)_____

SELOGIC Control Equation Variable SV8	SV8 =	
SELOGIC Control Equation Variable SV9	SV9 =	
SELOGIC Control Equation Variable SV10	SV10 =	
SELOGIC Control Equation Variable SV11	SV11 =	
SELOGIC Control Equation Variable SV12	SV12 =	
SELOGIC Control Equation Variable SV13	SV13 =	
SELOGIC Control Equation Variable SV14	SV14 =	
SELOGIC Control Equation Variable SV15	SV15 =	
SELOGIC Control Equation Variable SV16	SV16 =	

<u>SELOGIC Control Equation Counter Variable Input Equations (see Figure 7.25)</u> [Note: available on the SEL-351R-2 only]

SELOGIC Counter Reset Equation SC1R	SC1R =
SELOGIC Counter Increment Equation SC1I	SC1I =
SELOGIC Counter Decrement Equation SC1D	SC1D =
SELOGIC Counter Reset Equation SC2R	SC21R =
SELOGIC Counter Increment Equation SC2I	SC21I =
SELOGIC Counter Decrement Equation SC2D	SC21D =
SELOGIC Counter Reset Equation SC3R	SC31R =
SELOGIC Counter Increment Equation SC3I	SC31I =
SELOGIC Counter Decrement Equation SC3D	SC31D =
SELOGIC Counter Reset Equation SC4R	SC41R =
SELOGIC Counter Increment Equation SC4I	SC41I =
SELOGIC Counter Decrement Equation SC4D	SC41D =
SELOGIC Counter Reset Equation SC5R	SC51R =
SELOGIC Counter Increment Equation SC5I	SC51I =
SELOGIC Counter Decrement Equation SC5D	SC51D =
SELOGIC Counter Reset Equation SC6R	SC61R =
SELOGIC Counter Increment Equation SC6I	SC61I =
SELOGIC Counter Decrement Equation SC6D	SC61D =
SELOGIC Counter Reset Equation SC7R	SC71R =
SELOGIC Counter Increment Equation SC7I	SC71I =
SELOGIC Counter Decrement Equation SC7D	SC71D =
SELOGIC Counter Reset Equation SC8R	SC81R =
SELOGIC Counter Increment Equation SC8I	SC81I =
SELOGIC Counter Decrement Equation SC8D	SC81D =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL

Page <u>17 of 28</u>

Date _____ SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)

Recloser Control Output Equations (see Figure 7.30)	
Recloser Trip via control cable	RCTR=
Recloser Close via control cable	RCCL=
Output Contact Equations (see Figure 7.27)	
Output Contact OUT101	OUT101 =
Output Contact OUT102	OUT102 =
Output Contact OUT103	OUT103 =
Output Contact OUT104	OUT104 =
Output Contact OUT105	OUT105 =
Output Contact OUT106	OUT106 =
Output Contact OUT107	OUT107 =

LED1 (Ground Enabled)	LED1 =
LED2 (Reclose Enabled)	LED2 =
LED3 (Remote Enabled)	LED3 =
LED4 (Alternate Settings)	LED4 =
LED5 (Lock)	LED5 =
LED6 (Aux. 1)	LED6 =
LED7 (Aux. 2)	LED7 =
LED8 (Recloser Closed)	LED8 =
LED9 (Recloser Open)	LED9 =
LED11 (AC Supply)	LED11 =
LED12 (Battery Problem)	LED12 =
LED13 (Hot Line Tag)	LED13 =
LED14 (Trip)	LED14 =
LED15 (Fast Curve)	LED15 =
LED16 (High Current)	LED16 =
LED17 (81)	LED17 =
LED18 (Reset)	LED18 =
LED19 (Cycle)	LED19 =
LED20 (Lockout)	LED20 =
LED24 (G)	LED24 =
LED25 (SEF)	LED25 =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)

Date _____

Display Point Equations (see <i>Rotating Default Display</i> in Sections 7 and 11) [Note: DP9 through DP16 for the SEL-351R-2 only]		
Display Point DP1	DP1 =	
Display Point DP2	DP2 =	
Display Point DP3	DP3 =	
Display Point DP4	DP4 =	
Display Point DP5	DP5 =	
Display Point DP6	DP6 =	
Display Point DP7	DP7 =	
Display Point DP8	DP8 =	
Display Point DP9	DP9 =	
Display Point DP10	DP10 =	
Display Point DP11	DP11 =	
Display Point DP12	DP12 =	
Display Point DP13	DP13 =	
Display Point DP14	DP14 =	
Display Point DP15	DP15 =	
Display Point DP16	DP16 =	
Setting Group Selection Equations (See Table 7.4)		
Select Setting Group 1	SS1 =	
Select Setting Group 2	SS2 =	
Select Setting Group 3	SS3 =	
Select Setting Group 4	SS4 =	
Select Setting Group 5	SS5 =	
Select Setting Group 6	SS6 =	
Other Equations		
Event report trigger conditions (see Section 12)	ER =	
Fault indication (see A, B, C target LED discussion at end of Section 5; used also to suspend demand metering updating and peak recording and block max./min. metering [see <i>Demand Metering</i> and <i>Maximum/Minimum Metering</i> in Section 8])	FAULT =	
Block synchronism check elements (see Figure 3.24)	BSYNCH =	
Close bus monitor (see Figure 5.3)	CLMON =	
Breaker monitor initiation (see Figure 8.3)	BKMON =	
Enable for zero-sequence voltage-polarized directional element (see Figure 4.6)	E32IV =	

Display Point Equations (see *Potating Default Display* in Sections 7 and 11)

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Date _____ SELOGIC CONTROL EQUATION SETTINGS (SERIAL PORT COMMAND SET L)

MIRRORED BITS™ Transmit Equations (only available in firmware versions 1 and greater) (see Appendix I)

Channel A, transmit bit 1	TMB1A =
Channel A, transmit bit 2	TMB2A =
Channel A, transmit bit 3	TMB3A =
Channel A, transmit bit 4	TMB4A =
Channel A, transmit bit 5	TMB5A =
Channel A, transmit bit 6	TMB6A =
Channel A, transmit bit 7	TMB7A =
Channel A, transmit bit 8	TMB8A =
Channel B, transmit bit 1	TMB1B =
Channel B, transmit bit 2	TMB2B =
Channel B, transmit bit 3	TMB3B =
Channel B, transmit bit 4	TMB4B =
Channel B, transmit bit 5	TMB5B =
Channel B, transmit bit 6	TMB6B =
Channel B, transmit bit 7	TMB7B =
Channel B, transmit bit 8	TMB8B =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CON GLOBAL SETTINGS (SERIAL PORT COMMAND SET G ANI		Page <u>20 of 28</u> Date EL)
Settings Group Change Delay (see Multiple Setting Groups in S	Section 7)	
Group change delay (0.00–16000.00 cycles in 0.25-cycle steps)	TGR =	
Power System Configuration and Date Format (see Settings E	xplanations	in Section 9)
Nominal frequency (50 Hz, 60 Hz)	NFREQ =	
Phase rotation (ABC, ACB)	PHROT =	
Date format (MDY, YMD)	$DATE_F =$	
Front-Panel Display Time-Out (see Section 11)		
Front-panel display time-out (0–30 minutes in 1-minute steps)	FP_TO =	
[If FP_TO = 0, no time-out occurs and display remains on last display scr metering)]	een (e.g., cont	inually display
Event Report Parameters (see Section 12)		
Length of event report (15, 30 cycles)	LER =	
Length of prefault in event report (1 to LER-1 cycles in 1-cycle steps)	PRE =	
Optoisolated Input Timers (see Figure 7.1)		
Input IN101 debounce time (AC, 0.00–1.00 cycles in 0.25-cycle steps)	IN101D =	
Input IN102 debounce time (AC, 0.00–1.00 cycles in 0.25-cycle steps)	IN102D =	
Input IN103 debounce time (AC, 0.00–1.00 cycles in 0.25-cycle steps)	IN103D =	
Input IN104 debounce time (AC, 0.00–1.00 cycles in 0.25-cycle steps)	IN104D =	
Input IN105 debounce time (AC, 0.00–1.00 cycles in 0.25-cycle steps)	IN105D =	
Input IN106 debounce time (AC, 0.00–1.00 cycles in 0.25-cycle steps)	IN106D =	
Breaker Monitor Settings (see Breaker/Recloser Contact Weal	r <i>Monitor</i> in S	Section 8)
Breaker monitor enable (Y, N)	EBMON =	
(Make the following settings if preceding enable setting EBMON = Y)		
Close /Open set point 1-max. (0-65000 operations)	COSP1 =	
Close /Open set point 2-mid. (0-65000 operations)	COSP2 =	
Close /Open set point 3-min. (0-65000 operations)	COSP3 =	
kA Interrupted set point 1—min. (0.10–999.00 kA primary in 0.01 kA steps)	KASP1 =	
kA Interrupted set point 2—mid. (0.10–999.00 kA primary in 0.01 kA steps)	KASP2 =	
kA Interrupted set point 3—max. (0.10–999.00 kA primary in 0.01 kA steps)	KASP3 =	

Page	21	of	28

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Date _____ GLOBAL SETTINGS (SERIAL PORT COMMAND SET G AND FRONT PANEL)

<u> Trip Latch LEDs Settings (see Figures 1.51 through 1.54)</u>	
Trip latch LED11 (Y,N)	LED11L =
Trip latch LED12 (Y,N)	LED12L =
Trip latch LED13 (Y,N)	LED13L =
Trip latch LED14 (Y,N)	LED14L =
Trip latch LED15 (Y,N)	LED15L =
Trip latch LED16 (Y,N)	LED16L =
Trip latch LED17 (Y,N)	LED17L =
Trip latch LED18 (Y,N)	LED18L =
Trip latch LED19 (Y,N)	LED19L =
Trip latch LED20 (Y,N)	LED20L =
Trip latch LED24 (Y,N)	LED24L =
Trip latch LED25 (Y,N)	LED25L =
 Reset trip-latched LEDs on close (Y,Y1,N,N1) The numeral "1" appended to settings options "Y1" and "N1" disables the embedded 3-second qualifying time delay on the LOCK operator control (the LOCK operator control effectively operates as the other operator controls, with no time delay). 	RSTLED =
Other Global Settings	מיימת
CLOSE operator control time delay (0–3600 cyc) (see Figure 1.39) TRIP operator control time delay (0–3600 cyc) (see Figure 1.40)	PB8D = PB9D =
True three-phase voltage connected (Y,N) (see Figure 4.1 in Section 4	FD9D =
and A, B, C target LED discussion at end of Section 5)	3PVOLT =
(Set the following PHANTV setting when preceding setting 3PVOLT = N) Phantom voltages from (VA,VB,VC,VAB,VBC,VCA,OFF)	PHANTV=
Note: available on the SEL-351R-2 only	
# of EZ settings groups enabled (0–6) [see SET EZ and SET FZ Commands (Change EZ Settings) in Section 10]	EZGRPS =
Battery, 12 V Power, and Wake-Up Port Settings (see <i>Battery S</i> Section 8)	<i>System Monitor</i> in
Battery Amp-hours (6.5–20)	AMPHR =
% Battery capacity for sleep (0–100)	SLPCAP =
Turn on the 12 V power (Y,N)	ON12V =
(Set the following 12VSLP setting when preceding setting $ON12V = Y$)	
Keep the 12 V power on while asleep (Y,N)	12VSLP =

Page	22	of 28

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Date _____ GLOBAL SETTINGS (SERIAL PORT COMMAND SET G AND FRONT PANEL)

Wake-up port baud rate (1200–38400)	ABAUD =
Wake-up message (4 characters: 0–9, A–Z, -, /, ., space)	CHWAKE=

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Date

SEQUENTIAL EVENTS RECORDER AND LOAD PROFILE SETTINGS (SERIAL PORT COMMAND SET R)

Sequential Events Recorder settings are comprised of three trigger lists. Each trigger list can include up to 24 Relay Word bits delimited by spaces or commas. Enter NA to remove a list of these Relay Word bit settings. See Sequential Events Recorder (SER) Report in Section 12.

SER Trigger List 1	SER1 =	
SER Trigger List 2	SER2 =	
SER Trigger List 3	SER3 =	

Load Profile settings are only available in firmware versions 1 and greater. See Load Profile in Section 8.

LDLIST = Load profile list: (15 elements max., enter NA to null)

Load profile acquisition rate (5,10,15,30,60 min)

LDAR =

LDLIST may contain any of the following elements (delimit with spaces or commas):

QUANTITY RECORDED
Phase and neutral current magnitudes
Phase and sync voltage magnitudes
Sequence current and voltage magnitudes
Phase frequency
Phase and 3 phase megaWATTs
Phase and 3 phase megaVARs
Phase and 3 phase power factor
Phase and 3 phase power factor lead/lag status $(0 = lag, 1 = lead)$
Demand ammeter quantities
Phase and 3 phase demand megaWATTs in
Phase and 3 phase demand megaWATTs out
Phase and 3 phase demand megaVARs in
Phase and 3 phase demand megaVARs out
Phase and 3 phase megaWATT hours in
Phase and 3 phase megaWATT hours out
Phase and 3 phase megaVAR hours in
Phase and 3 phase megaVAR hours out

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL Text Label Settings (Serial Port Command SET T)

Page <u>24 of 28</u>

Date _____

Enter the following characters: 0–9, A–Z, -, /, ., space for each text label setting, subject to the specified character limit. Enter NA to null a label.

Local Bit Labels (see Tables 7.1 and 7.2) [Note: LB9 through LB16 for the SEL-351R-2 only]

Local Bit LB1 Name (14 characters)	NLB1 =
Clear Local Bit LB1 Label (7 characters)	CLB1 =
Set Local Bit LB1 Label (7 characters)	SLB1 =
Pulse Local Bit LB1 Label (7 characters)	PLB1 =
Local Bit LB2 Name (14 characters)	NLB2 =
Clear Local Bit LB2 Label (7 characters)	CLB2 =
Set Local Bit LB2 Label (7 characters)	SLB2 =
Pulse Local Bit LB2 Label (7 characters)	PLB2 =
Local Bit LB3 Name (14 characters)	NLB3 =
Clear Local Bit LB3 Label (7 characters)	CLB3 =
Set Local Bit LB3 Label (7 characters)	SLB3 =
Pulse Local Bit LB3 Label (7 characters)	PLB3 =
	NU DA
Local Bit LB4 Name (14 characters)	NLB4 =
Clear Local Bit LB4 Label (7 characters)	CLB4 =
Set Local Bit LB4 Label (7 characters)	SLB4 =
Pulse Local Bit LB4 Label (7 characters)	PLB4 =
Local Bit LB5 Name (14 characters)	NLB5 =
Clear Local Bit LB5 Label (7 characters)	CLB5 =
Set Local Bit LB5 Label (7 characters)	SLB5 =
Pulse Local Bit LB5 Label (7 characters)	PLB5 =
Local Bit LB6 Name (14 characters)	NLB6 =
Clear Local Bit LB6 Label (7 characters)	CLB6 =
Set Local Bit LB6 Label (7 characters)	SLB6 =
Pulse Local Bit LB6 Label (7 characters)	PLB6 =
Local Bit LB7 Name (14 characters)	NLB7 =
Clear Local Bit LB7 Label (7 characters)	CLB7 =
Set Local Bit LB7 Label (7 characters)	SLB7 =
Pulse Local Bit LB7 Label (7 characters)	PLB7 =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL TEXT LABEL SETTINGS (SERIAL PORT COMMAND SET T)

Page <u>25 of 28</u>

Date _____

Local Bit LB8 Name (14 characters)	NLB8 =
Clear Local Bit LB8 Label (7 characters)	CLB8 =
Set Local Bit LB8 Label (7 characters)	SLB8 =
Pulse Local Bit LB8 Label (7 characters)	PLB8 =
Local Bit LB9 Name (14 characters)	NLB9 =
Clear Local Bit LB9 Label (7 characters)	CLB9 =
Set Local Bit LB9 Label (7 characters)	SLB9 =
Pulse Local Bit LB9 Label (7 characters)	PLB9 =
Local Bit LB10 Name (14 characters)	NLB10 =
Clear Local Bit LB10 Label (7 characters)	CLB10 =
Set Local Bit LB10 Label (7 characters)	SLB10 =
Pulse Local Bit LB10 Label (7 characters)	PLB10 =
Local Bit LB11 Name (14 characters)	NLB11 =
Clear Local Bit LB11 Label (7 characters)	CLB11 =
Set Local Bit LB11 Label (7 characters)	SLB11 =
Pulse Local Bit LB11 Label (7 characters)	PLB11 =
Local Bit LB12 Name (14 characters)	NLB12 =
Clear Local Bit LB12 Label (7 characters)	CLB12 =
Set Local Bit LB12 Label (7 characters)	SLB12 =
Pulse Local Bit LB12 Label (7 characters)	PLB12 =
Local Bit LB13 Name (14 characters)	NLB13 =
Clear Local Bit LB13 Label (7 characters)	CLB13 =
Set Local Bit LB13 Label (7 characters)	SLB13 =
Pulse Local Bit LB13 Label (7 characters)	PLB13 =
Local Bit LB14 Name (14 characters)	NLB14 =
Clear Local Bit LB14 Label (7 characters)	CI P14 -
Set Local Bit LB14 Label (7 characters)	SLB14 =
Pulse Local Bit LB14 Label (7 characters)	PLB14 =
Local Bit LB15 Name (14 characters)	NLB15 =
Clear Local Bit LB15 Label (7 characters)	CLB15 =
Set Local Bit LB15 Label (7 characters)	SLB15 =
Pulse Local Bit LB15 Label (7 characters)	PLB15 =

Page <u>26 of 28</u>

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL TEXT LABEL SETTINGS (SERIAL PORT COMMAND SET T)

Date _____

Local Bit LB16 Name (14 characters)	NLB16 =	
Clear Local Bit LB16 Label (7 characters)	CLB16 =	
Set Local Bit LB16 Label (7 characters)	SLB16 =	
Pulse Local Bit LB16 Label (7 characters)	PLB16 =	

Display Point Labels (see *Rotating Default Display* in Sections 7 and 11) [Note: DP9 through DP16 for the SEL-351R-2 only]

Display if DP1 = logical 1 (16 characters)	DP1_1 =	
Display if $DP1 = logical 0$ (16 characters)	DP1_0 =	
Display if DP2 = logical 1 (16 characters)	DP2_1 =	
Display if $DP2 = logical 0$ (16 characters)	DP2_0 =	
Display if DP3 = logical 1 (16 characters)	DP3_1 =	
Display if DP3 = logical 0 (16 characters)	DP3_0 =	
	DD4 1	
Display if $DP4 = logical 1$ (16 characters)	DP4_1 =	
Display if $DP4 = logical 0$ (16 characters)	DP4_0 =	
Display if DP5 = logical 1 (16 characters)	DP5_1 =	
Display if DP5 = logical 0 (16 characters)	DP5_0 =	
Display if $DP6 = logical 1$ (16 characters)	$DP6_1 =$	
Display if $DP6 = logical 0$ (16 characters)	DP6_0 =	
Display if DP7 = logical 1 (16 characters)	DP7_1 =	
Display if DP7 = logical 0 (16 characters)	DP7_0 =	
	DD0 1	
Display if $DP8 = logical 1$ (16 characters)	$DP8_1 =$	
Display if DP8 = logical 0 (16 characters)	$DP8_0 =$	
Display if DP9 = logical 1 (16 characters)	DP9_1 =	
Display if DP9 = logical 0 (16 characters)	DP9_0 =	
Display if $DP10 = logical 1$ (16 characters)	$DP10_1 =$	
Display if $DP10 = logical 0$ (16 characters)	DP10_0 =	
Display if DP11 = logical 1 (16 characters)	DP11_1 =	
Display if DP11 = logical 0 (16 characters)	DP11_0 =	
Display if $DP12 = logical 1 (16 characters)$	DP12_1 =	
Display if $DP12 = logical 0$ (16 characters)	$DP12_0 =$	

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL TEXT LABEL SETTINGS (SERIAL PORT COMMAND SET T)

Date _____

Display if DP13 = logical 1 (16 characters)	DP13_1 =
Display if DP13 = logical 0 (16 characters)	DP13_0 =
Display if DP14 = logical 1 (16 characters)	DP14_1 =
Display if $DP14 = logical 0$ (16 characters)	DP14_0 =
Display if $DP15 = logical 1$ (16 characters)	DP15_1 =
Display if $DP15 = logical 0$ (16 characters)	DP15_0 =
Display if DP16 = logical 1 (16 characters)	DP16_1 =
Display if $DP16 = logical 0$ (16 characters)	DP16_0 =

Reclosing Relay Labels (see *Functions Unique to the Front-Panel Interface* in Section 11)

Reclosing Relay Last Shot Label (14 char.)	79LL =
Reclosing Relay Shot Counter Label (14 char.)	79SL =

SETTINGS SHEET FOR THE SEL-351R RECLOSER CONTROL PORT SETTINGS (SERIAL PORT COMMAND SET P AND FRONT PANEL)

Protocol Settings

Protocol (SEL, LMD, DNP, DNPE, MBA, MBB, MB8A, MB8B) PROTO =

Protocol Settings Set PROTO = SEL for standard SEL ASCII protocol. For SEL Distributed Port Switch Protocol (LMD), set PROTO = LMD. Refer to *Appendix C* for details on the LMD protocol. For Distributed Network Protocol (DNP), set PROTO = DNP or DNPE. Refer to *Appendix H* for details on DNP protocol. For MIRRORED BITS, set PROTO = MBA, MBB, MB8A, or MB8B. Refer to *Appendix I* for details on MIRRORED BITS.

The following three settings are used if PROTO = LMD.

LMD Prefix (@, #, \$, %, &) LMD Address (01–99) LMD Settling Time (0–30 seconds)	PREFIX = ADDR = SETTLE =	
Communications Settings		
Baud Rate (300, 1200, 2400, 4800, 9600, 19200, 38400)	SPEED =	
Data Bits (6, 7, 8)	BITS =	
Parity (0, E, N) {Odd, Even, None}	PARITY =	
Stop Bits (1, 2)	STOP =	
Other Port Settings		
Time-out (0–30 minutes)	T_OUT =	
Send Auto Messages to Port (Y, N, DTA)	AUTO =	
Enable Hardware Handshaking (Y, N)	RTSCTS =	

Fast Operate Enable (Y, N)

Other Port Settings Set T_OUT to the number of minutes of serial port inactivity for an automatic log out. Set T_OUT = 0 for no port time out.

FASTOP =

Set AUTO = Y to allow automatic messages at the serial port. Set AUTO = DTA to use the serial port with an SEL-DTA2 Display/Transducer Adapter.

Set RTSCTS = Y to enable hardware handshaking. With RTSCTS = Y, the recloser control will not send characters until the CTS input is asserted. Also, if the control is unable to receive characters, it deasserts the RTS line. Setting RTSCTS is not applicable to serial Port 1 (EIA-485) or a port configured for SEL Distributed Port Switch Protocol.

Set FASTOP = Y to enable binary *Fast Operate* messages at the serial port. Set FASTOP = N to block binary *Fast Operate* messages. Refer to *Appendix D* for the description of the SEL-351R Relay *Fast Operate* commands.

Page 28 of 28

Date _____

TABLE OF CONTENTS

SECTION 10:	SERIAL PORT COMMUNICATIONS AND COMMANDS	10-1
Introduction		
Serial P	ort Default Settings (for all ports)	
Wake-U	Jp Port Default Settings	
Port Connect	tor and Communications Cables	
	Time Code	
SEL-35	1R Recloser Control to Computer	
	1R Recloser Control to Modem	
	1R Recloser Control to SEL-PRTU	
SEL-35	1R Recloser Control to SEL-2020, SEL-2030, or SEL-2100	
	1R Recloser Control to SEL-DTA2	
Communicat	ions Protocol	
	re Protocol	
Softwar	e Protocols	
	L ASCII Protocol	
	L Distributed Port Switch Protocol (LMD)	
	L Fast Meter Protocol	
	L Compressed ASCII Protocol	
	stributed Network Protocol (DNP) V3.00	
MI	RRORED BITS [™] Communications	10-8
	utomatic Messages	
	ccess Levels	
	Level 0	
	Level 1	
	Level E (EZ)	
	Level B	
	Level 2	
	ummary	
	xplanations	
	Level 0 Commands	
AC	CC, EZA, BAC, and 2AC Commands (go to Access Level 1, E, B, or 2)	
	Password Requirements and Default Passwords	
	Access Level Attempt (password required)	
	Access Level Attempt (password not required)	
	Level 1 Commands	
	E and BRE A Commands (Breaker Monitor Data)	
	OMM Command (Communication Data)	
	OU Command (Counter Variable Values)	
	AT Command (View/Change Date)	
	E Command (Event Reports)	
	O Command (Display Active Setting Group Number)	
	S Command (Event Summaries/History)	
IRI	Command (Synchronize to IRIG-B Time Code)	

LDP Command (Load Profile Report)	10-21
MET Command (Metering Data)	10-21
MET k—Instantaneous Metering	10-22
MET X k—Extended Instantaneous Metering	10-23
MET D—Demand Metering	10-24
MET E—Energy Metering	10-25
MET M—Maximum/Minimum Metering	10-26
QUI Command (Quit Access Level)	10-26
SER Command (Sequential Events Recorder Report)	10-27
SHO Command (Show/View Settings)	
STA Command (Recloser Control Self-Test Status)	10-35
STA Command Row and Column Definitions	10-36
TAR Command (Display Relay Word Bit Status)	10-37
TIM Command (View/Change Time)	10-40
TRI Command (Trigger Event Report)	10-40
Access Level E (EZ) Commands	10-40
BTT Command (Battery Test)	
SET EZ and SET FZ Commands (Change EZ Settings)	
Access Level B Commands	
BRE n Command (Preload/Reset Breaker Wear)	10-42
CLO Command (Close Breaker)	10-44
GRO n Command (Change Active Setting Group)	
OPE Command (Open Breaker)	10-46
PUL Command (Pulse Output Contact)	10-46
Access Level 2 Commands	
CON Command (Control Remote Bit)	10-47
COP m n Command (Copy Setting Group)	10-47
LOO Command (Loop Back)	10-48
PAS Command (View/Change Passwords)	
SET Command (Change Settings)	
STA C Command (Status Clear Command)	
VER Command (Show Version Information)	
SEL-351R Recloser Control Command Summary	10-53

TABLES

Pinout Functions for EIA-232 Serial Ports 2, 3, and F	. 10-2
Terminal Functions for EIA-485 Serial Port 1 (Optional)	. 10-3
Serial Communications Port Pin/Terminal Function Definitions	. 10-6
Serial Port Automatic Messages	. 10-9
Serial Port Command Summary	10-12
SEL-351R Recloser Control Relay Word and Its Correspondence to TAR Command 1	10-38
SEL-351R Recloser Control Remote Bit Control Subcommands	10-47
	Terminal Functions for EIA-485 Serial Port 1 (Optional) Serial Communications Port Pin/Terminal Function Definitions Serial Port Automatic Messages Serial Port Command Summary SEL-351R Recloser Control Relay Word and Its Correspondence to TAR Command

FIGURES

Figure 10.1: DB-9 Connector Pinout for EIA-232 Serial Ports 10-	-2
---	----

INTRODUCTION

The SEL-351R Recloser Control comes equipped with three EIA-232 serial ports and an optional EIA-485 4-wire serial port, if ordered. Serial Port 1 (EIA-485, 4-wire), Serial Port 2 (EIA-232), and Serial Port 3 (EIA-232) are located on the side panel of the recloser controller. Serial Port F (EIA-232) is located on the front panel.

Connect any of the SEL-351R serial ports to a computer serial port for local communication or to a modem for remote communication. Other devices useful for communications include the SEL-PRTU Port Switch and the SEL-2020 and SEL-2030 communications processors. You can use a variety of terminal emulation programs on your personal computer to communicate with the SEL-351R. Examples of PC-based terminal emulation programs include: ProComm PlusTM, Relay GoldTM, Microsoft Windows[®] TerminalTM, SmartcomTM, and CrosstalkTM. Typically, VT-100 terminal emulation provides the best display.

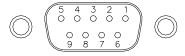
Serial Port Default Settings (for all ports)

```
Baud Rate = 2400 (ports 1 and 2); 38400 (port F)
Data Bits = 8
Parity = N
Stop Bits = 1
RTS/CTS = N
```

Note: Serial Port 3 is factory-set as a DNP port with a baud rate of 19200. See *Appendix H: Distriburted Network Protocol (DNP) V3.00* for more information.

To change the port settings, use the Access Level 2 SET P command (see *Section 9: Setting the SEL-351R Recloser Control*) or the front-panel SET pushbutton.

Wake-Up Port Default Settings


The wake-up port on the side panel is used to wake-up the SEL-351R by remote means (e.g., radio), after it puts itself to sleep to conserve battery energy during a long outage. Two global settings are made for the wake-up port with the SET G command (Access Level 2 command; default settings shown):

ABAUD	=	2400	(Wake-up port baud rate [1200–38400])
CHWAKE	=	ABCD	(Wake-up message [4 characters])
Data Bits	=	8	(fixed setting)
Parity	=	Ν	(fixed setting)
Stop Bits	=	1	(fixed setting)

When the SEL-351R receives the wake-up character string (setting CHWAKE), the SEL-351R wakes up and resumes its protection and control functions. See the *Battery System Monitor* subsection in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and*

Load Profile Functions for more information on the SEL-351R putting itself to sleep and the means to wake it up.

PORT CONNECTOR AND COMMUNICATIONS CABLES

(female chassis connector, as viewed from outside panel)

Figure 10.1: DB-9 Connector Pinout for EIA-232 Serial Ports

IRIG-B Time Code

Table 10.1 shows that you can input demodulated IRIG-B time synchronization code into SEL-351R Serial Port 2 to synchronize the recloser control's built-in clock to a synchronized master clock. This is handled adeptly by connecting Serial Port 2 of the SEL-351R to an SEL-2020 Communications Processor with Cable C273A (see cable diagrams that follow in this section). The SEL-2020 distributes demodulated IRIG-B time code through all of its 16 rear EIA-232 serial ports.

Demodulated IRIG-B time code can also be input into the Serial Port 1 compression connector. If demodulated IRIG-B time code is input into this connector, it should not be input into Serial Port 2 and vice versa.

Pin	Port 2	Port 3	Port F	Wake-Up Port
1	N/C or $+5$ Vdc ¹	N/C or $+5$ Vdc ¹	N/C	DCD
2	RXD	RXD	RXD	RXD
3	TXD	TXD	TXD	N/C
4	+IRIG-B	N/C	N/C	N/C
5	GND	GND	GND	GND
6	-IRIG-B	N/C	N/C	DSR
7	RTS	RTS	RTS	N/C
8	CTS	CTS	CTS	CTS
9	GND	GND	GND	N/C

 Table 10.1: Pinout Functions for EIA-232 Serial Ports 2, 3, and F

¹ See Table 2.6 in *Section 2: Additional Installation Details* and the *Communications* section in the *SEL-351R Quick-Start Installation and User's Guide*.

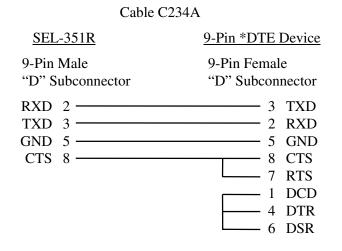

Terminal	Function
1	+TX
2	-TX
3	+RX
4	-RX
5	SHIELD
6	N/C
7	+IRIG-B
8	-IRIG-B

 Table 10.2:
 Terminal Functions for EIA-485 Serial Port 1 (Optional)

The following cable diagrams show several types of EIA-232 serial communications cables that you can use to connect the SEL-351R to other devices. The male/female references in the cable diagrams refer to the cable connectors, not the device they are connected to (which would be the opposite gender). These and other cables are available from SEL. These cables don't apply to the wake-up port.

Permanently connected metallic communication cables should be restricted to use inside a substation control house to reduce the hazards of ground potential rise. SEL recommends that the metallic cable length be limited to 100 feet or less. If your devices require more than 100 feet of cable, you should use fiber-optic cable and transceivers to provide complete electrical isolation and electrical noise immunity. Contact the factory if you need more information, or refer to the SEL-5801 Cable Selector program.

SEL-351R Recloser Control to Computer

Cable C227A

<u>SEL-351R</u>	25-Pin *DTE Device
9-Pin Male "D" Subconnector	25-Pin Female "D" Subconnector
TXD 3 RXD 2	7 GND 3 RXD 2 TXD 1 GND 4 RTS 5 CTS 6 DSR 8 DCD 20 DTR

SEL-351R Recloser Control to Modem

Cable C222 (externally powered modem)

<u>SEL-351R</u>	<u>**DCE Device</u>
9-Pin Male "D" Subconnector	25-Pin Male "D" Subconnector
RTS 7 RXD 2 CTS 8	7 GND 2 TXD (IN) 20 DTR (IN) 3 RXD (OUT) 8 CD (OUT) 1 GND

Cable C220 (modem powered from Pin 1 [5 vdc]¹)

<u>SEL-351R</u>	**DCE Device
9-Pin Male "D" Subconnector	25-Pin Male "D" Subconnector
TXD 3 RTS 7 RXD 2 CTS 8 +5 VDC 1	7 GND 2 TXD (IN) 20 DTR (IN) 3 RXD (OUT) 8 CD (OUT) 10 PWR (IN) 1 GND

¹ See Table 2.6 in *Section 2: Additional Installation Details* for jumper information.

SEL-351R Recloser Control to SEL-PRTU

С	able C231
SEL-PRTU	<u>SEL-351R</u>
9-Pin Male	9-Pin Male
Round Conxall	"D" Subconnector
GND 1	5 GND
TXD 2 ———	2 RXD
	3 TXD
	7 RTS
+12 7 ———	8 CTS
GND 9 ———	9 GND

SEL-351R Recloser Control to SEL-2020, SEL-2030, or SEL-2100

Cable C273A

<u>SEL-2020</u>	<u>SEL-351R</u>
9-Pin Male "D" Subconnector	9-Pin Male "D" Subconnector
TXD 3 IRIG+ 4 GND 5 IRIG- 6 RTS 7	3 TXD 2 RXD 4 IRIG+ 5 GND 6 IRIG- 8 CTS 7 RTS

SEL-351R Recloser Control to SEL-DTA2

Cable C272A

SEL-DTA2	<u>SEL-351R</u>		
9-Pin Male "D" Subconnector	9-Pin Male "D" Subconnector		
RXD 2 TXD 3 GND 5 RTS 7 CTS 8	2 RXD		

* DTE = Data Terminal Equipment (Computer, Terminal, Printer, etc.)

** DCE = Data Communications Equipment (Modem, etc.)

Pin Function	Definition
N/C	No Connection
+5 Vdc (0.5 A limit)	5 Vdc Power Connection
RXD, RX	Receive Data
TXD, TX	Transmit Data
IRIG-B	IRIG-B Time-Code Input
GND	Ground
SHIELD	Shielded Ground
RTS	Request To Send
CTS	Clear To Send
DCD	Data Carrier Detect
DTR	Data Terminal Ready
DSR	Data Set Ready

Table 10.3: Serial Communications Port Pin/Terminal Function Definitions

COMMUNICATIONS PROTOCOL

Hardware Protocol

All EIA-232 serial ports on the SEL-351R support RTS/CTS hardware handshaking. RTS/CTS handshaking is not supported on the EIA-485 Serial Port 1 (Optional).

To enable hardware handshaking, use the SET P command (or front-panel SET pushbutton) to set RTSCTS = Y. Disable hardware handshaking by setting RTSCTS = N.

If RTSCTS = N, the SEL-351R permanently asserts the RTS line.

If RTSCTS = Y, the SEL-351R deasserts RTS when it is unable to receive characters.

If RTSCTS = Y, the SEL-351R does not send characters until the CTS input is asserted.

Software Protocols

The SEL-351R provides standard SEL protocols: SEL ASCII, SEL Distributed Port Switch Protocol (LMD), SEL Fast Meter, and SEL Compressed ASCII. In addition, you can order the SEL-351R with Distributed Network Protocol (DNP) V3.00 as an option. The SEL-351R activates protocols on a per-port basis.

To select SEL ASCII protocol, use the Access Level 2 SET P command to set the port PROTO setting to SEL. To select SEL Distributed Port Switch Protocol (LMD), set PROTO = LMD. To select DNP protocol, set PROTO = DNP.

SEL Fast Meter and SEL Compressed ASCII commands are active when PROTO is set to either SEL or LMD. The commands are not active when PROTO is set to DNP.

SEL ASCII Protocol

SEL ASCII protocol is designed for manual and automatic communications.

1. All commands received by the control must be of the form:

<command><CR> or <command><CRLF>

A command transmitted to the control should consist of the command followed by either a CR (carriage return) or a CRLF (carriage return and line feed). You may truncate commands to the first three characters. For example, **EVENT 1 <ENTER>** would become **EVE 1 <ENTER>**. Upper and lower case characters may be used without distinction, except in passwords.

- **Note:** The ENTER key on most keyboards is configured to send the ASCII character 13 (^M) for a carriage return. This manual instructs you to press the ENTER key after commands, which should send the proper ASCII code to the recloser control.
- 2. The SEL-351R serial port transmits all messages in the following format:

Each message begins with the start-of-transmission character (ASCII 02) and ends with the end-of-transmission character (ASCII 03). Each line of the message ends with a carriage return and line feed.

3. The control implements XON/XOFF flow control.

The serial port transmits XON (ASCII hex 11) and asserts the RTS output (if hardware hand-shaking enabled) when the serial port input buffer drops below 25 percent full.

The serial port transmits XOFF (ASCII hex 13) when the buffer is over 75 percent full. If hardware handshaking is enabled, the serial port deasserts the RTS output when the buffer is approximately 95 percent full. Automatic transmission sources should monitor for the XOFF character so they do not overwrite the buffer. Transmission should terminate at the end of the message in progress when XOFF is received and may resume when the serial port sends XON.

4. You can use the XON/XOFF protocol to control the SEL-351R during data transmission. When the serial port receives XOFF during transmission, it pauses until it receives an XON character. If there is no message in progress when the serial port receives XOFF, it blocks transmission of any message presented to its buffer. Messages will be accepted after the serial port receives XON. The CAN character (ASCII hex 18) aborts a pending transmission. This is useful in terminating an unwanted transmission.

Control characters can be sent from most keyboards with the following keystrokes:

XON:**<CNTRL>Q**(hold down the Control key and press Q)XOFF:**<CNTRL>S**(hold down the Control key and press S)CAN:**<CNTRL>X**(hold down the Control key and press X)

SEL Distributed Port Switch Protocol (LMD)

The SEL Distributed Port Switch Protocol (LMD) permits multiple SEL devices to share a common communications channel. You select this protocol with the Access Level 2 SET P command by setting PROTO = LMD. See *Appendix C: SEL Distributed Port Switch Protocol* for more information on SEL Distributed Port Switch Protocol (LMD).

SEL Fast Meter Protocol

SEL Fast Meter protocol supports binary messages to transfer metering and control messages. The protocol is described in *Appendix D: Configuration, Fast Meter, and Fast Operate Commands*. There are no settings required to implement or control this protocol. It is available on any SEL-351R port that is set for SEL or LMD protocol.

SEL Compressed ASCII Protocol

SEL Compressed ASCII protocol provides compressed versions of some of the recloser control ASCII commands. The protocol is described in *Appendix E: Compressed ASCII Commands*. There are no settings required to implement or control this protocol. It is available on any SEL-351R port that is set for SEL or LMD protocol.

Distributed Network Protocol (DNP) V3.00

The control provides Distributed Network Protocol (DNP) V3.00, Level 2 slave support. DNP is an optional protocol and is described in *Appendix H: Distributed Network Protocol (DNP) V3.00*.

MIRRORED BITS[™] Communications

The SEL-351R Relay supports MIRRORED BITS relay-to-relay communications on two ports simultaneously (available in firmware version 1 only, see *Appendix I*).

SERIAL PORT AUTOMATIC MESSAGES

When the serial port AUTO setting is Y, the recloser control sends automatic messages to indicate specific conditions. The automatic messages are described in Table 10.4.

When the serial port AUTO setting is DTA, the SEL-351R is compatible with the SEL-DTA2 on that port. The MET and MET D command responses are modified to comply with the DTA2 data format for that port.

Condition	Description
Power Up	The control sends a message containing the present date and time, Recloser and Terminal Identifiers, and the Access Level 0 prompt (=) when the control is turned on.
Event Trigger	The control sends an event summary each time an event report is triggered. See <i>Section 12: Standard Event Reports and SER</i> .
Group Switch	The control displays the active settings group after a group switch occurs. See <i>GRO n Command (Change Active Setting Group)</i> in this section.
Self-Test Warning or Failure	The control sends a status report each time a self-test warning or failure condition is detected. See <i>STA Command (Recloser Control Self-Test Status)</i> in this section.

Table 10.4: Serial Port Automatic Messages

SERIAL PORT ACCESS LEVELS

You can issue commands to the SEL-351R via the serial communication ports to view metering values, change control settings, etc. The available serial port commands are listed in Table 10.5. A summary of commands is also included at the end of this section of the instruction manual. The commands can be accessed only from the corresponding access level as shown in Table 10.5. The access levels are:

Access Level 0 (the lowest access level) Access Level 1 (interrogation only level) Access Level E (EZ settings level) Access Level B (Breaker/recloser control level) Access Level 2 (the highest access level)

Note: In this manual, commands you type appear in bold/uppercase: **SHO G**. Computer keys you press appear in bold/uppercase/brackets: **<ENTER>**.

Access Level O

After serial port communication is established with the control, the control sends the following prompt:

	Í.
	1
'	

This is referred to as Access Level 0. From Access Level 0, you can go to Access Level 1 by sending the ACC command (see Table 10.5), or to the Access Level E (EZ) by sending the EZA command. Enter the ACC or the EZA command at the Access Level 0 prompt:

=ACC <ENTER> or =EZA<ENTER>

If passwords are enabled, the SEL-351R prompts you for the Level 1 or Level E passwords, respectively.

Access Level 1

When the recloser control is in Access Level 1, the control sends the following prompt:

1	

Commands 2AC through TRI in Table 10.5 are available from Access Level 1. For example, enter the MET command at the Access Level 1 prompt to view metering data:

=>MET <ENTER>

From Access Level 1, you can access other access levels, such as Access Level E, Access Level 2, and Access Level B. If passwords are enabled, you must enter passwords to reach these other access levels.

The EZA (EZAccess) command allows the control to go to Access Level E [see ACC, EZA, BAC, and 2AC Commands (go to Access Level 1, E, B, or 2) in the Command Explanations subsection for more detail]. Enter the EZA command at the Access Level 1 prompt:

=>EZA<ENTER>

The 2AC command allows the control to go to Access Level 2 [see ACC, EZA, BAC, and 2AC Commands (go to Access Level 1, E, B, or 2) in the Command Explanations subsection for more detail]. Enter the 2AC command at the Access Level 1 prompt:

=>2AC <ENTER>

The BAC command allows the control to go to Access Level B [see ACC, EZA, BAC, and 2AC Commands (go to Access Level 1, E, B, or 2) in the Command Explanations subsection for more detail]. Enter the BAC command at the Access Level 1 prompt:

=>BAC <ENTER>

When you are in Access Level E, B, or 2, you can return to Access Level 1 by sending the **ACC** command. The control does not prompt you for the Level 1 password because you have already accessed a higher level with passwords.

Access Level E (EZ)

When the SEL-351R is in Access Level E, the control sends the prompt:

=+>

Commands BTT through SET FZ in Table 10.5 are available from Access Level E. Access Level E is intended to allow operators, testing, and protection personnel to make EZ level setting changes and check and test the battery system. For example, enter the SET EZ command at the Access Level E prompt to set the EZ Level settings:

=+>SET EZ <ENTER>

While you are in Access Level E, any of the Access Level 1 commands are also available (commands 2AC through TRI in Table 10.5).

Access Level B

When the SEL-351R is in Access Level B, the control sends the prompt:

1
1
1
1

Commands BRE n through PUL in Table 10.5 are available from Access Level B. Access Level B is intended to allow operators to perform control functions without being able to change settings. For example, enter the CLO command at the Access Level B prompt to close the recloser:

==>CLO <ENTER>

While you are in Access Level B, any of the Access Level 1 and Access Level E commands are also available (commands 2AC through SET FZ in Table 10.5).

Access Level 2

When the control is in Access Level 2, the recloser control sends the prompt:

=>>			

Commands CON through SET in Table 10.5 are available from Access Level 2. Access Level 2 is intended to allow protection and testing personnel to make higher level setting and logic changes. For example, enter the SET command at the Access Level 2 prompt to make control settings:

=>>SET <ENTER>

While you are in Access Level 2, any of the Access Level 1, Access Level E, and Access Level B commands are also available (commands 2AC through PUL in Table 10.5).

COMMAND SUMMARY

Table 10.5 alphabetically lists the serial port commands within a given access level. Much of the information available from the serial port commands is also available via the front-panel pushbuttons. The correspondence between the serial port commands and the front-panel pushbuttons is also given in Table 10.5. See *Section 11: Additional Front-Panel Interface Details* for more information on the front-panel pushbuttons.

The serial port commands at the different access levels offer varying levels of control:

- The Access Level 1 commands primarily allow you to look at information only (settings, metering, etc.), not change it.
- The Access Level E (EZ) commands allow you to check and test the battery and change recloser control EZ settings.
- The Access Level B commands primarily allow the user to open and close the recloser, operate output contacts, or change the active setting group.
- The Access Level 2 commands primarily allow the user to change control settings and logic.

Again, a higher access level can access the serial port commands in a lower access level. The commands are shown in upper-case letters, but you can also enter them with lower-case letters.

Access Level	Prompt	Serial Port Command	Command Decarintian	Corresponding Front-Panel Pushbutton
	Prompt		Command Description	rusindution
0	=	ACC	Go to Access Level 1	
0	=	EZA	Go to Access Level E (EZ)	
1	=>	BAC	Go to Access Level B	
1	=>	2AC	Go to Access Level 2	
1	=>	BRE	Breaker monitor data	
1	=>	BRE A	Breaker Monitor data, including per-	OTHER
			phase trip operation counters	
1	=>	COM	MIRRORED BITS communications	
			statistics	
1	=>	COU	Display SELOGIC counter values	
			(SEL-351R-2 only)	
1	=>	DAT	View/change date	OTHER
1	=>	EVE	Event reports	
1	=>	EZA	Go to Access Level E (EZ)	
1	=>	GRO	Display active setting group number	GROUP
1	=>	HIS	Event summaries/histories	EVENTS
1	=>	IRI	Synchronize to IRIG-B	
1	=>	LDP	Load profile report	
1	=>	MET	Metering data	METER
1	=>	QUI	Quit access level	
1	=>	SER	Sequential Events Report	

Table 10.5: Serial Port Command Summary

Access Level	Prompt	Serial Port Command	Command Description	Corresponding Front-Panel Pushbutton
1	=>	SHO	Show/view settings	SET
1	=>	STA	Recloser control self-test status	STATUS
1	=>	TAR	Display recloser control element status	OTHER
1	=>	TIM	View/change time	OTHER
1	=>	TRI	Trigger an event report	
Е	=+>	BTT	Display latest battery discharge test results and time remaining until next discharge test	
Е	=+>	BTT NOW	Force battery discharge test	OTHER
Е	=+>	SET EZ	Change EZ group settings	SET
Е	=+>	SET FZ	Change EZ global settings	SET
В	==>	BRE n	Preload/reset breaker/recloser wear and trip operation counters	OTHER
В	==>	CLO	Close breaker/recloser	CLOSE
В	==>	GRO n	Change active setting group	GROUP
В	==>	OPE	Open breaker/recloser	TRIP
В	==>	PUL	Pulse output contact	CNTRL
2	=>>	CON	Control remote bit	
2	=>>	COP	Copy setting group	
2	=>>	LOO	MIRRORED BITS loopback	
2	=>>	PAS	View/change passwords	SET
2 2	=>>	SET	Change group settings	SET
2	=>>	SET L	Change logic settings	
2	=>>	SET G	Change global settings	SET
2	=>>	SET R	Change sequence of event triggering settings	
2	=>>	SET P	Change serial port settings	SET
2	=>>	SET T	Change text label settings	
2	=>>	STA C	Clear Status Report	
2	=>>	VER	Show version information	

The recloser control responds with "Invalid Access Level" if a command is entered from an access level lower than the specified access level for the command. If the command you entered does not match any of the commands in the SEL-351R command set shown in Table 10.5, the control responds:

```
Invalid Command
Many of the command responses display the following header at the beginning:
```

```
RECLOSER R1 Date: 03/05/97 Time: 17:03:26.484
FEEDER 2101
```

The definitions are:

RECLOSER R1:	This is the Recloser ID, RID, setting (the control is shipped with the default setting RID = RECLOSER R1; see <i>Identifier Labels</i> in <i>Section 9: Setting the SEL-351R Recloser Control</i>).
FEEDER 2101:	This is the Terminal ID, TID, setting (the control is shipped with the default setting TID = FEEDER 2101; see <i>Identifier Labels</i> in <i>Section 9: Setting the SEL-351R Recloser Control</i>).
Date:	This is the date the command response was given [except for recloser control response to the EVE command (Event), where it is the date the event occurred]. You can modify the date display format (Month/Day/Year or Year/Month/Day) by changing the DATE_F recloser control setting with the SET G command.
Time:	This is the time the command response was given (except for control response to the EVE command, where it is the time the event occurred).

The serial port command explanations that follow in the *Command Explanations* subsection are in the same order as the commands listed in Table 10.5.

COMMAND EXPLANATIONS

Access Level O Commands

ACC, EZA, BAC, and 2AC Commands (go to Access Level 1, E, B, or 2)

The ACC, EZA, BAC, and 2AC commands provide entry to the multiple access levels. Different commands are available at the different access levels as shown in Table 10.5. Commands ACC, EZA, BAC, and 2AC are explained together because they operate similarly.

- ACC moves from Access Level 0, E, 2, or B to Access Level 1.
- EZA moves from Access Level 0, 1, 2, or B to Access Level E (EZ).
- BAC moves from Access Level 1, 2 or E to Access Level B.
- 2AC moves from Access Level 1, E or B to Access Level 2.

Password Requirements and Default Passwords

Passwords are required if the main board Password jumper is <u>not</u> in place (Password jumper = OFF). Passwords are not required if the main board Password jumper is in place (Password jumper = ON). Refer to Table 2.4 and Table 2.5 for Password jumper information. See PAS Command explanation later in this section for the list of default passwords and for more information on changing passwords.

Access Level Attempt (password required)

Assume the following conditions: Password jumper = OFF (not in place), Access Level = 0.

At the Access Level 0 prompt, enter the ACC command:

=ACC <ENTER>

Because the Password jumper is not in place, the control asks for the Access Level 1 password to be entered:

Password: ? @ @ @ @ @ @ @

The control is shipped with the default Access Level 1 password shown in the table under the PAS Command later in this section. At the above prompt enter the default password and press the **<ENTER>** key.

The control responds:

```
RECLOSER R1 Date: 03/05/97 Time: 08:31:10.361
FEEDER 2101
Level 1
=>
```

The "=>" prompt indicates the control is now in Access Level 1.

If the entered password is incorrect, the control asks for the password again (Password: ?). The control will ask up to three times. If the requested password is incorrectly entered three times, the control pulses the ALARM contact for one second and remains at Access Level 0 ("=" prompt).

Access Level Attempt (password not required)

Assume the following conditions: Password jumper = ON (in place), Access Level = 0.

At the Access Level 0 prompt, enter the ACC command:

=ACC <ENTER>

Because the Password jumper is in place, the control does not ask for a password; it goes directly to Access Level 1. The SEL-351R responds:

```
RECLOSER R1 Date: 03/05/97 Time: 08:31:10.361
FEEDER 2101
Level 1
->
```

The "=>" prompt indicates the control is now in Access Level 1.

The above two examples demonstrate how to go from Access Level 0 to Access Level 1. The procedure to go from Access Level 0 to Access Level E, Access Level 1 to Access Level B,

Access Level 1 to Access Level 2, or Access Level B to Access Level 2 is similar, with command EZA, BAC, or 2AC entered at the access level screen prompt. The recloser control pulses the ALARM contact for one second after a successful Level E, Level B, or Level 2 access. If access is denied, the ALARM contact also pulses for one second. Passwords are not required to go from Level E, Level B, or Level 2 to Level 1. Passwords are also not required to go from Level E or Level 1.

Access Level 1 Commands

BRE and BRE A Commands (Breaker Monitor Data)

Use the BRE command to view the breaker /recloser contact wear monitor report.

```
-----
=>BRE <ENTER>
RECLOSER R1
                            Date: 02/02/97 Time: 08:40:14.802
FEEDER 2101
Ctrl Trips=
          9
IA= 40.7 IB= 41.4 IC= 53.8 kA
Ext Trips=
          3
      0.8 IB=
                0.9 IC= 1.1 kA
IA=
Percent wear: A = 4 B = 4 C = 6
LAST RESET 12/27/96 15:32:59
=>
```

The BRE A command displays the same information as the BRE command, plus per-phase and ground trip operation counters.

```
=>BRE A <ENTER>
RECLOSER R1
                                    Date: 02/02/99 Time: 08:40:28.529
FEEDER 2101
Ctrl Trips= 9
IA= 40.7 IB= 41.4 IC= 53.8 kA
Ext Trips=
            3
IA= 0.8 IB=
                     0.9 IC=
                                  1.1 kA
Percent wear: A = 4 B = 4 C = 6
A-phase Trips= 6
B-phase Trips= 5
C-phase Trips= 8
C-pnase
EF/G Trips=
              7
SEF Trips=
              0
LAST RESET 12/27/98 15:32:59
=>
```

See *BRE n Command (Preload/Reset Breaker Wear)* in *Access Level B Commands* that follows in this section and *Breaker/Recloser Contact Wear Monitor* in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions* for further details on the breaker monitor.

COMM Command (Communication Data)

The COMM command displays integral relay-to-relay (MIRRORED BITS) communications data. For more information on MIRRORED BITS, see *Appendix I: MIRRORED BITS*. To view a summary report, enter the command with the channel parameter (A or B).

```
=>COMM A <ENTER>
FEEDER 1
                            Date: 04/20/98
                                           Time: 18:36:11.748
STATION A
FID=SEL-351-2-X135-VM-D980403
                              CID=FF27
Summary for Mirrored Bits channel A
For 04/20/01 18:36:09.279 to 04/20/01 18:36:11.746
   Total failures
                                     Last error Relay Disabled
                    1
   Relay Disabled
                    1
                                     Longest Failure
                                                      2.458 sec.
   Data error
                    0
   Re-Sync
                    0
   Underrun
                    0
                                     Unavailability 0.996200
   Overrun
                    0
   Parity error
                    0
                                     Loopback
                                                 0
   Framing error
                    0
=>
```

If only one MIRRORED BITS port is enabled, the channel specifier may be omitted. Use the L parameter to get a summary report, followed by a listing of the COMM records.

```
=>COMM | <FNTFR>
FEEDER 1
                                     Date: 02/20/98 Time: 18:37:36.125
STATION A
FID=SEL-351-2-X135-VM-D980403
                                        CID=FF27
Summary for Mirrored Bits channel A
For 02/05/98 17:18:12.993 to 02/20/98 18:37:36.123
    Total failures
                           4
                                                 Last error Relay Disabled
    Relay Disabled
                          2
    Data error
                          0
                                                  Longest Failure
                                                                        2.835 sec.
    Re-Sync
                          0
    Underrun
                                                  Unavailability 0.000003
                           1
    Overrun
                           0
    Parity error
                          1
    Framing error
                           0
                                                  Loopback
                                                                0
    Failure
                              Recovery
#
              Time
                                        Time
                                                       Duration Cause
    Date
                              Date
    02/20/98 18:36:09.279 02/20/98 18:37:36.114 2.835 Relay Disabled
1
    02/14/98 13:18:09.236 02/14/98 13:18:09.736 0.499 Parity error
02/08/98 11:43:35.547 02/08/98 11:43:35.637 0.089 Underrun
02/05/98 17:18:12,993 02/05/98 17:18:13.115 0.121 Relay Disabl
2
3
4
    02/05/98 17:18:12.993 02/05/98 17:18:13.115
                                                           0.121 Relay Disabled
=>
```

There may be up to 255 records in the extended report. To limit the number of COMM records displayed in the report to the 10 most recent records, type **COMM 10 L <ENTER>**. To select lines 10 through 20 of the COMM records for display in the report, type **COMM 10 20 L <ENTER>**. To reverse the order of the COMM records in the report, supply a range of row numbers, with the larger number first, i.e., **COMM 40 10 L <ENTER>**. To display all the

COMM records that started on a particular day, supply that date as a parameter, i.e., **COMM** 2/8/98 L <ENTER>. To display all the COMM records that started between a range of dates, supply both dates as parameters, i.e., **COMM 2/21/98 2/7/98 L <ENTER>**. Reversing the order of the dates will reverse the order of the records in the report. To receive a summary report for a subset of the records, use one of the above methods while omitting the L parameter.

To clear the COMM records, type **COMM C <ENTER>**. The prompting message "Are you sure (Y/N) ?" is displayed. Typing **N <ENTER>** aborts the clearing operation with the message "Canceled". If both MIRRORED BITS channels are enabled, omitting the channel specifier in the clear command will cause both channels to be cleared.

COU Command (Counter Variable Values)

The COU command displays the present values for the SELOGIC counter variables. To view the values, enter the command:

=>COU k <ENTER>

where **k** is an optional parameter to specify the number of times (1-32767) to repeat the counter display. If **k** is not specified, the counter values are displayed once.

```
_____
=>COU <FNTFR>
RECLOSER R1
                             Date: 02/15/02 Time: 12:21:48.226
FEEDER 2101

        SC2
        SC3
        SC4
        SC5

        2
        0
        1335
        0

     SC1
                                       SC6
                                             SC7
                                                     SC8
     10
                                       0
                                             0
                                                     0
=>
                             ......
```

DAT Command (View/Change Date)

DAT displays the date stored by the internal calendar/clock. If the date format setting DATE_F is set to MDY, the date is displayed as month/day/year. If the date format setting DATE_F is set to YMD, the date is displayed as year/month/day.

To set the date, type **DATE mm/dd/yy <ENTER>** if the DATE_F setting is MDY. If the DATE_F is set to YMD, enter **DATE yy/mm/dd <ENTER>**. To set the date to June 1, 1997, enter:

```
=>DATE 6/1/97 <ENTER>
6/1/97
=>
```

You can separate the month, day, and year parameters with spaces, commas, slashes, colons, and semicolons.

EVE Command (Event Reports)

Use the Event command, EVE, to view event reports. See *Section 12: Standard Event Reports and SER* for further details on retrieving event reports.

GRO Command (Display Active Setting Group Number)

Use the Group command, GRO, to display the active settings group number. See *GRO n Command (Change Active Setting Group)* in *Access Level B Commands* that follows in this section and *Multiple Setting Groups* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for further details on settings groups.

HIS Command (Event Summaries/History)

HIS \mathbf{x} displays event summaries or allows you to clear event summaries (and corresponding event reports) from nonvolatile memory.

If no parameters are specified with the HIS command:

=HIS <ENTER>

the control displays the most recent event summaries in reverse chronological order.

If **x** is a number (1-28):

=HIS 6 <ENTER>

the control displays the **x** most recent event summaries. The maximum number of available event summaries is a function of the LER (length of event report) setting. The control saves up to twenty-eight 15-cycle event reports if setting LER = 15 and fourteen 30-cycle event reports if setting LER = 30.

If \mathbf{x} is "C" or "c", the recloser control clears the event summaries and all corresponding event reports from nonvolatile memory.

The event summaries include the date and time the event was triggered, the type of event, the fault location, the maximum phase current in the event, the power system frequency, the number of the active setting group, the reclose shot count, and the front-panel targets.

To display the recloser control event summaries, enter the following command:

```
->HIS <ENTER>
RECLOSER R1 Date: 02/01/97 Time: 08:40:16.740
FEEDER 2101
# DATE TIME EVENT LOCAT CURR FREQ GRP SHOT TARGETS
1 02/01/97 08:33:00.365 TRIG $$$$$$$ 1 60.00 3 2 11000000 10000000
2 01/31/97 20:32:58.361 ER $$$$$$$ 231 60.00 2 2 11000000 10000000
3 01/29/97 07:30:11.055 AG T 9.65 2279 60.00 3 2 10001010 01010010
=>
```

The fault locator function influences information in the EVENT and LOCAT columns. If the fault locator is enabled (Access Level 2 SET command enable setting EFLOC = Y), the fault

locator will attempt to run if the event report is generated by a trip (assertion of TRIP Relay Word bit) or other programmable event report trigger condition (Access Level 2 SET L SELOGIC[®] control equation setting ER). The fault locator should not be enabled unless three phase voltage is connected to the control.

If the fault locator runs successfully, the location is listed in the LOCAT column, and the event type is listed in the EVENT column:

AG for A-phase to ground faults for B-phase to ground faults BG for C-phase to ground faults CG for A-B phase-to-phase faults AB for B-C phase-to-phase faults BC for C-A phase-to-phase faults CA for A-B phase-to-phase to ground faults ABG for B-C phase-to-phase to ground faults BCG for C-A phase-to-phase to ground faults CAG for three-phase faults ABC

If a trip occurs in the same event report, a "T" is appended to the event type (e.g., AG T).

If the fault locator does not run successfully, or if the fault locator is disabled (enable setting EFLOC = N), \$\$\$\$\$ is shown in the LOCAT column. In either case, the event type listed in the EVENT column is one of the following:

TRIP	event report generated by assertion of Relay Word bit TRIP
ER	event report generated by assertion of SELOGIC control equation event report
	trigger condition setting ER
PULSE	event report generated by execution of the PUL (Pulse) command
TRIG	event report generated by execution of the TRI (Trigger) command

The TARGETS column displays the front panel LED status during the event in binary format. The top row of LEDs are shown first and the bottom row of LEDs are shown next under the TARGETS column. A "1" means the LED was illuminated during the event and a "0" means the LED was deasserted.

For example, 11001010 00001100 under the TARGETS column would be interpreted as follows (first three digits):

- 1 \rightarrow Control Enabled LED illuminated
- 1 \rightarrow AC Supply LED illuminated
- $0 \rightarrow$ Battery Problem LED not illuminated

etc...

For more information on front-panel target LEDs, see *Front-Panel Status and Trip Target LEDs* in *Section 1: Factory-Set Logic*. For more information on event reports, see *Section 12: Standard Event Reports and SER*.

IRI Command (Synchronize to IRIG-B Time Code)

IRI forces the SEL-351R to read the demodulated IRIG-B time code at the serial port input to force the control to synchronize to IRIG-B. Enter the following command:

=>IRI <ENTER>

If the SEL-351R successfully synchronizes to IRIG, it sends the following header and access level prompt:

```
RECLOSER R1 Date: 03/05/97 Time: 10:15:09.609
FEEDER 2101
->
```

If no IRIG-B code is present at the serial port input or if the code cannot be read successfully, the control responds:

```
IRIG-B DATA ERROR
=>
```

If an IRIG-B signal is present, the SEL-351R synchronizes its internal clock with IRIG-B. It is not necessary to issue the IRI command to synchronize the SEL-351R internal clock with IRIG-B. You can use the IRI command to determine if the SEL-351R is properly reading the IRIG-B signal.

LDP Command (Load Profile Report)

Use the LDP command to view the Load Profile Report. For more information on Load Profile Reports, see Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions.

MET Command (Metering Data)

The MET commands provide access to the control metering data. Metered quantities include phase voltages and currents, sequence component voltages and currents, power, frequency, energy, demand, and maximum/minimum logging of selected quantities. To make the extensive amount of meter information manageable, the recloser control divides the displayed information into four groups: Instantaneous, Demand, Energy, and Maximum/Minimum.

MET k-Instantaneous Metering

The MET k command displays instantaneous magnitudes (and angles if applicable) of the following quantities:

Currents	$\begin{matrix} I_{A,B,C,N} \\ I_G \end{matrix}$	Input currents (A primary) Residual ground current (A primary; $I_{G} = 3I_{0} = I_{A} + I_{B} + I_{C}$)
Voltages	$V_{A,B,C,S}$	Wye-connected voltage inputs (kV primary)
Power	MW _{A,B,C} MW _{3P} MVAR _{A,B,C}	Single-phase megawatts (wye-connected voltage inputs only) Three-phase megawatts Single- and three-phase megavars (wye-connected voltage inputs only) Three-phase megavars
Power Factor	.51	Single- and three-phase power factor; leading or lagging
Sequence	$ \begin{array}{c} I_{1}, 3I_{2}, 3I_{0} \\ V_{1}, V_{2} \\ 3V_{0} \end{array} $	Positive-, negative-, and zero-sequence currents (A primary) Positive- and negative-sequence voltages (kV primary) Zero-sequence voltage (kV primary, wye-connected voltage inputs only)
Frequency	FREQ (Hz)	Instantaneous power system frequency (measured on voltage channel VA)

The angles are referenced to the A-phase voltage if it is greater than 13 V secondary; otherwise, the angles are referenced to A-phase current. The angles range from –179.99 to 180.00 degrees. If phantom voltages are enabled through the SET F or SET G commands on an SEL-351R-2, the relay measures only one voltage. In this case the relay copies the measured amplitude to the remaining two voltages and rotates the phase angles to generate balanced voltages. If the phantom voltage selection is a phase-to-phase quantity, the relay also scales the phase-to-ground quantities and rotates the phase angles appropriately.

To view instantaneous metering values, enter the command:

=>MET k <ENTER>

where **k** is an optional parameter to specify the number of times (1-32767) to repeat the meter display. If **k** is not specified, the meter report is displayed once. The output from an SEL-351R with three-phase wye-connected voltage inputs is shown:

RECLOSER R1			Date: 02	/01/97	Time: 15:0	00:52.615	
FEEDER 2101		_					
	A	В	С	Ν	G		
I MAG (A)		192.614	198.090		4.880		
I ANG (DEG)	-8.03	-128.02	111.89	52.98	81.22		
	A	В	С	S			
V MAG (KV)	11.691	11.686	11.669	11.695			
V ANG (DEG)	0.00	-119.79	120.15	0.05			
	A	В	С	3P			
мм	2.259	2.228	2.288	6.774			
VAR	0.319	0.322	0.332	0.973			
PF	0.990	0.990	0.990	0.990			
	LAG	LAG	LAG	LAG			
	I1	312	310	V1	٧2	3V0	
MAG			4.880			0.056	
ANG (DEG)		-103.93		0.12		-65.83	
FREQ (Hz)	60.00						

MET X k-Extended Instantaneous Metering

The MET X k command displays the same data as the MET k command with the addition of calculated phase-to-phase voltage quantities Vab, Vbc, and Vca.

Currents	$\begin{matrix}I_{A,B,C,N}\\I_{G}\end{matrix}$	Input currents (A primary) Residual ground current (A primary; $I_{g} = 3I_{0} = I_{A} + I_{B} + I_{C}$)
Voltages	$V_{\mathrm{A,B,C,S}} V_{\mathrm{AB,BC,CA}}$	Wye-connected phase-to-neutral voltage inputs (kV primary) Calculated phase-to-phase voltages (kV primary)
Power	MW _{A,B,C} MW _{3P} MVAR _{A,B,C} MVAR _{3P}	Single-phase megawatts (wye-connected voltage inputs only) Three-phase megawatts Single- and three-phase megavars (wye-connected voltage inputs only) Three-phase megavars
Power Factor	PF _{A,B,C,3P}	Single- and three-phase power factor; leading or lagging
Sequence	$\begin{array}{c} I_{1}, 3I_{2}, 3I_{0} \\ V_{1}, V_{2} \\ 3V_{0} \end{array}$	Positive-, negative-, and zero-sequence currents (A primary) Positive- and negative-sequence voltages (kV primary) Zero-sequence voltage (kV primary, wye-connected voltage inputs only)
Frequency	FREQ (Hz)	Instantaneous power system frequency (measured on voltage channel VA)

The angles are referenced to the A-phase voltage if it is greater than 13 V secondary; otherwise, the angles are referenced to A-phase current. The angles range from -179.99 to 180.00 degrees.

To view instantaneous metering values, enter the command:

=>MET X k <ENTER>

where **k** is an optional parameter to specify the number of times (1-32767) to repeat the meter display. If **k** is not specified, the meter report is displayed once. The output from an SEL-351R is shown:

5350.4351.0180.0100.0991.0001.	3P 1.417 0.044			1.417
5350.4351.0180.0100.0991.0001.	1.417 0.044			1.417
5350.4351.0180.0100.0991.0001.	1.417 0.044			1.417
5350.4351.0180.0100.0991.0001.	1.417 0.044			1.417
0180.0100.00991.0001.0	0.044			
0180.0100.00991.0001.0	0.044			
999 1.000 1.				0 044
	1.000	0		1 000
G LAG LA	LAG			1.000
	LNU			
310 V1				LAG
	V1	٧2	2 3V0	LAG
				LAG V1 V2 3V0
.526 14. 38 -117.52 0.	14.759	9 0.131	.131 0.212	LAG V1 V2 3V0 14.759 0.131 0.212
			2/14 2/14	
		V1		ì

MET D-Demand Metering

The MET D command displays the demand and peak demand values of the following quantities:

Currents	$\begin{matrix} I_{_{A,B,C,N}} \\ I_{_{G}} \\ 3I_{_{2}} \end{matrix}$	Input currents (A primary) Residual ground current (A primary; IG =3I0 = IA + IB + IC) Negative-sequence current (A primary)
Power	MW _{A,B,C} MW _{3P} MVAR _{A,B,C} MVAR _{3P}	Single-phase megawatts(wye-connected voltage inputs only) Three-phase megawatts Single-phase megavars (wye-connected voltage inputs only) Three-phase megavars

Reset Time Demand, Peak Last time the demands and peak demands were reset

To view demand metering values, enter the command:

=>MET D <ENTER>

The output from an SEL-351R with three-phase wye-connected voltage inputs is shown:

```
-----
=>MET D <ENTER>
RECLOSER R1
                           Date: 02/01/97 Time: 15:08:05.615
FEEDER 2101
                      IC
        ΙA
                ΙB
                                       ΙG
                               IN
                                              312
DEMAND
        188.6
               186.6
                       191.8
                               0.2
                                       4.5
                                               4.7
PEAK
        188.6
               186.6
                      191.8
                               0.3
                                       4.5
                                               4.7
                MWB
                      MWC
                            МѠЗР
                                  MVARA MVARB MVARC
                                                    MVAR3P
          MWA
DEMAND IN
           0.0
                0.0
                      0.0
                             0.0
                                  0.0
                                         0.0
                                               0.0
                                                     0.0
PEAK IN
           0.0
                0.0
                      0.0
                            0.0
                                   0.0
                                         0.0
                                               0.0
                                                     0.0
DEMAND OUT
           2.2
                2.2
                      2.2
                             6.6
                                   0.3
                                         0.3
                                               0.3
                                                     0.9
PEAK OUT
           3.1
                 3.1
                       3.1
                             9.3
                                   0.4
                                         0.4
                                               0.4
                                                     1.2
LAST DEMAND RESET 01/27/97 15:31:51.238 LAST PEAK RESET 01/27/97 15:31:56.239
=>
=>
                          -----
```

Reset the accumulated demand values using the MET RD command. Reset the peak demand values using the MET RP command. For more information on demand metering, see Demand Metering in Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions.

MET E-Energy Metering

The MET E command displays the following quantities:

Energy	$MWh_{\scriptscriptstyle A,B,C}$	Single-phase megawatt hours (in and out; wye-connected voltage inputs only)
	MWh _{3P}	Three-phase megawatt hours (in and out)
	MVARh _{A,B,C}	Single-phase megavar hours (in and out; wye-connected voltage inputs only)
	$MVARh_{3P}$	Three-phase megavar hours (in and out)
Reset Time		Last time the energy meter was reset

To view energy metering values, enter the command:

=>MET E <ENTER>

The output from an SEL-351R with three-phase wye-connected voltage inputs is shown:

	=>MET	E <enter></enter>	. 							
i	RECLOS FEEDER				Date:	02/01/97	/ Time:	15:11:24	4.056	
	IN OUT	MWhA 0.0 36.0	MWhB 0.0 36.6	MWhC 0.0 36.7	MWh3P 0.0 109.2	MVARhA 0.0 5.1	MVARhB 0.0 5.2	MVARhC 0.0 5.3	MVARh3P 0.0 15.6	
	LAST R			30.7 31:28.864		5.1	5.2	5.5	15.0	
	=>									

Reset the energy values using the **MET RE** command. For more information on energy metering, see *Energy Metering* in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions*.

MET M-Maximum/Minimum Metering

The MET M command displays the maximum and minimum values of the following quantities:

Currents	$I_{A,B,C,N}$	Input currents (A primary)
	I	Residual ground current (A primary; IG =3I0 = IA + IB + IC)
Voltages	V _{A,B,C,S}	Wye-connected voltage inputs (kV primary)
Power	MW _{3P}	Three-phase megawatts
	MVAR _{3P}	Three-phase megavars
Reset Time	51	Last time the maximum/minimum meter was reset

To view maximum/minimum metering values, enter the command:

=>MET M <ENTER>

The output from an SEL-351R with three-phase wye-connected voltage inputs is shown:

ECLOSER			Date:	02/01/97	Time: 1	5:16:00.239
	Max	Date	Time	Min	Date	Time
A(A)	196.8	02/01/97	15:00:42.574	30.0	02/01/97	14:51:02.391
B(A)	195.0	02/01/97	15:05:19.558	31.8	02/01/97	14:50:55.536
C(A)	200.4	02/01/97	15:00:42.578	52.2	02/01/97	14:51:02.332
N(A)	42.6	02/01/97	14:51:02.328	42.6	02/01/97	14:51:02.328
G(A)	42.0	02/01/97	14:50:55.294	42.0	02/01/97	14:50:55.294
A(kV)	11.7	02/01/97	15:01:01.576	3.4	02/01/97	15:00:42.545
B(kV)	11.7	02/01/97	15:00:42.937	2.4	02/01/97	15:00:42.541
C(kV)	11.7	02/01/97	15:00:42.578	3.1	02/01/97	15:00:42.545
S(kV)	11.7	02/01/97	15:01:01.576	3.4	02/01/97	15:00:42.545
W3P	6.9	02/01/97	15:00:44.095	0.4	02/01/97	15:00:42.545
VAR3P	1.0	02/01/97	15:00:42.578	0.1	02/01/97	15:00:42.545

Reset the maximum/minimum values using the **MET RM** command. All values will display RESET until new maximum/minimum values are recorded. For more information on maximum/minimum metering, see *Maximum/Minimum Metering* in *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions.*

QUI Command (Quit Access Level)

The QUI command returns the control to Access Level 0.

To return to Access Level 0, enter the command:

=>QUI <ENTER>

The SEL-351R sets the port access level to 0 and responds:

```
RECLOSER R1 Date: 03/05/97 Time: 08:55:33.986
FEEDER 2101
-
```

The "=" prompt indicates the control is back in Access Level 0.

The QUI command terminates the SEL Distributed Port Switch Protocol (LMD) connection if it is established [see *Appendix C: SEL Distributed Port Switch Protocol* for details on SEL Distributed Port Switch Protocol (LMD)].

SER Command (Sequential Events Recorder Report)

Use the SER command to view the Sequential Events Recorder report. For more information on SER reports, see *Section 12: Standard Event Reports and SER*.

SHO Command (Show/View Settings)

Use the SHO command to view "regular" settings, EZ recloser control settings, global settings, SELOGIC control equations settings, serial port settings, sequential events recorder (SER) settings, and text label settings. Below are the SHO command options.

SHO n	Show "regular" settings for settings group n. n specifies the settings group (1, 2, 3, 4, 5, or 6); n defaults to the active settings group if not listed.
SHO EZ n	Show EZ recloser control settings for settings group n . n specifies the settings group (1, 2, 3, 4, 5, or 6); n defaults to the active settings group if not listed.
SHO FZ	Show EZ global settings.
SHO G	Show global settings.
SHO L n	Show SELOGIC control equation settings for settings group n . n specifies the settings group (1, 2, 3, 4, 5, or 6); n defaults to the active settings group if not listed.
SHO P n	Show serial port settings. n specifies the port (1, 2, 3, or F); n defaults to the active port if not listed.
SHO R	Show sequential events recorder (SER) settings.
SHO T	Show text label settings for the front panel display points.

Also, see Table 9.1 in *Section 9: Setting the SEL-351R Recloser Control* for settings sheet references.

You may append a setting name to each of the commands to specify the first setting to display (e.g., **SHO 1 E50P** displays the setting Group 1 control settings starting with setting E50P). The default is the first setting.

The SHO commands display only the enabled settings. To display all settings, including disabled/hidden settings, append an **A** to the SHO command (e.g., **SHO 1 A**).

Below are sample SHOWSET commands for the SEL-351R showing all the <u>factory default</u> <u>settings</u>. Settings groups 1 through 6 have the same settings for SHO n, SHO EZ n, and SHO L n.

```
=>SHO <ENTER>
Group 1
Group Settings:
RID =RECLOSER R1
                                     TID =FFFDFR 2101
CTR = 1000.0 CTRN = 1000.0 PTR = 100.0
                                                 PTRS = 100.0
Z1MAG = 32.10
                 Z1ANG = 68.86
                 ZOANG = 72.47
ZOMAG = 95.70
                                  11
                                      = 4.84
E50P = 6
                 E50N = 6
                                  E50G = 6
                                                   E50Q = N
                                  E51G = 2
                                                   E51Q = N
E51P = 2
                 E51N = 2
E32 = N
                 ELOAD = N
                                  ESOTF = N
                                                   EVOLT = Y
E25 = N
                 EFLOC = N
                                  ELOP = N
                                                   ECOMM = N
E81
     = 6
                 E79 = 4
                                  ESV = 16
EDEM = THM
50P1P = 0FF
                                  50P3P = 0FF
                 50P2P = 0FF
                                                   50P4P = 0.40
50P5P = 0FF
                 50P6P = 0.40
67P1D = 0.00
                 67P2D = 0.00
                                  67P3D = 0.00
                                                   67P4D = 0.00
                 50PP2P= OFF
50PP1P= OFF
                                  50PP3P= OFF
                                                   50PP4P= OFF
50N1P = 0FF
                 50N2P = OFF
                                  50N3P = 0FF
                                                   50N4P = OFF
50N5P = OFF
                 50N6P = 0FF
Press RETURN to continue
67N1D = 0.00
                 67N2D = 0.00
                                  67N3D = 0.00
                                                   67N4D = 0.00
50G1P = 0FF
                 50G2P = 0FF
                                  50G3P = 0FF
                                                   50G4P = 0FF
50G5P = 0FF
                 50G6P = 0.10
67G1D = 0.00
                 67G2D = 0.00
                                  67G3D = 0.00
                                                   67G4D = 0.00
51P1P = 0.40
                 51P1C = A
                                  51P1TD= 1.00
51P1CT= 0.00
                 51P1MR= 0.00
51P2P = 0.40
                 51P2C = C
                                  51P2TD= 1.00
                 51P2MR= 0.00
51P2CT= 0.00
51N1P = OFF
                 51N1C = 1
                                  51N1TD= 1.00
                 51N1MR= 0.00
51N1CT= 0.00
51N2P = OFF
                 51N2C = 13
                                  51N2TD= 1.00
51N2CT= 0.00
                 51N2MR= 0.00
51G1P = 0.10
                 51G1C = 1
                                  51G1TD= 1.00
51G1CT= 0.00
                 51G1MR= 0.00
51G2P = 0.10
                 51G2C = 13
                                  51G2TD= 1.00
51G2CT= 0.00
                 51G2MR= 0.00
27P1P = OFF
                 27P2P = OFF
                                  59P1P = 104.0
                                                  59P2P = 0FF
59N1P = OFF
                 59N2P = OFF
                                  59QP = OFF
                                                   59V1P = OFF
27SP = OFF
59PP = OFF
                 59S1P = OFF
                                  59S2P = OFF
                                                   27PP = OFF
Press RETURN to continue
27B81P= 80.0
                 81D1P = OFF
                                  81D1D = 6.00
                 81D2D = 2.00
                                  81D3P = OFF
81D2P = OFF
                                                   81D3D = 2.00
81D4P = OFF
                 81D4D = 2.00
                                  81D5P = OFF
                                                   81D5D = 2.00
                 81D6D = 2.00
81D6P = OFF
790I1 = 300.00
                790I2 = 600.00
                                 79013 = 600.00
                                                  790I4 = 0.00
79RSD = 1800.00 79RSLD= 600.00
                                 79CLSD= 900.00
DMTC = 5PDEMP = OFF
                 NDEMP = OFF
                                  GDFMP = OFF
                                                   ODFMP = OFF
TDURD = 12.00
                 CFD = 60.00
                                  3POD = 1.50
                                                   50LP = 0.05
SV1PU = 0.00
                 SV1D0 = 0.00
                                  SV2PU = 0.00
                                                   SV2D0 = 0.00
SV3PU = 0.00
                 SV3D0 = 0.00
                                  SV4PU = 0.00
                                                   SV4D0 = 0.00
SV5PU = 0.00
                 SV5D0 = 0.00
                                  SV6PU = 0.00
                                                   SV6D0 = 0.00
                                        Continued on Next Page
```

		Continued f	om Previous Page	
SV7PU = 900.00	SV7D0 = 0.00	SV8PU = 0.00	SV8D0 = 0.00	
SV9PU = 900.00	SV9D0 = 0.00	SV10PU= 0.00	SV10D0= 0.00	
SV11PU= 900.00	SV11D0= 0.00	SV12PU= 0.00	SV12DO= 0.00	
SV13PU= 0.00	SV13D0= 0.00	SV14PU= 0.00	SV14D0= 0.00	
SV15PU= 0.00	SV15D0= 0.00	SV16PU= 0.00	SV16D0= 0.00	
)PPH = 2)PLKSF= 0FF	OPGR = 2	OPLKPH= 4	OPLKGR= 4	
ILKGR= OFF	HITRPH= OFF ECOLDP = N	HITRGR= OFF ECOLDG = N	HILKPH= OFF RPPH = N	
Press RETURN to	continue			
RPGR = N	RPSEF = N	ESEQ = N	PRECED= N	
=>				
∍>>SHO EZ <entef EZ Group 1</entef 				
Control Identifi	er (30 chars)		= RECLOSER R1	
Circuit Identifi			= FEEDER 2101	
CT Ratio (1-600			= 1000	
PT Ratio (1-100			= 100	
	se (OFF,100.00-3		= 400.00	
	and (OFF,5.00-31		= 100.00	
	(OFF,5.00-159.9	9 A pri.)	= OFF	
ast curve - pha			- 4	
ast curve - gro	o,recloser or us	er curve)	= A	
-	5,recloser or us	er curve)	= 1	
elay curve – ph	nase			
OFF,U1-U5,C1-C5 elay curve - gr	5,recloser or us	er curve)	- C	
	5,recloser or us	er curve)	= 13	
	ise fast curve (= 2	
	ound fast curve		= 2	
perations to lo	ockout - phase (DFF,2-5)	= 4	
perations to lo	ockout - ground	(OFF,2-5)	= 4	
	1 (0-999999.00	-	= 300.00	
	2 (0-999999.00	-	= 600.00	
Reclose interval	3 (0-999999.00	cycles)	= 600.00	
ress RETURN to			1000.00	
		999999.00 cycles)	= 1800.00	
	lockout (0-9999	-	= 600.00	
	time (OFF,O-999) ve - phase (Y/N	-	= 900.00 = N	
	rve – pnase (Y/N rve – ground (Y/I		= N = N	
	irve – phase (Y/I		= N = N	
	irve - ground (Y		= N	
	ip – phase (Y/N)		= N	
	ip - ground (Y/N)	= N	
ligh current loc	ckout - phase (Y	/N)	= N	
ligh current loc	ckout - ground ('	Y/N)	= N	
Cold load pickup	o scheme (Y/N)		= N	
Sequence coordir	nation (Y/N)		= N	
	oadshedding (Y/		= N	
			F	
Inderfrequency I Demand meter tim	e constant (5,1)	0,15,30,60 min)	= 5	

	=>>SH0 FZ <enter></enter>	
ł	Global EZ Settings:	
1	System Frequency (50,60 Hz)	= 60
÷.	Phase Rotation (ABC,ACB)	= ABC
	Recloser Wear Monitor (AUTO,Y,N)	= AUTO
÷.	Recloser type (OIL,VAC1,VAC2)	= 0IL
÷	Interrupt rating (500-20000 A pri.)	= 6000
1	Reset trip-latched LEDs on close (Y,Y1,N,N1)	= Υ
÷	True three-phase voltage connected (Y,N)	= N
1	Battery Amp-hours (6.5-20.0)	= 8.0
÷.	% Battery capacity for sleep (0–100)	= 20
	Turn on the 12 V power (Y,N)	= N
	=>>	

If the relay is an SEL-351R-2, the display includes the phantom voltage setting.

```
_____
=>>SHO FZ <ENTER>
Global EZ Settings:
System Frequency (50,60 Hz)
                                              = 60
Phase Rotation (ABC, ACB)
                                              = ABC
Recloser Wear Monitor (AUTO,Y,N)
                                              = AUTO
Recloser type (OIL,VAC1,VAC2)
                                              = 0IL
                                              = 6000
Interrupt rating (500-20000 A pri.)
Reset trip-latched LEDs on close (Y,Y1,N,N1)
                                              = Y
                                              = N
True three-phase voltage connected (Y,N)
                                              = 0FF
Phantom voltages from (VA,VB,VC,VAB,VBC,VCA,OFF)
                                              = 8.0
Battery Amp-hours (6.5-20.0)
% Battery capacity for sleep (0-100)
                                              = 20
Turn on the 12 V power (Y,N)
                                              = N
=>>
                             =>>SHO G <ENTER>
Global Settings:
TGR = 0.00
              NFREQ = 60
                            PHROT = ABC
DATE_F= MDY
              FP_T0 = 15
              PRE = 4
LER = 15
IN101D= 0.50
              IN102D= 0.50
                            IN103D= 0.50
                                          IN104D= 0.50
IN105D= 0.50
              IN106D= 0.50
EBMON = Y
              COSP1 = 10000
                            COSP2 = 20
                                           COSP3 = 20
KASP1 = 0.1
LED11L= N
                            KASP3 = 6.0LED13L = N
              KASP2 = 6.0
LED12L= N
                                          LED14L= Y
LED15L= Y
              LED16L= Y
                            LED17L= Y
                                           LED18L= N
                            LED24L = Y
PB9D = 0.00
                                           LED25L= Y
LED19L= N
              LED20L= N
                                           3PVOLT= N
RSTLED= Y
              PB8D = 0.00
EZGRPS= 2
              AMPHR = 8.0
                            SLPCAP= 20
                                           0N12V = N
ABAUD = 2400
              CHWAKE=ABCD
=>>
```

If the relay is an SEL-351R-2, the display includes the phantom voltage setting.

```
=>>SHO G <ENTER>
Global Settings:
                          PHROT = ABC
TGR = 0.00
             NFREQ = 60
DATE_F= MDY
              FP_{T0} = 15
LER = 15
             PRE = 4
IN101D= 0.50
             IN102D= 0.50
                         IN103D= 0.50
                                       IN104D= 0.50
IN105D= 0.50 IN106D= 0.50
            COSP1 = 10000
EBMON = Y
                                        COSP3 = 20
                          COSP2 = 20
KASP1 = 0.1
             KASP2 = 6.0
                           KASP3 = 6.0
            LED12L= N
LED11L= N
                           LED13L= N
                                        LED14L= Y
LED15L= Y
            LED16L= Y
                           LED17L= Y
                                        LED18L= N
LED19L= N
             LED20L= N
                                         LED25L= Y
                           LED24L= Y
            PB8D = 0.00
                         PB9D = 0.00
RSTLED= Y
         PHANTV = 0.00
3PVOLT= N
EZGRPS= 2 AMPHR = 8.0
ABAUD = 2400 CHWAKE=ABCD
                                       0N12V = N
                          SLPCAP= 20
\Rightarrow
_____
```

If the relay is an SEL-351R-2, this command also displays RST9–RST16, SET9–SET16, DP9–DP16, SC11–SC8I, SC1D–SC8D, and SC1R–SC8R.

```
_____
=>>SHO | <FNTER>
SELogic group 1
SELogic Control Equations:
    =51P1T + 51P2T + 51G1T + 51G2T + 51N1T + 51N2T + 67P2T + 67G2T
TR
      + 67N2T + 67N3T + 81D1T + PB9 + 0C
TRCOMM=0
TRSOTF=0
DTT =0
ULTR =!52A
PT1 =0
L0G1 =0
PT2
    =0
L0G2 =0
ΒT
    =0
52A =SW1 * !CLOSE
   =PB8 * LT4 * LT7 + CC * LT7
CL
ULCL =TRIP + !PINF*SW1 + !(LT7 + CLOSE) + !(LT4 + CLOSE + CC + 79CY)
79RI =TRIP
79RIS =52A + 79CY
79DTL =67N3T * OLS + (67P1 + 67G1 + 67N1) * TRIP + (!LT2 + !LT7) * (TRIP + !52A)
     + SV16 + PB9 + OC + 81D1T
                              Continued on Next Page
```

```
_____
                                  Continued from Previous Page
Press RETURN to continue
79DLS =79L0
79SKP =0
79STL =TRIP
79BRS =51P1 + 51P2 + 51G1 + 51G2 + 51N1 + 51N2 + 67N3 + TRIP
79SEQ =79RS * SEQC * (51P1 + 51G1 + 51N1)
79CLS =59A1 * !NOBATT * BCBOK * !DTFAIL
SET1 =PB1 * !LT1 * LT4
RST1 =PB1 * LT1 * LT4
SET2 =PB2 * !LT2 * LT4
RST2 =PB2 * LT2 * LT4 + !(79RS + 79CY + 79L0)
SET3 =PB3 * !LT3 * LT4
RST3 = PB3 * LT3 * LT4
SET4 =PB5 * !LT4
RST4 =PB5 * LT4
SET5 =PB6 * !LT5 * LT4
RST5 =PB6 * LT5 * LT4
SET6 = PB7 * !LT6 * LT4
RST6 = PB7 * LT6 * LT4
SET7 =1
RST7 =0
Press RETURN to continue
SET8 =0
RST8 =0
67P1TC=HLP
67P2TC=HTP
67P3TC=1
67P4TC=1
67N1TC=HLG * LT1
67N2TC=HTG * LT1
67N3TC=LT1 * !(51P1 + 51P2 + 51G1 + 51G2 + 51N1 + 51N2) * (!SV12 + SV12
       * 50G5 + SV12 * 50N5)
67N4TC=1
67G1TC=HLG * LT1
67G2TC=HTG * LT1
67G3TC=1
67G4TC=1
67Q1TC=1
67Q2TC=1
67Q3TC=1
67Q4TC=1
51P1TC=!SV8 * OCP
Press RETURN to continue
51N1TC=!SV10 * OCG * LT1
51G1TC=!SV10 * OCG * LT1
51P2TC=!SV8 + SV8 * 50P5
51N2TC=(!SV10 + SV10 * 50G5 + SV10 * 50N5) * LT1
                                    Continued on Next Page
```

Continued from Previous Page 51G2TC=(!SV10 + SV10 * 50G5) * LT1 51QTC =1 SV1 =0 SV2 =0 SV3 =0 SV4 =0 SV5 =52A * (SV8 + SV10 + SV12) * (RPP + RPG + RPS) SV6 = !52A * (79L0 + !79RS * !79CY * !79L0) * (CLP + CLG) =52A * !50P6 * SV8 SV7 SV8 =(SV8 + SV6T) * !(SV7T + SV5T * RPP + !CLP) SV9 =52A * !50G6 * !50N6 * SV10 SV10 =(SV10 + SV6T) * !(SV9T + SV5T * RPG + !CLG) SV11 =52A * !50N4 * SV12 SV12 =(SV12 + SV6T) * !(SV11T + SV5T * RPS + !CLG) SV13 =51P1T + 51P2T + 51G1T + 51G2T + 51N1T + 51N2T + 67P2T + 67G2T + 67N2T Press RETURN to continue SV14 =50G6 + 50N6 + 51N1 + 51N2 SV15 =/SV13 * (OLG * GTP * SV14 + OLG * !GTP * SV14 * !50P6 + OLP * !GTP * 50P6 + 0LP * GTP * 50P6 * !SV14) SV16 =SV15 + SV13 * OLP * OLG RCTR =TRIP RCCL =CLOSE 0UT101=0 0UT102=0 0UT103=0 0UT104=0 0UT105=0 0UT106=0 0UT107=0 LED1 =LT1 LED2 =LT2 LED3 =0 LED4 =!SG1 LED5 =!LT4 LED6 =0 LED7 =0 Press RETURN to continue LED8 =52A LED9 =!52A * PINBD LED11 =!DISCHG LED12 =NOBATT + !BCBOK + DTFAIL LED13 = !LT7LED14 =TRIP LED15 =51P1T + 51G1T + 51N1T LED16 =67P2T + 67G2T + 67N2T LED17 =81D1T LED18 =79RS LED19 =79CY LED20 =79L0 LED24 =50G6 + 50N6 + 51N1 + 51N2 LED25 =67N3T DP1 =0 DP2 =0DP3 =0 =0 DP4 DP5 =0 DP6 =0Continued on Next Page ------------

Continued from Previous Page Press RETURN to continue DP7 =0 DP8 =0 =PB4 * LT4 * !SG1 SS1 SS2 =PB4 * LT4 * SG1 SS3 =0 SS4 =0 =0 SS5 SS6 =0 ER =/51P1 + /51P2 + /51G1 + /51G2 + /51N1 + /51N2 + /67N3 FAULT =51P1 + 51P2 + 51G1 + 51G2 + 51N1 + 51N2 + 67N3 BSYNCH=52A CLMON =0 BKMON =TRIP E32IV =1 Press RETURN to continue TMB1A = 0TMB2A = 0TMB3A = 0TMB4A = 0TMB5A = 0TMB6A = 0TMB7A = 0TMB8A = 0TMB1B = 0 $\mathsf{TMB2B} = 0$ TMB3B = 0TMB4B = 0TMB5B = 0TMB6B = 0TMB7B = 0TMB8B = 0=>> _ _ _ _ _ _ _ _ _ _ =>>SHO P <ENTER> Port 3 PROTO = SELSPEED = 2400BITS = 8 PARITY= N STOP = 1 $T_{0UT} = 15$ AUTO = NRTSCTS= N FASTOP= N - - - - - - - - - - - - -=>>SHO R <ENTER> Sequential Events Recorder trigger lists: SER1 =TRIP 51P1T 51P2T 51G1T 51G2T 51N1T 51N2T 67P2T 67G2T 67N2T 67N3T 81D1T PB9 67P1 67G1 67N1 SER2 =CLOSE 52A CF 79CY 79LO 79RS SHO SH1 SH2 SH3 SH4 PB8 59A1 SER3 =TOSLP BCBOK DTFAIL Load Profile settings: (Only available in firmware versions 1 and greater) LDLIST=0 LDAR = 5=>> _ _ _

```
=>>SHO T <ENTER>
Text Labels:
                              SLB1 =
                                           PLB1 =
NLB1 =
                  CLB1 =
                                           PLB2 =
NLB2 =
                  CLB2 =
                              SLB2 =
NLB3 =
                  CLB3 =
                              SLB3 =
                                           PLB3 =
NLB4 =
                  CLB4 =
                              SLB4 =
                                           PLB4 =
NLB5
    -
                  CLB5 =
                              SLB5 =
                                           PLB5 =
                              SLB6 =
NLB6 =
                  CLB6 =
                                           PLB6 =
    -
                  CLB7 =
                              SLB7 =
                                           PLB7 =
NLB7
                  CLB8 =
    =
                              SLB8 =
                                           PLB8 =
NLB8
DP1_1 =
                   DP1_0 =
DP2_1 =
                   DP2_0 =
                   DP3 0 =
DP3 1 =
DP4_1 =
                   DP4_0 =
DP5 1 =
                   DP5 0 =
DP6_1 =
                   DP6_0 =
DP7_1 =
                   DP7_0 =
DP8_1 =
                   DP8_0 =
79LL =SET RECLOSURES 79SL =RECLOSE COUNT
=>>
```

If the relay is an SEL-351R-2, this command also displays NLB9–NLB16, CLB9–CLB16, SLB9–SLB16, PLB9–PLB16, DP9_1–DP16_1, and DP9_0–DP16_0.

STA Command (Recloser Control Self-Test Status)

The STA command displays the status report, showing the recloser control self-test information.

To view a status report, enter the command:

=>STA n <ENTER>

where **n** is an optional parameter to specify the number of times (1-32767) to repeat the status display. If **n** is not specified, the status report is displayed once. A typical SEL-351R status report output appears as shown below:

```
_____
=>STA <ENTER>
RECLOSER R1
                                Date: 02/01/98
                                              Time: 12:21:48.226
FEEDER 2101
FID=SEL-351R-R101-Vf-D980415
                               CID=0A59
                                               BCBFID=R100
SELF TESTS
W=Warn
        F=Fail
     ΙA
            IΒ
                   IC
                          ΙN
                                  VA
                                         VB
                                                VC
                                                       ٧S
                                                              MOF
0S
     - 0
            -0
                   - 0
                          -0
                                  -1
                                         0
                                                - 0
                                                       - 0
                                                              - 0
      +5V_PS +5V_REG -5V_REG +12V_PS -12V_PS +15V_PS -15V_PS
PS
              5.03 -4.98
                          11.97 -12.01 15.07 -15.12
      5.06
       TEMP
              RAM
                     ROM
                            A/D
                                   CR_RAM EEPROM IO_BRD
      39.5
              0K
                     0K
                            0K
                                   0K
                                          0K
                                                 0K
      MODE
                    HRS_LFT 5V_PSBC 12V_AUX VBAT
             %CAP
                                                 IBAT
BATT
      CHARGE
             93
                    XX:XX
                             5.02
                                    0.00 30.59
                                                 14
Relay Enabled
Battery Charger Board Enabled
=>
```

STA Command Row and Column Definitions

FID	FID is the firm	nware identifier string. It identifies the firmware revision.
CID	CID is the rec	loser control firmware checksum identifier.
BCBFID	BCBFID is the	e firmware checksum of the battery charger board firmware.
W (Warning) o	r F (Failure) is	appended to the values to indicate an out-of-tolerance condition.
OS	and voltage ch	displays measured dc offset voltages in millivolts for the current nannels. The MOF (master) status is the dc offset in the A/D grounded input is selected.
PS	PS = Power S	upply; displays power supply output voltages in dc volts.
TEMP	Displays the in	nternal relay module temperature in degrees Celsius.
RAM, ROM, C	CR_RAM (critic	cal RAM), and EEPROM
		verify the relay module memory component status. The columns memory is functioning properly, or FAIL if the memory area has
A/D	Analog to Dig	ital convert status.
IO_BRD	Extra I/O boar	rd status.
BATT	Displays statu	s and mode of the battery charger board:
MODE	Mode that bat	tery charger is in:
	• CHARGE	Battery is charged to 90 percent or more, charging at low charge rate.
	• HICHRG	Battery is charged to less than 90 percent, charging at high charge rate.
	• DISCHG	Battery is discharging but is charged to greater than SLPCAP setting.
	• DISTST	Battery discharge test at 1 Amp for 6 seconds duration.
	• NOBATT	Battery is not present.
	• FAIL	Battery monitor/charger has failed or communications with the battery monitor/charger are permanently interrupted.
	• NOMSG	Communications with the battery monitor/charger are temporarily suspended after power up, settings change, or active settings group change.
%CAP	The %CAP co independent o	lumn shows battery charge level in percent battery capacity f temperature.
HRS_LFT	sleep mode in	Γ column shows the amount of time left until the control is put into hours and minutes when in discharge mode. If the control is in a charge mode, this column reads "XX:XX".
5V_PSBC	Voltage level	in Vdc of the 5-volt supply on the battery charger board.
12V_AUX	Voltage level	in Vdc of the 12-volt auxiliary port supply.

- VBAT Voltage level of the 24-volt battery in Vdc.
- IBAT Charge or discharge current in milliamps dc. If current is discharging, value is preceded by a minus sign "–"; if current is charging, value is displayed with no preceding character.

The battery charger board status does not affect the status of the recloser control. The battery charger board is disabled if its microprocessor is no longer responding or if a battery discharge test fails. Please refer to *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions*.

TAR Command (Display Relay Word Bit Status)

The TAR command displays the status of front-panel target LEDs or recloser control elements, whether they are asserted or deasserted. The elements are represented as Relay Word bits and are listed in rows of eight, called Relay Word rows. Refer to Table 10.6. (note the correspondence with Table 9.3).

A Relay Word bit is either at a logical 1 (asserted) or a logical 0 (deasserted). Relay Word bits are used in SELOGIC control equations. See *Section 9: Setting the SEL-351R Recloser Control* and *Appendix G: Setting SELOGIC*[®] *Control Equations*.

The TAR command does not remap the front-panel target LEDs, as is done in some previous SEL relays. However, the execution of the equivalent TAR command via the front-panel display does remap the bottom row of the front-panel target LEDs (see OTHER pushbutton in the *Pushbutton Primary Functions* subsection in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*).

The TAR command options are:

TAR n k	Shows Relay Word row number \mathbf{n} (0–44). \mathbf{k} is an optional parameter to specify the number of times (1–32767) to repeat the Relay Word row display. If \mathbf{k} is not specified, the Relay Word row is displayed once.
TAR name k	Shows Relay Word row containing Relay Word bit name (e.g., TAR 50C displays Relay Word Row 5 containing the Relay Word bit 50C). Valid names are shown in Table 10.6. \mathbf{k} is an optional parameter to specify the number of times (1–32767) to repeat the Relay Word row display. If \mathbf{k} is not specified, the Relay Word row is displayed once.
TAR R	Clears front-panel tripping target LEDs TRIP, FAST CURVE, HIGH CURRENT, 81, A, B, C, G, and SEF. Unlatches the trip logic for testing purposes (see Figure 5.1). Shows Relay Word Row 0. Note: The TAR R command cannot reset the latched target
	LEDs if a TRIP condition is present.

TAR 0 (Front-Panel	LED10 (EN)	LED11 (AC	LED12 (BATTERY	LED13 (HOT LINE	LED14 (TRIP)	LED15 (FAST	LED16 (HIGH	LED 17 (81)
LEDs)	LED10	SUPPLY)	PROBLEM)	TAG)	LEDAA	CURVE)	CURRENT)	LED25
TAR 1 (Front-Panel LEDs)	LED18 (RESET)	LED19 (CYCLE)	LED20 (LOCKOUT)	LED21 (A)	LED22 (B)	LED23 (C)	LED24 (G)	LED25 (SEF)
TAR 2	50A1	50B1	50C1	50A2	50B2	50C2	50A3	50B3
TAR 3	50C3	50A4	50B4	50C4	50AB1	50BC1	50CA1	50AB2
TAR 4	50BC2	50CA2	50AB3	50BC3	50CA3	50AB4	50BC4	50CA4
TAR 5	50A	50B	50C	51P1	51P1T	51P1R	51N1	51N1T
TAR 6	51N1R	51G1	51G1T	51G1R	51P2	51P2T	51P2R	51N2
TAR 7	51N2T	51N2R	51G2	51G2T	51G2R	51Q	51QT	51QR
TAR 8	50P1	50P2	50P3	50P4	50N1	50N2	50N3	50N4
TAR 9	67P1	67P2	67P3	67P4	67N1	67N2	67N3	67N4
TAR 10	67P1T	67P2T	67P3T	67P4T	67N1T	67N2T	67N3T	67N4T
TAR 11	50G1	50G2	50G3	50G4	50Q1	50Q2	50Q3	50Q4
TAR 12	67G1	67G2	67G3	67G4	67Q1	67Q2	67Q3	67Q4
TAR 13	67G1T	67G2T	67G3T	67G4T	67Q1T	67Q2T	67Q3T	67Q4T
TAR 14	50P5	50P6	50N5	50N6	50G5	50G6	50Q5	50Q6
TAR 15	50QF	50QR	50GF	50GR	32VE	32QGE	32NE	32QE
TAR 16	F32P	R32P	F32Q	R32Q	F32QG	R32QG	F32V	R32V
TAR 17	F32N	R32N	32PF	32PR	32QF	32QR	32GF	32GR
TAR 18	27A1	27B1	27C1	27A2	27B2	27C2	59A1	59B1
TAR 19	59C1	59A2	59B2	59C2	27AB	27BC	27CA	59AB
TAR 20	59BC	59CA	59N1	59N2	59Q	59V1	27S	59S1
TAR 21	59S2	59VP	59VS	SF	25A1	25A2	3P27	3P59
TAR 22	81D1	81D2	81D3	81D4	81D5	81D6	27B81	50L
TAR 23	81D1T	81D2T	81D3T	81D4T	81D5T	81D6T	VPOLV	LOP
TAR 24	RCTR	RCCL	IN106	IN105	IN104	IN103	IN102	IN101
TAR 25	LB1	LB2	LB3	LB4	LB5	LB6	LB7	LB8
TAR 26	RB1	RB2	RB3	RB4	RB5	RB6	RB7	RB8
TAR 27	LT1	LT2	LT3	LT4	LT5	LT6	LT7	LT8
TAR 28	SV1	SV2	SV3	SV4	SV1T	SV2T	SV3T	SV4T
TAR 29	SV5	SV6	SV7	SV8	SV5T	SV6T	SV7T	SV8T
TAR 30	SV9	SV10	SV11	SV12	SV9T	SV10T	SV11T	SV12T
TAR 31	SV13	SV14	SV15	SV16	SV13T	SV14T	SV15T	SV16T
TAR 32	79RS	79CY	79LO	SH0	SH1	SH2	SH3	SH4
TAR 33	CLOSE	CF	RCSF	OPTMN	RSTMN	FSA	FSB	FSC
TAR 34	BCW	50P32	NOBATT	59VA	TRGTR	52A	COMMT	CHRGG
TAR 35	SG1	SG2	SG3	SG4	SG5	SG6	ZLOUT	ZLIN
TAR 36	ZLOAD	BCWA	BCWB	BCWC	BCBOK	TOSLP	DISTST	DTFAIL
TAR 37	ALARM	OUT107	OUT106	OUT105	OUT104	OUT103	OUT102	OUT101
TAR 38	3PO	SOTFE	Z3RB	KEY	EKEY	ECTT	WFC	PT
TAR 39	PTRX2	PTRX	PTRX1	UBB1	UBB2	UBB	Z3XT	DSTRT
TAR 40	NSTRT	STOP	BTX	TRIP	OC	CC	CLG	NOMSG

Table 10.6: SEL-351R Recloser Control Relay Word and Its Correspondence to TAR Command

m + p - 44	(=====	(=) 10.0	(= 0.00	(= 0.00	2221		GD D1 (0.0.0.1
TAR 41	67P2S	67N2S	67G2S	67Q2S	PDEM	NDEM	GDEM	QDEM
TAR 42	PB1	PB2	PB3	PB4	PB5	PB6	PB7	PB8
TAR 43	PB9	PINBD	PINC	PINE	PINF	SW1	DISCHG	LED9
TAR 44	LED1	LED2	LED3	LED4	LED5	LED6	LED7	LED8
TAR 45	OCP	OCG	OLP	OLG	OLS	HTP	HTG	HLP
TAR 46	HLG	CLP	RPP	RPG	RPS	SEQC	3PHV	GTP
TAR 47 ¹	RMB8A	RMB7A	RMB6A	RMB5A	RMB4A	RMB3A	RMB2A	RMB1A
TAR 48 ¹	TMB8A	TMB7A	TMB6A	TMB5A	TMB4A	TMB3A	TMB2A	TMB1A
TAR 49 ¹	RMB8B	RMB7B	RMB6B	RMB5B	RMB4B	RMB3B	RMB2B	RMB1B
TAR 50¹	TMB8B	TMB7B	TMB6B	TMB5B	TMB4B	TMB3B	TMB2B	TMB1B
TAR 51 ¹	LBOKB	CBADB	RBADB	ROKB	LBOKA	CBADA	RBADA	ROKA
TAR 52	*	*	*	*	*	*	*	*
TAR 53	*	*	*	*	*	*	*	*
TAR 54	*	*	*	*	*	*	*	*
TAR 55	*	*	*	*	*	*	*	*
TAR 56	50NF	50NR	32NF	32NR	*	*	DCONN	DDATA
TAR 57	*	*	*	*	*	*	*	*
TAR 58²	LB9	LB10	LB11	LB12	LB13	LB14	LB15	LB16
TAR 59²	RB9	RB10	RB11	RB12	RB13	RB14	RB15	RB16
TAR 60²	LT9	LT10	LT11	LT12	LT13	LT14	LT15	LT16

¹ MIRRORED BITS elements only valid in firmware versions 1 or greater.

² Only available in SEL-351R-2 Relay versions or greater.

Command TAR SH1 10 is executed in the following example:

79RS	79CY	79L0	SH0	SH1	SH2	SH3	SH4		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
)	0	1	0	0	1	0	0		
79RS	79CY	79L0	SH0	SH1	SH2	SH3	SH4		
)	0	1	0	0	1	0	0		
0	0	1	0	0	1	0	0		

Note that Relay Word row containing the SH1 bit is repeated 10 times. In this example, the reclosing function is in the Lockout State (79LO = logical 1) and the shot is at shot = 2 (SH2 = logical 1). Command TAR 32 will report the same data since the SH1 bit is in Row 32 of the Relay Word.

TIM Command (View/Change Time)

TIM displays the recloser control clock. To set the clock, type **TIM** and the desired setting, then press **<ENTER>**. Separate the hours, minutes, and seconds with colons, semicolons, spaces, commas, or slashes. For example, to set the clock to 23:30:00, enter:

```
=>TIM 23:30:00 <ENTER>
23:30:00
=>
```

TRI Command (Trigger Event Report)

Issue the TRI (Trigger) command to generate an event report:

```
=>TRI <ENTER>
Triggered
=>
```

=>

If the serial port AUTO setting = Y, the control sends the summary event report:

```
RECLOSER R1 Date: 02/02/98 Time: 12:57:01.737
FEEDER 2101
Event: TRIG Location: $$$$$$$ Shot: 2 Frequency: 60.00
Targets: 11000000 10000000
Currents (A Pri), ABCNGQ: 235 236 237 0 2 0
=>>
```

See Section 12: Standard Event Reports and SER for more information on event reports.

Access Level E (EZ) Commands

Access Level E commands primarily allow you to test the battery and set EZ settings and global EZ settings. All Access Level 1 commands can also be executed from Access Level E. The screen prompt is: =+>

BTT Command (Battery Test)

You can use the BTT command to view the results of the last battery discharge test, and the time remaining until the next automatic battery discharge test or you can force an immediate battery discharge test. The command format is:

BTT x

where: x is blank or "NOW".

If no other parameters are entered with the BTT command, the control checks the status of the battery charger board by looking at the BCBOK Relay Word element. If this element is not asserted, the battery charger board has failed and the control responds:

```
=>>BTT <ENTER>
Battery Charger Board FAILED
=>>
```

If there is no battery present, the control responds:

```
=>>BTT <ENTER>
Battery not present or failed
=>>
```

If a battery test is in progress when the BTT command is executed, the control responds:

```
=>>BTT <ENTER>
Battery test in progress
=>>
```

If the last battery passed the last load test, the control responds as follows:

```
=>>BTT <ENTER>
Battery test is: OK
Time until next battery test: XX hours
```

If the battery failed the previous load test, the DTFAIL Relay Word element is asserted and the response is:

```
=>>BTT <ENTER>
Battery test is: FAILED
Time until next battery test: XX hours
```

If the BTT NOW command is entered, the control forces an immediate battery test and shows the status of the battery test:

```
=>>BTT NOW<ENTER>
Battery test initiated. Duration 5 seconds
.
.
.
.
.
.
.
.
Battery test state is: OK
=>>
```

Each period is displayed at about one second intervals as the control times through the rest.

See the Battery System Monitor subsection in Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions.

SET EZ and SET FZ Commands (Change EZ Settings)

The **SET EZ n** command allows you to change the EZ recloser control settings for settings group n (n specifies the settings group—1, 2, 3, 4, 5, or 6). These settings are the traditional recloser control setting (e.g., min. trip, fast curve, delay curve, operations to lockout settings) and other special recloser control scheme logic (e.g., cold load pickup, sequence coordination logic).

The EZ recloser control settings for a given setting group n override and change a number of the "regular" settings in the same setting group n (set with the SET n command, in Access Level 2) if the group number n is encompassed by the global setting EZGRPS (set with the SET G command, in Access Level 2)—see Table 1.1. Global setting EZGRPS enables the EZ settings in the encompassed settings groups.

For example, if EZGRPS = 2 (the factory setting), then you can make EZ recloser control settings for settings groups 1 (main settings) and 2 (alternate settings) with the SET EZ 1 and SET EZ 2 commands, respectively. The EZ recloser control settings for settings groups 1 and 2 also override a number of the "regular" settings in the respective setting group. If EZGRPS = 2, the EZ settings for settings groups 3 through 6 cannot be made, nor are the EZ settings for setti

The **SET FZ** command allows you to change the EZ global settings. The EZ global settings also override a number of the "regular" global settings (set with the SET G command, in Access Level 2) if global setting EZGRPS > 0—see end of Table 1.1.

Access Level B Commands

Access Level B commands primarily allow you to operate control parameters and output contacts without allowing you access to change settings. All Access Level 1 and Access Level E commands can also be executed from Access Level B. The screen prompt is: ==>

BRE n Command (Preload/Reset Breaker Wear)

Use the **BRE W** command to preload breaker/recloser contact wear. For example, to preload the breaker/recloser wear to 25 percent, 28 percent, and 24 percent for the respective phases, issue the following command.

```
==>BRE W <ENTER>
Breaker Wear Percent Preload
A-phase % = 13 ? 25 <ENTER>
B-phase % = 13 ? 28 <ENTER>
C-phase % = 13 ? 24 <ENTER>
Are you sure (Y/N) ? Y <ENTER>
RECLOSER R1
                                    Date: 02/02/98 Time: 08:44:33.920
FEEDER 2101
Cntrl Trips=
                11
       40.7 IB=
                     40.8 IC=
                                        40.8 kA
IA=
Ext Trips=
              3
IA=
          0.8 IB=
                          0.9 IC=
                                        1.1 kA
Percent wear: A= 25 B= 28 C= 24
LAST RESET 01/27/97 15:32:59
==>
```

Use the **BRE W A** command to preload breaker/recloser contact wear and trip operation counters. For example, to preload the breaker/recloser wear to 8 percent, 7 percent, and 10 percent for the respective phases and preload some trip operation counters, issue the command below.

```
-->BRE W A <ENTER>
Breaker Wear Percent Preload
A-phase % =
             4 ? 8 <ENTER>
B-phase % =
              4 ? 7 <ENTER>
C-phase % = 6 ? 10 <ENTER>
Trip Counter Preload
Ext Trips=
              3 ?
Cntrl Trips= 9 ? 16
A-phase Trips= 6 ? 14
B-phase Trips= 5 ? 9
C-phase Trips= 8 ? 10
EF/G Trips= 7 ? 12
SEF Trips= 0 ?
Are you sure (Y/N) ? Y <ENTER>
RECLOSER R1
                                  Date: 02/02/99
                                                 Time: 08:44:33.920
FEEDER 2101
Cntrl Trips= 16
       40.7 IB= 41.4 IC=
                                     53.8 kA
 IA=
           3
Ext Trips=
          0.8 IB=
                       0.9 IC=
IA=
                                      1.1 kA
Percent wear: A= 8 B= 7 C= 10
A-phase Trips= 14
B-phase Trips=
                9
C-phase Trips= 10
EF/G Trips= 12
SEE Trips= 0
SEF Trips=
               0
LAST RESET 12/27/98 15:32:59
==>
```

_ _ _ _ _ _ _ _ _ _ _ _ _

.

Use the BRE R command to reset the breaker/recloser contact wear monitor and trip operation counters:

==>BRE R <ENTER> RECLOSER R1 Date: 02/03/99 Time: 08:44:20.802 FEEDER 2101 16 Ctrl Trips= IA= 40.7 IB= 41.4 IC= 53.8 kA Ext Trips= 3 0.8 IB= 0.9 IC= 1.1 kA IA= Percent wear: A= 8 B= 7 C= 10 A-phase Trips= 14 B-phase Trips= 9 C-phase Trips= 10 EF/G Trips= 12 SEF Trips= 0 LAST RESET 12/27/98 15:32:59 Reset Trip Counters and Accumulated Currents/Wear Are you sure (Y/N) ? Y <ENTER> RECLOSER R1 Date: 02/03/99 Time: 08:44:33.920 FEEDER 2101 Cntrl Trips= 0 IA= 0.0 IB= 0.0 IC= 0.0 kA Ext Trips= 0 0.0 IB= 0.0 IC= 0.0 kA IA= Percent wear: A= 0 B= 0 C= 0 A-phase Trips= 0 B-phase Trips= 0 C-phase Trips= 0 EF/G Trips= 0 SEF Trips= 0 LAST RESET 02/03/99 08:44:28 _____

See Breaker/Recloser Contact Wear Monitor in Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions for further details on the breaker monitor.

CLO Command (Close Breaker)

The CLO (CLOSE) command asserts Relay Word bit CC for $\frac{1}{4}$ cycle when it is executed. You can program Relay Word bit CC into the CL SELOGIC control equation (see Figure 1.20) to assert the CLOSE Relay Word bit, and, in turn, to assert an output (RCCL = CLOSE; see Figure 7.30) contact to close a recloser.

See the *Close Logic* subsection in *Section 6: Close and Reclose Logic* for more information concerning Relay Word bit CC and its recommended use.

To issue the CLO command, enter the following:

```
=>>CLO <ENTER>
Close Breaker (Y/N) ? Y <ENTER>
Are you sure (Y/N) ? Y <ENTER>
=>>
```

Typing N <ENTER> after either of the above prompts will abort the command.

The CLO command is supervised by the main board Breaker jumper (see Table 2.4 and Table 2.5). If the Breaker jumper is not in place (Breaker jumper = OFF), the control does not execute the CLO command and responds:

```
Aborted: No Breaker Jumper
```

GRO n Command (Change Active Setting Group)

The GRO **n** command changes the active setting group to setting Group **n**. For example, to change to settings Group 2, enter the following:

```
--->GRO 2 <ENTER>
Change to Group 2
Are you sure (Y/N) ? Y <ENTER>
Active Group = 2
--->
```

The SEL-351R switches to Group 2 and pulses the ALARM contact. The control automatically outputs the Group Switch Report on all ports with the serial port setting AUTO = Y. An example Group Switch Report is shown below:

```
-->
RECLOSER R1 Date: 02/02/97 Time: 09:40:34.611
FEEDER 2101
Active Group = 2
-->
```

The SELOGIC control equations Group Selector Switch elements, SS1 through SS6, have priority over the GRO command in active setting group control. If any of the Group Selector Switch elements, SS1 through SS6, are asserted (logical 1), the Group n Command has no affect on the active group setting. For example, assume setting Group 1 is the active setting group and the SS1 setting is asserted to logical 1 (e.g., SS1 = IN1 and optoisolated input IN1 is asserted). An attempt to change to setting Group 2 with the GRO 2 command is not accepted:

```
==>GRO 2 <ENTER>
No group change (see manual)
Active Group = 1
==>
```

For more information on setting group selection, see *Multiple Setting Groups* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*.

OPE Command (Open Breaker)

The OPE (OPEN) command asserts Relay Word bit OC for 1/4 cycle when it is executed.. You can program Relay Word bit OC into the TR (Trip conditions) SELOGIC control equation (see Figure 1.19) to assert the TRIP Relay Word bit, and, in turn, to assert an output (RCTR = TRIP; see Figure 7.30) to trip a recloser.

See the *Trip Logic* subsection in *Section 5: Trip and Target Logic* for more information concerning Relay Word bit OC and its recommended use.

To issue the OPE command, enter the following:

```
=>>OPE <ENTER>
Open Breaker (Y/N) ? Y <ENTER>
Are you sure (Y/N) ? Y <ENTER>
=>>
```

Typing N **<ENTER>** after either of the above prompts will abort the command.

The OPE command is supervised by the main board Breaker jumper (see Table 2.4 and Table 2.5). If the Breaker jumper is not in place (Breaker jumper = OFF), the SEL-351R does not execute the OPE command and responds:

```
Aborted: No Breaker Jumper
```

PUL Command (Pulse Output Contact)

The PUL command allows you to pulse any of the output contacts for a specified length of time. The command format is:

PUL x y

where: x is the output name (e.g. OUT107, ALARM—see Figure 7.27).
y is the pulse duration (1–30) in seconds. If y is not specified, the pulse duration defaults to 1 second.

To pulse OUT101 for 5 seconds:

```
=>>PUL OUT101 5 <ENTER>
Are you sure (Y/N) ? Y <ENTER>
=>>
```

If the response to the "Are you sure (Y/N) ?" prompt is "N" or "n", the command is aborted.

The PUL command is supervised by the main board Breaker jumper (see Table 2.4 and Table 2.5). If the Breaker is not in place (Breaker jumper = OFF), the recloser control does not execute the PUL command and responds:

Aborted: No Breaker Jumper

The control generates an event report if any of the OUT101 through OUT107 contacts are pulsed. The PULSE command is primarily used for testing purposes.

Access Level 2 Commands

Access Level 2 commands allow unlimited access to recloser control settings, parameters, and output contacts. All Access Level 1, Access Level E (EZ), and Access Level B commands are available from Access Level 2. The screen prompt for Access Level 2 is: =>>

CON Command (Control Remote Bit)

The CON command is a two-step command that allows you to control Relay Word bits RB1 through RB8 (RB1 through RB16 in the SEL-351R-2). See Row 26 and Row 59 in Table 9.4. At the Access Level 2 prompt, type CON, a space, and the number of the remote bit you wish to control, 1–8 (1–16 in the SEL-351R-2). The control responds by repeating your command followed by a colon. At the colon, type the Control subcommand you wish to perform (see Table 10.7).

The following example shows the steps necessary to pulse Remote Bit 5 (RB5):

```
=>>CON 5 <ENTER>
CONTROL RB5: PRB 5 <ENTER>
=>>
```

You must enter the same remote bit number in both steps in the command. If the bit numbers do not match, the recloser control responds "Invalid Command."

Table 10.7:	SEL-351R	Recloser	Control R	Remote Bit	Control	Subcommands
-------------	----------	----------	------------------	------------	---------	-------------

Subcommand	Description
SRB n	Set Remote Bit n ("ON" position)
CRB n	Clear Remote Bit n ("OFF" position)
PRB n	Pulse Remote Bit n for 1/4 cycle ("MOMENTARY" position)

See *Remote Control Switches* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for more information.

COP m n Command (Copy Setting Group)

You can copy EZ, Group, and SELOGIC control equation settings from setting Group **m** to setting Group **n** with the COPY command, **COP m n**. Setting group numbers range from 1 to 6. After entering settings into one setting group with the SET and SET L commands, copy them to the other groups with the COP command. Use the SET, SET EZ, and SET L commands to modify the copied settings. The ALARM output pulses if you copy settings into the active group.

For example, to copy settings from Group 1 to Group 3 issue the following command:

```
=>>COP 1 3 <ENTER>
Copy 1 to 3
Are you sure (Y/N) ? Y <ENTER>
Please wait...
Settings copied
=>>
```

LOO Command (Loop Back)

The LOO (LOOP) command is used for testing the MIRRORED BITS communications channel. For more information on MIRRORED BITS, see *Appendix I: MIRRORED BITS*TM. With the transmitter of the communications channel physically looped back to the receiver, the MIRRORED BITS addressing will be wrong and ROK will be deasserted. The LOO command tells the MIRRORED BITS software to temporarily expect to see its own data looped back as its input. In this mode, LBOK will assert if error-free data is received.

PAS Command (View/Change Passwords)

You can use the Password command, PAS, to inspect or change existing passwords. The factory default passwords for Access Levels 1, E, B, and 2 are:

Access Level	Factory Default Password
1	OTTER
E	DAKOTA
В	EDITH
2	TAIL

To inspect passwords, type:

```
=>>PAS <ENTER>
1:OTTER
E:DAKOTA
B:EDITH
2:TAIL
=>>
```

To change the password for Access Level 1 to Ot3579, enter the following:

```
=>>PAS 1 Ot3579 <ENTER>
Set
=>>
```

Similarly, PAS E, PAS B, and PAS 2 can be used to change the Level E, Level B, and Level 2 passwords, respectively.

Passwords may include up to six characters. Valid characters consist of: 'A–Z', 'a–z', '0–9', '-', and '.'. Upper- and lower-case letters are treated as different characters. Strong passwords consist of six characters, with at least one special character or digit and mixed case sensitivity,

but do not form a name, date, acronym, or word. Passwords formed in this manner are less susceptible to password guessing and automated attacks. Examples of valid, distinct passwords include:

Ot3579 A24.68 Ih2dcs 4u-Iwg .351r.

After entering new passwords, type **PAS <ENTER>** to inspect them. Make sure they are what you intended, and record the new passwords.

If the passwords are lost or you wish to operate the recloser control without password protection, put the main board Password jumper in place (Password jumper = ON). Refer to Table 2.4 and Table 2.5 for Password jumper information.

If you wish to disable password protection for a specific access level [even if Password jumper is not in place (Password jumper = OFF)], simply set the password to DISABLE. For example, **PAS 1 DISABLE** disables password protection for Level 1.

SET Command (Change Settings)

Use the SET command to change "regular" settings, EZ recloser control settings, global settings, SELOGIC control equations settings, serial port settings, sequential events recorder (SER) settings, and text label settings. Below are the SET command options.

SET n	Change "regular" settings for settings group n. n specifies the settings group $(1, 2, 3, 4, 5, \text{ or } 6)$; n defaults to the active settings group if not listed.
SET EZ n	Change EZ recloser control settings for settings group n. n specifies the settings group (1, 2, 3, 4, 5, or 6); n defaults to the active settings group if not listed. See additional information in subsection <i>Access Level E (EZ)</i> <i>Commands</i> .
SET FZ	Change EZ global settings. See additional information in subsection <i>Access Level E (EZ) Commands</i> .
SET G	Change global settings.
SET L n	Change SELOGIC control equation settings for settings group n. n specifies the settings group (1, 2, 3, 4, 5, or 6); n defaults to the active settings group if not listed.
SET P n	Change serial port settings. n specifies the port (1, 2, 3, or F); n defaults to the active port if not listed.
SET R	Change sequential events recorder (SER) settings.
SET T	Change text label settings for the front panel display points.

The SET EZ n and SET FZ commands are available from Access Level E (EZ), too.

See Table 9.1 for settings sheet references. See subsection *Settings Changes via the Serial Port* in *Section 9: Setting the SEL-351R Recloser Control* for more setting command information.

STA C Command (Status Clear Command)

The recloser control latches all mainboard self-test warnings and failures in order to capture transient out-of-tolerance conditions. To reset the self-test status, use the **STA C** command:

=>>STA C <ENTER>

The control responds:

Reboot the relay and clear status Are you sure (Y/N) ?	
If you select "N" or "n", the control displays:	
Canceled	
and aborts the command.	
If you select "Y", the control displays:	
Rebooting the relay	

The control then restarts (just like powering down, then powering up control), and all diagnostics are rerun before the recloser control is enabled.

Refer to Table 13.1 in *Section 13: Testing and Troubleshooting* for self-test thresholds and corrective actions.

VER Command (Show Version Information)

The Version command, **VER**, allows you to view information about the recloser control battery charger board firmware versions. The response to the VER command has the following format:

FID=SEL-351R-Rxxx-Vx-Dxxxxxx 0351R-x Wye Integral Battery Charger x A Nominal phase current, x.xx A Nominal neutral current *Protocol Options* xxxx SELBOOT checksum *Status*

The first line shows the control's firmware version (Rxxx) and the firmware's date code (Dxxxxx). The second line shows the control dash number (e.g. 0), the connections of the potential transformers (Wye) and that the power supply is an Integral Battery Charger system. The third line shows the nominal current of the phase currents and the neutral current channel. Line four shows the serial communications protocol (Standard or DNP). The fifth line shows any other installed options available. The sixth line shows the status of the SELBOOT bootstrap program.

A typical VER command response is shown below:

=>>VER <ENTER> FID=SEL351R-R101-V0-D980415 0351R-0 Wye Integral Battery Charger 1 A Nominal phase current, 0.05 A Nominal neutral current DNP Standard 263D SELboot checksum OK

SEL-351R RECLOSER CONTROL COMMAND SUMMARY

Access Level O Command	From Access Level 0, you can go to Access Level 1 or to Access Level E (EZ). The Access Level 0 screen prompt is: =
ACC	Enter Access Level 1. If the main board password jumper is not in place, the control prompts you for the Access Level 1 password to enter Access Level 1.
EZA	Enter Access Level E (EZ). If the main board password jumper is not in place, the control prompts you for the Access Level E password to enter Access Level E.
Access Level 1 <u>Command</u>	The Access Level 1 commands primarily allow you to look at information (e.g., settings, metering), not change it. The Access Level 1 screen prompt is: =>
2AC	Enter Access Level 2. If the main board password jumper is not in place, the control prompts you for the Access Level 2 password to enter Access Level 2.
BAC	Enter Access Level B (Breaker). If the main board password jumper is not in place, the control prompts you for the Access Level B password.
BRE	Display breaker/recloser contact wear report.
BRE A	Display breaker/recloser contact wear and trip operation report.
COM p L COM p n COM p m n COM p d1 COM p n	Show a long format communications summary report for all events on MIRRORED BITS [™] channel p (where p = A or B). Show a communications summary for latest n event on MIRRORED BITS channel p. Show a communications summary report for events n through m on MIRRORED BITS channel p. Show a communications summary report for events occurring on date d1 on MIRRORED BITS channel p. Show a communications summary for events occurring between dates d1 and d2 on MIRRORED
	BITS channel p. Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD)
COU k	Show the SELOGIC [®] counter values. Enter k for repeat count. (SEL-351R-2 only)
DAT DAT m/d/y DAT y/m/d	Show date. Enter date in this manner if Date Format setting $DATE_F = MDY$. Enter date in this manner if Date Format setting $DATE_F = YMD$.
EVE n EVE L n EVE R n EVE C n EVE XX f	Show event report number n with 1/4-cycle resolution. Show event report number n with 1/16-cycle resolution. Show raw event report number n with 1/16-cycle resolution. Show compressed event report number n for use with SEL-5601 Analytic Assistant. Append parameter f to any of the above EVE commands, where f is A or D. Use A to show only the Analog portion of the event report. Use D to show only the digital protection and control portion of the event report.
EZA	Enter Access Level E (EZ). If the main board password jumper is not in place, the control prompts you for the Access Level E password to enter Access Level E.
GRO	Display active settings group number.
HIS n	Show brief summary of the n latest event reports.

HIS C	Clear the brief summary and corresponding event reports.
IRI	Force synchronization of internal control clock to IRIG-B time-code input.
LDP n LDP m n LDP d1 LDP d1 d2	Show the latest n rows in the Load Profile report. Show rows m through n in the Load Profile report. Show rows in the Load Profile report from date d1. Show rows in the Load Profile report from date d1 to d2. Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).
MET k MET X k MET D MET E MET M	Display instantaneous metering data. Enter k for repeat count. Display same as MET command with phase-to-phase voltages. Enter k for repeat count. Display demand and peak demand data. Select MET RD or MET RP to reset. Display energy metering data. Select MET RE to reset. Display maximum/minimum metering data. Select MET RM to reset.
QUI	Quit. Returns to Access Level 0. Terminates SEL Distributed Port Switch Protocol (LMD) protocol connection.
SER n SER m n SER d1 SER d1 d2	Show the latest n rows in the Sequential Events Recorder (SER) event report. Show rows m through n in the Sequential Events Recorder (SER) event report. Show rows in the Sequential Events Recorder (SER) event report from date d1. Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2. Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).
SHO n SHO EZ n SHO FZ SHO G SHO L n SHO P n SHO R SHO T	Show "regular" settings for settings group n (n = 1–6). Show EZ recloser control settings for settings group n (n = 1–6). Show EZ global settings. Show global settings. Show SELOGIC control equation settings for settings group n (n = 1–6). Show port settings for port n (n = 1, 2, 3, F). Show Sequential Events Recorder (SER) settings. Show text label settings for front-panel display points and extra local control.
STA	Show recloser control self-test status.
TAR R TAR n k	Reset the front-panel tripping targets. Display Relay Word row. If $n = 0$ through 59, display row n. If n is an element name (e.g., 50A1) display the row containing element n. Enter k for repeat count.
TIM	Show or set time (24 hour time). Show time presently in the recloser control by entering just TIM. Example time 22:47:36 is entered with command TIM 22:47:36.
TRI	Trigger an event report.
Access Level E <u>Commands</u>	Access Level E (EZ) commands primarily allow you to set EZ settings and global EZ settings. All Access Level 1 commands can also be executed from Access Level E. The Access Level E screen prompt is: =+>
BTT BTT NOW	Display latest battery load test results and time remaining until next discharge test. Initiate battery load test immediately.
SET EZ n	Change EZ recloser control settings for settings group n ($n = 1-6$). EZ recloser control settings override and change a number of the "regular" settings made with the SET n command (Access Level 2).

SET FZ	Change EZ global settings. EZ global settings override and change a number of the global settings made with the SET G command (Access Level 2).				
Access Level B <u>Commands</u>	Access Level B commands primarily allow you to operate control parameters and output contacts. All Access Level 1 and Access Level E commands can also be executed from Access Level B. The screen prompt is: ==>				
BRE W	Preload breaker/recloser contact wear.				
BRE W A	Preload breaker/recloser contact wear and trip operation counters.				
BRE R	Reset breaker/recloser contact wear and trip operation counters.				
CLO	Close the recloser or circuit breaker.				
GRO n	Change active settings group to settings group $n (n = 1-6)$.				
OPE	Open the recloser or circuit breaker.				
PUL n k	Pulse output contact n (OUT101 - OUT107, ALARM) for k (1–30) seconds. Parameter n must be specified; k defaults to 1 if not specified.				
Access Level 2 <u>Commands</u>	Access Level 2 commands allow unlimited access to control settings, parameters, and output contacts. All Access Level 1, Access Level E, and Access Level B commands are available from Access Level 2. The screen prompt is: =>>				
CON n	Control Relay Word bit RBn, Remote Bit n where $n = 1-8$ ($n = 1-16$ in the SEL-351R-2).Execute CON n and the control responds: CONTROL RBn. Then reply with one of the following:SRB nset Remote Bit n (assert RBn).CRB nclear Remote Bit n (deassert RBn).PRB npulse Remote Bit n [assert RBn for 1/4 cycle].				
COP m n	Copy settings and logic equations from settings group m to settings group n.				
L00	Set MIRRORED BITS port to loopback.				
PAS	Show existing Access Level 1, E (EZ), B, and 2 passwords.				
PAS 1 xxxxxx PAS E xxxxxx	Change Access Level 1 password to xxxxx.				
PAS B xxxxxx	Change Access Level E (EZ) password to xxxxxx. Change Access Level B password to xxxxxx.				
PAS 2 xxxxxx	Change Access Level 2 password to xxxxxx.				
SET n SET G SET L n SET P n SET R SET T	Change "regular" settings for settings group n (n = 1–6). Change global settings. Change SELOGIC control equation settings for settings group n (n = 1–6). Change port settings for port n (n = 1, 2, 3, F). Change Sequential Events Recorder (SER) settings. Change text label settings for front-panel display and extra local control.				
STA C	Clears status warning or failure and reboots recloser control.				
VER	Show firmware version and options.				
Key Stroke Commands					

Cntrl - Q Cntrl - S Cntrl - X	Send XON command to restart communication port output previously halted by XOFF. Send XOFF command to pause communication port output. Send CANCEL command to abort current command and return to current access level prompt.
Key Stroke Commands When Using SET Command	
<enter> ^ <fntfr></fntfr></enter>	Retains setting and moves on to next setting.

^ <enter></enter>	Returns to previous setting.
< <enter></enter>	Returns to previous setting section.
> <enter></enter>	Skips to next setting section.
END <enter></enter>	Exits setting editing session, then prompts user to save settings.
Ctrl - X	Aborts setting editing session without saving changes.

TABLE OF CONTENTS

SECTION 11:	ADDITIONAL FRONT-PANEL INTERFACE DETAILS	11-1
Introduction		11-1
Functions U	nique to the Front-Panel Interface	11-1
Reclosi	ng Relay Shot Counter Screen	11-1
SE	L-351R Recloser Control Shot Counter Screen Operation (with factory	
	settings)	11-2
Extra L	ocal Control	11-3
Vie	ew Extra Local Control (with factory settings)	11-4
Op	erate Extra Local Control (example settings)	11-5
	cal Control State Retained When Relay Deenergized	
	ault Display	
	nal Rotating Default Display Example	

FIGURES

Figure 11.1: Local Control Switch (Configured as an	ON/OFF Switch 1	11-3
Figure 11.2: Local Control Switch (Configured as an	OFF/MOMENTARY Switch 1	11-3
Figure 11.3: Local Control Switch	Configured as an	ON/OFF/MOMENTARY Switch 1	11-4

SECTION 11: ADDITIONAL FRONT-PANEL INTERFACE DETAILS

INTRODUCTION

This section describes additional SEL-351R Recloser Control front-panel interface details not covered in the *Front-Panel Interface* section of the *SEL-351R Quick-Start Installation and User's Guide*.

FUNCTIONS UNIQUE TO THE FRONT-PANEL INTERFACE

Two front-panel primary functions do not have serial port command equivalents. These are:

- Reclosing relay shot counter screen (accessed via the OTHER pushbutton)
- Extra local control (accessed via the CNTRL pushbutton; this is not the control available via the operator control pushbuttons on the bottom half of the SEL-351R front panel)

Reclosing Relay Shot Counter Screen

Use this screen to see the progression of the shot counter during reclosing relay testing.

Access the reclosing relay shot counter screen via the OTHER pushbutton. The following screen appears:

Scroll down with the down arrow button and select function "79". Upon selecting function "79", the following screen appears (shown here with factory default settings):

If the reclosing function does not exist (see *Reclosing Relay* in *Section 6: Close and Reclose Logic*), the following screen appears:

No Reclosing set

The corresponding text label settings (shown with factory default settings) are:

79LL = SET RECLOSURES	(Last Shot Label—limited to 14 characters)
79SL = RECLOSE COUNT	(Shot Counter Label—limited to 14 characters)

These text label settings are set with the SET T command or viewed with the SHOWSET T command via the serial port [see *Section 9: Setting the SEL-351R Recloser Control* and *SHO Command (Show/View Settings)* in *Section 10: Serial Port Communications and Commands*].

The top numeral in the above example screen (SET RECLOSURES=3) corresponds to the "last shot" value, which is a function of the number of set open intervals. There are three set open intervals in the factory default settings, thus three reclosures (shots) are possible in a reclose sequence.

The bottom numeral in the above example screen [RECLOSE COUNT = 0 (or = 3)] corresponds to the "present shot" value. If the breaker is closed and the reclosing relay is reset (RESET LED on front panel is illuminated), RECLOSE COUNT = 0. If the breaker is open and the reclosing relay is locked out after a reclose sequence (LOCKOUT LED on front panel is illuminated), RECLOSE COUNT = 3.

SEL-351R Recloser Control Shot Counter Screen Operation (with factory settings)

With the recloser closed and the SEL-351R Recloser Control in the reset state (front-panel RESET LED illuminated), the shot counter screen appears as:

RECLOSE COUNT =0

The SEL-351R trips the recloser open and goes to the reclose cycle state (front-panel CYCLE LED illuminates). The shot counter screen still appears as:

The first open interval (79OI1 = 300) times out, the shot counter increments from 0 to 1, and the SEL-351R recloses the recloser. The shot counter screen shows the incremented shot counter:

SET RECL	OSURFS=3
021 11202	
RECLOSE	COUNT = 1
RECEOSE	000111 1

The SEL-351R trips the recloser open again. The shot counter screen still appears as:

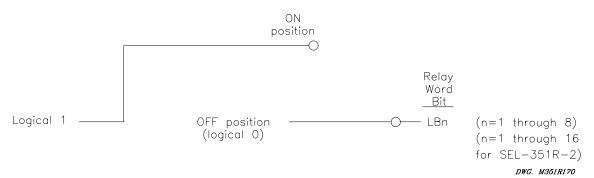
SET_RECLOSURES=3
RECLOSE COUNT =1

The second open interval (79OI2 = 600) times out, the shot counter increments from 1 to 2, and the SEL-351R recloses the recloser. The shot counter screen shows the incremented shot counter:

If the SEL-351R trips, recloses, then trips again, the SEL-351R goes to the lockout state (front-panel LOCKOUT LED illuminates). The shot counter screen then appears as:

SET RECLOSURES=3
RECLOSE COUNT =3

If the recloser is closed, the reset timer times out (79RSLD = 600), the SEL-351R goes to the reset state (front-panel LOCKOUT LED extinguishes and RESET LED illuminates), and the shot counter returns to 0. The shot counter screen appears as:


-		 _OSUR COUN	
	_ 0 .	 0001	

Extra Local Control

Use extra local control to enable/disable schemes, trip/close breakers, etc., via the front panel.

In more specific terms, local control asserts (sets to logical 1) or deasserts (sets to logical 0) what are called local bits LB1 through LB8 (LB1 through LB16 for the SEL-351R-2). These local bits are available as Relay Word bits and are used in SELOGIC[®] control equations (see Rows 25 and 58 in Table 9.4).

Local control can emulate the following switch types in Figure 11.1 through Figure 11.3.

Figure 11.1: Local Control Switch Configured as an ON/OFF Switch

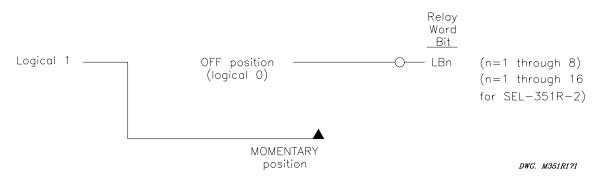


Figure 11.2: Local Control Switch Configured as an OFF/MOMENTARY Switch

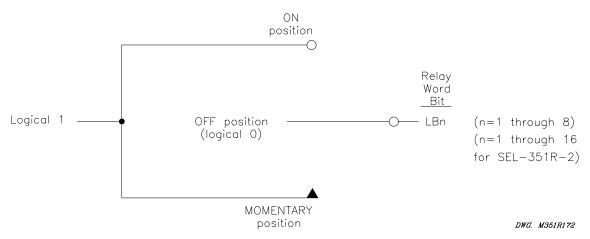
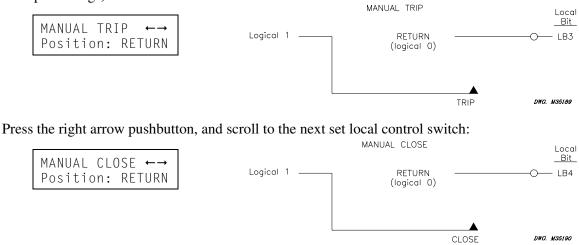


Figure 11.3: Local Control Switch Configured as an ON/OFF/MOMENTARY Switch


Local control switches are created by making corresponding switch position label settings. These text label settings are set with the SET T command or viewed with the SHO T command via the serial port [see Section 9: Setting the SEL-351R Recloser Control and SHO Command (Show/View Settings) in Section 10: Serial Port Communications and Commands]. See Local Control Switches in Section 7: Inputs, Outputs, Timers, and Other Control Logic for more information on local control.

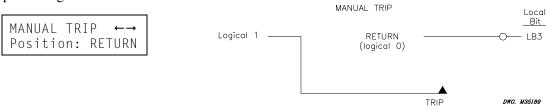
View Extra Local Control (with factory settings)

Access extra local control via the CNTRL pushbutton. If local control switches exist (i.e., corresponding switch position label settings were made), the following message displays with the rotating default display messages.

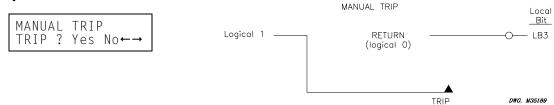
	CNTRL for Control
LXUIA	CONCLOT

Press the CNTRL pushbutton, and the first set local control switch displays (shown here with example settings):

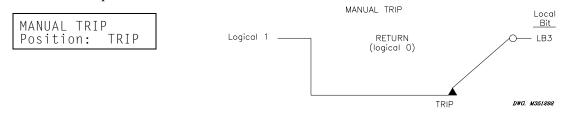
The MANUAL TRIP: RETURN/TRIP and MANUAL CLOSE: RETURN/CLOSE switches are both OFF/MOMENTARY switches (see Figure 11.2).


There are no more local control switches in the example settings. Press the right arrow pushbutton, and scroll to the "output contact testing" function:

```
Output Contact←→
Testing
```

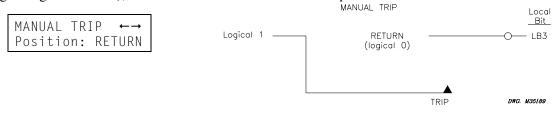

This front-panel function provides the same function as the serial port PUL command.

Operate Extra Local Control (example settings)


Press the right arrow pushbutton, and scroll back to the first set local control switch in the example settings:

Press the SELECT pushbutton, and the operate option for the displayed local control switch displays:

Scroll left with the left arrow button and then select "Yes". The display then shows the new local control switch position:

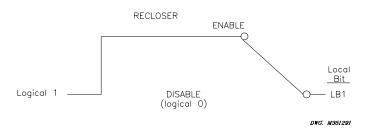

Because this is an OFF/MOMENTARY type switch, the MANUAL TRIP switch returns to the RETURN position after momentarily being in the TRIP position. Technically, the MANUAL TRIP switch (being an OFF/MOMENTARY type switch) is in the:

TRIP position for one processing interval (1/4 cycle; long enough to assert the corresponding local bit LB3 to logical 1).

and then returns to the:

RETURN position (local bit LB3 deasserts to logical 0 again).

On the display, the MANUAL TRIP switch is shown to be in the TRIP position for 2 seconds (long enough to be seen), and then it returns to the RETURN position:


The MANUAL CLOSE switch is an OFF/MOMENTARY type switch, like the MANUAL TRIP switch, and operates similarly.

See *Local Control Switches* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* for details on how local bit outputs LB3 and LB4 are set in SELOGIC control equation settings to respectively trip and close a circuit breaker.

Local Control State Retained When Relay Deenergized

Local bit states are stored in nonvolatile memory, so when power to the relay is turned off, the local bit states are retained.

For example, suppose the local control switch with local bit output LB1 is configured as an ON/OFF type switch (see Figure 11.1). Additionally, suppose it is used to enable/disable reclosing. If local bit LB1 is at logical 1, reclosing is enabled:

If power to the relay is turned off and then turned on again, local bit LB1 remains at logical 1, and reclosing is still enabled. This is akin to a traditional panel, where enabling/disabling of reclosing and other functions is accomplished by panel-mounted switches. If dc control voltage to the panel is lost and then restored again, the switch positions are still in place. If the reclosing switch is in the enable position (switch closed) before the power outage, it will be in the same position after the outage when power is restored.

See Drive-to-Lockout and Drive-to-Last Shot Settings (79DTL and 79DLS, respectively) in Section 6: Close and Reclose Logic for more information on setting 79DTL.

ROTATING DEFAULT DISPLAY

The channel IA, IB, IC, and IN current values (in A primary) display continually if no local control is operational (i.e., no corresponding switch position label settings were made) and no display point labels are enabled for display.

The "Press CNTRL for Extra Control" message displays in a "2 seconds per screen" rotation with the default metering screen if at least one local control switch is operational. It is a reminder of how to access the local control function. See the preceding discussion in this section and Local Control Switches in Section 7: Inputs, Outputs, Timers, and Other Control Logic for more information on local control.

IA=50 IB=50 IC=50 IN=0 ٨ If display point labels (e.g., "79 DISABLED" SCHWEITZER ENGINEERING LABORATORIES SEL and "BREAKER OPEN") are enabled for display, they also enter into the "2 seconds SEL-351R RECLOSER CONTROL Press CNTRL for o(::::)o Extra Control SERIAL PORT F A

SEL

စဏ္ဏာစ်

SERIAL PORT F

စဏ္ဏာစ်

SERIAL PORT F

SCHWEITZER ENGINEERING LABORATORIES

IB=50

IN=0

IB=50

IN=0

SEL-351R RECLOSER CONTROL

IA=50

IC=50

IA=50

IC=50

SEL SCHWEITZER ENGINEERING LABORATORIES

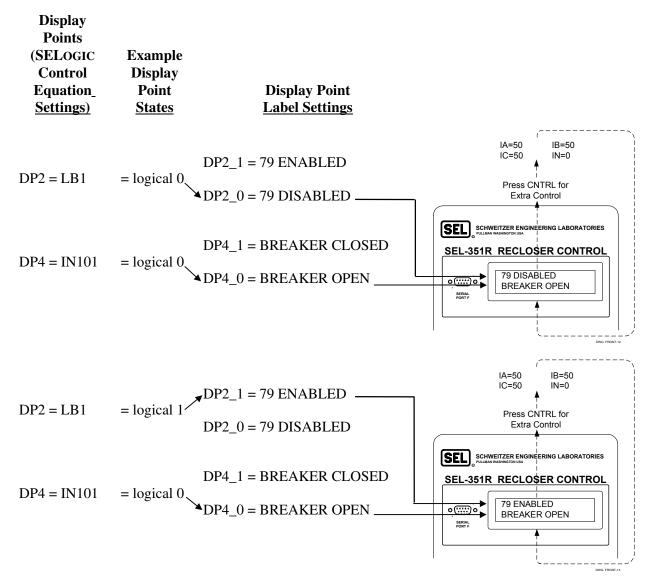
SEL-351R RECLO\$ER CONTROL

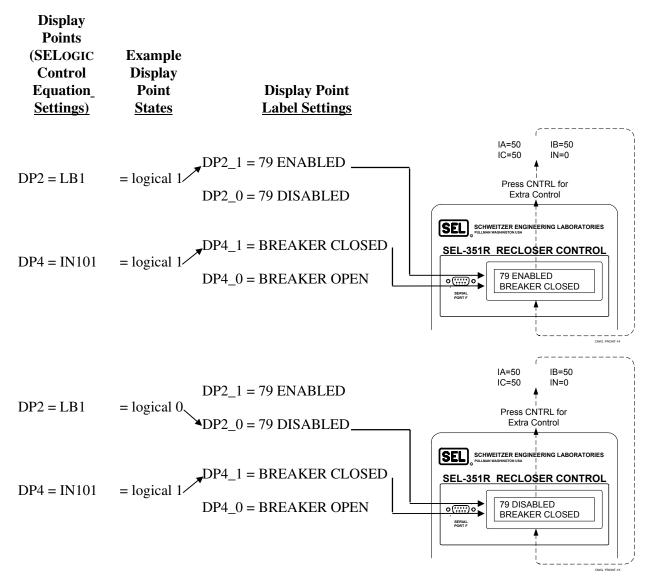
Extra Control

79 DISABLED BREAKER OPEN

Press CNTRL for

The following table and figures demonstrate the correspondence between changing display point states (e.g., DP2 and DP4) and enabled display point labels (DP2_1/DP2_0 and DP4_1/DP4_0, respectively). The display is on a 2-second rotation for each screen.


The display point example settings are:


per screen" rotation.

DP2 = LB1	(local bit LB1)
DP4 = IN101	(optoisolated input IN101)

DWG EPONT 11

Local bit LB1 is used as a recloser enable/disable in this example. Optoisolated input IN101 is used as a circuit breaker status input in this example (a 52a circuit breaker auxiliary contact is connected to input IN101; see *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers and Other Control Logic*).

In the preceding example, only two display points (DP2 and DP4) and their corresponding display point labels are set. If additional display points and corresponding display point labels are set, the additional enabled display point labels join the "2 seconds per screen" rotation on the front-panel display.

Display point label settings are set with the SET T command or viewed with the SHO T command via the serial port [see Section 9: Setting the SEL-351R Recloser Control and SHO Command (Show/View Settings) in Section 10: Serial Port Communications and Commands].

For more detailed information on the logic behind the rotating default display, see *Rotating Default Display* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*.

Additional Rotating Default Display Example

See Figure 5.17 and accompanying text in *Section 5: Trip and Target Logic* for an example of resetting a rotating default display with the TARGET RESET pushbutton.

TABLE OF CONTENTS

SECTION 12: STANDARD EVENT REPORTS AND SER 12-1

Introduction	12-1
Standard 15/30-Cycle Event Reports	12-1
Event Report Length (Settings LER and PRE)	12-1
Standard Event Report Triggering	12-2
Relay Word Bit TRIP	12-2
Programmable SELOGIC [®] Control Equation Setting ER	12-2
TRI (Trigger Event Report) and PUL (Pulse Output Contact) Commands	12-3
Standard Event Report Summary	12-3
Event Type	12-4
Fault Location	12-5
Targets	12-5
Currents	12-5
Retrieving Full-Length Standard Event Reports	12-5
Compressed ASCII Event Reports	12-6
Filtered and Unfiltered Event Reports	12-7
Clearing Standard Event Report Buffer	12-7
Standard Event Report Column Definitions	12-7
Current, Voltage, and Frequency Columns	12-8
Output, Input, Protection, and Control Columns	12-8
Sequential Events Recorder (SER) Report	. 12-21
SER Triggering	. 12-21
Making SER Trigger Settings	. 12-21
Retrieving SER Reports	. 12-22
Clearing SER Report	. 12-23
Example Standard 15-Cycle Event Report	. 12-23
Example Sequential Events Recorder (SER) Report	. 12-30

TABLES

Table 12.1:	Event Types	12-4
	Standard Event Report Current, Voltage, and Frequency Columns	
Table 12.3:	Output, Input, Protection, and Control Element Event Report Columns	12-9

FIGURES

Figure 12.1: Example Event Summary	12-4
Figure 12.2: Example Standard 15-Cycle Event Report 1/4-Cycle Resolution	12-27
Figure 12.3: Derivation of Event Report Current Values and RMS Current Values From	
Sampled Current Waveform	12-28
Figure 12.4: Derivation of Phasor RMS Current Values From Event Report Current Values	12-29
Figure 12.5: Example Sequential Events Recorder (SER) Event Report	12-30

INTRODUCTION

The SEL-351R Recloser Control offers two styles of event reports:

- Standard 15/30-cycle event reports
- Sequential Events Recorder (SER) Report

Resolution: 1 ms

Accuracy: +1/4 cycle

These event reports contain date, time, current, voltage, frequency, relay element, optoisolated input, output contact, and fault location information.

The control generates (triggers) standard 15/30-cycle event reports by fixed and programmable conditions. These reports show information for 15 or 30 continuous cycles. Up to twenty-eight 15-cycle or fourteen 30-cycle reports are stored in nonvolatile memory; if more reports are triggered, the newest event report overwrites the oldest event report. See Figure 12.2 for an example standard 15-cycle event report.

The control adds lines in the SER report for a change of state of a programmable condition. The SER lists date and time-stamped lines of information each time a programmed condition changes state. The control stores the latest 512 lines of the SER report in nonvolatile memory. If the report fills up, newer rows overwrite the oldest rows in the report. See Figure 12.5 for an example SER report.

STANDARD 15/30-CYCLE EVENT REPORTS

See Figure 12.2 for an example event report (Note: Figure 12.2 is on multiple pages).

Event Report Length (Settings LER and PRE)

The SEL-351R provides user-programmable event report length and prefault length. Event report length is either 15 or 30 cycles. Prefault length ranges from 1 to 29 cycles. Prefault length is the first part of the event report that precedes the event report triggering point.

Set the event report length with the Access Level 2 global (SET G) LER setting and the prefault length with the PRE setting. See the SET G command in Table 9.1 and corresponding Settings Sheet 20 of 28 in *Section 9: Setting the SEL-351R Recloser Control* for instructions on setting the LER and PRE settings.

Changing the LER setting erases all events stored in nonvolatile memory. Changing the PRE setting has no effect on the nonvolatile reports. The factory default settings are LER = 15 and PRE = 4.

Standard Event Report Triggering

The control triggers (generates) a standard event report when any of the following occur:

- Relay Word bit TRIP asserts
- Programmable SELOGIC[®] control equation setting ER asserts to logical 1
- TRI (Trigger Event Reports) serial port command executed
- Output contacts OUT101 through OUT107 pulsed via the serial port or front-panel PUL (Pulse Output Contact) command

Relay Word Bit TRIP

Refer to Figure 5.1. If Relay Word bit TRIP asserts to logical 1, an event report is generated automatically. Thus, any condition that causes a trip does <u>not</u> have to be entered in SELOGIC control equation setting ER.

For example, SELOGIC control equation trip setting TR is unsupervised. Any trip condition that asserts in setting TR causes the TRIP Relay Word bit to assert immediately. The factory setting for trip setting TR is:

$$\label{eq:transform} \begin{split} TR = & SV1 + 51P1T + 51P2T + 51G1T + 51G2T + 51N1T + 51N2T + 67P2T + 67G2T + \\ & 67N2T + 67N3T + 81D1T + PB9 + OC \end{split}$$

If any of the individual conditions assert, Relay Word bit TRIP asserts, and an event report is generated automatically. All of the 51xxT and 67xxT Relay Word bits represent time-delayed overcurrent tripping functions; 81D1T is a time-delayed underfrequency tripping function that is turned off in the factory default settings; PB9 is the front-panel control TRIP pushbutton; and OC is the serial port OPEN Command output. Because the TRIP function automatically triggers an event report, these conditions do <u>not</u> have to be entered in SELOGIC control equation Event Report trigger setting ER.

In the factory default settings, Relay Word bit TRIP (in Figure 5.1) is assigned to the RCTR SELOGIC control equation setting for tripping the recloser (e.g., SELOGIC control equation setting RCTR = TRIP; see Figure 7.30).

Programmable SELOGIC® Control Equation Setting ER

The programmable Access Level 2 (SET L) SELOGIC control equation event report trigger setting ER is set to trigger standard event reports for conditions other than trip conditions. When the ER function goes from logical 0 to logical 1, it generates an event report if the SEL-351R is not already generating a report that encompasses the new transition. The factory default ER setting is:

ER = /51P1 + /51P2 + /51G1 + /51G2 + /51N1 + /51N2 + /67N3

With this setting, the SEL-351R triggers an event on the pickup (rising edge) of any of the time-overcurrent elements, 51xx, or the pickup of the sensitive earth fault element 67N3.

Note the rising edge operator / in front of each of these elements. See *Appendix G: Setting SELOGIC*[®] *Control Equations* for more information on rising edge operators and SELOGIC control equations in general.

Rising edge operators are especially useful in generating an event report at fault inception and then generating another later if a breaker failure condition occurs. For example, at the inception of a ground fault, 51G1 picks up, generating an event report:

ER = ... + /51G1 + ... = logical 1 (for one processing interval)

Even though the 51G1 pickup indicator remains asserted for the duration of the ground fault, the rising edge operator, "/", in front of 51G1 (/51G1) causes setting ER to assert for only one processing interval.

Falling edge operators, "\", also may be used to generate event reports. See Figure G.2 in *Appendix G: Setting SELOGIC[®] Control Equations* for more information on falling edge operators.

TRI (Trigger Event Report) and PUL (Pulse Output Contact) Commands

The sole function of the serial port Trigger command, TRI, is to generate standard event reports, primarily for testing purposes.

The Pulse Output command, PUL, asserts the output contacts for testing purposes or for remote control. If output contact OUT101 through OUT107 asserts via the PUL command, the control automatically triggers a standard event report. The PUL command is available through serial port communication and the relay front-panel CNTRL pushbutton.

See Section 10: Serial Port Communications and Commands and the Pushbutton Primary Functions subsection (CNTRL pushbutton) in the Front-Panel Interface section of the SEL-351R Quick-Start Installation and User's Guide for more information on the TRI and PUL commands.

Standard Event Report Summary

Each time the control generates a standard event report, it also generates a corresponding event summary (see Figure 12.1). Event summaries contain the following information:

- Relay and terminal identifiers (settings RID and TID)
- Date and time when the event was triggered
- Event type
- Fault location
- Recloser shot count at the trigger time
- System frequency at the front of the event report
- Front-panel fault type targets at the time of trip
- Phase (IA, IB, IC), neutral ground (IN), calculated residual ground ($I_G = 3I_0$), and negative-sequence ($3I_2$) currents

The control includes the event summary in the standard event report. The identifiers, date, and time information are at the top of the standard event report, and the other information follows. See Figure 12.2.

The example event summary in Figure 12.1 corresponds to the full-length standard 15-cycle event report in Figure 12.2 (**Note**: Figure 12.2 is on multiple pages):

```
      RECLOSER R1
      Date: 06/01/98
      Time: 12:23:52.527

      FEEDER 2101
      Event: AG T Location: 3.89
      Shot: 0
      Frequency: 60.01

      Targets: 11001100 01010010
      Currents (A Pri), ABCNGQ: 991
      160
      159
      0
      986
      984
```

Figure 12.1: Example Event Summary

The control sends event summaries to all serial ports with setting AUTO = Y each time an event triggers.

The latest twenty-eight 15-cycle or fourteen 30-cycle event summaries are stored in nonvolatile memory and are accessed by the HIS (Event Summaries/History) command.

Event Type

The "Event:" field shows the event type. The possible event types and their descriptions are shown in the table below. Note the correspondence to the preceding event report triggering conditions (see *Standard Event Report Triggering* in this section).

Event Type	Description
AG, BG, CG	Single phase-to-ground faults. Appends T if TRIP asserted.
ABC	Three-phase faults. Appends T if TRIP asserted.
AB, BC, CA	Phase-to-phase faults. Appends T if TRIP asserted.
ABG, BCG, CAG	Two phase-to-ground faults. Appends T if TRIP asserted.
TRIP	Assertion of Relay Word bit TRIP (fault locator could not operate successfully to determine the phase involvement, so only TRIP is displayed).
ER	SELOGIC control equation setting ER. Phase involvement is indeterminate.
TRIG	Execution of TRIGGER command.
PULSE	Execution of PULSE command.

 Table 12.1: Event Types

The event type designations AG through CAG in Table 12.1 only are entered in the "Event:" field if the fault locator operates successfully. If the fault locator does not operate successfully, just TRIP or ER is displayed.

Fault Location

The relay reports the fault location if the EFLOC setting = Y and the fault locator operates successfully after an event report is generated. If the fault locator does not operate successfully or if EFLOC = N (Fault Locator is not enabled), \$ is listed in the field. Fault location is based upon the Access Level 2 line impedance settings Z1MAG, Z1ANG, Z0MAG, Z0ANG, and corresponding line length setting LL. Three-phase voltages need to be applied to the SEL-351R for proper operation of the fault locator. This requires the optional three-phase potential transformers be installed in the recloser control. The EZ Level global setting, "True three-phase voltage connected (Y,N)" must be set to Y (yes), which forces Access Level 2 global setting, 3PVOLT, (three-phase voltages connected) to Y (yes). See the SET command in Table 9.1 and corresponding Settings Sheet 1 of 28 in *Section 9: Setting the SEL-351R Recloser Control* for information on the line parameter settings.

Targets

The control reports the targets at the rising edge of TRIP. The targets are displayed in binary format. See *Front-Panel Status and Trip Target LEDs* in *Section 1: Factory-Set Logic*.

Currents

The "Currents (A pri), ABCNGQ:" field shows the currents present in the event report row containing the maximum phase current. The listed currents are:

Phase (A = channel IA, B = channel IB, C = channel IC) Neutral ground (N = channel IN) Calculated residual ($I_G = 3I_0$; calculated from channels IA, IB, and IC) Negative-sequence (Q = $3I_2$; calculated from channels IA, IB, and IC)

Retrieving Full-Length Standard Event Reports

The latest twenty-eight 15-cycle or fourteen 30-cycle event reports are stored in nonvolatile memory. Each event report includes four sections:

- Current, voltage, frequency, contact outputs, optoisolated inputs
- Protection and control elements
- Event summary
- Group, SELOGIC control equations, and global settings

Use the EVE command to retrieve the reports. There are several options to customize the report format. The general command format is:

where:

- n Event number (1–28) if LER = 15; (1–14) if LER = 30. Defaults to 1 if not listed, where 1 is the most recent event.
- Sx Display x samples per cycle (4 or 16); defaults to 4 if not listed.

- Ly Display y cycles of data (1–LER). Defaults to LER value if not listed. Unfiltered reports (R parameter) display an extra cycle of data.
- L Display 16 samples per cycle; same as the S16 parameter.
- R Specify the unfiltered (raw) event report. Defaults to 16 samples per cycle unless overridden with the Sx parameter.
- A Specify that only the analog section of the event is displayed (current, voltage, frequency, contact outputs, optoisolated inputs).
- D Specify that only the digital section (Protection and Control Elements) of the event is displayed.
- M Display only the communication/MIRRORED BITS[™] portion of the event report.
- C Display the report in Compressed ASCII format for use by the SEL-5601 Analytic Assistant.

Below are example EVE commands.

Serial Port <u>Command</u>	Description
EVE	Display the most recent event report at 1/4-cycle resolution.
EVE 2	Display the second event report at 1/4-cycle resolution.
EVE S16 L10	Display 10 cycles of the most recent report at 1/16-cycle resolution.
EVE C 2	Display the second report in Compressed ASCII format at 1/4-cycle resolution.
EVE L	Display the most recent report at 1/16-cycle resolution.
EVE R	Display the most recent report at 1/16-cycle resolution; analog and digital data are unfiltered (raw).
EVE 2 D L10	Display 10 cycles of the protection and control elements section of the second event report at 1/4-cycle resolution.
EVE 2 A R S4	Display the unfiltered analog section of the second event report at 1/4-cycle resolution.

If an event report is requested that does not exist, the control responds:

"Invalid Event"

Compressed ASCII Event Reports

The SEL-351R provides compressed ASCII event reports to facilitate event report storage and display. The SEL-2020 Communications Processor and the SEL-5601 Analytic Assistant software take advantage of the compressed ASCII format. Use the EVE C command or CEVENT command to display compressed ASCII event reports. See the CEVENT command discussion in *Appendix E: Compressed ASCII Commands* for further information.

Filtered and Unfiltered Event Reports

The SEL-351R samples the basic power system measurands (ac voltage, ac current, and optoisolated inputs) 16 times per power system cycle. The control filters the measurands to remove transient signals, operates on the filtered values, and reports them in the event report.

To view the raw inputs to the control, select the unfiltered event report (e.g., EVE R). Use the unfiltered event reports to observe:

- Power system harmonics on channels IA, IB, IC, IG, VA, VB, VC, VS
- Decaying dc offset during fault conditions on IA, IB, IC
- Optoisolated input contact bounce on channels IN101 through IN106

The filters for ac current and voltage are fixed. You can adjust the optoisolated input debounce via debounce settings (see Figure 7.1 in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*).

Raw event reports display one extra cycle of data at the beginning of the report.

Clearing Standard Event Report Buffer

The HIS C command clears the event summaries and corresponding standard event reports from nonvolatile memory. See *Section 10: Serial Port Communications and Commands* for more information on the HIS (Event Summaries/History) command.

Standard Event Report Column Definitions

Refer to the example event report in Figure 12.2 to view event report columns (**Note**: Figure 12.2 is on multiple pages). This example event report displays rows of information each 1/4 cycle retrieved with the EVE command.

The columns contain ac current, ac voltage, frequency, output, input, and protection and control element information.

Current, Voltage, and Frequency Columns

Table 12.2 summarizes the event report current, voltage, and frequency columns.

Column Heading	Definition	
IA	Current measured by channel IA (primary A)	
IB	Current measured by channel IB (primary A)	
IC	Current measured by channel IC (primary A)	
IG	Calculated residual current $IG = 3I_0 = IA + IB + IC$ (primary A)	
VA	Voltage measured by channel VA (primary kV, wye-connected)	
VB	Voltage measured by channel VB (primary kV, wye-connected)	
VC	Voltage measured by channel VC (primary kV, wye-connected)	
VS	Voltage measured by channel VS (primary kV)	
Freq	Frequency of voltage channel VA (Hz)	

 Table 12.2: Standard Event Report Current, Voltage, and Frequency Columns

Note that the ac values change from plus to minus (-) values in Figure 12.2, indicating the sinusoidal nature of the waveforms.

Other figures help explain the information available in the event report current columns:

Figure 12.3: shows how event report current column data relates to the actual sampled current waveform and RMS current values.

Figure 12.4: shows how event report current column data can be converted to phasor RMS current values.

Output, Input, Protection, and Control Columns

Table 12.3 summarizes the event report output, input, protection, and control columns. See Tables 9.3 and 9.4 in *Section 9: Setting the SEL-351R Recloser Control* for more information on Relay Word bits shown in Table 12.3.

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
All columns			Element/input/output not picked up or not asserted, unless otherwise stated.
	Analog Section	n of Event Re	eport
Out 12	OUT101, OUT102	1 2 b	Output contact OUT101 asserted. Output contact OUT102 asserted. Both OUT101 and OUT102 asserted.
Out 34	OUT103, OUT104	3 4 b	Output contact OUT103 asserted. Output contact OUT104 asserted. Both OUT103 and OUT104 asserted.
Out 56	OUT105, OUT106	5 6 b	Output contact OUT105 asserted. Output contact OUT106 asserted. Both OUT105 and OUT106 asserted.
Out 7A	OUT107, ALARM	7 A b	Output contact OUT107 asserted. Output contact ALARM asserted. Both OUT107 and ALARM asserted.
Out TC	RCTR, RCCL (see Figure 7.30)	T C b	High voltage trip FET (RCTR) asserted. High voltage close FET (RCCL) asserted. Both RCTR and RCCL asserted.
In 12	IN101, IN102	1 2 b	Optoisolated input IN101 asserted. Optoisolated input IN102 asserted. Both IN101 and IN102 asserted.
In 34	IN103, IN104	3 4 b	Optoisolated input IN103 asserted. Optoisolated input IN104 asserted. Both IN103 and IN104 asserted.
In 56	IN105, IN106	5 6 b	Optoisolated input IN105 asserted. Optoisolated input IN106 asserted. Both IN105 and IN106 asserted.
In BC	PINBD, PINC (see Figure 7.30)	B C	Control cable pin BD input (PINBD) asserted. Control cable pin C input (PINC) asserted. Both PINBD and PINC asserted.

Table 12.3: Output, Input, Protection, and Control Element Event Report Columns

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
In EF	PINE, PINF (see Figure 7.30)	E	Control cable pin E input (PINE) asserted.
	(see Figure 7.50)	F	Control cable pin F input (PINF) asserted.
			Both PINE and PINF asserted.
	Digital Protection and Con	trol Section	of Event Report
51P1 51P2	51P1, 51P1T, 51P1R 51P2, 51P2T, 51P2R	•	Time-overcurrent element reset (51_R) .
51N1 51N2	51N1, 51N1T, 51N1R 51N2, 51N2T, 51N2R	р	Time-overcurrent element picked up and timing $(51_)$.
51G1 51G2	51G1, 51G1T, 51G1R 51G2, 51G2T, 51G2R	Т	Time-overcurrent element timed out (51_T) .
51Q	51Q, 51QT, 51QR	r	Time-overcurrent element timing to reset.
		1	Time-overcurrent element timing to reset after having timed out (when
			element reset is set for 1 cycle, not electromechanical reset).
50 P	50A, 50B, 50C	А	Single-phase instantaneous overcurrent element 50A picked up.
		В	Single-phase instantaneous overcurrent element 50B picked up.
		С	Single-phase instantaneous overcurrent element 50C picked up.
		а	Both 50A and 50B picked up.
		b	Both 50B and 50C picked up.
		с 3	Both 50C and 50A picked up. 50A, 50B, and 50C picked up.
50 PP	50AB1, 50AB2, 50AB3, 50AB4, 50BC1, 50BC2,	А	Phase-to-phase instantaneous overcurrent element 50AB1, 50AB2,
	50BC3, 50BC4, 50CA1,	В	50AB3, or 50AB4 picked up. Phase-to-phase instantaneous
	50CA2, 50CA3, 50CA4		overcurrent element 50BC1, 50BC2, 50BC3, or 50BC4 picked up.
		С	Phase-to-phase instantaneous overcurrent element 50CA1, 50CA2,
		а	50CA3, or 50CA4 picked up. 50AB_ and 50CA_ picked up.
		a b	50AB_ and 50EC_ picked up.
		c	50BC_ and 50CA_ picked up.
		3	50AB_, 50BC_, and 50CA_ picked up.

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
32 PQ	F32P	Р	Forward phase directional element F32P picked up.
	R32P	р	Reverse phase directional element R32P picked up.
	F32Q	Q	Forward negative-sequence directional element F32Q picked up.
	R32Q	q	Reverse negative-sequence directional element R32Q picked up.
32 NG	F32QG	Q	Forward negative-sequence directional element F32QG picked up.
	R32QG	q	Reverse negative-sequence R32QG picked up.
	F32V	V	Forward zero-sequence voltage- polarized, residual-current element F32V picked up.
	R32V	v	Reverse zero-sequence voltage- polarized, residual-current R32V picked up.
	F32N	N	Forward zero-sequence voltage- polarized, neutral current directional element F32N picked up.
	R32N	n	Reverse zero-sequence voltage- polarized, neutral current directional element R32N picked up.
67 P 67 N 67 G	67P1–67P4 67N1–67N4 67G1–67G4	4	Level 4 instantaneous element 67_4 picked up; levels 1, 2, and 3 not picked up.
67 Q	67Q1–67Q4	3	Level 3 instantaneous element 67_3 picked up; levels 1 and 2 not picked up.
		2	Level 2 instantaneous element 67_2 picked up; level 1 not picked up.
		1	Level 1 instantaneous element 67_1 picked up.
DM PQ	PDEM, QDEM	Р	Phase demand ammeter element PDEM picked up.
		Q	Negative-sequence demand ammeter element QDEM picked up.
		b	Both PDEM and QDEM picked up.

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
DM NG	NDEM, GDEM	Ν	Neutral ground demand ammeter element NDEM picked up.
		G	Residual ground demand ammeter element GDEM picked up.
		b	Both NDEM and GDEM picked up.
27 P	27A1, 27A2, 27B1, 27B2, 27C1, 27C2	А	A-phase instantaneous undervoltage element 27A1 or 27A2 picked up.
		В	B-phase instantaneous undervoltage element 27B1 or 27B2 picked up.
		С	C-phase instantaneous undervoltage element 27C1 or 27C2 picked up.
		a	27A_ and 27B_ elements picked up.
		b c	27B_ and 27C_ elements picked up. 27C_ and 27A_ elements picked up.
		3	27A_, 27B_, and 27C_ elements picked up.
27 PP	27AB, 27BC, 27CA	А	AB phase-to-phase instantaneous undervoltage element 27AB picked
		В	up. BC phase-to-phase instantaneous undervoltage element 27BC picked
		С	up. CA phase-to-phase instantaneous undervoltage element 27CA picked
		а	up. 27AB and 27CA elements picked
		b	up. 27AB and 27BC elements picked up.
		с	27BC and 27CA elements picked up.
		3	27AB, 27BC, and 27CA elements picked up.
27 S	27S	*	Channel VS instantaneous undervoltage element 27S picked up.
59 P	59A1, 59A2, 59B1, 59B2, 59C1, 59C2	А	A-phase instantaneous overvoltage element 59A1 or 59A2 picked up.
		В	B-phase instantaneous overvoltage element 59B1 or 59B2 picked up.
		С	C-phase instantaneous overvoltage element 59C1 or 59C2 picked up.
		а	59A_ and 59B_ elements picked up.
		b	59B_ and 59C_ elements picked up.
		c 2	59C_ and 59A_ elements picked up.
		3	59A_, 59B_, and 59C_ elements picked up.

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition		
59 PP	59AB, 59BC, 59CA	А	AB phase-to-phase instantaneous overvoltage element 59AB picked		
		В	up. BC phase-to-phase instantaneous overvoltage element 59BC picked		
		С	up. CA phase-to-phase instantaneous overvoltage element 59CA picked		
		а	up. 59AB and 59CA elements picked		
		b	up. 59AB and 59BC elements picked up.		
		с 3	59BC and 59CA elements picked up. 59AB, 59BC, and 59CA elements picked up.		
59 V1Q	59V1, 59Q	1	Positive-sequence instantaneous overvoltage element 59V1 picked		
		Q	up. Negative-sequence instantaneous overvoltage element 59Q picked up.		
		b	Both 59V1 and 59Q picked up.		
59 N	59N1, 59N2	1	First ground instantaneous overvoltage element 59N1 picked		
		2	up. Second ground instantaneous overvoltage element 59N2 picked		
		b	up. Both 59N1 and 59N2 picked up.		
59 S	59\$1, 59\$2	1	First channel VS instantaneous overvoltage element 59S1 picked up.		
		2	Second channel VS instantaneous overvoltage element 59S2 picked up.		
		b	Both 59S1 and 59S2 picked up.		
59 V	59VP, 59VS	Р	Phase voltage window element 59VP picked up (used in		
		S	synchronism check). Channel VS voltage window element 59VS picked up (used in synchronism check).		
		b	Both 59VP and 59VS picked up.		
25 SF	SF	*	Slip frequency element SF picked up (used in synchronism check).		

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition			
25 A	25A1, 25A2	1, 25A2 1 First sync 25A1 elem				
		2	Second synchronism check element 25A2 element picked up.			
		b	Both 25A1 and 25A2 picked up.			
81 27B	27B81	*	Frequency logic instantaneous undervoltage element 27B81 picked up.			
81 12	81D1, 81D2	1	Frequency element 81D1 picked up.			
		2	Frequency element 81D2 picked up.			
		b	Both 81D1 and 81D2 picked up.			
81 34	81D3, 81D4	3	Frequency element 81D3 picked up.			
		4	Frequency element 81D4 picked up.			
		b	Both 81D3 and 81D4 picked up.			
81 56	81D5, 81D6	5	Frequency element 81D5 picked up.			
		6	Frequency element 81D6 picked up.			
		b	Both 81D5 and 81D6 picked up.			
79	RCSF, CF, 79RS,	•	Reclosing function disabled.			
	79CY, 79LO	S	Reclose supervision failure condition (RCSF asserts for only 1/4 cycle).			
		F	Close failure condition (CF asserts for only 1/4 cycle).			
		R	Reclosing relay in Reset State (79RS).			
		С	Reclosing relay in Reclose Cycle State (79CY).			
		L	Reclosing relay in Lockout State (79LO).			
Time	OPTMN, RSTMN	0	Recloser open interval timer is timing.			
		r	Recloser reset interval timer is timing.			
Shot	SH0, SH1, SH2	•	Reclosing function disabled.			
	SH3, SH4	0	shot = 0 (SH0).			
		1	shot = 1 (SH1).			
		2	shot = 2 (SH2).			
		3	shot = 3 (SH3).			
		4	shot = 4 (SH4).			

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition		
Zld	ZLIN, ZLOUT	i	Load encroachment "load in" element ZLIN picked up.		
		0	Load encroachment "load out" element ZLOUT picked up.		
LOP	LOP	*	Loss-of-potential element LOP picked up.		
Lel 12	LB1, LB2	1	Local bit LB1 asserted.		
		2	Local bit LB2 asserted.		
		b	Both LB1 and LB2 asserted.		
Lcl 34	LB3, LB4	3	Local bit LB3 asserted.		
		4	Local bit LB4 asserted.		
		b	Both LB3 and LB4 asserted.		
Lcl 56	LB5, LB6	5	Local bit LB5 asserted.		
		6	Local bit LB6 asserted.		
		b	Both LB5 and LB6 asserted.		
Lcl 78	LB7, LB8	7	Local bit LB7 asserted.		
	·	8	Local bit LB8 asserted.		
		b	Both LB7 and LB8 asserted.		
Rem 12	RB1, RB2	1	Remote bit RB1 asserted.		
	,	2	Remote bit RB2 asserted.		
		b	Both RB1 and RB2 asserted.		
Rem 34	RB3, RB4	3	Remote bit RB3 asserted.		
	,	4	Remote bit RB4 asserted.		
		b	Both RB3 and RB4 asserted.		
Rem 56	RB5, RB6	5	Remote bit RB5 asserted.		
	·	6	Remote bit RB6 asserted.		
		b	Both RB5 and RB6 asserted.		
Rem 78	RB7, RB8	7	Remote bit RB7 asserted.		
-	· -	8	Remote bit RB8 asserted.		
		b	Both RB7 and RB8 asserted.		
Rem OC	OC, CC	0	OPE (Open) command executed.		
	-,	c	CLO (Close) command executed.		
Ltch 12	LT1, LT2	1	Latch bit LT1 asserted.		
	,	2	Latch bit LT2 asserted.		
		b	Both LT1 and LT2 asserted.		
Ltch 34	LT3, LT4	3	Latch bit LT3 asserted.		
	,	4	Latch bit LT4 asserted.		
		b	Both LT3 and LT4 asserted.		

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
Ltch 56	LT5, LT6	5	Latch bit LT5 asserted.
		6	Latch bit LT6 asserted.
		b	Both LT5 and LT6 asserted.
Ltch 78	LT7, LT8	7	Latch bit LT7 asserted.
		8	Latch bit LT8 asserted.
		b	Both LT7 and LT8 asserted.
SELOGIC Var 1	SV1, SV1T	р	SELOGIC control equation variable
SELOGIC Var 2	SV2, SV2T		timer input SV_asserted; timer
SELOGIC Var 3	SV3, SV3T		timing on pickup time; timer output
SELOGIC Var 4	SV4, SV4T		SV_T not asserted.
SELOGIC Var 5	SV5, SV5T	т	
SELOGIC Var 6	SV6, SV6T	Т	SELOGIC control equation variable
SELOGIC Var 7	SV7, SV7T		timer input SV_asserted; timer
SELOGIC Var 8	SV8, SV8T		timed out on pickup time; timer
SELOGIC Var 9	SV9, SV9T		output SV_T asserted.
SELOGIC Var 10	SV10, SV10T	d	SELOGIC control equation variable
SELOGIC Var 11	SV11, SV11T		timer input SV_ not asserted; timer
SELOGIC Var 12	SV12, SV12T		previously timed out on pickup time;
SELOGIC Var 12	SV13, SV13T		timer output SV_T remains asserted
SELOGIC Var 14	SV14, SV14T		while timer timing on dropout time.
SELOGIC Var 15	SV15, SV15T		8
SELOGIC Var 16	SV16, SV16T		
3 PO	3PO	*	Three Pole Open element asserted (used in Switch-Onto-Fault logic).
SOTF	SOTFE	*	Switch-Onto-Fault Enabled element asserted.
РТ	РТ	*	Permissive Trip received (POTT logic).
PTRX	PTRX1, PBTX2	1	Permissive Trip Received input 1 asserted and Permissive Trip Received input 2 deasserted (DCUB logic).
		2	Permissive Trip Received input 1 deasserted and Permissive Trip Received input 2 asserted (DCUB logic).
		b	Permissive Trip Received input 1 asserted and Permissive Trip Received input 2 asserted (DCUB logic).
Z3RB	Z3RB	*	Zone 3 Reverse Block element asserted.

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition		
KEY KEY		*	KEY permissive trip element asserted.		
EKEY	EKEY	*	Echo KEY permissive trip element asserted.		
ECTT	ECTT	*	Echo Conversion To Trip element asserted.		
WFC	WFC	*	Weak inFeed Conditional element asserted.		
UBB	UBB1, UBB2	1	UnBlocking Block element 1 asserted and UnBlocking Block element 2 deasserted.		
		2	UnBlocking Block element 1 deasserted and UnBlocking Block		
		b	element 2 asserted. UnBlocking Block element 1 asserted and UnBlocking Block element 2 asserted.		
Z3XT	Z3XT	*	Zone 3 eXTension element asserted.		
DSTR	DSTR	*	Directional carrier StarT element asserted.		
NSTR	NSTR	*	Nondirectional carrier STarT element asserted.		
STOP	STOP	*	STOP carrier element asserted.		
BTX	BTX	*	Block Trip eXtension element asserted.		
TMB A 12	TMB1A, TMB2A	1	Transmit MIRRORED BIT 1 channel A asserted and Transmit MIRRORED		
		2	BIT 2 channel A deasserted. Transmit MIRRORED BIT 1 channel A deasserted and Transmit MIRRORED BIT 2 channel A		
		b	asserted. Transmit MIRRORED BIT 1 channel A asserted and Transmit MIRRORED BIT 2 channel A asserted.		

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition		
TMB A 34	TMB3A, TMB4A	3	Transmit MIRRORED BIT 3 channel A asserted and Transmit MIRRORED BIT 4 channel A deasserted. Transmit MIRRORED BIT 3 channel A deasserted and Transmit MIRRORED BIT 4 channel A asserted.		
		b	Transmit MIRRORED BIT 3 channel A asserted and Transmit MIRRORED BIT 4 channel A asserted.		
TMB A 56	TMB5A, TMB6A	5	Transmit MIRRORED BIT 5 channel A asserted and Transmit MIRRORED BIT 6 channel A deasserted.		
		6	Transmit MIRRORED BIT 5 channel A deasserted and Transmit MIRRORED BIT 6 channel A asserted.		
		b	Transmit MIRRORED BIT 5 channel A asserted and Transmit MIRRORED BIT 6 channel A asserted.		
TMB A 78	TMB7A, TMB8A	7	Transmit MIRRORED BIT 7 channel A asserted and Transmit MIRRORED BIT 8 channel A deasserted.		
		8	Transmit MIRRORED BIT 7 channel A deasserted and Transmit MIRRORED BIT 8 channel A asserted.		
		b	Transmit MIRRORED BIT 7 channel A asserted and Transmit MIRRORED BIT 8 channel A asserted.		
RMB A 12	RMB1A, RMB2A	1	Receive MIRRORED BIT 1 channel A asserted and Receive MIRRORED BIT 2 channel A deasserted.		
		2	Receive MIRRORED BIT 1 channel A deasserted and Receive MIRRORED BIT 2 channel A asserted.		
		b	Receive MIRRORED BIT 1 channel A asserted and Receive MIRRORED BIT 2 channel A asserted.		

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
RMB A 34	RMB3A, RMB4A	3	Receive MIRRORED BIT 3 channel A asserted and Receive MIRRORED BIT 4 channel A deasserted.
		4	Receive MIRRORED BIT 3 channel A deasserted and Receive MIRRORED BIT 4 channel A asserted.
		b	Receive MIRRORED BIT 3 channel A asserted and Receive MIRRORED BIT 4 channel A asserted.
RMB A 56	RMB5A, RMB6A	5	Receive MIRRORED BIT 5 channel A asserted and Receive MIRRORED BIT 6 channel A deasserted.
		6	Receive MIRRORED BIT 5 channel A deasserted and Receive MIRRORED BIT 6 channel A asserted.
		b	Receive MIRRORED BIT 5 channel A asserted and Receive MIRRORED BIT 6 channel A asserted.
RMB A 78	RMB7A, RMB8A	7	Receive MIRRORED BIT 7 channel A asserted and Receive MIRRORED BIT 8 channel A deasserted.
		8	Receive MIRRORED BIT 7 channel A deasserted and Receive MIRRORED BIT 8 channel A asserted.
		b	Receive MIRRORED BIT 7 channel A asserted and Receive MIRRORED BIT 8 channel A asserted.
ROK	ROKA, ROKB	А	Receive channel A OK element asserted and Receive channel B OK
		В	element deasserted. Receive channel A OK element deasserted and Receive channel B
		b	OK element asserted. Receive channel A OK element asserted and Receive channel B OK element asserted.

Column Heading	Corresponding Elements (Relay Word Bits)	Symbol	Definition
RBAD	RBADA, RBADB	А	Receive channel A BAD for certain time element asserted and Receive channel B BAD for certain time element deasserted.
		В	Receive channel A BAD for certain time element deasserted and Receive channel B BAD for certain time element asserted.
		b	Receive channel A BAD for certain time element asserted and Receive channel B BAD for certain time element asserted.
CBAD	CBADA, CBADB	А	Channel A communications availability BAD element asserted and Channel B communications availability BAD element deasserted.
		В	Channel A communications availability BAD element deasserted and Channel B communications availability BAD element asserted.
		b	Channel A communications availability BAD element asserted and Channel B communications availability BAD element asserted.
PB1	PB1 (see Figure 1.35)	*	Ground Enabled pushbutton output
PB2	PB2	*	Reclose Enabled pushbutton output
PB3	PB3	*	Remote Enabled pushbutton output
PB4	PB4	*	Alternate Settings pushbutton output
PB5	PB5	*	Lock pushbutton output
PB6	PB6 (see Figure 1.36)	*	Aux. 1 pushbutton output
PB7	PB7	*	Aux. 2 pushbutton output
PB8	PB8	*	Close pushbutton output
PB9	PB9	*	Trip pushbutton output

**Output contacts can be A or B type contacts (see Table 2.1 and Figure 7.27).

SEQUENTIAL EVENTS RECORDER (SER) REPORT

See Figure 12.5 for an example SER report.

SER Triggering

The control triggers (generates) an entry in the SER report for a change of state of any one of the elements listed in the SER1, SER2, and SER3 trigger settings. The factory default settings are:

SER1 = TRIP 51P1T 51P2T 51G1T 51G2T 51N1T 51N2T 67P2T 67G2T 67N2T 67N3T 81D1T PB9 67P1 67G1 67N1

SER2 = CLOSE 52A CF 79CY 79LO 79RS SH0 SH1 SH2 SH3 SH4 PB8 59A1

SER3 = TOSLP BCBOK DTFAIL

The elements are Relay Word bits referenced in Table 9.3. The control monitors each element in the SER lists every 1/4 cycle. If an element changes state, the control time-tags the changes in the SER. For example, setting SER1 contains:

- Time-overcurrent element trips (51P1T, 51P2T, 51G1T, 51G2T, 51N1T, and 51N2T)
- Definite-time overcurrent element trips (67P2T, 67G2T, 67N2T, 67N3T)
- Definite-time frequency element (81D1T)
- Manual TRIP from front-panel pushbutton (PB9)
- Instantaneous overcurrent element pickups (67P1, 67G1, 67N1)

Any time one of these elements picks up or drops out, the relay time-tags the change in the SER.

The other two SER factory settings (SER2 and SER3) trigger rows in the SER event report for the following conditions:

- Changes in breaker status (52A) and reclose operations
- When control is powered down due to low battery (TOSLP)
- Other battery and battery-charger status-related Relay Word Elements

The control adds a message to the SER to indicate power up or settings change (to active setting group) conditions:

Relay newly powered up or settings changed

Each entry in the SER includes SER row number, date, time, element name, and the new element state.

Making SER Trigger Settings

You can enter up to 24 element names in each of the SER settings via the SET R command. See Table 9.3 for references to valid recloser control element (Relay Word bit) names. See the SET R command in Table 9.1 and corresponding Settings Sheet 20 of 28 at the end of *Section 9: Setting the SEL-351R Recloser Control*. Use either spaces or commas to delimit the elements. For example, if you enter setting SER1 as:

SER1 = 51P1T, 51G1T 51P2T, 51G2T , 50P1, , 50P2

The relay displays the setting as:

SER1 = 51P1T 51G1T 51P2T 51G2T 50P1 50P2

The control can monitor up to 72 elements in the SER (24 in each of SER1, SER2, and SER3).

Retrieving SER Reports

The control saves the latest 512 rows of the SER in nonvolatile memory. Row 1 is the most recently triggered row, and row 512 is the oldest. View the SER report by date or SER row number as outlined in the examples below.

Example SER Serial Port <u>Commands</u>	<u>Format</u>
SER	If you enter only " SER < ENTER >", all available rows are displayed (from row 1 to row number 512). The rows display with the oldest row at the beginning (top) of the report and the newest row (row 1) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
SER 17	If you enter the SER command followed by a single number (17 in this example), the first 17 rows are displayed, if they exist. They display with the oldest row (row 17) at the beginning (top) of the report and the newest row (row 1) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
SER 10 33	If you enter the SER command followed by two numbers (10 and 33 in this example; $10 < 33$), all the rows between (and including) rows 10 and 33 are displayed, if they exist. They display with the older row (row 33) at the beginning (top) of the report and the newer row (row 10) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
SER 47 22	If you enter the SER command followed by two numbers (47 and 22 in this example; $47 > 22$), all the rows between (and including) rows 47 and 22 are displayed, if they exist. They display with the newer row (row 22) at the beginning (top) of the report and the older row (row 47) at the end (bottom) of the report. <u>Reverse</u> chronological progression through the report is down the page and in ascending row number.
SER 3/30/98	If you enter the SER command followed by a date (date 3/30/98 in this example), all the rows on that date are displayed, if they exist. They display with the oldest row at the beginning (top) of the report and the newest row at the end (bottom) of the report, for the given date. Chronological progression through the report is down the page and in descending row number.

- SER 2/17/98 3/23/98 If you enter the SER command followed by two dates (date 2/17/98 chronologically <u>precedes</u> date 3/23/98 in this example), all the rows between and including dates 2/17/98 and 3/23/98 are displayed, if they exist. They display with the oldest row (date 2/17/98) at the beginning (top) of the report and the newest row (date 3/23/98) at the end (bottom) of the report. Chronological progression through the report is down the page and in descending row number.
- SER 3/16/98 1/5/98 If you enter the SER commands followed by two dates (date 3/16/98 chronologically <u>follows</u> date 1/5/98 in this example), all the rows between and including dates 1/5/98 and 3/16/98 are displayed, if they exist. They display with the latest row (date 3/16/98) at the beginning (top) of the report and the oldest row (date 1/5/98) at the end (bottom) of the report. <u>Reverse</u> chronological progression through the report is down the page and in ascending row number.

The date entries in the above example SER commands are dependent on the Access Level 2 global Date Format setting DATE_F. If setting DATE_F = MDY, then the dates are entered, as in the above examples, Month/Day/Year. If setting DATE_F = YMD, then the dates are entered Year/Month/Day.

If the requested SER event report rows do not exist, the control responds:

No SER Data

Clearing SER Report

Clear the SER report from nonvolatile memory with the Access Level 2 command, SER C, as shown in the following example:

```
=>SER C <ENTER>
Clear the SER
Are you sure (Y/N) ? Y <ENTER>
Clearing Complete
```

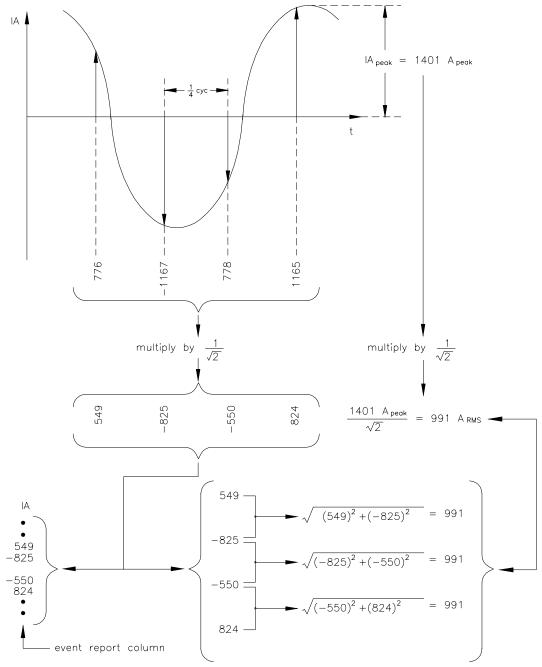
EXAMPLE STANDARD 15-CYCLE EVENT REPORT

The following example standard 15-cycle event report in Figure 12.2 also corresponds to the example sequential events recorder (SER) report in Figure 12.5. The circled numbers in Figure 12.2 correspond to the SER row numbers in Figure 12.5. The row explanations follow Figure 12.5.

In Figure 12.2, the arrow (>) in the column following the **Freq** column identifies the "trigger" row. This is the row that corresponds to the Date and Time values at the top of the event report.

The asterisk (*) in the column following the **Freq** column identifies the row with the maximum phase current. The maximum phase current is calculated from the row identified with the asterisk and the row one quarter-cycle previous (see Figure 12.3 and Figure 12.4). These currents are listed at the end of the event report in the event summary. If the "trigger" row (>) and the maximum phase current row (*) are the same row, the * symbol takes precedence.

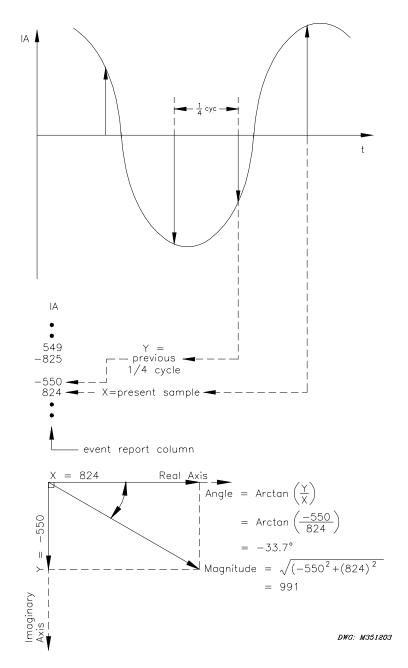
= +>eve RECLOSE	ER R1				Date:	06/01	/98	Time:	12:23	3:52.527	see Figure 12.1
FEEDER	2101										firmware identifier
FID=SEL	-351R-	1-R102	-V0-D98	80513	CID	=CCE7		BCBFID=	=Z022		firmware checksum identifier
C IA	Current IB	s (Amp: IC	s Pri) IG	VA	Voltages VB	(kV P VC	ri) VS	Fred	Out 1357T 246AC	In 135BE 2460E	Battery charger/powe
[1] 120	-152	29	-3	3.3	-6.7			60.01			supply board identifier
120	-152	-158	-3	5.9	-0.1	3.4 -5.8		60.01			
-122	150	-30	- 2	-3.3	6.7	-3.4		60.01			—one cycle of data
-105	-55	157	-3	-5.9	0.1	5.8	0.0	60.01	• • • • •	b.	
[2]	-151	29	- 1	2 2	- 6 7	2 /	0.0	60 01		ь —	-
121 104	-151 54	-158	-1 0	3.3 5.9	-6.7 -0.1	3.4 -5.8		60.01 60.01			
-122	151	-30	-1	-3.3	6.7	-3.4		60.01			
-105	-55	157	-3	-5.9	0.1	5.8		60.01			
[3]	150		-		c -	~ ·		CO 01			
122 104	-152 53	29 -158	-1 -1	3.3 5.8	-6.7 -0.1	3.4 -5.8		60.01 60.01			
-123	55 151	-158	-1	-3.3	-0.1 6.7	-3.4		60.01			
-105	-54	157	-2	-5.8	0.1	5.8		60.01			
[4]											
121	-152	29	-2	3.3	-6.7	3.4		60.01			
190 146	54 150	-158 -29	86 267	4.4 -2.5	-0.6 7.0	-6.3 -3.1		60.01 60.01			
-551	-55	157	-449	-2.1	1.5	7.2		60.01			11
[5]										L	[11]
-484	-151	28	-607	1.3	-7.6	2.5		60.01			
<u> </u>	54 150	-158 -29	720 670	1.2 -0.8	-1.9 7.8	-7.5 -2.3		60.01 60.01			see Figure 12.3 and
-825	-55	157	-723	-1.2	1.9	7.5		60.01			Figure 12.4 for
											details on this
-550	-151	28	-673	0.8	-7.8	2.3		60.01			example one cycle
824 548	55 150	-158 -29	721 669	1.2 -0.8	-1.8 7.8	-7.5 -2.3		60.01 60.01			of phase A (channel
-826	-56	157	-725	-1.2	1.8	7.5		60.01			IA) current
[7]											
-548	-151	28	-671	0.8	-7.8	2.3		60.07			
702 299	64 82	-123 -15	643 366	2.7 -1.9	-1.2 7.3	-6.9 -2.8		60.07			
-299 -291	-37	-15 44	-284	-1.9	0.3	-2.8 6.1		60.07 60.07			
[8]	2.										
-27	- 8	0	-35	3.2	-6.8	3.3		60.07			
0	0	0	0	5.8	-0.0	-5.8		60.07			
0 -1	0 -1	0 -1	0 - 3	-3.3 -5.8	6.7 0.0	-3.4 5.8		60.07 60.07			
[9]	Ŧ	1	5	5.0	0.0	5.0	0.0				
-1	0	0	-1	3.3	-6.7	3.4		60.00			
0	0	0	0	5.8	-0.0	-5.8		60.00			
0 0	-1 -1	0 -1	-1 -2	-3.3 -5.8	6.7 0.0	-3.4 5.8		60.00 60.00			
[10]	T	T	2	5.0	0.0	5.0	0.0	55.00	••••		
-1	0	-1	- 2	3.3	-6.7	3.4	-0.0	60.01	T	Bb	
-1	0	0	-1	5.8	-0.0	-5.8		60.01			
0 0	0 -1	0 0	0 -1	-3.4 -5.8	6.7 0.0	-3.4		60.01 60.01			
[11]	-1	U	.1	0.0	0.0	5.8	0.0	00.01		••••	
-1	-1	-1	-3	3.4	-6.7	3.4	0.0	60.01	т	Bb	
0	0	-1	-1	5.8	-0.0	-5.8	-0.0	60.01	T	Bb	
0	0	0	0	-3.4	6.7	-3.4		60.01			
-1 [12]	-1	0	-2	-5.8	-0.0	5.8	0.0	60.01	••••	RD	
-1	-1	-1	-3	3.4	-6.7	3.3	-0.0	60.01	T	Bb	


- 1 0 -1 -2 -3.4 6.7 -3.3 0.0 60.01T ...Bb - 1 -1 0 - 2 -5.8 -0.0 5.8 0.0 60.01T ...Bb [13] 0 - 1 0 - 1 3.4 -6.7 3.3 -0.0 60.01T ...Bb 5.8 -0.0 60.01T ...Bb 0 0 0.0 -5.8 - 1 - 1 0 0 -1 -1 -3.4 6.7 -3.3 0.0 60.01T ...Bb 5.8 0.0 60.01T ...Bb 0 -1 0 -1 -5.8 -0.0 [14] 3.4 - 1 -1 - 1 - 3 -6.7 3.3 -0.0 60.01T ...Bb 0 0 0 0 5.8 0.0 -5.8 0.0 60.01T ...Bb 0 0 0 -3.4 6.7 -3.3 0.0 60.01T ...Bb 0 -1 -1 - 1 -3 -5.8 -0.0 5.8 0.0 60.01T ...Bb [15] 0 - 1 - 1 - 2 3.4 -6.7 3.3 -0.0 60.01T ...Bb -0.0 60.01T ...Bb 0 0 0 0 5.8 0.0 -5.8 - 2 -3.4 6.7 -3.3 0.0 60.01T ...Bb -1 -1 0 0.0 60.01T ...Bb 0 - 1 - 2 -5.8 -0.0 5.8 -1 Protection and Control Elements 50 32 67 Dm 27 59 25 81 TS Lcl Rem Ltch SELogic Variable 51 V 5 2 ih ZL PN P P1 9S 7135 7mo 10 1357135701357 Timers PPNNGG P PN 1111111 121212QPP QG PNGQ QG PPSPPQNS VFA B246 9et dP 24682468C2468 1234567890123456 [1]b..7b..7b..7b..7b..7b..7b..7b..7 [2]b..7b..7b..7b..7b..7b..7b..7b..7 F31b..7b.b..7b..7b..7b..7b..7b..7 Γ41b..7b..7b..7b..7pp... *... R.Ob..7T.. pp...Tp.....b...7TT...> [5] 14||13||12 Tp..Tp.....b..7TT... Tp..Tp... *... C.Ob..7TT.. [6] Tp..Tp.....b..7TT.. Tp..Tp.....b..7TT.. Tp..Tp... *... C.Ob..7TT.. Tp..Tp.....b..7TT... [7] Tp..Tp.....b..7TT.. Tp..Tp... *... C.Ob..7TT.. Tp..Tp... *... C.Ob..7TT.. [8] 1r..Tp... *... C.Ob..7TT.. 7 8b..7b..7

.....b..7b..7 [10]b..7b..7b..7b..7b..7b..7 Г111b..7b..7 [12]b..7b..7b..7b..7b..7b..7 [13]b..7b..7b..7b..7b..7b..7 [14]b..7b..7b..7b..7b..7b..7 [15]b..7b..7b..7b..7b..7b..7b..7b..7 Communication Elements S PZ EE ZDNS TMB RMB TMB RMB RRC 30 T3KKCWU 3SSTB A A B B OBB PPPPPPPP PT PRREETFB XTTOT 1357 1357 1357 1357 KAA BBBBBBBBB OF TXBYYTCB TRRPX 2468 2468 2468 2468 DD 123456789 [1] [2] [3] [4] [5] [6]

.. [7] [8] *. *. *. [9] *. *. *. *. [10] *. *. *. *. [11] *. *. *. *. [12] *. *. *. *. [13] *. *. *. *. [14] *. *. *. *. [15] *. *. *. *. Event: AG T Location: 3.89 Shot: 0 Frequency: 60.01 Targets: 10101100 01010010 Currents (A Pri), ABCNGQ: 991 160 159 0 986 984 (settings follow, but are not shown in this example) -----

Figure 12.2: Example Standard 15-Cycle Event Report 1/4-Cycle Resolution


Figure 12.3 and Figure 12.4 look in detail at 1 cycle of A-phase current (channel IA) identified in Figure 12.2. Figure 12.3 shows how the event report ac current column data relates to the actual sampled waveform and RMS values. Figure 12.4 shows how the event report current column data can be converted to phasor RMS values. Voltages are processed similarly.

DWG: M351202

Figure 12.3: Derivation of Event Report Current Values and RMS Current Values From Sampled Current Waveform

In Figure 12.3, note that any two rows of current data from the event report in Figure 12.2, 1/4 cycle apart, can be used to calculate RMS current values.

Figure 12.4: Derivation of Phasor RMS Current Values From Event Report Current Values

In Figure 12.4, note that two rows of current data from the event report in Figure 12.2, 1/4 cycle apart, can be used to calculate phasor RMS current values. In Figure 12.4, at the present sample, the phasor RMS current value is:

The present sample (IA = 824 A) is a real RMS current value that relates to the phasor RMS current value:

991 A * cos(-33.7°) = 824 A

EXAMPLE SEQUENTIAL EVENTS RECORDER (SER) REPORT

The following example sequential events recorder (SER) report in Figure 12.5 also corresponds to the example standard 15-cycle event report in Figure 12.2.

	OSER R1 ER 2101		Date: (06/01/98	Time:	12:24:25.3	371
FID=	SEL-351R-1-	R102-V0-D980513	B CID=0	CCE7 B	CBFID=	Z022	
#	DATE	TIME	ELEMENT	STA	TF		
"	57112			017			
24	06/01/98	12:00:00.000	Relay newly	y powered up	or se	ttings char	nged
23	06/01/98	12:23:26.915	CLOSE	Ass	erted		
22	06/01/98	12:23:26.915	PB8	Ass	erted		
21	06/01/98	12:23:26.920	PB8	Dea	sserte	d	
20	06/01/98	12:23:26.961	CLOSE	Dea	sserte	d	
19	06/01/98	12:23:26.965	52A	Ass	erted		
18	06/01/98	12:23:36.971	79L0	Dea	sserte	b	
17	06/01/98	12:23:36.971	79RS	Ass	erted		
16	06/01/98	12:23:36.975	SH3	Dea	sserte	b	
15	06/01/98	12:23:36.975	SHO	Ass	erted		
14	06/01/98		51G1T	Ass	erted		
13	06/01/98		79CY	Ass	erted		
12		12:23:52.527	79RS	Dea	sserte	b	
11	06/01/98	12:23:52.527	TRIP	Ass	erted		
10		12:23:52.535	51P1T	Ass	erted		
9		12:23:52.560	52A		sserte		
8		12:23:52.598	51P1T		sserte		
7		12:23:52.602	51G1T		sserte		
6	06/01/98		TRIP		sserte	d	
5	06/01/98		CLOSE		erted		
4	06/01/98		SH1		erted		
3		12:23:57.721	SHO		sserte		
2		12:23:57.767	CLOSE		sserte	b	
1	06/01/98	12:23:57.771	52A	Ass	erted		

Figure 12.5: Example Sequential Events Recorder (SER) Event Report

The SER event report rows in Figure 12.5 are explained in the following text, numbered in correspondence to the # column. The circled, numbered comments in Figure 12.2 also correspond to the # column numbers in Figure 12.5. The SER event report in Figure 12.5 contains records of events that occurred before and after the standard event report in Figure 12.2.

<u>#</u>	Explanation
24	Recloser control newly powered up or settings changed
23, 22, 21, 20	Recloser manually closed from front-panel close pushbutton.
19	Recloser closes.
	Related setting: 52A = SW1 * !CLOSE
18, 17, 16, 15	Recloser control goes from the reclose lockout (79LO) state to the reclose reset (79RS) state and the recloser shot counter goes from shot 3 (SH3) to shot 0 (SH0) indicating three shots of reclosing are now available.
	Related settings: Reclose Interval 1, Reclose Interval 2, Reclose Interval 3, Reset time from lockout
14, 13, 12, 11	Ground time-overcurrent element time-delayed output, 51G1T, causing a control trip.
	Related settings: Min. Trip - ground, Fast curve - ground
	The control starts the reclose cycle state (79CY) and moves off of reset (79RS).
	Related setting: Reclose Initiate (79RI = TRIP)
	The control TRIP output asserts.
	Related setting: TR =51P1T + 51P2T + 51G1T + 51G2T + 51N1T + 51N2T + 67P2T + 67G2T + 67N2T + 67N3T + 81D1T + PB9 + OC
10	Phase time-overcurrent element time-delayed output, 51P1T. Trip is already in progress due to ground time-overcurrent element.
9	Recloser opens.
8,7	Phase and ground time-overcurrent elements deassert.
6	Trip output deasserts after being asserted a minimum of 12 cycles.
	Related settings:TDURD = 12.00 cyclesTime difference: $12:23:52.727 - 12:23:52.527 = 0.20$ seconds (= 12 cycles)
	Reclose interval 1 does not start timing until trip output deasserts.
	Related settings: 79STL = TRIP
5	Close output asserts for first automatic reclose.
	Related settings: Time difference:Reclose interval $1 = 300.00$ $12:23:57.721 - 12:23:52.727 = 4.994$ seconds (= 300 cycles)
4, 3	Reclose control increments reclose shot counter from 0 to 1 (SH1 asserted, SH0 deasserted).
2, 1	Close output deasserts as recloser closes.

TABLE OF CONTENTS

Introduction	13-1
Testing Philosophy	13-1
Acceptance Testing	
Commissioning Testing	13-1
Maintenance Testing	13-2
Testing Methods and Tools	13-3
Test Features Provided by the SEL-351R	13-3
Test Methods	13-4
Testing Via Front-Panel Indicators	13-4
Testing Via Output Contacts	13-4
Testing Via Sequential Events Recorder	13-5
SEL-351R Self-Tests	13-5
SEL-351R Troubleshooting	13-8
Inspection Procedure	13-8
Troubleshooting Procedure	13-8
All Front-Panel LEDs Dark	13-8
Cannot See Characters on LCD Screen	13-9
SEL-351R Does Not Respond to Commands From Device Connected to Serial	
Port	13-9
SEL-351R Does Not Respond to Faults	13-9
Calibration	
Factory Assistance	13-9

TABLES

Table 13.1: SEL-351R Recloser Control Self-Tests 13-5

INTRODUCTION

This section provides guidelines for determining and establishing test routines for the SEL-351R Recloser Control. Included are discussions on testing philosophies, methods, and tools. SEL-351R self-tests and troubleshooting procedures are shown at the end of the section.

TESTING PHILOSOPHY

Recloser control testing may be divided into three categories: acceptance, commissioning, and maintenance testing. The categories are differentiated by when they take place in the life cycle of the SEL-351R as well as in the test complexity.

The paragraphs below describe when to perform each type of test, the goals of testing at that time, and the control functions that you need to test at each point. This information is intended as a guideline for testing the SEL-351R.

Acceptance Testing

When: When qualifying a SEL-351R model to be used on the utility system.

- Goals: a) Ensure that the SEL-351R meets published critical performance specifications such as operating speed and element accuracy.
 - b) Ensure that the SEL-351R meets the requirements of the intended application.
 - c) Gain familiarity with SEL-351R settings and capabilities.

What to test: All protection elements and logic functions critical to the intended application.

SEL performs detailed acceptance testing on all new recloser control models and versions. We are certain the recloser controls we ship meet their published specifications. It is important for you to perform acceptance testing on a recloser control if you are unfamiliar with its operating theory, protection scheme logic, or settings. This helps ensure the accuracy and correctness of the control settings when you issue them.

Refer to the *Testing* section in the *SEL-351R Quick-Start Installation and User's Guide* for test procedures using the Type MET Electronic Recloser Control Tester.

Commissioning Testing

When: When installing a new protection system.

- Goals: a) Ensure that all system ac and dc connections are correct.
 - b) Ensure that the SEL-351R functions as intended using your settings.
 - c) Ensure that all auxiliary equipment operates as intended.
- What to test: All connected or monitored inputs and outputs, polarity and phase rotation of ac connections, simple check of protection elements.

SEL performs a complete functional check and calibration of each SEL-351R before it is shipped. This helps ensure that you receive a unit that operates correctly and accurately. Commissioning tests should verify that the SEL-351R is properly connected to the power system and all auxiliary equipment. Verify SEL-351R signal inputs and outputs. Check breaker auxiliary inputs, SCADA control inputs, and monitoring outputs. Use an ac connection check to verify that the SEL-351R current and voltage inputs are of the proper magnitude and phase rotation.

Brief fault tests ensure that the SEL-351R settings are correct. It is not necessary to test every element, timer, and function in these tests.

At commissioning time, use the SEL-351R METER command to verify the ac current and voltage magnitude and phase rotation. Use the PULSE command to verify SEL-351R output contact operation. Use the TARGET command to verify optoisolated input operation. The event report also will report control cable connection between the recloser and the SEL-351-R.

Maintenance Testing

- When: At regularly scheduled intervals or when there is an indication of a problem with the SEL-351R or system.
- Goals: a) Ensure that the SEL-351R is measuring ac quantities accurately.
 - b) Ensure that scheme logic and protection elements are functioning correctly.
 - c) Ensure that auxiliary equipment is functioning correctly.
- What to test: Anything not shown to have operated during an actual fault within the past maintenance interval.

The SEL-351R uses extensive self-testing capabilities and features detailed metering and event reporting functions that lower the utility dependence on routine maintenance testing.

Use the SEL-351R reporting functions as maintenance tools. Periodically verify that the control is making correct and accurate current and voltage measurements by comparing the control METER output to other meter readings on that line. Review control event reports in detail after each fault. Using the event report current, voltage, and SEL-351R element data, you can determine that the SEL-351R protection elements are operating properly. Using the event report input and output data, you can determine that the control is asserting outputs at the correct instants and that auxiliary equipment is operating properly. At the end of your maintenance interval, the only items that need testing are those that have not operated during the maintenance interval.

The basis of this testing philosophy is simple: If the control is set correctly and connected, is measuring properly, and no self-test has failed, there is no reason to test it further.

Each time a fault occurs, the protection system is tested. Use event report data to determine areas requiring attention. Slow recloser auxiliary contact operations and increasing or varying recloser operating time can be detected through detailed analysis of control event reports.

Because SEL-351R Recloser Controls are microprocessor-based, their operating characteristics do not change over time. Time-overcurrent operating times are affected only by the SEL-351R settings and applied signals. It is not necessary to verify operating characteristics as part of maintenance checks.

At SEL, we recommend that maintenance tests on SEL-351R Recloser Controls be limited under the guidelines provided above. The time saved may be spent analyzing event data and thoroughly testing those systems that require more attention.

TESTING METHODS AND TOOLS

Test Features Provided by the SEL-351R

The following features assist you during SEL-351R testing.

METER Command	The METER command shows the ac currents and voltages (magnitude and phase angle) presented to the control in primary values. In addition, the command shows power system frequency (FREQ). Compare these quantities against other devices of known accuracy. The METER command is available at the serial ports and front-panel display. See <i>Section 10: Serial Port Communications and Commands</i> and <i>Section 11: Additional Front-Panel Interface Details</i> .
EVENT Command	The control generates a 15- or 30-cycle event report in response to faults or disturbances. Each report contains current and voltage information, SEL-351R element states, control cable pin statuses, and input/output contact information. If you question the control response or your test method, use the event report for more information. The EVENT command is available at the serial ports. See <i>Section 12: Standard Event Reports and SER</i> .
SER Command	The control provides a Sequential Events Recorder (SER) event report that time-tags changes in control element and input/output contact states. The SER provides a convenient means to verify the pickup/dropout of any element in the control. The SER command is available at the serial ports. See <i>Section 12: Standard Event Reports and SER</i> .
TARGET Command	Use the TARGET command to view the state of control inputs, outputs, and SEL-351R elements individually during a test. The TARGET command is available at the serial ports and the front panel. See Section 10: Serial Port Communications and Commands and Section 11: Additional Front-Panel Interface Details.
PULSE Command	Use the PULSE command to test the contact output circuits. The PULSE command is available at the serial ports and the front panel. See <i>Section 10: Serial Port Communications and Commands</i> .

Test Methods

Test the pickup and dropout of the SEL-351R elements using one of three methods: target command indication, output contact closure, or sequential events recorder (SER).

The examples below show the settings necessary to route the phase time-overcurrent element 51P1T to the output contacts and the SER. The 51PT element, like many in the SEL-351R, is controlled by enable settings and/or torque control SELOGIC[®] control equations. To enable the 51P1T element, set the E51P enable setting and 51PTC torque control settings to the following:

- E51P = 1 (via the SET command)
- 51P1TC = 1 (set directly to logical 1, via the SET L command)

Testing Via Front-Panel Indicators

Display the state of the SEL-351R elements, inputs, and outputs using the front-panel or serial port TAR commands. Use this method to verify the pickup settings of protection elements.

Access the front-panel TAR command from the front-panel OTHER pushbutton menu. To display the state of the 51PT element on the front-panel display, press the OTHER pushbutton, cursor to the TAR option, and press SELECT. Press the up arrow pushbutton until TAR 6 is displayed on the top row of the LCD. The bottom row of the LCD displays all elements asserted in Relay Word Row 6. The SEL-351R maps the state of the elements in Relay Word Row 6 on the bottom row of LEDs. The 51P1T element state is reflected on the LED labeled RS. See Table 9.3 for the correspondence between the Relay Word elements and the TAR command.

To view the 51P1T element status from the serial port, issue the **TAR 51P1T** command. The SEL-351R will display the state of all elements in the Relay Word row containing the 51P1T element.

Review TAR command descriptions in *Section 10: Serial Port Communications and Commands* and *Section 11: Additional Front-Panel Interface Details* for further details on displaying element status via the TAR commands.

Testing Via Output Contacts

You can set the SEL-351R to operate an output contact for testing a single element. Use the SET L command (SELOGIC control equations) to set an output contact (e.g., OUT104) to the element under test. The available elements are the Relay Word bits referenced in Table 9.3.

Use this method especially for time testing time-overcurrent elements. For example, to test the phase time-overcurrent element 51P1T via output contact OUT4, make the following setting:

OUT104 = 51P1T

Time-overcurrent curve and time-dial information can be found in *Section 9: Setting the SEL-351R Recloser Control*. Do not forget to reenter the correct SEL-351R settings when you are finished testing and ready to place the SEL-351R in service.

Testing Via Sequential Events Recorder

You can set the SEL-351R to generate an entry in the Sequential Events Recorder (SER) for testing SEL-351R elements. Use the SET R command to include the element(s) under test in any of the SER trigger lists (SER1 through SER3). See *Section 12: Standard Event Reports and SER*.

To test the phase time-overcurrent element 51P1T with the SER, make the following setting:

SER1 = 51P1 51P1T

Element 51P1 asserts when phase current is above the pickup of the phase time-overcurrent element. Element 51P1T asserts when the phase time-overcurrent element times out. The assertion and deassertion of these elements is time-stamped in the SER report. Use this method to verify timing associated with time-overcurrent elements, reclosing relay operation, etc. Do not forget to reenter the correct SEL-351R settings when you are ready to place the SEL-351R in service.

SEL-351R SELF-TESTS

The SEL-351R runs a variety of self-tests. The SEL-351R takes the following corrective actions for out-of-tolerance conditions (see Table 13.1):

- Protection Disabled: The SEL-351R disables overcurrent elements and trip/close logic. All output contacts and FETs driving the trip and close pins of the control cable are deenergized. The EN front-panel LED is extinguished.
- ALARM Output: The ALARM output contact signals an alarm condition by going to its deenergized state. If the ALARM output contact is a B contact (normally closed), it closes for an alarm condition or if the SEL-351R is deenergized. If the ALARM output contact is an A contact (normally open), it opens for an alarm condition or if the SEL-351R is deenergized. Alarm condition signaling can be a single 5-second pulse (Pulsed) or permanent (Latched).
- The SEL-351R generates automatic STATUS reports at the serial port for warnings and failures.
- The SEL-351R displays failure messages on the LCD display for failures.

Use the serial port STATUS command or front-panel STATUS pushbutton to view control self-test status.

Self-Test	Condition	Limits	Protection Disabled	ALARM Output	Description
IA, IB, IC, IN, VA, VB, VC, VS Offset	Warning	30 mV	No	Pulsed	Measures the dc offset at each of the input channels every 10 seconds.

 Table 13.1:
 SEL-351R Recloser Control Self-Tests

Self-Test	Condition	Limits	Protection Disabled	ALARM Output	Description
Master Offset	Warning	20 mV	No	Pulsed	Measures the dc offset at the A/D every 10 seconds.
	Failure	30 mV	Yes	Latched	
+5 V PS	Warning	+4.80 V +5.20 V	No	Pulsed	Measures the +5 V power supply every 10 seconds.
	Failure	+4.65 V +5.40 V	Yes	Latched	
±5 V REG	Warning	±4.75 V +5.20, -5.25 V	No	Pulsed	Measures the regulated 5 V power supply every 10 seconds.
	Failure	±4.50 V +5.40, -5.50 V	Yes	Latched	
±12 V PS	Warning	±11.50 V ±12.50 V	No	Pulsed	Measures the 12 V power supply every 10 seconds.
	Failure	±11.20 V ±14.00 V	Yes	Latched	
±15 V PS	Warning	±14.40 V ±15.60 V	No	Pulsed	Measures the 15 V power supply every 10 seconds.
	Failure	±14.00 V ±16.00 V	Yes	Latched	
TEMP	Warning	-40°C +85°C	No		Measures the temperature at the A/D voltage reference every 10 seconds.
	Failure	-50°C +100°C	Yes	Latched	
RAM	Failure		Yes	Latched	Performs a read/write test on system RAM every 60 seconds.
ROM	Failure	checksum	Yes	Latched	Performs a checksum test on the SEL-351R program memory every 10 seconds.
A/D	Failure		Yes	Latched	Validates proper number of conversions each 1/4 cycle.

Self-Test	Condition	Limits	Protection Disabled	ALARM Output	Description
CR_RAM	Failure	checksum	Yes	Latched	Performs a checksum test on the active copy of the SEL-351R settings every 10 seconds.
EEPROM	Failure	checksum	Yes	Latched	Performs a checksum test on the nonvolatile copy of the SEL-351R settings every 10 seconds.
the SEL-351R		Failures in th		-	the microprocessor and croprocessor and are not
Micro- processor Crystal	Failure		Yes	Latched	The SEL-351R monitors the microprocessor crystal. If the crystal fails, the relay displays "CLOCK STOPPED" on the LCD display. The test runs continuously.
Micro- processor (main circuit board)	Failure		Yes	Latched	The microprocessor on the main circuit board examines each program instruction, memory access, and interrupt. The SEL-351R displays "VECTOR nn" on the LCD upon detection of an invalid instruction, memory access, or spurious interrupt. The test runs continuously.
Micro- processor (battery charging/ power supply board)	Warning		No	Pulsed	The microprocessor on the battery charging/power supply circuit board reports a MODE failure in the status report if a processing error occurs.
+5V PSBC	Warning	+4.75 V +5.20 V	No	Pulsed	Measures the +5 V power supply on the battery charger board every 10 seconds.

Self-Test	Condition	Limits	Protection Disabled	ALARM Output	Description
Aux +12 V	Warning	0 (if AUX power is set to OFF) +11.20 V +14.00 V	No	Pulsed	Measures the +12 V power supply on the AUX port (if AUX power is set to ON) every 10 seconds.
Battery Voltage	Warning	18.00 V 45.00 V	No	Pulsed	Measures battery voltage every 10 seconds.
Battery Current	Warning	-5 A 185 mA	No	Pulsed	Measures battery charge/discharge current every 10 seconds.

SEL-351R TROUBLESHOOTING

Inspection Procedure

Complete the following procedure before disturbing the SEL-351R. After you finish the inspection, proceed to the *Troubleshooting Procedure*.

- 1. Measure and record the AC power supply voltage at the power input terminals' positions 17 and 20 on the terminal block.
- 2. Record battery voltage of the two series-connected batteries at the battery terminals.
- 3. Measure and record the voltage at all SEL-351R inputs (if used).
- 4. Measure and record the state of all output contacts (if used).

Troubleshooting Procedure

All Front-Panel LEDs Dark

- 1. Input ac power not present and battery discharged.
- 2. Input ac power not present and battery disconnected or otherwise defective.
- 3. Self-test failure.

Cannot See Characters on LCD Screen

- 1. SEL-351R is deenergized. Check to see if the ALARM contact is closed.
- 2. LCD contrast is out of adjustment. Use the steps below to adjust the contrast.
 - a. Press and hold down the OTHER front-panel pushbutton.
 - b. Use the UP (\blacktriangle) and DOWN (\blacktriangledown) arrow pushbuttons to adjust the contrast.

SEL-351R Does Not Respond to Commands From Device Connected to Serial Port

- 1. Communications device not connected to SEL-351R.
- 2. SEL-351R or communications device at incorrect baud rate or other communication parameter incompatibility, including cabling error.
- 3. SEL-351R serial port has received an XOFF, halting communications. Type **<CTRL>Q** to send control an XON and restart communications.

SEL-351R Does Not Respond to Faults

- 1. SEL-351R improperly set.
- 2. Improper test source settings.
- 3. CT or PT input wiring error.
- 4. Analog input cable between transformer secondary and main board loose or defective.
- 5. Failed SEL-351R self-test.

CALIBRATION

The SEL-351R is factory-calibrated. If you suspect that the control is out of calibration, please contact the factory.

FACTORY ASSISTANCE

We appreciate your interest in SEL products and services. If you have questions or comments, please contact us at:

Schweitzer Engineering Laboratories, Inc. 2350 NE Hopkins Court Pullman, WA USA 99163-5603 Telephone: (509) 332-1890 Fax: (509) 332-7990 Internet: www.selinc.com

TABLE OF CONTENTS

	B: SEL-300 SERIES RELAYS FIRMWARE UPGRADE INSTRUCTIONS	B-1
Firmwa	re (Flash) Upgrade Overview	B-1
Re	quired Equipment	B-1
Upgrade	e Procedure	B-2
А.		
В.	Establish Terminal Connection	B-2
	Failure to Connect	
C.	Save Settings and Other Data	
D.	Start SELBOOT	
	Commands Available in SELBOOT	B-7
	Set Relay Data Transmission Rate	
	Match Computer Communications Speed to the Relay	
E.	Download Existing Firmware	
F.	Upload New Firmware	B-10
G.	Check Relay Self-Tests	
	EN LED Illuminated and Access Level 0 Prompt Visible	
	EN LED Illuminated But No Access Level 0 Prompt	
	EN LED Not Illuminated	B-13
	IO_BRD Fail Status Message	B-13
	CR_RAM, EEPROM, and IO_BRD Fail Status Messages	B-13
H.	Verify Calibration, Status, Breaker Wear, and Metering	B-15
I.	Return Relay to Service	B-15

Settings	C-1
Operation	C-1

APPENDIX D: CONFIGURATION, FAST METER, AND FAST OPERATE COMMANDS...... D-1

Introduction	D-1
Message Lists	D-1
Binary Message List	D-1
ASCII Configuration Message List	
Message Definitions	
A5C0 Relay Definition Block	D-2
A5C1 Fast Meter Configuration Block	D-2
A5D1 Fast Meter Data Block	D-4

A5C2/A5C3 Demand/Peak Demand Fast Meter Configuration Messages	D-4
A5D2/A5D3 Demand/Peak Demand Fast Meter Message	D-6
A5B9 Fast Meter Status Acknowledge Message	
A5CE Fast Operate Configuration Block	
A5E0 Fast Operate Remote Bit Control	
A5E3 Fast Operate Breaker Control	
ID Message	
DNA Message	
BNA Message	

APPENDIX E: COMPRESSED ASCII COMMANDS......E-1

Introduction	E-1
CASCII Command—General Format	E-1
CASCII Command—SEL-351R	E-2
CSTATUS Command—SEL-351R	E-4
CHISTORY Command—SEL-351R	E-4
CEVENT Command—SEL-351R	E-5

APPENDIX F: SETTING NEGATIVE-SEQUENCE OVERCURRENT ELEMENTSF-1

Setting Negative-Sequence Definite-Time Overcurrent Elements	F-1
Setting Negative-Sequence Time-Overcurrent Elements	F-1
Coordinating Negative-Sequence Overcurrent Elements	F-2
Coordination Guidelines	F-3
Coordination Example	F-3
Traditional Phase Coordination	
Apply the Feeder Relay Negative-Sequence Overcurrent Element	
(Guidelines 1 to 3)	F-4
Convert "Equivalent" Phase Overcurrent Element Settings to Negative-	
Sequence Overcurrent Element Settings (Guideline 4)	F-5
Negative-Sequence Overcurrent Element Applied at a Distribution Bus	
(Guideline 5)	F-6
Ground Coordination Concerns	
Other Negative-Sequence Overcurrent Element References	F-7

APPENDIX G: SETTING SELOGIC® CONTROL EQUATIONS G-1

Relay Word Bits	G-1
Relay Word Bit Operation Example-Phase Time-Overcurrent Element 51P1T	
Phase Time-Overcurrent Element 51P1T Pickup Indication	G-1
Phase Time-Overcurrent Element 51P1T Time-Out Indication	G-2
Phase Time-Overcurrent Element 51P1T Reset Indication	G-2
Relay Word Bit Application Examples—Phase Time-Overcurrent Element	
51P1T	G-2
Other Relay Word Bits	G-3

SELOGIC Control Equations	G-3
SELOGIC Control Equation Operators	G-3
SELOGIC Control Equation Parentheses Operator ()	G-4
SELOGIC Control Equation NOT Operator !	G-4
Example of NOT Operator ! Applied to Single Element	G-4
Example of NOT Operator ! Applied to Multiple Elements (within	
parentheses)	G-5
SELOGIC Control Equation Rising Edge Operator /	G-5
SELOGIC Control Equation Falling Edge Operator \	G-7
SELOGIC Control Equation Analog Compares (SEL-351R-2 only)	G-7
SELOGIC Control Equation Operation Example—Tripping	G-8
Analysis of SELOGIC Control Equation Trip Setting TR	G-8
Set an Output Contact for Tripping	G-10
All SELOGIC Control Equations Must Be Set	G-10
Set SELOGIC Control Equations Directly to 1 or 0	G-10
Set SELOGIC Control Equations Directly to 1 or 0—Example	G-10
SELOGIC Control Equation Limitations	G-11
Processing Order and Processing Interval	G-11

APPENDIX H: DISTRIBUTED NETWORK PROTOCOL (DNP) V3.00...... H-1

Overview	H-1
Configuration	H-1
Standard Mode DNP Operation	H-1
Extended Mode DNP Operation	
EIA-232 Physical Layer Operation	
Automatic Dial-Out	
Data-Link Operation	H-3
Data Access Method	H-3
Device Profile	H-5
Object Table	H-7
Data Map	
Relay Summary Event Data	H-15
Point Remapping	H-16
Settings Sheet-Standard Mode DNP Port-SET P	H-18
Settings Sheet—Extended Mode DNP Port—SET P	
-	

APPENDIX I: MIRRORED BITS[™].....I-1

Overview	I-1
Operation	I-1
Message Transmission	I-1
Message Decoding and Integrity Checks	I-1
Synchronization	I-2
Loop-Back Testing	I-3
Channel Monitoring	I-3
MIRRORED BITS Protocol for the Pulsar 9600 Baud Modem	I-3
Settings	I-4

TABLES

Table G.1:	SELOGIC Control Equation Operators (listed in processing order)	G-3
	Comparison Operator Descriptions	
	Processing Order of Relay Elements and Logic (top to bottom)	
Table H.1:	Data Access Methods	H-4
Table H.2:	SEL-351R DNP Object Table	H-7
Table H.3:	SEL-351R DNP Data Map	H-11

FIGURES

Figure B.1:	Establishing a Connection	В-3
Figure B.2:	Determining the Computer Serial Port	B-3
Figure B.3:	Determining Communications Parameters for the Computer	B-4
Figure B.4:	Terminal Emulation Startup Prompt	B-4
Figure B.5:	Terminating Communication	B-4
Figure B.6:	Correcting Port Setting	B-5
Figure B.7:	Correcting Communications Parameters	B-6
-	Establishing Communication	
Figure B.9:	Matching Computer to Relay Parameters	B-9
Figure B.10:	Example Receive File Dialog Box	B-9
Figure B.11:	Example Filename Identifying Old Firmware Version	B-10
Figure B.12:	Downloading of Old Firmware	B-10
Figure B.13:	Selecting the New Firmware to Send to the Relay	B-12
Figure B.14:	Transfer of New Firmware to the Relay	B-12
Figure F.1:	Minimum Response Time Added to a Negative-Sequence Time-Overcurrent	
-	Element 51QT	F-2
Figure F.2:	Distribution Feeder Protective Devices	F-3
Figure F.3:	Traditional Phase Coordination	F-4
Figure F.4:	Phase-to-Phase Fault Coordination	F-5
Figure F.5:	Negative-Sequence Overcurrent Element Derived From "Equivalent" Phase	
-	Overcurrent Element, 51EP	F-6
Figure G.1:	Result of Rising Edge Operators on Individual Elements in Setting ER	G-6
Figure G.2:	Result of Falling Edge Operator on a Deasserting Underfrequency Element	G-7

APPENDIX A: FIRMWARE VERSIONS

This manual covers the SEL-351R Recloser Control that contains firmware bearing the following
part numbers and revision numbers (most recent firmware listed at top):

Firmware Part/Revision No.	Description of Firmware
SEL-351R-2-R300-V0-Z003003-D20020131	This firmware differs from previous versions as follows:
	- Added 8 remote, local, and latch bits
	 Added 8 display points
	 Added 8 SELOGIC[®] counters
	 Added SELOGIC analog compares for use with SELOGIC counters
	- Added phantom voltage metering capability
SEL-351R-x-R109-V0-Z002002-D20010518	This firmware differs from previous versions as follows:
	 Added Extended Metering MET X command, which includes phase-to-phase voltages.
	 Corrected front-panel target logic so that previously latched A, B, C target LEDs now clear when a trip is received and no fault current is present.
	 Improved front-panel target logic so that correct phase targeting appears when tripping with no intentional delay, most noticeable during testing.
	 Improved fault locator event type determination during short duration faults, most likely seen during testing.
	 Doubled the voltage settings ranges (e.g., 150 to 300 V secondary) for the voltage elements, including the voltage elements used with the synchronism check and the frequency elements.
	 Added Relay Word bits DDATA and DCONN (used in automatic dial-out via DNP).
	 Added Extended Mode DNP settings choice in serial port PROTO setting, and added setting to support automatic dial-out via DNP UNSOL setting.
	 Changed the impedance settings ranges for line settings, load-encroachment elements, and directional elements to match the 1 A nominal secondary settings ranges in other SEL-351 family relays.
I	 Added setting choice to support SEL-DTA2

Firmware Part/Revision No.	Description of Firmware
	Display/Transducer Adapter in serial port AUTO settings.
	 Added AC mode for optoisolated input debounce timers in global settings IN101D–IN106D. This allows AC control signals to be sensed on selected inputs.
	 Added Y1 and N1 settings options to global setting RSTLED (for defeating the 3-second delay on the LOCK operator control).
	 Added metering, self-check status, breaker wear/counters, and time-overcurrent element pickups as options for display points (rotating default display).
	 Changed default SELOGIC setting LED11 (AC SUPPLY LED) to LED= !DISCHG
SEL-351R-R108-V0-Z001001-D20010501	This firmware differs from previous versions as follows:
	 Prevented the SEL-351R from setting the device trouble bit within the DNP response header when status warnings and failures occur.
	- Internal changes to support Flash memory revision.

Firmware Part/Revision No.	Description of Firmware
SEL-351R-R107-V0-Z001001-D20010501	This firmware differs from previous versions as follows:
	 Limited cumulative numbers of SELOGIC control equation rising and falling edge operators to 53.
	 Corrected problem of a status warning sealing in on the front-panel status screen and via DNP when the active settings group is changed or a settings change is made to the active settings group. New battery monitor/charger mode, NOMSG, indicates that communications with the battery monitor/charger are temporarily suspended just after power up, settings change, or active settings group change. This keeps the status from erroneously going to a sealed-in warning state.
	 Target LEDs can no longer be reset if a TRIP condition is present.
	 MIRRORED BITS[™] Relay Word bit labels (e.g., TMB1A) no longer appear in TAR command responses (see Section 10: Serial Port Communications and Commands or DNA Command Responses in Appendix D if the SEL-351R is not ordered with the MIRRORED BITS communications option (firmware versions 1 or greater).
	 Converted FID string to new format.

Firmware Part/Revision No.	Description of Firmware		
SEL-351R-R106-V0	This firmware differs from previous versions as follows:		
	 Phase pickup setting 50P4P is set when Min. tripphase is set in the EZ setting routing (SET EZ command). It is used in the trip operations counters (see discussion on the new per-phase and ground trip operation counters in the <i>Breaker/Recloser Contact Wear Monitor</i> subsection in <i>Section 8:</i> <i>Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions</i>). 		
	 Expanded the setting range for the SYNCP (synchronizing phase) setting to accommodate angle settings for synchronism check. 		
	 Changed the DNP mapping command so that it now requests a confirmation before saving the map modifications. 		
	 Added the MB8A and MB8B serial port protocol settings options for MIRRORED BITS protocol operating on communication channels requiring an 8 data bit format. 		
SEL-351R-R105-V0	This firmware differs from previous versions as follows:		
	 Added zero-sequence voltage polarized, neutral- current directional elements to <i>Best Choice Ground</i> <i>Directional</i>TM Logic. 		
	 Fixed problem of high current trips not being enabled if auto-reclosing is nonexistent (see Figure 1.11 and Figure 1.12 in <i>Section 1: Factory-</i> <i>Set Logic</i>). 		
	 Made the following SELOGIC control equation factory default settings changes: SV14 = 50G6 + 50N6 + 51N1 + 51N2 LED24 = 50G6 + 50N6 + 51N1 + 51N2 		
	 Changed setting increment to 0.01 for CTR, CTRN, PTR and PTRS settings. 		
	 Changed setting range for kA Interrupted set points KASP1, KASP2, and KASP3 (new lower limit is 0.10 kA and new setting increment is 0.01 kA). 		
	 Changed the setting range of DNP setting UTIMEO to 1–50 seconds. 		

Firmware Part/Revision No.	Description of Firmware	
SEL-351R-R104-V0	This firmware differs from previous versions as follows:	
	 SELOGIC control equation torque control settings for overcurrent elements can no longer be set directly to logical 0. 	
	 SELOGIC control equation drive-to-lockout setting 79DTL has a 60-cycle dropout time, as explained in <i>Section 6: Close and Reclose Logic</i>. 	
	 Corrected DNP lockup problem. 	
	 Corrected part number entry problem, for firmware upgrades. 	
	 SELOGIC control equations settings limits displayed when settings saved (see <i>Appendix G: Setting</i> <i>SELOGIC[®] Control Equations</i>). 	
SEL-351R-R103-V0	This firmware differs from previous versions as follows:	
	- Fixed erroneously high peak demand recording.	
	 SELOGIC control equation setting FAULT now momentarily suspends demand metering updating and peak recording as explained in Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions. 	
	- Fixed MIRRORED BITS problem.	
	 Changed entry "Obj. 50, Var. 1, Time and Date" in Table H.2 in <i>Appendix H: Distributed Network</i> <i>Protocol (DNP) V3.00</i>. 	
	- Fixed battery charger problem.	
	 Fixed problem of EZ Operations to lockout settings having the incorrect range and not causing the appropriate EZ Reclose interval settings to be set equal to 0. 	
	 Fixed problem of prematurely going to lockout for a second fast curve/instantaneous trip, due to slow recloser auxiliary contact. 	
	 Fixed problem of "G" LED not illuminating for a fault involving ground (for certain settings/operator control modes). 	
	 Fixed problem of fast curves not being enabled if auto-reclosing is nonexistent (see Figures 1.6 and 1.7 in <i>Section 1: Factory-Set Logic</i>). 	
SEL-351R-R102-V0	Original Firmware Release.	

To find the firmware revision number in your SEL-351R, view the status report using the serial port STATUS command or the front-panel STATUS pushbutton. The status report displays the FID label with the Part/Revision number in bold:

FID=SEL-351R-R107-V0-Z001001-D20010501

The Firmware revision number follows the "R" and the release date follows the "D".

APPENDIX B: SEL-300 SERIES RELAYS FIRMWARE UPGRADE INSTRUCTIONS

FIRMWARE (FLASH) UPGRADE OVERVIEW

Note: These firmware upgrade instructions apply to all SEL-300 series relays except the SEL-321 series relays (which use EPROM instead of Flash).

SEL may occasionally offer firmware upgrades to improve the performance of your relay. The relay stores firmware in Flash memory; therefore, changing physical components is not necessary. A firmware loader program called SELBOOT resides in the relay. These instructions give a step-by-step procedure to upgrade the relay firmware by uploading a file from a personal computer to the relay via a serial port.

Note: SEL strongly recommends that you perform the firmware upgrade at the location of the relay and with a <u>direct connection</u> from the personal computer to one of the serial ports of the relay. Do not attempt to load firmware from a remote location because problems can arise that you will not be able to address from a distance. When upgrading at the substation, do not attempt to load the firmware into the relay through an SEL-2020 or SEL-2030 Communications Processor.

Perform the firmware upgrade process in the following sequence:

- A. Prepare the Relay
- B. Establish a Terminal Connection
- C. Save Settings and Other Data
- D. Start SELBOOT
- E. Download Existing Firmware
- F. Upload New Firmware
- G. Check Relay Self-Tests
- H. Verify Calibration, Status, Breaker Wear, and Metering
- I. Return Relay to Service

Required Equipment

- Personal computer
- Terminal emulation software that supports the XMODEM/CRC protocol (these instructions use HyperTerminal from a Microsoft[®] Windows[®] operating system)
- Serial communications cable (SEL-C234A or equivalent)
- Disk containing firmware upgrade file

UPGRADE PROCEDURE

A. Prepare the Relay

- **Step 1.** If the relay is in service, change settings, or disconnect external voltage sources or output contact wiring to disable relay control functions.
- **Step 2.** Power up your relay.
- **Step 3.** From the relay front panel, press the **{SET}** pushbutton.
- **Step 4.** Use the arrow pushbuttons to navigate to PORT.
- **Step 5.** Press the **{SELECT}** pushbutton.
- **Step 6.** Use the arrow pushbuttons to navigate to the relay serial port you plan to use.
- **Step 7.** Press the **{SELECT}** pushbutton.
- **Step 8.** With SHOW selected, press the **{SELECT}** pushbutton.
- **Step 9.** Press the down arrow pushbutton to scroll through the port settings and keep a written record of the value for each setting. Many of these you will use later in the upgrade procedure.
- **Step 10.** At the Exit Settings prompt, be certain "Yes" is highlighted and press the {**SELECT**} pushbutton.
- **Step 11.** Connect an SEL-C234A (or equivalent) serial communications cable to the relay serial port you identified earlier.

B. Establish Terminal Connection

To establish communication between your relay and a personal computer, you must be able to modify your serial communications parameters (data transmission rate, data bits, parity, etc.), disable any hardware or software flow control in your computer terminal emulation software, and transfer files with the XMODEM protocol.

- **Step 1.** Connect a serial communications cable to the serial port.
 - a. Check the back of your computer for a label identifying the serial communications ports
 - b. Choose a port and connect an SEL-C234A (or equivalent) serial communications cable to the personal computer serial port.

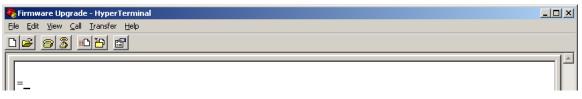
If there is no identification label, connect the cable to any computer serial port. Note that you may later have to change this computer serial port to establish communication between your relay and your computer.

- Step 2. Disconnect any other serial port connection.
- **Step 3.** Open HyperTerminal (on a personal computer running Windows, you would typically click the **Start** button, point to Programs, and point to Accessories).
- **Step 4.** Enter a name, select any icon, and click **OK** (Figure B.1).
- **Step 5.** Determine the computer serial port you will use to communicate with the relay (Figure B.2) and click **OK**.
- **Step 6.** Establish serial port communications parameters.

Note that these settings for your computer (Figure B.3) must match the settings you recorded earlier for the relay (hardware and software flow control settings, for example, should match what you recorded earlier for the relay RTSCTS setting). If computer settings do not match relay settings, change the computer settings to match relay settings.

Figure B.1: Establishing a Connection

Connect To		? ×
🇞 Firmware	e Upgrade	
Enter details for	the phone number that you want t	o dial:
Country/region:	United States of America (1)	7
Ar <u>e</u> a code:	509	
Phone number:		
Connect using:	COM1	•
	OK Cano	cel


Figure B.2: Determining the Computer Serial Port

COM	1 Properties			<u>? ×</u>
Po	nt Settings			
	<u>B</u> its per second:	2400		•
	<u>D</u> ata bits:	8		•
	Parity:	None		
	<u>S</u> top bits:	1		•
	Elow control:	None		
	L		<u>R</u> estore	• Defaults
	0	к	Cancel	Apply

Figure B.3: Determining Communications Parameters for the Computer

Step 7. Click OK and press <Enter>.

You should see a screen and prompt similar to that in Figure B.4. The prompt does not appear unless you press **<Enter>**.

Failure to Connect

If you do not see the "=" prompt, press **<Enter>** again. If you still do not see the "=" prompt, you have either selected the incorrect serial communications port on your computer or the computer speed setting does not match the data transmission rate of your relay. Perform the following steps to reattempt a connection.

Step 1. Terminate communication by pressing the icon illustrating a phone off the hook.

Figure B.5: Terminating Communication

Step 2. Correct your port setting.

a. From the File menu, choose Open.

You should see a dialog box similar to Figure B.6.

b. Select a different port in the "Connect using:" list box and click **OK**.

Firmware Upgrade Properties	? ×			
Connect To Settings				
Firmware Upgrade				
Country/region: United States of America (1)				
Enter the area code without the long-distance prefix.				
Ar <u>e</u> a code: 509				
Phone number:				
Connect using: COM1				
Configure				
☑ Lise country/region code and area code ☑ Bedial on busy				
OK Ca	ncel			

Figure B.6: Correcting Port Setting

Step 3. Correct communications parameters.

- a. From the File menu, choose Properties.
- b. Choose Configure to see a dialog box similar to Figure B.3.
- **Step 4.** Change settings in the appropriate list boxes and click **OK**.

COM1 Pi	roperties			<u>? ×</u>
Port Se	ettings			
	<u>B</u> its per second:	2400		
	<u>D</u> ata bits:	8		•
	<u>P</u> arity:	None		•
	<u>S</u> top bits:	1		•
	<u>F</u> low control:	None		•
			<u>R</u> estore	Defaults
OK Cancel Apply				

Figure B.7: Correcting Communications Parameters

- **Step 5.** After you have corrected settings, reestablish communication by pressing the icon showing the phone back on the hook (Figure B.8).
- **Step 6.** Press **<Enter>** to obtain the "=" prompt.

Figure B.8: Establishing Communication

C. Save Settings and Other Data

The firmware upgrade procedure may result in lost relay settings. If the relay contains History (HIS), Event (EVE), Metering (MET), Breaker Wear Monitor (BRE), or Sequential Events Recorder (SER) data that you want to retain, retrieve and record this information prior to performing the firmware upgrade. If you have either SEL-5010 Relay Assistant Software or SEL-5030 ACSELERATOR[®] Software available for your relay, use this software to record existing relay settings and proceed to *Start SELBOOT* on page B-7. Otherwise, carefully perform the following steps to minimize the chance of inadvertently losing relay settings.

- Step 1. From the "=" prompt, use the ACCESS (ACC) and 2ACCESS (2AC) commands to enter Access Level 2.
- Step 2. Under the Transfer menu in HyperTerminal, select Capture Text.
- **Step 3.** Enter a directory and file name for a text file in which you will record existing relay settings.

Step 4. Click Start.

Note that the Capture Text command causes the terminal emulation program to copy to the text file all information you retrieve and all key strokes you type until you send the command to stop capturing text.

Step 5. Use the **SHOW CALIBRATION** (**SHO C**) command to retrieve the relay calibration settings.

If you do not already have copies of other relay settings (Group, Global, Port, Logic, Text label, SER, and Channel, depending upon your relay), use the **SHOW** (**SHO n**) command to retrieve necessary settings, where n can be 1–6, G, P, L, T, R, X, or Y. Also, use the **PASSWORD** (**PAS**) command to save the original password settings in case you need these later.

Normally, the relay will preserve the settings during the firmware upgrade. However, depending on the previously installed firmware version and the use of relay memory, this cannot be ensured. Saving settings is always recommended.

- Step 6. Under the Transfer menu in HyperTerminal, select Capture Text and click Stop.
- **Step 7.** Print the text file you created in steps 4 through 6 and save this record for later reference.
- **Step 8.** Take note of the present relay data transmission setting for later use in the upgrade procedure.

This value should be the same as the value for the SPEED setting you recorded earlier in *Prepare the Relay* on page B-2.

D. Start SELBOOT

- **Step 1.** To start the SELBOOT program, use the **L_D** command (to obtain the underscore, type **<Shift>**, then the hyphen (-) key).
- **Step 2.** Type **Y <Enter>** at the prompt asking whether you want to disable the relay.
- **Step 3.** Type **Y <Enter>** at the "Are you sure (Y/N)?" prompt.

The relay will send the SELBOOT prompt "!>". Note that the relay sometimes takes a few minutes to start SELBOOT.

Commands Available in SELBOOT

To list the commands available in SELBOOT, use the **HELP** (**HEL**) command. The relay displays a list similar to the following:

SELboot-3xx	<-R100	
bau "rate"	; Set baud rate to 300, 1200, 2400, 4800, 9600, 19200, or 38400 baud	
era	; Erase the existing relay firmware	
exi	; Exit this program and restart the device	
fid	; Print the relays firmware id	
rec	; Receive new firmware for the relay using xmodem	
sen	; Send the relays firmware to a pc using xmodem	
hel	; Print this list	

Set Relay Data Transmission Rate

Step 1.	Set the relay baud rate	to the highest possible dat	ta transmission rate for the relay.
---------	-------------------------	-----------------------------	-------------------------------------

In SELBOOT, the relay supports firmware upload and download speeds as fast as 38400 baud.

Step 2. Use the BAUD (BAU) command to change the data transmission rate in the relay.

Match Computer Communications Speed to the Relay

- **Step 1.** In HyperTerminal, terminate communication (Figure B.5).
- **Step 2.** On the File menu, choose Properties.
- Step 3. Choose Configure.
- **Step 4.** Change your computer communications speed to match the new data transmission rate in the relay (Figure B.9).
- Step 5. Click OK twice.

Note that you should not have to reestablish communication; HyperTerminal reestablishes communication automatically the second time you click OK.

Step 6. Press <Enter>.

COM	1 Properties			<u>?×</u>
Po	rt Settings			
	r			
	<u>B</u> its per second:	38400		
	<u>D</u> ata bits:	8		
	<u>P</u> arity:	None		•
	<u>S</u> top bits:	1		•
	Elow control:	None		
			<u>R</u> estore	Defaults
	0	ĸ	Cancel	Apply

Figure B.9: Matching Computer to Relay Parameters

E. Download Existing Firmware

Copy the firmware presently in the relay, in case the new firmware upload is unsuccessful. To make a backup of the firmware, you will need as much as 3 MB of free disk space. This backup procedure takes between 5 and 10 minutes at 38400 bps.

Step 1. From the Transfer menu in HyperTerminal, select Receive File.

You should see a dialog box similar to Figure B.10.

🗱 Receive File	<u>?</u> ×
Place received file in the following folder:	
C:\My Documents\Old Firmware	<u>B</u> rowse
Use receiving protocol:	
1K Xmodem	•
<u>R</u> eceive <u>C</u> lose	Cancel

Figure B.10: Example Receive File Dialog Box

Step 2. Choose a filename that clearly identifies your existing firmware version.

SEL generally lists the firmware revision number first, then the product number. All such files have an .s19 extension (r100387.s19, for example).

- **Note:** After beginning the following procedure, you will need to enter this information quickly before the relay times out.
- **Step 3.** Enter the pathname of a folder on your computer hard drive in which you want to record the existing relay firmware, and select "1K Xmodem" if you have this protocol available on your PC. Otherwise, choose "Xmodem."

- **Step 4.** Use the **SEND** (**SEN**) command to the relay at the SELBOOT prompt to initiate the firmware transfer from the relay to your computer.
 - !>SEN <Enter>

You will see no activity on the PC screen because the relay is waiting for the PC to request the first Xmodem data packet.

- **Note:** You have about one minute to complete the following procedure before the relay times out. If the relay should time out, use the SEND command again and restart the Receive File process.
- **Step 5.** Reopen the Receive File dialog box from the Transfer menu in the terminal emulation program and select Receive.

You should see a dialog box similar to Figure B.11.

Step 6. Provide the filename that you chose earlier and click **OK**.

For a successful download, you should see a dialog box similar to Figure B.12. After the transfer, the relay will respond: "Download completed successfully!"

Receive Filename	1K Xmodem file receive for Firmware Upgrade
Xmodem never sends a filename, so you must specify a	Storing as: C:\My Documents\r100387.s19
filename for storing the received file.	Packet: 15 Error checking: CRC
Folder: C:\My Documents\Old Firmware	Retries: 0 Total retries: 0 File: 13K
Eilename: r100387.s19	Last error: Throughput: 3169 cps
OK Cancel	Elapsed: 00:00:04
Figure B.11: Example Filename	Cancel

Identifying Old Firmware Version

Figure B.12: Downloading of Old Firmware

F. Upload New Firmware

- **Step 1.** Insert the disk containing the new firmware into the appropriate disk drive on your computer.
 - **Notes:** This example shows upload of new firmware directly from the floppy disk. For a faster upload (and less potential for file corruption), copy the new firmware to your local hard drive and upload the new firmware from your hard drive.

Some firmware may be in self-extracting compressed files (files with .exe extensions). If you have firmware in such files, double-click on the file you want from Windows Explorer and select a directory on your local hard drive into which

you want to download the uncompressed files. Ensure that these uncompressed files have an .s19 extension.

Step 2. Use the **RECEIVE** (**REC**) command at the SELBOOT prompt to instruct the relay to receive new firmware.

The relay will prompt whether you want to erase the existing firmware.

_____ !>RFC <Fnter> Caution! - This command erases the relays firmware. If you erase the firmware, new firmware must be loaded into the relay before it can be put back into service. **Note:** If the relay power fails during a firmware receive and after the old firmware is erased, the relay will restart in SELBOOT but the relay baud rate will default to 2400 baud. (If this happens, connect to the relay at 2400 baud, type BAU 38400 <Enter> at the SELBOOT prompt, and verify that computer communications settings match the relay settings [Match Computer Communications Speed to the Relay on page B-8]. Restart the firmware receive.) Step 3. Type Y to erase the existing firmware and load new firmware. To abort, press <Enter>. Are you sure you wish to erase the existing firmware? (Y/N) Erasing Erase successful **Note:** The relay prompts you to press a key (e.g., <Enter>) and begin the transfer. After you press a key to begin the transfer, you have about one minute to complete the following procedure before the relay times out. The relay will display one or more "C" characters as it waits for your PC Terminal Emulation program to send the new firmware. If you do not start the transfer within about one minute, the relay times out and responds, "Upload failed - Communications failed!" If this happens, use the REC command again and restart the transfer. Step 4. Start the file transfer by pressing any key and selecting Send File under the Transfer menu in HyperTerminal. Press any key to begin transfer, then start transfer at the PCCCC <Enter> Step 5. For Filename, type in the location of your new firmware or use the browse button to select the firmware file (Figure B.13). For Protocol, select "1K Xmodem" if you have this protocol available. Otherwise, Step 6. select "Xmodem."

Step 7. Click **Send** to send the file containing the new firmware (e.g., r103387e.s19).

You should see a dialog box similar to that in Figure B.14. Incrementing numbers in the Packet box and a bar advancing from left to right in the File box indicate a transfer in progress.

👯 Send File		<u>? ×</u>	1K Xmoder	n file sen
Folder: A:N			Sending:	A:\r10338
Eilename: A:\r103387e.s19		Browse		
, Protocol:			Packet:	124
1K Xmodem		•	Retries:	0
<u></u> e	nd <u>C</u> lose	Cancel	Last error:	

Figure B.13: Selecting the New Firmware to Send to the Relay

K Xmoder Sending:	A:\r103387e.s19
Packet:	124 Error checking: CRC
Retries:	0 Total retries: 0
Last error:	
File:	120k of 1214K
Elapsed:	00:00:41 Remaining: 00:06:14 Throughput: 2989 cps
	Cancel cps/bps

Figure B.14: Transfer of New Firmware to the Relay

Note: If you use "1K Xmodem," the file transfer takes between 5 and 15 minutes at 38400 baud. If you see no indication of a transfer in progress within a few minutes after clicking Send, use the REC command again and reattempt the transfer. Remember to press any key after the relay erases existing firmware and prior to your selecting Send File. After the transfer completes, the relay displays the following:

Upload completed successfully. Attempting a restart

G. Check Relay Self-Tests

The relay EN front-panel LED should illuminate if the relay retained original relay settings through the upload (LED illumination may be delayed as long as two minutes). Press **<Enter>** to see if the Access Level 0 prompt "=" appears on your terminal screen.

EN LED Illuminated and Access Level O Prompt Visible

If the EN LED is illuminated and the Access Level 0 prompt is visible, use the ACC and 2AC commands to enter Access Level 2 and proceed to *Verify Calibration, Status, Breaker Wear, and Metering* on page B-15.

EN LED Illuminated But No Access Level O Prompt

If the EN LED is illuminated and the Access Level 0 prompt does not appear, the relay data transmission rate has reverted to the value you recorded in *Prepare the Relay* on page B-2.

- **Step 1.** As you did earlier in *Match Computer Communications Speed to the Relay* on page B-8, change the computer communications speed to match.
- Step 2. Use the ACC and 2AC commands to enter Access Level 2 and proceed to *Verify Calibration, Status, Breaker Wear, and Metering* on page B-15.

EN LED Not Illuminated

If the EN LED does not illuminate, the relay can display various self-test fail status messages. Press **{STATUS}** on the relay front panel and use the up and down pushbuttons to scroll through the various status messages.

If the relay displays only an IO_BRD fail status message, the relay data transmission rate has reverted to the value you recorded in *Prepare the Relay* on page B-2.

- **Step 1.** As you did in *Match Computer Communications Speed to the Relay* on page B-8, change the computer communications speed to match.
- Step 2. Use the ACC and 2AC commands to enter Access Level 2 and proceed to *IO_BRD Fail Status Message*, Step 1.

If fail status messages display for any combination of CR_RAM, EEPROM, and IO_BRD, the relay baud rate has reverted to the factory default of 2400 baud. Go to *CR_RAM, EEPROM, and IO_BRD Fail Status Messages*, Step 1.

IO_BRD Fail Status Message

- Step 1. Use the INITIALIZE (INI) command to reinitialize the I/O board(s). If this command is not available, go to *CR_RAM*, *EEPROM*, *and IO_BRD Fail Status Messages*, Step 1.
- **Step 2.** Answer **Y <Enter>** to the question: "Are the new I/O board(s) correct (Y/N)?"

After a brief interval (as long as a minute), the EN LED will illuminate. Verify that the relay retained the original settings.

- **Step 3.** Enter Access Level 2 by issuing the **ACC** and **2AC** commands.
- Step 4. Go to Verify Calibration, Status, Breaker Wear, and Metering on page B-15.

CR_RAM, EEPROM, and IO_BRD Fail Status Messages

- **Step 1.** As you did earlier in *Match Computer Communications Speed to the Relay* on page B-8, terminate communication.
- Step 2. Change communications software settings to 2400 baud, 8 data bits, 1 stop bit.
- **Step 3.** Reestablish communication.

- **Step 4.** Press **<Enter>** to have the Access Level 0 prompt "=" appear on your terminal screen.
- **Step 5.** Enter Access Level 2 by issuing the **ACC** and **2AC** commands, (the factory default passwords, as shown under the **PAS** command in your instruction manual, will be in effect).
- Step 6. Use the **RESTORE SETTINGS** (**R_S**) command to restore factory default settings in the relay (use the **R_S 1** command for a 1 Amp SEL-387-type or 1 Amp SEL-352-type relay).

The relay will prompt whether you want to restore default settings. If your relay does not accept the R_S (or $R_S 1$) command, contact the factory for assistance.

Step 7. Type Y <Enter>.

The relay can take as long as two minutes to restore default settings. The relay then reinitializes, and the EN LED illuminates.

- **Note:** If the relay prompts you to enter a part number, use either the number from the label on the disk containing your firmware or the number from the new part number sticker (if supplied).
- **Step 8.** Press **<Enter>** to have the Access Level 0 prompt "=" appear on your terminal screen.
- Step 9. Use the ACC and 2AC commands to reenter Access Level 2.

Factory default passwords will be in effect.

- **Step 10.** Restore original settings and passwords.
 - a. If you have SEL-5010 software or SEL-5030 ACSELERATOR Software, restore original settings as necessary.
 - b. If you do not have either SEL-5010 software or SEL-5030 ACSELERATOR Software, restore original settings by issuing the necessary **SET n** commands, where n can be 1–6, G, P, L, T, R, X, or Y, and the **PAS** command to set original relay passwords.

Use the **PAS** command as shown in the following example: Type **PAS 1: Ot3579 <Enter>** to set the Access Level 1 password to Ot3579. Use a similar format for other password levels. The **PAS** command is case sensitive, so the relay treats lower-case and upper-case letters differently.

Step 11. If any failure codes still appear on the relay display, see the testing and troubleshooting section in your relay instruction manual or contact the factory for assistance.

H. Verify Calibration, Status, Breaker Wear, and Metering

Step 1.	To verify relay calibration settings, use the SHO C command. If the settings do not match those contained in the text file you recorded in <i>Save Settings and Other Data</i> on page B-6, contact the factory for assistance.	
	Note: Some relays support the VERSION (VER) command that you use to obtain a part number. Compare this number against the part number from the label on the disk containing your firmware.	
	a. If the label on the disk matches the part number on the screen, proceed to Step 2.	
	b. If the label on the disk does not match the part number on the screen, type PAR<enter></enter> , type the number from the disk label, and press <enter></enter> .	
	c. If the relay reinitializes after saving the changes, reenter Access Level 2 and proceed to Step 3.	
Step 2.	Use the STATUS (STA) command to verify that all relay self-test parameters are within tolerance.	
Step 3.	If you used the Breaker Wear Monitor, use the BRE command to check the data ar see if the relay retained breaker wear data through the upgrade procedure.	
	If the relay did not retain these data, use the BRE Wn command to reload the percent contact wear values for each pole of Circuit Breaker n ($n = 1, 2, 3, or 4$) you recorded in <i>Save Settings and Other Data</i> on page B-6.	
Step 4.	Apply current and voltage signals to the relay.	
Step 5.	Use the METER (MET) command and verify that the current and voltage signals are correct.	
Step 6.	Use the TRIGGER (TRI) and EVENT (EVE) commands to verify that the magnitudes of the current and voltage signals you applied to the relay match those displayed in the event report.	

If these values do not match, check the relay settings and wiring.

I. Return Relay to Service

Reenable relay control functions.

Note: If an SEL-2020 or SEL-2030 Communications Processor is connected to the relay, re-autoconfigure the SEL-20x0 port. Failure to do so may cause automatic data collection failure if power to the communications processor is cycled.

APPENDIX C: SEL DISTRIBUTED PORT SWITCH PROTOCOL

SEL Distributed Port Switch Protocol (LMD) permits multiple SEL relays to share a common communications channel. It is appropriate for low-cost, low-speed port switching applications where updating a real-time database is not a requirement.

SETTINGS

Use the front-panel SET pushbutton or the serial port SET P command to activate the LMD protocol. Change the port PROTO setting from the default SEL to LMD to reveal the following settings:

PREFIX:	One character to precede the address. This should be a character that does not occur in the course of other communications with the relay. Valid choices are one of the following: "@", "#", "\$", "%", "&". The default is "@".
ADDR:	Two-character ASCII address. The range is "01" to "99". The default is "01".
SETTLE:	Time in seconds that transmission is delayed after the request to send (RTS line) asserts. This delay accommodates transmitters with a slow rise time.

OPERATION

- 1. The relay ignores all input from this port until it detects the prefix character and the two-byte address.
- 2. Upon receipt of the prefix and address, the relay enables echo and message transmission.
- 3. Wait until you receive a prompt before entering commands to avoid losing echoed characters while the external transmitter is warming up.
- 4. Until the relay connection terminates, you can use the standard commands that are available when PROTO is set to SEL.
- 5. The QUIT command terminates the connection. If no data are sent to the relay before the port timeup period, it automatically terminates the connection.
- 6. Enter the sequence CTRL-X QUIT <CR> before entering the prefix character if all relays in the multidrop network do not have the same prefix setting.
 - **Note:** You can use the front-panel SET pushbutton to change the port settings to return to SEL protocol.

INTRODUCTION

SEL relays have two separate data streams that share the same serial port. The human data communications with the relay consist of ASCII character commands and reports that are intelligible to humans using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering data. The device connected to the other end of the link requires software that uses the separate data streams to exploit this feature. The binary commands and ASCII commands can also be accessed by a device that does not interleave the data streams.

SEL *Application Guide AG95-10*, *Configuration and Fast Meter Messages*, is a comprehensive description of the SEL binary messages. Below is a description of the messages provided in the SEL-351R Recloser Control.

Message Lists

Binary Message List

-

Request to	
<u>Relay (hex)</u>	Response From Relay
A5C0	Relay Definition Block
A5C1	Fast Meter Configuration Block
A5D1	Fast Meter Data Block
A5C2	Demand Fast Meter Configuration Block
A5D2	Demand Fast Meter Data Message
A5C3	Peak Demand Fast Meter Configuration Block
A5D3	Peak Demand Fast Meter Data Message
A5B9	Fast Meter Status Acknowledge
A5CE	Fast Operate Configuration Block
A5E0	Fast Operate Remote Bit Control
A5E3	Fast Operate Breaker Control

ASCII Configuration Message List

Request to Relay (ASCII)	Response From Relay
ID	ASCII Firmware ID String and Terminal ID Setting (TID)
DNA	ASCII Names of Relay Word bits
BNA	ASCII Names of bits in the A5B9 Status Byte

MESSAGE DEFINITIONS

A5C0 Relay Definition Block

In response to the A5C0 request, the SEL-351R sends the following block:

<u>Data</u>	Description
A5C0	Command
34	Length
04	Support two protocols, SEL, MIRRORED BITS [™] , DNP, and LMD
03	Support three Fast Meter messages
03	Support three status flag commands
A5C1	Fast Meter configuration command
A5D1	Fast Meter command
A5C2	Demand Fast Meter configuration command
A5D2	Demand Fast Meter command
A5C3	Peak Demand Fast Meter configuration command
A5D3	Peak Demand Fast Meter command
0004	Settings change bit
A5C10000000	Fast Meter configuration message
0004	Settings change bit
A5C20000000	Demand Fast Meter configuration message
0004	Settings change bit
A5C30000000	Peak Demand Fast Meter configuration message
0100	SEL protocol, Fast Operate
0101	LMD protocol, Fast Operate
0005	DNP V3.00 protocol, No Fast Operate
0006	MIRRORED BITS protocol, No Fast Operate
00	Reserved
checksum	1-byte checksum of preceding bytes

A5C1 Fast Meter Configuration Block

In response to the A5C1 request, the SEL-351R sends the following block:

<u>Data</u>	Description
A5C1	Fast Meter command
84	Length
01	One status flag byte
00	Scale factors in Fast Meter message
00	No scale factors
0A	# of analog input channels
02	# of samples per channel
3C	# of digital banks (3D for SEL-351R-2)
01	One calculation block
0004	Analog channel offset
0054	Time stamp offset
005C	Digital offset
494100000000	Analog channel name (IA)

01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
494200000000	
01	Analog channel name (IB)
	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
49430000000	Analog channel name (IC)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
494E0000000	Analog channel name (IN)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
56410000000	Analog channel name (VA)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
56420000000	Analog channel name (VB)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
56430000000	Analog channel name (VC)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
56530000000	Analog channel name (VS)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
465245510000	Analog channel name (FREQ)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
564241540000	Analog channel name (VBAT)
01	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
00	Line Configuration (0-ABC, 1-ACB)
00	Standard Power Calculations
FFFF	No Deskew angle
FFFF	No Rs compensation (-1)
FFFF	No Xs compensation (-1)
00	IA channel index
01	IB channel index
02	IC channel index
02 04	VA channel index
UT .	

05	VB channel index
06	VC channel index
00	Reserved
checksum	1-byte checksum of all preceding bytes

A5D1 Fast Meter Data Block

In response to the A5D1 request, the SEL-351R sends the following block:

<u>Data</u>	Description
A5D1	Command
9A	Length (9C for SEL-351R-2)
1-byte	1 Status Byte
80-bytes	X and Y components of: IA, IB, IC, IN, VA, VB, VC,
	VS, Freq and Vbatt in 4-byte IEEE FPS
8-bytes	Time stamp
60-bytes	60 Digital banks: TAR0–TAR59 (61 for SEL-351R-2)
1-byte	Reserved (2-bytes for SEL-351R-2)
checksum	1-byte checksum of all preceding bytes

A5C2/A5C3 Demand/Peak Demand Fast Meter Configuration Messages

In response to the A5C2 or A5C3 request, the relay sends the following block:

<u>Data</u>	Description
A5C2 or A5C3	Command; Demand (A5C2) or Peak Demand (A5C3)
EE	Length
01	# of status flag bytes
00	Scale factors in meter message
00	# of scale factors
16	# of analog input channels
01	# of samples per channel
00	# of digital banks
00	# of calculation blocks
0004	Analog channel offset
00B4	Time stamp offset
FFFF	Digital offset
494100000000	Analog channel name (IA)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
49420000000	Analog channel name (IB)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
49430000000	Analog channel name (IC)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message

494E0000000	Analog channel name (IN)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
49470000000	Analog channel name (IG)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
334932000000	Analog channel name (3I2)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
50412B000000	Analog channel name (PA+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
50422B000000	Analog channel name (PB+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
50432B000000	Analog channel name (PC+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
50332B000000	Analog channel name (P3+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
51412B000000	Analog channel name (QA+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
51422B000000	Analog channel name (QB+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
51432B000000	Analog channel name (QC+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
51332B000000	Analog channel name (Q3+)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message
50412D000000	Analog channel name (PA-)
02	Analog channel type
FF	Scale factor type
0000	Scale factor offset in Fast Meter message

50422D000000 02 FF 0000 50432D000000 02 FF 0000 50332D000000 02 FF 0000 51412D000000 02 FF 0000 51422D000000 02 FF 0000 51432D000000 02 FF 0000 51432D000000 02 FF	Analog channel name (PB-) Analog channel type Scale factor type Scale factor offset in Fast Meter message Analog channel name (PC-) Analog channel type Scale factor type Scale factor offset in Fast Meter message Analog channel name (P3-) Analog channel type Scale factor offset in Fast Meter message Analog channel name (QA-) Analog channel type Scale factor offset in Fast Meter message Analog channel name (QA-) Analog channel type Scale factor offset in Fast Meter message Analog channel type Scale factor offset in Fast Meter message Analog channel name (QB-) Analog channel name (QB-) Analog channel name (QC-) Analog channel name (QC-) Analog channel type Scale factor offset in Fast Meter message Analog channel name (QC-) Analog channel name (Q3-) Analog channel name (Q3-) Analog channel type
•=	e • • •
0000	Scale factor offset in Fast Meter message
00	Reserved
checksum	1-byte checksum of preceding bytes
	r ejte entensum er proceung ejtes

A5D2/A5D3 Demand/Peak Demand Fast Meter Message

In response to the A5D2 or A5D3 request, the relay sends the following block:

A5D2 or A5D3 BE 1-byte	Command Length 1 Status Byte
•	5
176-bytes	Demand: IA, IB, IC, IN, IG, 3I2, MWA I, MWB I, MWC I, MW3PI,
	MVA I, MVB I, MVC I, MV3PI, MWA O, MWB O, MWC O,
	MW3PO, MVA O, MVB O, MVC O, MV3PO in 8-byte IEEE FPS
8-bytes	Time stamp
1-byte	Reserved
1-byte	1-byte checksum of all preceding bytes

A5B9 Fast Meter Status Acknowledge Message

In response to the A5B9 request, the relay clears the Fast Meter (message A5D1) Status Byte. The SEL-351R Status Byte contains one active bit, STSET (bit 4). The bit is set on power up and on settings changes. If the STSET bit is set, the external device should request the A5C1, A5C2, and A5C3 messages. The external device can then determine if the scale factors or line configuration parameters have been modified.

A5CE Fast Operate Configuration Block

In response to the A5CE request, the relay sends the following block:

<u>Data</u>	Description
A5CE	Command
24	Length
01	Support 1 circuit breaker
0008 (0010)	Support 8 remote bit set/clear commands
. ,	(The SEL-351R-2 supports 16 remote bits.)
0100	Allow remote bit pulse commands
31	Operate code, open breaker 1
11	Operate code, close breaker 1
00	Operate code, clear remote bit RB1
20	Operate code, set remote bit RB1
40	Operate code, pulse remote bit RB1
01	Operate code, clear remote bit RB2
21	Operate code, set remote bit RB2
41	Operate code, pulse remote bit RB2
02	Operate code, clear remote bit RB3
22	Operate code, set remote bit RB3
42	Operate code, pulse remote bit RB3
03	Operate code, clear remote bit RB4
23	Operate code, set remote bit RB4
43	Operate code, pulse remote bit RB4
04	Operate code, clear remote bit RB5
24	Operate code, set remote bit RB5
44	Operate code, pulse remote bit RB5
05	Operate code, clear remote bit RB6
25	Operate code, set remote bit RB6
45	Operate code, pulse remote bit RB6
06	Operate code, clear remote bit RB7
26	Operate code, set remote bit RB7
46	Operate code, pulse remote bit RB7
07	Operate code, clear remote bit RB8
27	Operate code, set remote bit RB8
47	Operate code, pulse remote bit RB8

The SEL-351R-2 also contains RB9–RB16.

08	Operate code, clear remote bit RB9
28	Operate code, set remote bit RB9

10	0 I I II DD0
48	Operate code, pulse remote bit RB9
09	Operate code, clear remote bit RB10
29	Operate code, set remote bit RB10
49	Operate code, pulse remote bit RB10
0A	Operate code, clear remote bit RB11
2A	Operate code, set remote bit RB11
4A	Operate code, pulse remote bit RB11
0B	Operate code, clear remote bit RB12
2B	Operate code, set remote bit RB12
4B	Operate code, pulse remote bit RB12
0C	Operate code, clear remote bit RB13
2C	Operate code, set remote bit RB13
4C	Operate code, pulse remote bit RB13
0D	Operate code, clear remote bit RB14
2D	Operate code, set remote bit RB14
4D	Operate code, pulse remote bit RB14
0E	Operate code, clear remote bit RB15
2E	Operate code, set remote bit RB15
4E	Operate code, pulse remote bit RB15
0F	Operate code, clear remote bit RB16
2F	Operate code, set remote bit RB16
4F	Operate code, pulse remote bit RB16
00	Reserved
checksum	1-byte checksum of all preceding bytes

A5E0 Fast Operate Remote Bit Control

The external device sends the following message to perform a remote bit operation:

Description
Command
Length
Operate code:
00–07 clear remote bit RB1–RB8
(00-0F clear remote bit RB1-RB16 for the SEL-351R-2)
20–27 set remote bit RB1–RB8
(20-2F set remote bit RB1-RB16 for the SEL-351R-2)
40–47 pulse remote bit for RB1–RB8 for one processing interval
(40-4F pulse remote bit RB1-RB16 for the SEL-351R-2)
Operate validation: 4 • Operate code + 1
1-byte checksum of preceding bytes

The relay performs the specified remote bit operation if the following conditions are true:

- 1. The Operate code is valid.
- 2. The Operate validation = $4 \cdot \text{Operate code} + 1$.
- 3. The message checksum is valid.
- 4. The FASTOP port setting is set to Y.
- 5. The relay is enabled.

Remote bit set and clear operations are latched by the relay. Remote bit pulse operations assert the remote bit for one processing interval (1/4 cycle).

It is common practice to route remote bits to output contacts to provide remote control of the relay outputs. If you wish to pulse an output contact closed for a specific duration, SEL recommends using the remote bit pulse command and SELOGIC[®] control equations to provide secure and accurate contact control. The remote device sends the remote bit pulse command; the relay controls the timing of the output contact assertion. You can use any remote bit, RB1–RB8 (RB1–RB16 for the SEL-351R-2), and any SELOGIC control equation timer (SV1–SV16) to control any of the output contacts (OUT101–OUT107). For example, to pulse output contact OUT104 for 30 cycles with Remote Bit RB4 and SELOGIC control equation timer SV4, issue the following relay settings:

via the SET L command,

SV4 = RB4	SV4 input is RB4
OUT104 = SV4T	route SV4 timer output to OUT104
via the SET command,	
SV4PU = 0	SV4 pickup time = 0
SV4DO = 30	SV4 dropout time is 30 cycles

To pulse the contact, send the A5E006430DDB command to the relay.

A5E3 Fast Operate Breaker Control

The external device sends the following message to perform a fast breaker open/close:

<u>Data</u>	Description
A5E3	Command
06	Length
1-byte	Operate code:
	31—OPEN breaker
	11—CLOSE breaker
1-byte	Operate Validation: 4 • Operate code + 1
checksum	1-byte checksum of preceding bytes

The relay performs the specified breaker operation if the following conditions are true:

- 1. Conditions 1-5 defined in the A5E0 message are true.
- 2. The breaker jumper (JMP6) is in place on the SEL-351R main board.

ID Message

In response to the ID command, the relay sends the firmware ID (FID), boot firmware ID (BFID), firmware checksum (CID), relay TID setting (DEVID), Modbus[®] device code (DEVCODE)—for use by the SEL-2020 and SEL-2030 Communications Processors, relay part number (PARTNO), and configuration string (CONFIG)—for use by other IEDs or software. A sample response is shown below; responses will differ depending on relay model, settings, and firmware.

```
<STX>"FID=SEL-351R-x-R108-V0-Z001001-D20000602","yyyy"<CR>
"BFID=SELB0OT-351-R101","yyyy"<CR>
"CID=xxxx","yyyy"<CR>
"DEVID=STATION A","yyyy"<CR>
"DEVCODE=30","yyyy"<CR>
"PARTNO=0351R11284X1XXX","yyyy"<CR>
"CONFIG=112322","yyyy"<CR>
<ETX>
where <STX> is the STX character (02)
<ETX> is the ETX character (03)
yyyy is the 4-byte ASCII hex representation of the checksum for each line.
```

The ID message is available from Access Level 0 and higher.

DNA Message

In response to the DNA command, the relay sends names of the Relay Word bits transmitted in the A5D1 message. The first name is associated with the MSB, the last name with the LSB. These names are listed in the Relay Word Bits table in *Section 9: Setting the SEL-351R Recloser Control.* The DNA command is available from Access Level 1 and higher.

The MIRRORED BITS Relay Word bits near the end of the following list (RMB8A–ROKA) are only available in firmware versions 1 or greater. Otherwise, they appear as "*" (nonexistant).

Local, remote, and latch bits (LBn, RBn, and LTn) 9–16 are only available on an SEL-351R-2 and will otherwise appear as "*" (nonexistant).

The DNA message for the SEL-351R is:

```
<STX>
```

```
"LED10","LED11","LED12","LED13","LED14","LED15","LED16","LED17","yyyy"
"LED18","LED19","LED20","LED21","LED22","LED23","LED24","LED25","yyyy"
"50A1", "50B1", "50C1", "50A2", "50B2", "50C2", "50A3", "50B3", "yyyy"
"50C3", "50A4", "50B4", "50C4", "50AB1", "50BC1", "50CA1", "50AB2", "yyyy"
"50BC2", "50CA2", "50AB3", "50BC3", "50CA3", "50AB4", "50BC4", "50CA4", "yyyy"
"50A", "50B", "50C", "51P1", "51P1T", "51P1R", "51N1", "51N1T", "yyyy'
"51N1R", "51G1", "51G1T", "51G1R", "51P2", "51P2T", "51P2R", "51N2", "yyyy"
"51N2T", "51N2R", "51G2", "51G2T", "51G2R", "51Q", "51QT", "51QR", "yyyy"
"50P1","50P2","50P3","50P4","50N1","50N2","50N3","50N4","yyyy"
"67P1", "67P2", "67P3", "67P4", "67N1", "67N2", "67N3", "67N4", "yyyy"
"67P1T","67P2T","67P3T","67P4T","67N1T","67N2T","67N3T","67N4T","yyyy"
"50G1", "50G2", "50G3", "50G4", "50Q1", "50Q2", "50Q3", "50Q4", "yyyy"
"67G1", "67G2", "67G3", "67G4", "67Q1", "67Q2", "67Q3", "67Q4", "yyyy"
"67G1T", "67G2T", "67G3T", "67G4T", "67Q1T", "67Q2T", "67Q3T", "67Q4T", "yyyy"
"50P5", "50P6", "50N5", "50N6", "50G5", "50G6", "50Q5", "50Q6", "yyyy"
"50QF", "50QR", "50GF", "50GR", "32VE", "32QGE", "32NE", "32QE", "yyyy"
"F32P", "R32P", "F32Q", "R32Q", "F32QG", "R32QG", "F32V", "R32V", "yyyy"
"F32N", "R32N", "32PF", "32PR", "32QF", "32QR", "32GF", "32GR", "yyyy"
"27A1", "27B1", "27C1", "27A2", "27B2", "27C2", "59A1", "59B1", "yyyy"
"59C1", "59A2", "59B2", "59C2", "27AB", "27BC", "27CA", "59AB", "yyyy"
```

```
"59BC", "59CA", "59N1", "59N2", "59Q", "59V1", "27S", "59S1", "yyyy"
 "59S2", "59VP", "59VS", "SF", "25A1", "25A2", "3P27", "3P59", "yyyy"
 "81D1", "81D2", "81D3", "81D4", "81D5", "81D6", "27B81", "50L", "yyyy"
 "81D1T", "81D2T", "81D3T", "81D4T", "81D5T", "81D6T", "VPOLV", "LOP", "yyyy"
 "RCTR", "RCCL", "IN106", "IN105", "IN104", "IN103", "IN102", "IN101", "yyyy"
 "LB1", "LB2", "LB3", "LB4", "LB5", "LB6", "LB7", "LB8", "yyyy"
 "RB1","RB2","RB3","RB4","RB5","RB6","RB7","RB8","yyyy"
 "LT1","LT2","LT3","LT4","LT5","LT6","LT7","LT8","yyyy"
 "SV1","SV2","SV3","SV4","SV1T","SV2T","SV3T","SV4T","yyyy"
 "SV5","SV6","SV7","SV8","SV5T","SV6T","SV7T","SV8T","yyyy"
 "SV9", "SV10", "SV11", "SV12", "SV9T", "SV10T", "SV11T", "SV12T", "yyyy"
 "SV13", "SV14", "SV15", "SV16", "SV13T", "SV14T", "SV15T", "SV16T", "yyyy"
 "79RS", "79CY", "79LO", "SH0", "SH1", "SH2", "SH3", "SH4", "yyyy"
 "CLOSE", "CF", "RCSF", "OPTMN", "RSTMN", "FSA", "FSB", "FSC", "yyyy"
 "BCW","50P32","NOBATT","59VA","TRGTR","52A","COMMT","CHRGG","yyyy"
 "SG1", "SG2", "SG3", "SG4", "SG5", "SG6", "ZLOUT", "ZLIN", "yyyy"
 "ZLOAD","BCWA","BCWB","BCWC","BCBOK","TOSLP","DISTST","DTFAIL","yyyy"
 "ALARM","OUT107","OUT106","OUT105","OUT104","OUT103","OUT102","OUT101","yyyy"
 "3PO", "SOTFE", "Z3RB", "KEY", "EKEY", "ECTT", "WFC", "PT", "yyyy"
 "PTRX2","PTRX","PTRX1","UBB1","UBB2","UBB","Z3XT","DSTRT","yyyy"
 "NSTRT", "STOP", "BTX", "TRIP", "OC", "CC", "CLG", "NOMSG", "yyyy"
 "67P2S","67N2S","67G2S","67Q2S","PDEM","NDEM","GDEM","QDEM","yyyy"
 "PB1","PB2","PB3","PB4","PB5","PB6","PB7","PB8","yyyy"
 "PB9", "PINBD", "PINC", "PINE", "PINF", "SW1", "DISCHG", "LED9", "yyyy"
 "LED1","LED2","LED3","LED4","LED5","LED6","LED7","LED8","yyyy"
 "OCP", "OCG", "OLP", "OLG", "OLS", "HTP", "HTG", "HLP", "yyyy"
 "HLG", "CLP", "RPP", "RPG", "RPS", "SEOC", "3PHV", "GTP", "yvyy"
 "RMB8A","RMB7A","RMB6A","RMB5A","RMB4A","RMB3A","RMB2A","RMB1A","yyyy"
 "TMB8A", "TMB7A", "TMB6A", "TMB5A", "TMB4A", "TMB3A", "TMB2A", "TMB1A", "yyyy"
 "RMB8B", "RMB7B", "RMB6B", "RMB5B", "RMB4B", "RMB3B", "RMB2B", "RMB1B", "yyyy"
 "TMB8B", "TMB7B", "TMB6B", "TMB5B", "TMB4B", "TMB3B", "TMB2B", "TMB1B", "yyyy"
 "LBOKB", "CBADB", "RBADB", "ROKB", "LBOKA", "CBADA", "RBADA", "ROKA", "yyyy"
 "*" "*" "*" "*" "*","*","*","Yyyy"
 "*" "*" "*" "*" "*" "*" "*","VYYY"
 "*","*","*","*","*","*","Yyyyy"
 "*","*","*","*","*","*","*","yyyy"
 "50NF", "50NR", "32NF", "32NR", "*", "*", "DCONN", "DDATA", "yyyy"
 "*","*","*","*","*","*","*","*","yyyy"
 "LB9","LB10","LB11","LB12","LB13","LB14","LB15","LB16","yyy"
 "RB9","RB10","RB11","RB12","RB13","RB14","RB15","RB16","yyy"
 "LT9","LT10","LT11,"LT12","LT13","LT14","LT15","LT16","yyy'
<ETX>
 where
          <STX> is the STX character (02).
          <ETX> is the ETX character (03).
          the last field in each line (yyyy) is the 4-byte ASCII hex representation of the
          checksum for the line.
```

```
"*" indicates an unused bit location.
```

BNA Message

In response to the BNA command, the relay sends names of the bits transmitted in the Status Byte in the A5D1 message. The first name is the MSB, the last name is the LSB. The BNA message is:

<STX>"*","*","*","STSET","*","*","*","*","yyyy"<ETX>

where: "yyyy" is the 4-byte ASCII representation of the checksum. "*" indicates an unused bit location.

The BNA command is available from Access Level 1 and higher.

INTRODUCTION

The SEL-351R Recloser Control provides compressed ASCII versions of some of the relay's ASCII commands. The compressed ASCII commands allow an external device to obtain data from the relay, in a format which directly imports into spreadsheet or database programs, and which can be validated with a checksum.

The SEL-351R provides the following compressed ASCII commands:

Command	Description
CASCII	Configuration message
CSTATUS	Status message
CHISTORY	History message
CEVENT	Event message

CASCII COMMAND-GENERAL FORMAT

The compressed ASCII configuration message provides data for an external computer to extract data from other compressed ASCII commands. To obtain the configuration message for the compressed ASCII commands available in an SEL relay, type:

CAS <CR>

The relay sends:

<stable style="background-color: blue;"><stable style="background-color: blue;"><stable style="background-color: blue;">"COMMAND 1", II, "yyyy"<CR>"#D", "ddd", "ddd", "ddd", "ddd", "yyyy"<CR>"COMMAND 2", II, "yyyy"<CR>"#h", "ddd", "ddd", "ddd", "yyyy"<CR>"#D", "ddd", "ddd", "ddd", "ddd", "yyyy"<CR>•••</td

where: n is the number of compressed ASCII command descriptions to follow.

COMMAND is the ASCII name for the compressed ASCII command as sent by the requesting device. The naming convention for the compressed ASCII commands is a 'C' preceding the typical command. For example, CSTATUS (abbreviated to CST) is the compressed STATUS command.

ll is the minimum access level at which the command is available.

#H identifies a header line to precede one or more data lines; '#' is the number of subsequent ASCII names. For example, "21H" identifies a header line with 21 ASCII labels.

#h identifies a header line to precede one or more data lines; '#' is the number of subsequent format fields. For example, "8h" identifies a header line with 8 format fields.

xxxxx is an ASCII name for corresponding data on following data lines. Maximum ASCII name width is 10 characters.

#D identifies a data format line; '#' is the maximum number of subsequent data lines.

ddd identifies a format field containing one of the following type designators:

Ι	Integer data
F	Floating point data
mS	String of maximum m characters (e.g., 10S for a 10 character string)

yyyy is the 4-byte hex ASCII representation of the checksum.

A compressed ASCII command may require multiple header and data configuration lines.

If a compressed ASCII request is made for data that are not available, (e.g. the history buffer is empty or invalid event request), the relay responds with the following message:

<STX>"No Data Available","0668"<CR><ETX>

CASCII COMMAND-SEL-351R

Display the SEL-351R compressed ASCII configuration message by sending:

CAS <CR>

The SEL-351R sends:

```
<STX>
"CAS",5,"YYYY"<CR>
"CST",1,"YYYY"<CR>
"2H", "FID", "BCBFID", "YYYY" <CR>
"1D","48S","4S","YYYY"<CR>
"7H", "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC", "YYYY" < CR>
"1D","I","I","I","I","I","I","I","YYYY",<CR>
"15H","IA","IB","IC","IN","VA","VB","VC","VS","MOF","+5V_PS","+5V_REG",
"-5V REG","+12V PS","-12V PS","+15V PS","YYYY"<CR>
"1D", "9S", "9S', "9S", 
"9S","YYYY"<CR>
"15H","-15V_PS","TEMP","RAM","ROM","A/D","CR_RAM","EEPROM",
"IO_BRD", "MODE", "%CAP", "HRS_LFT", "5V_PSBC", "12V_AUX", "VBAT",
"IBAT", "YYYY" < CR>
"9S", "9S", "9S", "9S", "9S", "YYYY"<CR>
"CHI",1,"YYYY"<CR>
```

"60D","I","I","I","I","F","F","F","F","F","2S","116S","YYYY"<CR> "CEV C",1,"YYYY"<CR> "2H", "FID", "BCBFID", "YYYY" < CR> "1D","48S","4S","YYYY"<CR> "7H", "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC, "YYYY" < CR> "1D","I","I","I","I","I","I","I","YYYY",<CR> "14H","FREQ","SAM/CYC_A","SAM/CYC_D","NUM_OF_CYC","EVENT", "LOCATION"."SHOT"."TARGETS"."IA"."IB"."IC"."IN"."IG"."3I2"."YYYY"<CR> "1D", "F", "I", "I", "I", "6S", "F", "I", "17S", "I", "I", "I", "I", "I", "I", "YYYY"<CR> "11H", "IA", "IB", "IC", "IG", "VA(kV)", "VB(kV)", "VC(kV)", "VS(kV)", "FREQ", "TRIG", "Names of elements in the relay word rows separated by spaces","YYYY"<CR> "240D","I","I","I","I","F","F","F","F","F","2S","116S","YYYY"<CR> "CEV R",1,"YYYY"<CR> "2H", "FID", "BCBFID", "YYYY" < CR> "1D","48S","4S","YYYY"<CR> "7H", "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC", "YYYY" < CR> "1D","I","I","I","I","I","I","YYYY",<CR> "14H", "FREQ", "SAM/CYC_A", "SAM/CYC_D", "NUM_OF_CYC", "EVENT", "LOCATION", "SHOT", "TARGETS", "IA", "IB", "IC", "IN", "IG", "312", "YYYY" < CR> "1D", "F", "I", "I", "I", "6S", "F", "I", "17S", "I", "I", "I", "I", "I", "I", "YYYY"<CR> "11H","IA","IB","IC","IG","VA(kV)","VB(kV)","VC(kV)","VS(kV)", "FREQ", "TRIG", "Names of elements in the relay word rows separated by spaces","YYYY"<CR> "256D","I","I","I","I","F","F","F","F","F","2S","116S","YYYY"<CR> <ETX>

"15H","REC_NUM","MONTH","DAY","YEAR","HOUR","MIN","SEC","MSEC", "EVENT","LOCATION","CURR","FREO","GROUP","SHOT","TARGETS",

"30D","I","I","I","I","I","I","I","6S","F","I","F","I","I","17S","YYYY"<CR>

"7H", "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC, "YYYY" < CR>

"14H","FREQ","SAM/CYC_A","SAM/CYC_D","NUM_OF_CYC","EVENT", "LOCATION","SHOT","TARGETS","IA","IB","IC","IN","IG","3I2","YYYY"<CR>

"1D","F","I","I","I","6S","F","I","17S","I","I","I","I","I","I","I","YYYY"<CR> "11H","IA","IB","IC","IG","VA(kV)","VB(kV)","VC(kV)","VS(kV)", "FREQ","TRIG","*Names of elements in the relay word rows separated by*

"2H","FID","BCBFID","YYYY"<CR> "1D","48S","4S","YYYY"<CR>

"2H","FID","BCBFID","YYYY"<CR> "1D","48S","4S","YYYY"<CR>

"1D","I","I","I","I","I","I","YYYY"<CR>

"YYYY"<CR>

"CEV",1,"YYYY"<CR>

spaces","YYYY"<CR>

YYYY is the 4-byte hex ASCII representation of the checksum. See the CEVENT command for definition of the "*Names of elements in the relay word rows separated by spaces*" field.

CSTATUS COMMAND-SEL-351R

Display status data in compressed ASCII format by sending:

CST <CR>

The SEL-351R sends:

<STX>"FID","BCBFID","yyyy"<CR>
"Relay FID string","Relay Battery Charger Board FID string","yyyy"<CR>
"MONTH","DAY","YEAR","HOUR","MIN","SEC","MSEC","yyyy"<CR>
"XXX,XXXX,XXX,XXX,XXX,XXX,XXX,XXX,YYYY<CR>
"IA","IB","IC","IN","VA","VB","VC","VS","MOF","+5V_PS","+5V_REG",
"-5V_REG","+12V_PS","-12V_PS","+15V_PS","yyyy"<CR>
"xxxx","xxxx,","xxxx,","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxxx","xxx

where: xxxx are the data values corresponding to the first line labels and yyyy is the 4-byte hex ASCII representation of the checksum.

CHISTORY COMMAND-SEL-351R

Display history data in compressed ASCII format by sending:

CHI <CR>

The relay sends:

<STX>"FID","BCBFID","yyyy"<CR> "*Relay FID string*","*Relay Battery Charger Board FID string*","yyyy"<CR> "REC_NUM","MONTH","DAY","YEAR","HOUR","MIN","SEC","MSEC", "EVENT","LOCATION","CURR","FREQ","GROUP","SHOT","TARGETS", "yyyyy"<CR>

xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,"xxxx",xxxx,xxxx,xxxx,xxxx,xxxx, "xxxx","yyyy"<CR><ETX>

(the last line is then repeated for each record)

where: xxxx are the data values corresponding to the first line labels and yyyy is the 4-byte hex ASCII representation of the checksum.

If the history buffer is empty, the relay responds:

<STX>"No Data Available","0668"<CR><ETX>

CEVENT COMMAND-SEL-351R

Display event report in compressed ASCII format by sending:

CEV [n Sx Ly L R C] (parameters in [] are optional)

where: **n** event number (1–30) if LER = 15, (1–15) if LER = 30, defaults to 1 Sx samples per cycle (4 or 16); defaults to 4 If Sx parameter is present, it overrides the L parameter

- Ly y cycles event report length (1–LER) for filtered event reports, (1–LER+1) for raw event reports, defaults to 15 if not specified
- L 16 samples per cycle; overridden by the Sx parameter, if present
- **R** specifies raw (unfiltered) data; defaults to 16 samples per cycle unless overridden by the Sx parameter. Defaults to 16 cycles in length unless overridden with the Ly parameter.
- **C** specifies 16 samples per cycle, 15 cycle length

The relay responds to the **CEV** command with the **nth** event report as shown below. Items in *italics* will be replaced with the actual relay data.

<STX>"FID","BCBFID","yyyy"<CR> "Relay FID string","Relay Battery Charger Board FID string","yyyy"<CR> "MONTH", "DAY", "YEAR", "HOUR", "MIN", "SEC", "MSEC", "yyyy" < CR> xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,"yyyy"<CR> "FREQ", "SAM/CYC_A", "SAM/CYC_D", "NUM_OF_CYC", "EVENT", "LOCATION", "SHOT", "TARGETS", "IA", "IB", "IC", "IN", "IG", "3I2", "vyvy" < CR> xxxx,xxxx,xxxx,xxxx,"xxxx",xxxx,xxxx,"xxxx",xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx, "yyyy"<CR> "IA", "IB", "IC", "IG", "VA(kV)", "VB(kV)", "VC(kV)", "VS(kV)", "FREQ", "TRIG", "Names of elements in the relay word separated by spaces ","yyyy"<CR> "SETTINGS", "yyyy" < CR> "Relay EZ, group, global, global EZ(FZ), and logic settings as displayed with the showset command (surrounded by quotes)","yyyy"<CR><ETX> where: xxxx are the data values corresponding to the line labels.

which are the data values corresponding to the line labels.
yyyy is the 4-byte hex ASCII representation of the checksum.
FREQ is the power system frequency at the trigger instant.
SAM/CYC_A is the number of analog data samples per cycle (4 or 16).
SAM/CYC_D is the number of digital data samples per cycle (4 or 16).
NUM_OF_CYC is the number of cycles of data in the event report.
EVENT is the event type.
LOCATION is the fault location.
SHOT is the recloser shot counter.
TARGETS are the front-panel tripping targets.
IA, IB, IC, IN, IG, 312 is the fault current.
TRIG refers to the trigger record.

z is ">" for the trigger row, "*" for the fault current row and empty for all others. If the trigger row and fault current row are the same, both characters are included (e.g., ">*").
HEX-ASCII Relay Word is the hex ASCII format of the relay word. The first element in the relay word is the most significant bit in the first character.

If samples per cycle are specified as 16, the analog data are displayed at 1/16-cycle intervals and digital data at 1/4 cycle intervals. The digital data are displayed as a series of hex ASCII characters. The relay displays digital data only when they are available. When no data are available, the relay sends only the comma delimiter in the digital data field.

If the specified event does not exist, the relay responds:

<STX>"No Data Available","0668"<CR><ETX>

The "*Names of elements in the Relay Word separated by spaces*" names are listed in the Relay Word Bits table in section 9 of this manual.

A typical *HEX-ASCII Relay Word* is shown below:

Each bit in the *HEX-ASCII Relay Word* reflects the status of a Relay Word bit. The order of the labels in the "*Names of elements in the relay word separated by spaces*" field matches the order of the *HEX-ASCII Relay Word*. In the example above, the first two bytes in the *HEX-ASCII Relay Word* are "10". In binary, this evaluates to 00010000. Mapping the labels to the bits yields:

Labels	50A1	50B1	50C1	50A2	50B2	50C2	50A3	50B3
Bits	0	0	0	1	0	0	0	0

In this example, the 50A2 element is asserted (logical 1); all others are deasserted (logical 0).

SETTING NEGATIVE-SEQUENCE DEFINITE-TIME OVERCURRENT ELEMENTS

Negative-sequence instantaneous overcurrent elements 50Q1 through 50Q6 and 67Q1 through 67Q4 should not be set to trip directly. This is because negative-sequence current can transiently appear when a circuit breaker is closed and balanced load current suddenly appears.

To avoid tripping for this transient condition, use negative-sequence definite-time overcurrent elements 67Q1T through 67Q4T with at least 1.5 cycles of time delay (transient condition lasts less than 1.5 cycles). For example, make time delay setting:

67Q1D = 1.50

for negative-sequence definite-time overcurrent element 67Q1T. Refer to Figures 3.12 and 3.13 for more information on negative-sequence instantaneous and definite-time overcurrent elements.

Negative-sequence instantaneous overcurrent elements 50Q5 and 50Q6 do not have associated timers (compare Figure 3.13 to Figure 3.12). If 50Q5 or 50Q6 need to be used for tripping, run them though SELOGIC[®] control equation variable timers (see Figures 7.25 and 7.26) and use the outputs of the timers for tripping.

Continue reading in *Coordinating Negative-Sequence Overcurrent Elements* in this appendix for guidelines on coordinating negative-sequence definite-time overcurrent elements and a following coordination example. The coordination example uses time-overcurrent elements, but the same principles can be applied to definite-time overcurrent elements.

SETTING NEGATIVE-SEQUENCE TIME-OVERCURRENT ELEMENTS

Negative-sequence time-overcurrent element 51QT should not be set to trip directly when it is set with a low time-dial setting 51QTD, that results in curve times below 3 cycles (see curves in Figures 9.1 through 9.20 in *Section 9: Setting the SEL-351R Recloser Control*). This is because negative-sequence current can transiently appear when a circuit breaker is closed and balanced load current suddenly appears. Refer to Figure 3.20 for more information on negative-sequence time-overcurrent element 51QT.

To avoid having negative-sequence time-overcurrent element 51QT with such low time-dial settings trip for this transient negative-sequence current condition, make corresponding minimum response time setting:

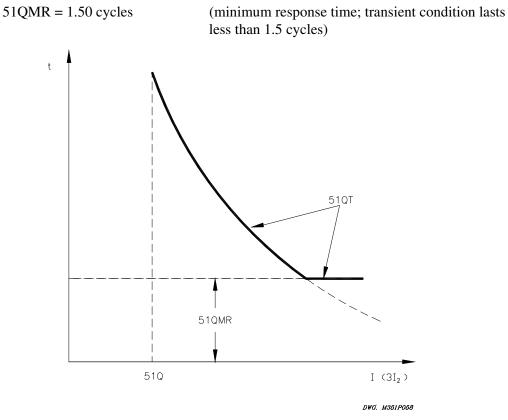


Figure F.1: Minimum Response Time Added to a Negative-Sequence Time-Overcurrent Element 51QT

Continue reading in *Coordinating Negative-Sequence Overcurrent Elements* in this appendix for guidelines on coordinating negative-sequence time-overcurrent elements and a following coordination example.

COORDINATING NEGATIVE-SEQUENCE OVERCURRENT ELEMENTS

The following coordination guidelines and example assume that the negative-sequence overcurrent elements operate on $3I_2$ magnitude negative-sequence current and that the power system is radial. The negative-sequence overcurrent elements in the SEL-351R Recloser Control operate on $3I_2$ magnitude negative-sequence current.

The coordination example is a generic example that can be used with any relay containing negative-sequence overcurrent elements that operate on $3I_2$ magnitude negative-sequence current. The SEL-351R can be inserted as the feeder relay in this example. Note that the overcurrent element labels in the example are not the same as the labels of the corresponding SEL-351R overcurrent elements.

Coordination Guidelines

- 1. Start with the furthest downstream negative-sequence overcurrent element (e.g., distribution feeder relay in a substation).
- 2. Identify the phase overcurrent device (e.g., line recloser, fuse) downstream from the negative-sequence overcurrent element that is of greatest concern for coordination. This is usually the phase overcurrent device with the longest clearing time.
- 3. Consider the negative-sequence overcurrent element as an "equivalent" phase overcurrent element. Derive pickup, time dial (lever), curve type, or time-delay settings for this "equivalent" element to coordinate with the downstream phase overcurrent device, as any phase coordination would be performed. Load considerations can be disregarded when deriving the "equivalent" phase overcurrent element settings.
- 4. Multiply the "equivalent" phase overcurrent element pickup setting by $\sqrt{3}$ to convert it to the negative-sequence overcurrent element pickup setting in terms of 3I, current.

Negative-sequence
overcurrent
element pickup
$$= \sqrt{3} \cdot (\text{"equivalent" phase overcurrent element})$$

Any time dial (lever), curve type, or time delay calculated for the "equivalent" phase overcurrent element is also used for the negative-sequence overcurrent element with no conversion factor applied.

5. Set the next upstream negative-sequence overcurrent element to coordinate with the first downstream negative-sequence overcurrent element and so on. Again, coordination is not influenced by load considerations.

Coordination Example

In Figure F.2 the phase and negative-sequence overcurrent elements of the feeder relay (51F and 51QF, respectively) must coordinate with the phase overcurrent element of the line recloser (51R).

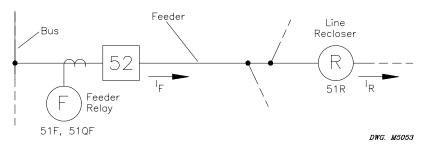


Figure F.2: Distribution Feeder Protective Devices

Traditional Phase Coordination

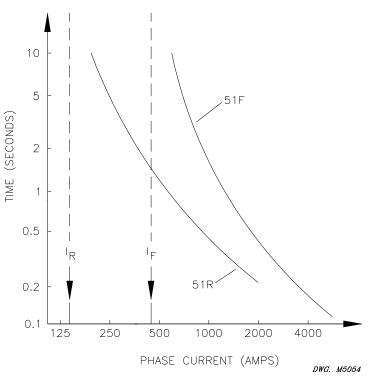


Figure F.3: Traditional Phase Coordination

51F: pickup = 600 A (above max. feeder load, I_F) 51R: pickup = 200 A (above max. line recloser load, I_R)

Figure F.3 shows traditional phase overcurrent element coordination between the feeder relay and line recloser phase overcurrent elements. Phase overcurrent elements must accommodate load and cold load pickup current. The 450 A maximum feeder load current limits the sensitivity of the feeder phase overcurrent element, 51F, to a pickup of 600 A. The feeder relay cannot back up the line recloser for phase faults below 600 A.

Apply the Feeder Relay Negative-Sequence Overcurrent Element (Guidelines 1 to 3)

Applying negative-sequence overcurrent element coordination Guidelines 1 to 3 results in the feeder relay "equivalent" phase overcurrent element (51EP) in Figure F.4. Curve for 51F is shown for comparison only.

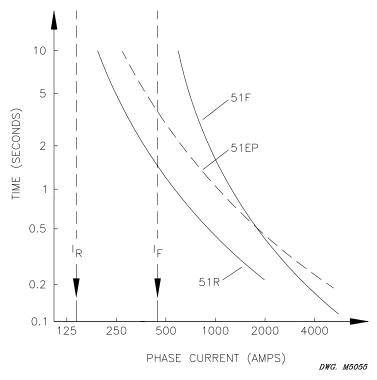


Figure F.4: Phase-to-Phase Fault Coordination

51EP: pickup = 300 A (below max. feeder load, $I_{\rm F}$)

Considerable improvement in sensitivity and speed of operation for phase-to-phase faults is achieved with the 51EP element. The 51EP element pickup of 300 A has twice the sensitivity of the 51F element pickup of 600 A. The 51EP element speed of operation for phase-to-phase faults below about 2000 A is faster than that for the 51F element.

Convert "Equivalent" Phase Overcurrent Element Settings to Negative-Sequence Overcurrent Element Settings (Guideline 4)

The "equivalent" phase overcurrent element (51EP element in Figure F.4) converts to true negative-sequence overcurrent element settings (51QF in Figure F.5) by applying the equation given in Guideline 4. The time dial (lever) and curve type of the element remain the same (if the element is a definite-time element, the time delay remains the same).

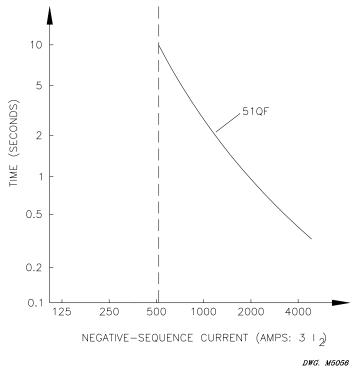


Figure F.5: Negative-Sequence Overcurrent Element Derived From "Equivalent" Phase Overcurrent Element, 51EP

 $51QF:pickup = \sqrt{3} \cdot (300A) = 520A$

Having achieved coordination between the feeder relay negative-sequence overcurrent element (51QF) and the downstream line recloser phase overcurrent element (51R) for phase-to-phase faults, coordination between the two devices for other fault types is also achieved.

Negative-Sequence Overcurrent Element Applied at a Distribution Bus (Guideline 5)

The preceding example was for a distribution feeder. A negative-sequence overcurrent element protecting a distribution bus provides an even more dramatic improvement in phase-to-phase fault sensitivity.

The distribution bus phase overcurrent element pickup must be set above the combined load of all the feeders on the bus, plus any emergency load conditions. The bus phase overcurrent element pickup is often set at least four times greater than the pickup of the feeder phase overcurrent element it backs up. Thus, sensitivity to both bus and feeder phase faults is greatly reduced. Feeder relay backup by the bus relay is limited.

Negative-sequence overcurrent elements at the distribution bus can be set significantly below distribution bus load levels and provide dramatically increased sensitivity to phase-to-phase faults. It is coordinated with the distribution feeder phase or negative-sequence overcurrent elements and provides more-sensitive and faster phase-to-phase fault backup.

Ground Coordination Concerns

If the downstream protective device includes ground overcurrent elements, in addition to phase overcurrent elements, there should be no need to check the coordination between the ground overcurrent elements and the upstream negative-sequence overcurrent elements. The downstream phase overcurrent element, whether it operates faster or slower than its complementary ground overcurrent element, will operate faster than the upstream negative-sequence overcurrent element for all faults, including those that involve ground.

OTHER NEGATIVE-SEQUENCE OVERCURRENT ELEMENT REFERENCES

A. F. Elneweihi, E. O. Schweitzer, M. W. Feltis, "Negative-Sequence Overcurrent Element Application and Coordination in Distribution Protection," IEEE Transactions on Power Delivery, Volume 8, Number 3, July 1993, pp. 915-924.

This IEEE paper is the source of the coordination guidelines and example given in this appendix. The paper also contains analyses of system unbalances and faults and the negative-sequence current generated by such conditions.

A. F. Elneweihi, "Useful Applications for Negative-Sequence Overcurrent Relaying," 22nd Annual Western Protective Relay Conference, Spokane, Washington, October 24–26, 1995.

This conference paper gives many good application examples for negative-sequence overcurrent elements. The focus is on the transmission system, where negative-sequence overcurrent elements provide better sensitivity than zero-sequence overcurrent elements in detecting some single-line-to-ground faults.

APPENDIX G: SETTING SELOGIC® CONTROL EQUATIONS

SELOGIC control equations combine relay protection and control elements with logic operators to create custom protection and control schemes. This appendix shows how to set the protection and control elements (Relay Word bits) in the SELOGIC control equations.

Additional SELOGIC control equation setting details are available in *Section 9: Setting the SEL-351R Recloser Control* (see also Settings Sheets 13 through 17 in the back of *Section 9*). See the *SHO command (Show/View Settings)* in *Section 10: Serial Port Communications and Commands* for a list of the factory settings shipped with the SEL-351R Recloser Control in a standard relay shipment.

RELAY WORD BITS

Most of the protection and control element <u>logic outputs</u> shown in the various figures in Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements through Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions are Relay Word bits (labeled as such in the figures). Each Relay Word bit has a label name and can be in either of the following states:

1 (logical 1) or 0 (logical 0)

Logical 1 represents an element being picked up, timed out, or otherwise asserted.

Logical 0 represents an element being dropped out or otherwise deasserted.

A complete listing of Relay Word bits and their descriptions are referenced in Table 9.3 in *Section 9: Setting the SEL-351R Recloser Control*.

Relay Word Bit Operation Example-Phase Time-Overcurrent Element 51P1T

As an example of protection element operation via the logic output of Relay Word bits, a phase time-overcurrent element is examined. Refer to phase time-overcurrent element 51PIT in Figure 3.14 in *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements*. Read the text that accompanies Figure 3.14 (Table 3.3 and following text). The following Relay Word bits are the logic outputs of the phase time-overcurrent element:

- 51P1 indication that the maximum phase current magnitude is above the level of the phase time-overcurrent pickup setting 51P1P
- 51P1T indication that the phase time-overcurrent element has timed out on its curve
- 51P1R indication that the phase time-overcurrent element is fully reset

Phase Time-Overcurrent Element 51P1T Pickup Indication

If the maximum phase current is <u>at or below</u> the level of the phase time-overcurrent pickup setting 51P1P, Relay Word bit 51P is in the following state:

 $51P1 = 0 \qquad (logical 0)$

If the maximum phase current is <u>above</u> the level of the phase time-overcurrent pickup setting 51P1P, Relay Word bit 51P is in the following state:

51P1 = 1 (logical 1)

If the maximum phase current is <u>above</u> the level of the phase time-overcurrent pickup setting 51P1P, phase time-overcurrent element 51P1T is either timing on its curve or is already timed out.

Phase Time-Overcurrent Element 51P1T Time-Out Indication

If phase time-overcurrent element 51P1T is <u>not timed out</u> on its curve, Relay Word bit 51P1T is in the following state:

 $51P1T = 0 \qquad (logical 0)$

If phase time-overcurrent element 51P1T is <u>timed out</u> on its curve, Relay Word bit 51P1T is in the following state:

51P1T = 1 (logical 1)

Phase Time-Overcurrent Element 51P1T Reset Indication

If phase time-overcurrent element 51P1T is <u>not fully reset</u>, Relay Word bit 51P1R is in the following state:

 $51P1R = 0 \qquad (logical 0)$

If phase time-overcurrent element is <u>fully reset</u>, Relay Word bit 51P1R is in the following state:

51P1R = 1 (logical 1)

If phase time-overcurrent element 51P1T is <u>not fully reset</u>, the element is either: Timing on its curve Already timed out Is timing to reset (one-cycle reset or electromechanical emulation–see setting 51P1RS)

Relay Word Bit Application Examples-Phase Time-Overcurrent Element 51P1T

Common uses for Relay Word bits 51P1, 51P1T, and 51P1R:

- 51P1 testing (e.g., assign to an output contact for pickup testing) trip unlatch logic (see SELOGIC control equation unlatch trip setting ULTR example later in this section)
- 51P1T trip logic (see SELOGIC control equation trip setting TR example later in this section)
- 51P1R used in testing (e.g., assign to an output contact for reset indication)

Other Relay Word Bits

The preceding example was for a phase time-overcurrent element, demonstrating Relay Word bit operation for pickup, time-out, and reset conditions. Other Relay Word bits (e.g., those for definite-time overcurrent elements, voltage elements, frequency elements) behave similarly in their assertion or deassertion to logical 1 or logical 0, respectively. The time-overcurrent elements (like the preceding phase time-overcurrent element example) are rather unique because they have a Relay Word bit (e.g., 51P1R) that asserts for the reset state of the element.

Relay Word bits are used in SELOGIC control equations, which are explained in the following subsection.

SELOGIC CONTROL EQUATIONS

Many of the protection and control element logic inputs shown in the various figures in *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements* through *Section 8: Breaker/Recloser Monitor, Battery System Monitor, Metering, and Load Profile Functions* are SELOGIC control equations (labeled "SELOGIC Settings" in most of the figures). SELOGIC control equations are set with combinations of Relay Word bits to accomplish such functions as: Tripping reclosers
Assigning functions to optoisolated inputs
Operating output contacts
Torque-controlling overcurrent elements
Switching active setting groups
Enabling/disabling reclosing

Traditional or advanced custom schemes can be created with SELOGIC control equations.

SELOGIC Control Equation Operators

SELOGIC control equation settings use logic similar to Boolean algebra logic, combining Relay Word bits together using one or more of the six SELOGIC control equation operators listed in Table G.1.

Operator	Logic Function	
/	rising edge detect	
/	falling edge detect	
0	parentheses	
!	NOT	
*	AND	
+	OR	

Table G.1: SELOGIC Control Equation Operators (listed in processing or
--

Operators in a SELOGIC control equation setting are processed in the order shown in Table G.1.

SELOGIC Control Equation Parentheses Operator ()

More than one set of parentheses () can be used in a SELOGIC control equation setting. For example, the following SELOGIC control equation setting has two sets of parentheses:

$$SV7 = (SV7 + IN101)*(50P1 + 50N1)$$

In the above example, the logic within the parentheses is processed first and then the two parentheses resultants are ANDed together. The above example is from Figure 7.25 in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*. Parentheses cannot be "nested" (parentheses within parentheses) in a SELOGIC control equation setting.

SELOGIC Control Equation NOT Operator !

The NOT operator ! is applied to a single Relay Word bit and also to multiple elements (within parentheses). Following are examples of both.

Example of NOT Operator ! Applied to Single Element

The internal circuit breaker status logic in the SEL-351R operates on 52a circuit breaker auxiliary contact logic. The SELOGIC control equation circuit breaker status setting is labeled 52A. See *Optoisolated Inputs* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic* and *Close Logic* in *Section 6: Close and Reclose Logic* for more information on SELOGIC control equation circuit breaker status setting 52A.

When a circuit breaker is closed, the 52a circuit breaker auxiliary contact is closed. When a circuit breaker is open, the 52a contact is open.

The opposite is true for a 52b circuit breaker auxiliary contact. When a circuit breaker is closed, the 52b circuit breaker auxiliary contact is open. When the circuit breaker is open, the 52b contact is closed.

If a 52a contact is connected to optoisolated input IN101, the SELOGIC control equation circuit breaker status setting 52A is set:

52A = IN101

Conversely, if a 52b contact is connected to optoisolated input IN1, the SELOGIC control equation circuit breaker status setting 52A is set:

52A = !IN101 [=NOT(IN101)]

With a 52b contact connected, if the circuit breaker is closed, the 52b contact is open and input IN1 is deenergized [IN1 = 0 (logical 0)]:

$$52A = !IN101 = NOT(IN101) = NOT(0) = 1$$

Thus, the SELOGIC control equation circuit breaker status setting 52A sees a closed circuit breaker.

With a 52b contact connected, if the circuit breaker is open, the 52b contact is closed and input IN101 is energized [IN101 = 1 (logical 1)]:

52A = !IN101 = NOT(IN101) = NOT(1) = 0

Thus, the SELOGIC control equation circuit breaker status setting 52A sees an open circuit breaker.

Example of NOT Operator ! Applied to Multiple Elements (within parentheses)

The SELOGIC control equation trip unlatch setting is set as follows:

ULTR = !(51P1 + 51G1)

Refer also to Trip Logic in Section 5: Trip and Target Logic.

In this setting example, the unlatch condition comes true only when <u>both</u> the 51P1 (phase timeovercurrent element pickup indication) and 51G1 (residual ground time-overcurrent element pickup indication) Relay Word bits deassert:

ULTR = !(51P1 + 51G1) = NOT(51P1 + 51G1)

As stated previously, the logic within the parentheses is performed first. In this example, the states of Relay Word bits 51P1 and 51G1 are ORed together. Then the NOT operator is applied to the logic resultant from the parentheses.

If either one of 51P1 or 51G1 is still asserted [e.g., 51G1 = 1 (logical 1)], the unlatch condition is not true:

ULTR = NOT(51P1 + 51G1) = NOT(0 + 1) = NOT(1) = 0

If <u>both</u> 51P1 and 51G1 are deasserted [i.e., 51P1 = 0 and 51G1 = 0 (logical 0)], the unlatch condition is true:

ULTR = NOT(51P1 + 51G1) = NOT(0 + 0) = NOT(0) = 1

and the trip condition can unlatch, subject to other conditions in the trip logic (see Figure 5.1).

SELOGIC Control Equation Rising Edge Operator /

The rising edge operator / is applied to individual Relay Word bits only—not to groups of elements within parentheses. For example, the SELOGIC control equation event report generation setting uses rising edge operators:

ER = /51P1 + /51G1 + /OUT103

The Relay Word bits in this setting example are:

- 51P1 Maximum phase current above pickup setting 51P1P for phase time-overcurrent element 51P1T (see Figure 3.14)
- 51G1 Maximum residual ground current above pickup setting 51G1P for residual ground time-overcurrent element 51G1T (see Figure 3.19)
- OUT103 Output contact OUT103 is set as a breaker failure trip output (see *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*)

When setting ER sees a logical 0 to logical 1 transition, it generates an event report (if the relay is not already generating a report that encompasses the new transition). The rising edge operators in the above factory-setting example allow setting ER to see each transition individually.

Suppose a ground fault occurs and a breaker failure condition finally results. Figure G.1 demonstrates the action of the rising edge operator / on the individual elements in setting ER.

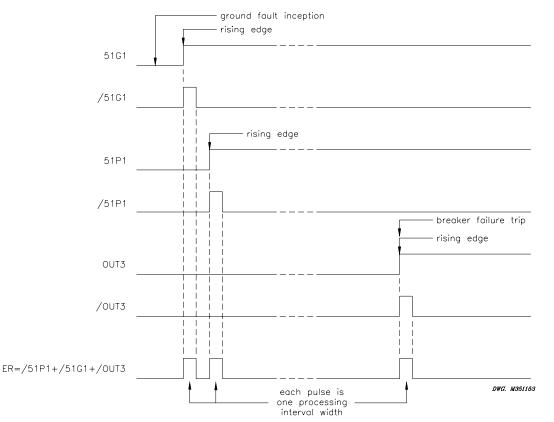


Figure G.1: Result of Rising Edge Operators on Individual Elements in Setting ER

Note in Figure G.1 that setting ER sees three separate rising edges, due to the application of rising edge operators /. The rising edge operator / in front of a Relay Word bit sees this logical 0 to logical 1 transition as a "rising edge" and the resultant asserts to logical 1 for one processing interval. The assertions of 51G1 and 51P1 are close enough that they will be on the same event report (generated by 51G1 asserting first). The assertion of OUT103 for a breaker failure condition is some appreciable time later and will generate another event report, if the first event report capture has ended when OUT103 asserts.

If the rising edge operators / were not applied and setting ER was:

ER = 51P1 + 51G1 + OUT103

the ER setting would not see the assertion of OUT103, because 51G1 and 51P1 would continue to be asserted at logical 1, as shown in Figure G.1.

SELOGIC Control Equation Falling Edge Operator \

The falling edge operator \ is applied to individual Relay Word bits only—not to groups of elements within parentheses. The falling edge operator \ operates similarly to the rising edge operator, but looks for Relay Word bit deassertion (element going from logical 1 to logical 0). The falling edge operator \ in front of a Relay Word bit sees this logical 1 to logical 0 transition as a "falling edge" and asserts to logical 1 for one processing interval.

For example, suppose the SELOGIC control equation event report generation setting is set with the detection of the falling edge of an underfrequency element:

 $ER = ... + \81D1T$

When frequency goes above the corresponding pickup level 81D1P, Relay Word bit 81D1T deasserts and an event report is generated (if the relay is not already generating a report that encompasses the new transition). This allows a recovery from an underfrequency condition to be observed. See Figure 3.30 and Table 3.11 in *Section 3: Overcurrent, Voltage, Synchronism Check, and Frequency Elements*. Figure G.2 demonstrates the action of the falling edge operator \ on the underfrequency element in setting ER.

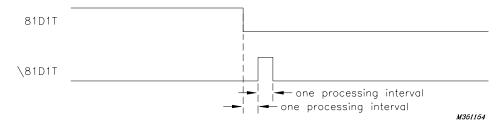


Figure G.2: Result of Falling Edge Operator on a Deasserting Underfrequency Element

SELOGIC Control Equation Analog Compares (SEL-351R-2 only)

The SEL-351R-2 Relay is capable of interpreting SELOGIC control equations that contain a special type of element, the Analog Compare. Use these elements in any SELOGIC control equation in the same manner as a Relay Word bit, except that the "/" and "\" operators may not be used with Analog Compares, nor may the "!" operator be used to modify a SELOGIC variable or value within a comparison statement. The Analog Compare outputs a logical 1 when the compare statement is true, and a logical 0 when it is false. Compares are evaluated prior to any other SELOGIC operator in the equation. A SELOGIC control equation Analog Compare has the following format:

VARIABLE OP VALUE

where

VARIABLE is SC1, SC2, SC3, SC4, SC5, SC6, SC7, or SC8. **OP** is a comparison operator (<, <=, >, >=, =, !=); see Table G.2 for descriptions. **VALUE** is either a fixed numerical value or another VARIABLE.

Comparison Operator	Logic Function		
<	less than		
<=	less than or equal to		
>	greater than		
>=	greater than or equal to		
=	equal to		
!=	not equal to		

Table G.2: Comparison Operator Descriptions

Examples of Analog Compare statements are SC1 > 2 or $SC5 \mathrel{!=} SC1$. An equation using an Analog Compare might be written as OUT101 = SC1 > 2 * SV1T, for example. Inverting a comparison statement within parenthesis produces a reduced expression when displayed later. For example, entering $\mathrel{!}(SC3 >= 4)$ produces the equivalent equation SC3 < 4.

Although evaluated effectively to a single element, the Analog Compare counts as two elements in determining the size of a SELOGIC control equation.

SELOGIC Control Equation Operation Example-Tripping

If tripping does not involve communications-assisted or switch-onto-fault trip logic, the SELOGIC control equation trip setting TR is the only trip setting needed. Refer to *Trip Logic* in *Section 5: Trip and Target Logic*.

Note that Figure 5.1 in *Section 5: Trip and Target Logic* appears quite complex. But since tripping does not involve communications-assisted or switch-onto-fault trip logic in this example, respective SELOGIC control equation trip settings TRCOMM and TRSOTF are not used. The only effective input into logic gate OR-1 in Figure 5.1 is SELOGIC control equation trip setting TR.

TR	=	51P1T+51G1T+50P1*SH0	(fuse saving example)
TRCOMM	=	0	(not used—set directly to logical 0)
TRSOTF	=	0	(not used—set directly to logical 0)
ULTR	=	!(51P1 + 51G1)	(discussed in preceding subsection)

Analysis of SELOGIC Control Equation Trip Setting TR

Again, the example trip equation is:

TR = 51P1T + 51G1T + 50P1*SH0

The Relay Word bit definitions are:

51P1T phase time-overcurrent element timed out

- 51G1T residual ground time-overcurrent element timed out
- 50P1 phase instantaneous overcurrent element asserted
- SH0 reclosing relay shot counter at shot = 0

In the trip equation, the AND operator * is executed before the OR operators +, Table G.1:

50P1*SH0

Element 50P1 can only cause a trip if the reclosing relay shot counter is at shot = 0. When the reclosing relay shot counter is at shot = 0 (see Table 6.3), Relay Word bit SH0 is in the following state:

$$SH0 = 1$$
 (logical 1)

If maximum phase current is <u>above</u> the phase instantaneous overcurrent element pickup setting 50P1P (see Figure 3.1), Relay Word bit 50P1 is in the following state:

$$50P1 = 1 \qquad (logical 1)$$

With SH0 = 1 and 50P1 = 1, the ANDed combination results in:

$$50P1*SH0 = 1*1 = 1$$
 (logical 1)

and an instantaneous trip results. This logic is commonly used in fuse saving schemes for distribution feeders.

If the reclosing relay shot counter advances to shot = 1 for the reclose that follows the trip, Relay Word bit SH0 is in the following state:

$$SH0 = 0$$
 (logical 0)

If maximum phase current is <u>above</u> the phase instantaneous overcurrent element pickup setting 50P1P for the reoccurring fault, Relay Word bit 50P1 is in the following state:

$$50P1 = 1 \qquad (logical 1)$$

With SH0 = 0 and 50P1 = 1, the ANDed combination results in:

50P1*SH0 = 1*0 = 0 (logical 0)

and no trip results from phase instantaneous overcurrent element 50P1.

A trip will eventually result if time-overcurrent element 51P1T or 51G1T times out. If residual ground time-overcurrent element 51G1T times out, Relay Word bit 51G1T is in the following state:

$$51G1T = 1$$
 (logical 1)

When shot = 1, SH0 = 0 and the result is:

TR = 51P1T + 51G1T + 50P1*SH0 = 0 + 1 + 1*0 = 0 + 1 + 0 = 1

and a time-delayed trip results from residual ground time-overcurrent element 51G1T.

Set an Output Contact for Tripping

To assert output contact OUT101 to trip a circuit breaker, make the following SELOGIC control equation output contact setting (see *Output Contacts* in *Section 7: Inputs, Outputs, Timers, and Other Control Logic*):

OUT101 = TRIP

All SELogic Control Equations Must Be Set

All SELOGIC control equations must be set one of the following ways (they cannot be "blank"): Single Relay Word bit (e.g., 52A = IN101) Combination of Relay Word bits (e.g., TR = 51P1T+51G1T+50P1*SH0) Directly to logical 1 (e.g., 67P1TC = 1) Directly to logical 0 (e.g., TRCOMM = 0)

Set SELOGIC Control Equations Directly to 1 or O

SELOGIC control equations can be set directly to:

1 (logical 1) or 0 (logical 0)

instead of with Relay Word bits. If a SELOGIC control equation setting is set directly to 1, it is always "asserted/on/enabled." If a SELOGIC control equation setting is set equal to 0, it is always "deasserted/off/disabled."

Note: SELOGIC control equation torque control settings (e.g., 67P1TC, 51P1TC) cannot be set to logical 0.

Under the *SHO Command* (*Show/View Settings*) in *Section 10: Serial Port Communications and Commands*, note that a number of the factory SELOGIC control equation settings are set directly to 1 or 0.

The individual SELOGIC control equation settings explanations (referenced in Settings Sheets 13 through 17 at the end of *Section 9: Setting the Recloser Control*) discuss whether it makes logical sense to set the given SELOGIC control equation setting to 0 or 1 for certain criteria.

Set SELOGIC Control Equations Directly to 1 or O-Example

Of special concern are the SELOGIC control equation torque control settings 67P1TC through 51QTC for the overcurrent elements. The <u>factory settings</u> shipped with the SEL-351R in a standard relay shipment, are all set directly to logical 1. See these factory settings in *SHO Command* (*Show/View Settings*) in *Section 10: Serial Port Communications and Commands*.

If one of these torque control settings is set directly to logical 1

e.g., 51P1TC = 1 (set directly to logical 1)

then the corresponding overcurrent element (e.g., phase time-overcurrent element 51P1T) is subject only to the directional control. See Figure 3.14 in *Section 3: Overcurrent, Voltage, Synchronism Check, Frequency, and Power Elements* for phase time-overcurrent element 51P1T logic.

If the directional control enable setting E32 = N (and 51P1TC = 1), then time-overcurrent element 51P1T is enabled (assuming pickup setting 51P1P is made) and nondirectional.

SELOGIC Control Equation Limitations

Any single SELOGIC control equation setting is <u>limited to 15 Relay Word bits</u> that can be combined together with the SELOGIC control equation operators listed in Table G.1. If this limit must be exceeded, use a SELOGIC control equation variable (SELOGIC control equation settings SV1 through SV12) as an intermediate setting step.

For example, assume that the trip equation (SELOGIC control equation trip setting TR) needs more than 15 Relay Word bits in its equation setting. Instead of placing all Relay Word bits into TR, program some of them into the SELOGIC control equation setting SV1. Next, use the resultant SELOGIC control equation variable output (Relay Word bit SV1) in the SELOGIC control equation trip setting TR.

Note in Table G.3 that the SELOGIC control equation variables (SELOGIC control equation settings SV1 through SV16) are processed after the trip equation (SELOGIC control equation trip setting TR). Thus, any tripping via Relay Word bits SV1 through SV16 can be delayed as much as 1/4 cycle. For most applications, this is probably of no consequence.

All the SELOGIC control equation settings for a particular settings group have a <u>combined limit</u> of **510** Relay Word bits (630 for an SEL-351P-2) that can be combined together with the SELOGIC control equation operators listed in Table G.1. SELOGIC control equation settings that are set directly to 1 (logical 1) or 0 (logical 0) also have to be included in this combined limit— each such setting is counted as one Relay Word bit.

All the SELOGIC control equation settings for a particular settings group have a combined limit of 54 edges (rising or falling edges) that may be applied to individual Relay Word bits within the SELOGIC control equation settings.

After SELOGIC control equations settings changes have been made and the settings are saved, the SEL-351R responds with the following message:

xxx Elements and yy Edges remain available

indicating that "xxx" Relay Word bits can still be used and "yy" rising or falling edge operators can still be applied in the SELOGIC control equations for the particular settings group.

PROCESSING ORDER AND PROCESSING INTERVAL

The relay elements and logic (and corresponding SELOGIC control equation settings and resultant Relay Word bits) are processed in the order shown in Table G.3 (top to bottom). They are processed every quarter-cycle (1/4-cycle), and the Relay Word bit states (logical 1 or logical 0) are updated with each quarter-cycle pass. Thus, the relay processing interval is 1/4-cycle. Once a Relay Word bit is asserted, it retains the state (logical 1 or logical 0) until it is updated again in the next processing interval.

Relay Elements and Logic (Corresponding SELOGIC Control Equations Listed in Parentheses)	Resultant Relay Word Bits	Reference Instruction Manual Section
Optoisolated Inputs	IN101–IN106	Section 7
Polarizing Voltage	VPOLV	Section 4
Receive MIRRORED BITS [™]	RMB1ARMB8A, RMB1BRMB8B	Appendix I
Miscellaneous Instantaneous Overcurrent Elements	50A1-50A4, 50B1-50B4, 50C1-50C4, 50A, 50B, 50C, 50AB1-50AB4, 50BC1-50BC4, 50CA1-50CA4, 50QF, 50QR, 50GF, 50GR, 50L	Section 3
Demand Ammeters	PDEM, NDEM, GDEM, QDEM	Section 8
Open Breaker Logic (52A)	ЗРО	Section 5
Loss-of-Potential	LOP, ILOP	Section 4
Load Encroachment	ZLOUT, ZLIN, ZLOAD	Section 4
Local Control Switches	LB1–LB8 (LB1–LB16 in the SEL-351R-2)	Section 7
Remote Control Switches	RB1–RB8 (RB1–RB16 in the SEL-351R-2)	Section 7
Latch Control Switches (SET1–SET8, RST1–RST8)	LT1–LT8 (LT1–LT16 in the SEL-351R-2)	Section 7
(SET1–SET16, RST1–RST16 in the SEL-351R-2)		
Voltage Elements	27A1, 27B1, 27C1, 27A2, 27B2, 27C2, 59A1, 59B1, 59C1, 59A2, 59B2, 59C2, 27AB, 27BC, 27CA, 59AB, 59BC, 59CA, 59N1, 59N2, 59Q, 59V1, 27S, 59S1, 59S2, 59VP, 59VS, 3P27, 3P59, 27B81, 27AB1, 27BC1, 27CA1, 27AB2, 27BC2, 27CA2, 59AB1, 59BC1, 59CA1, 59AB2, 59BC2, 59CA2, 59Q1, 59Q2	Section 3
Frequency Elements	81D1, 81D2, 81D3, 81D4, 81D5, 81D6, 81D1T, 81D2T, 81D3T, 81D4T, 81D5T, 81D6T	Section 3

Table G.3: Processing Order of Relay Elements and Logic (top to bottom)

Relay Elements and Logic (Corresponding SELOGIC Control Equations Listed in Parentheses)	Resultant Relay Word Bits	Reference Instruction Manual Section
Synchronism Check Elements (BSYNCH)	SF, 25A1, 25A2	Section 3
Directional Elements (E32IV)	32QE, 32QGE, 32VE, 32IE, F32P, R32P, F32Q, R32Q, F32QG, R32QG, F32V, R32V, F32I, R32I, 32PF, 32PR, 32QF, 32QR, 32GF, 32GR	Section 4
Instantaneous/Definite-Time Overcurrent Elements (67P1TC–67P4TC, 67N1TC–67N4TC, 67G1TC–67G4TC, 67Q1TC–67Q4TC)	50P1–50P6, 50N1–50N6, 50G1– 50G6, 50Q1–50Q6, 67P1–67P4, 67P1T–67P4T, 67N1–67N4, 67N1T–67N4T, 67G1–67G4, 67Q1T–67Q4T, 67P2S, 67N2S, 67G2S, 67Q2S	Section 3
Time-Overcurrent Elements (51P1TC, 51P1TC, 51N1TC, 51N2TC, 51G1TC, 51G2TC, 51QTC)	51P1, 51P2, 51N1, 51N2, 51G1, 51G2, 51Q, 51P1T, 51P2T, 51N1T, 51N2T, 51G1T, 51G2T, 51QT, 51P1R, 51P2R, 51N1R, 51N2R, 51G1R, 51G2R, 51QR	Section 3
Switch-onto-Fault Logic (CLMON)	SOTFE	Section 5
Communications-Assisted Trip Schemes (PT1, LOG1, PT2, LOG2, BT)	PT, PTRX1, PTRX2, PTRX, UBB1, UBB2, UBB, Z3RB, KEY, EKEY, ECTT, WFC, Z3XT, DSTRT, NSTRT, STOP, BTX	Section 5
Trip Logic (TR, TRSOTF, TRCOMM, DTT, ULTR)	TRIP	Section 5
Close Logic (CL, ULCL) Reclosing Relay (79RI, 79RIS, 79DTL, 79DLS, 79SKP, 79STL, 79BRS, 79SEQ, 79CLS)	CLOSE, CF, RCSF, OPTMN, RSTMN, 79RS, 79CY, 79LO, SH0, SH1, SH2, SH3, SH4	Section 6
Recloser Control Relay Word Bits	OCP, OCG, OLP, OLG, OLS, HTP, HTG, HLP, HLG, CLP, RPP, RPG, RPS, SEQC, GTP	Section 1
Breaker Monitor (BKMON)	BCWA, BCWB, BCWC, BCW	Section 8
SELOGIC counter values (SC1–SC8) (only in the SEL-351R-2)		Section 7
SELOGIC Control Equation Variables/Timers (SV1–SV16)	SV1–SV16, SV1T–SV16T	Section 7

Relay Elements and Logic (Corresponding SELOGIC Control Equations Listed in Parentheses)	Resultant Relay Word Bits	Reference Instruction Manual Section
(OUT101–OUT107) Recloser Control Cable Trip (RCTR) and Close (RCCL)	OUT101–OUT107 RCTR, RCCL	Section 7
Targeting (Front-Panel LED) Logic	LED1–9, LED11–20, LED24, LED25	Section 5
Display Points (DP1–DP8) (DP1–DP16 in the SEL-351R-2)		Section 7
Transmit MIRRORED BITS	TMB1ATMB8A TMB1BTMB8B	Appendix I
Setting Group (SS1–SS6)	SG1–SG6	Section 7
Event Report Trigger (ER)		Section 12
Recloser Breaker Status	P1NBD, P1NC, P1NE, P1NF, SW1	Section 7

OVERVIEW

The SEL-351R Recloser Control¹ supports Distributed Network Protocol (DNP) V3.00 L2 Slave protocol. This includes access to metering data, protection elements (Relay Word), contact I/O, targets, sequential events recorder, breaker monitor, relay summary event reports, settings groups, and time synchronization. The SEL-351R supports DNP point re-mapping. Two modes of operation are available: Standard, for backwards and cross-platform compatibility, and Extended, with additional features that are both detailed in this Appendix.

CONFIGURATION

Although standard or extended mode DNP may be selected on any of the available ports, DNP may not be enabled on more than one port at a time.

Standard Mode DNP Operation

To configure a port for Standard Mode DNP, set the port PROTO setting to DNP. The following settings configure a port for DNP operation:

Label	Description	Default
SPEED	Baud rate (300–38400)	2400
DNPADR	DNP Address (0-65534)	0
ECLASS	Class for event data (0–3)	2
TIMERQ	Time-set request interval (0–32767 min.)	0
DECPLA	Currents scaling (0–3 decimal places)	1
DECPLV	Voltages scaling (0–3 decimal places)	1
DECPLM	Miscellaneous data scaling (0–3 decimal places)	1
STIMEO	Select/operate time-out (0-30 sec.)	1.0
DRETRY	Data link retries (0–15)	3
DTIMEO	Data link time-out (0–5 sec.)	1
MINDLY	Minimum time from DCD to Tx (0–1 sec.)	0.05
MAXDLY	Maximum time from DCD to Tx (0–1 sec.)	0.10
PREDLY	Settle time from RTS on to Tx (OFF,0–30 sec.)	0
PSTDLY	Settle time after Tx to RTS off (0–30 sec.)	0
ANADB	Analog reporting dead band (0-32767 counts)	100
UNSOL	Enable Unsolicited reporting (Y,N,DIAL)	Ν
PUNSOL	Enable Unsolicited reporting at power-up (Y,N)	Ν
REPADR	DNP Address to report to (0-65534)	0
NUMEVE	Number of events to transmit on (1–200)	10
AGEEVE	Age of oldest event to transmit on (0–60 sec.)	2.0
UTIMEO	Unsolicited confirmation time out (0–50 sec.)	2

¹ The response to the VER command will indicate "DNP" if the SEL-351R Relay has DNP.

Extended Mode DNP Operation

To configure a port for extended mode DNP, set the port PROTO setting to DNPE (extended mode). The following settings configure a port for DNPE operation:

Label	Description	Default
SPEED	Baud rate (300–38400)	2400
DNPADR	DNP Address (0–65534)	0
CLASSA	Class for analog event data $(0-3)$	2
CLASSB	Class for binary event data (0–3)	2
CLASSC	Class for counter event data (0–3)	2
TIMERQ	Time-set request interval (0-32767 min.)	0
DECPLA	Currents scaling (0–3 decimal places)	1
DECPLV	Voltages scaling (0–3 decimal places)	1
DECPLM	Miscellaneous data scaling (0–3 decimal places)	1
STIMEO	Select/operate time-out (0–30 sec.)	1.0
DRETRY	Data link retries (0–15)	3
DTIMEO	Data link time-out (0–5 sec.)	1
MINDLY	Minimum time from DCD to Tx (0–1 sec.)	0.05
MAXDLY	Maximum time from DCD to $Tx (0-1 \text{ sec.})$	0.10
PREDLY	Settle time from RTS on to Tx (OFF,0–30 sec.)	0
PSTDLY	Settle time after Tx to RTS off (0–30 sec.)	0
ANADBA	Amps reporting dead band, counts (0-32767 counts)	100
ANADBV	Volts reporting dead band, counts (0-32767 counts)	100
ANADBM	Miscellaneous Data Reporting dead band, counts (0-32767)	100
UNSOL	Enable Unsolicited reporting (Y,N,DIAL)	Ν
PUNSOL	Enable Unsolicited reporting at power-up (Y,N)	Ν
REPADR	DNP Address to report to (0–65534)	0
NUMEVE	Number of events to transmit on (1–200)	10
AGEEVE	Age of oldest event to transmit on (0–60 sec.)	2.0
UTIMEO	Unsolicited confirmation time out (0–50 sec.)	2

EIA-232 PHYSICAL LAYER OPERATION

The RTS signal may be used to control an external transceiver. The CTS signal is used as a DCD input, indicating when the medium is in use. Transmissions are only initiated if DCD is deasserted. When DCD drops, the next pending outgoing message may be sent once an idle time is satisfied. This idle time is randomly selected between the minimum and maximum allowed idle times (i.e., MAXDLY and MINDLY). In addition, the SEL-351R monitors received data and treats receipt of data as a DCD indication. This allows RTS to be looped back to CTS in cases where the external transceiver does not support DCD. When the SEL-351R transmits a DNP message, it delays transmitting after asserting RTS by at least the time in the PREDLY setting. After transmitting the last byte of the message, the SEL-351R delays for at least PSTDLY milliseconds before deasserting RTS. If the PSTDLY time delay is in progress (RTS still high) following a transmission, and another transmission is initiated, the SEL-351R transmits the message without completing the PSTDLY delay and without any preceding PREDLY delay. The RTS/CTS handshaking may be completely disabled by setting PREDLY to OFF. In this case, RTS is forced high and CTS is ignored, with only received characters acting

as a DCD indication. The timing is the same as above, but PREDLY functions as if it were set to 0, and RTS is not actually deasserted after the PSTDLY time delay expires.

AUTOMATIC DIAL-OUT

To support automatic dial-out via DNP, Relay Word bits DDATA and DCONN are available for use in SELOGIC control equations. When unsolicited event data is available, DNP asserts the DDATA Relay Word bit. If setting UNSOL = Y or DIAL and a connection has been made, the SEL-351R begins transmitting the unsolicited event data and asserts Relay word bit DCONN. If setting UNSOL = DIAL, the SEL-351R further checks to see that the CTS serial port line is asserted (e.g., from an external modem), before beginning the transmission of the unsolicited event data.

DATA-LINK OPERATION

It is necessary to make two important decisions about the data-link layer operation. One is how to handle data-link confirmation, the other is how to handle data-link access. If a highly reliable communications link exists, the data-link access can be disabled altogether, which significantly reduces communications overhead. Otherwise, it is necessary to enable confirmation and determine how many retries to allow and what the data-link time-out should be. The noisier the communications channel, the more likely a message will be corrupted. Thus, the number of retries should be set higher on noisy channels. Set the data-link time-out long enough to allow for the worst-case response of the master plus transmission time. When the SEL-351R decides to transmit on the DNP link, it has to wait if the physical connection is in use. The SEL-351R monitors physical connections by using CTS input (treated as a Data Carrier Detect) and monitoring character receipt. Once the physical link goes idle, as indicated by CTS being deasserted and no characters being received, the SEL-351R will wait a configurable amount of time before beginning a transmission. This hold-off time will be a random value between the MINDLY and MAXDLY setting values. The hold-off time is random which prevents multiple devices waiting to communicate on the network from continually colliding.

DATA ACCESS METHOD

Based on the capabilities of the system, it is necessary to determine which method is desired to retrieve data on the DNP connection. The following table summarizes the main options, listed from least to most efficient, and corresponding key related settings are indicated.

Data Retrieval Method	Description	Relevant SEL-351S DNP (Standard) Settings	Relevant SEL-351S DNPE (Extended) Settings
Polled Static	The master polls for static (Class 0) data only.	Set ECLASS = 0, Set UNSOL = N.	Set CLASSA = 0 Set CLASSB = 0 Set CLASSC = 0 Set UNSOL = N
Polled Report- by-Exception	The master polls frequently for event data and occasionally for static data.	Set ECLASS to a non-zero value, Set UNSOL = N.	Set CLASSA = to a non-zero value, Set CLASSB = to a non-zero value, Set CLASSC = to a non-zero value. Set UNSOL – N
Unsolicited Report-by- Exception	The slave devices send unsolicited event data to the master and the master occasionally sends integrity polls for static data.	Set ECLASS to a non-zero value, Set UNSOL = Y, Set NUMEVE and AGEEVE according to how often messages are desired to be sent.	Set CLASSA = to a non-zero value, Set CLASSB = to a non-zero value, Set CLASSC = to a non-zero value, Set UNSOL = Y, Set NUMEVE and AGEEVE according to how often messages are desired to be sent.
Quiescent	The master never polls and relies on unsolicited reports only.	Set ECLASS to a non-zero value, Set UNSOL = Y, Set NUMEVE and AGEEVE according to how often messages are desired to be sent.	Set CLASSA = to a non-zero value, Set CLASSB = to a non-zero value, Set CLASSC = to a non-zero value, Set UNSOL = Y, Set NUMEVE and AGEEVE according to how often messages are desired to be sent.

 Table H.1: Data Access Methods

DEVICE PROFILE

The following is the device profile as specified in the *DNP V3.00 Subset Definitions* document:

DNP V3.00DEVICE PROFILE DOCUMENTThis document must be accompanied by a table having the following headings:Object GroupRequest Function CodesObject VariationRequest QualifiersObject Name (optional)Response Qualifiers					
Vendor Name: Schweitzer Engineering Laboratories, Inc.					
Device Name: SEL-351R					
Highest DNP Level Supported: For Requests Level 2 For Responses Level 2	Device Function: □ Master ☑ Slave				
Notable objects, functions, and/or qualifiers support (the complete list is described in the attached table):	ed in addition to the Highest DNP Levels Supported				
Supports enabling and disabling of unsolicited report	<u>s on a class basis.</u>				
Maximum Data Link Frame Size (octets):	Maximum Application Fragment Size (octets):				
Transmitted <u>292</u>	Transmitted <u>2048</u> (if >2048, must be configurable)				
Received (must be 292)	Received <u>2048</u> (must be >249)				
Maximum Data Link Re-tries:	Maximum Application Layer Re-tries:				
 □ None □ Fixed at ☑ Configurable, range _0_ to _15_ 	 ☑ None □ Configurable, range to (Fixed is not permitted) 				
Requires Data Link Layer Confirmation: Rever Always Sometimes If 'Sometimes', when? Configurable If 'Configurable', how? <u>by s</u>	ettings.				

Requires Application Layer Confirmation:				
 Never Always (not recommended) When reporting Event Data (Slave devices only) When sending multi-fragment responses (Slave devices only) Sometimes If 'Sometimes', when? Configurable If 'Configurable', how? 				
Timeouts while waiting for:				
Complete Appl. FragmentImage: Complete Appl. ResponseComplete Appl. ResponseImage: Complete Appl. Response	None □ F None □ F	ixed at ixed at	□ Variable □ Variable □ Variable □ Variable	 ☑ Configurable □ Configurable ☑ Configurable □ Configurable
Others Attach explanation if 'Variable' or '	Configurable	' was check	red for any timeou	ı t
Sends/Executes Control Operatio	-	was check		at.
WRITE Binary OutputsNeverAlwaysSometimesConfigurableSELECT/OPERATENeverAlwaysSometimesConfigurableDIRECT OPERATENeverAlwaysSometimesConfigurableDIRECT OPERATENeverAlwaysSometimesConfigurableDIRECT OPERATENeverAlwaysSometimesConfigurableDIRECT OPERATENeverAlwaysSometimesConfigurableDIRECT OPERATENeverAlwaysSometimesConfigurablePulse OnNeverAlwaysSometimesConfigurablePulse OffNeverAlwaysSometimesConfigurableLatch OnNeverAlwaysSometimesConfigurableLatch OffNeverAlwaysSometimesConfigurableQueueØ NeverAlwaysSometimesConfigurableClear QueueØ NeverAlwaysSometimesConfigurableAttach explanation if 'Sometimes' or 'Configurable' was checked for any operation.NeverNever				
FILL OUT THE I	FILL OUT THE FOLLOWING ITEM FOR MASTER DEVICES ONLY:			
Expects Binary Input Change Events: Either time-tagged or non-time-tagged for a single event Both time-tagged and non-time-tagged for a single event Configurable (attach explanation)				
FILL OUT THE FOLLOWING ITEMS FOR SLAVE DEVICES ONLY				
 Reports Binary Input Change Events when no specific variation requested: □ Never ☑ Only time-tagged □ Only non-time-tagged □ Configurable to send both, one or the other (attach explanation) 		Events w D N Ø Bi D Bi	 Reports time-tagged Binary Input Change Events when no specific variation requested: □ Never ☑ Binary Input Change With Time □ Binary Input Change With Relative Time □ Configurable (attach explanation) 	

Sends Unsolicited Responses: □ Never ☑ Configurable (attach explanation) □ Only certain objects □ Sometimes (attach explanation) ☑ ENABLE/DISABLE UNSOLICITED Function codes supported	Sends Static Data in Unsolicited Responses: Ver When Device Restarts When Status Flags Change No other options are permitted.				
Default Counter Object/Variation: No Counters Reported Configurable (attach explanation) Default object <u>20</u> Default variation <u>6</u> Point-by-point list attached	Counters Roll Over at: No Counters Reported Configurable (attach explanation) 16 Bits 32 Bits Other Value Point-by-point list attached				
Sends Multi-Fragment Responses: Yes No					

In all cases within the device profile that an item is configurable, it is controlled by SEL-351R settings.

OBJECT TABLE

The supported object, function and qualifier code combinations are given by the following object table.

	Object			uest orted)	Response (may generate)	
Obj Var Description			Func Codes (dec)	Qual Codes (hex)	Func Codes (dec)	Qual Codes (hex)
1	0	Binary Input—All Variations	1	0,1,6,7,8		
1	1	Binary Input	1	0,1,6,7,8	129	0,1,7,8
1	2*	Binary Input with Status	1	0,1,6,7,8	129	0,1,7,8
2	0	Binary Input Change—All Variations	6,7,8			
2	1	Binary Input Change without Time 1 6,7,8				17,28
2	2*	Binary Input Change with Time	1	6,7,8	129,130	17,28
2	3 Binary Input Change with Relative Time 1 6,7,8				129	17,28
10	10 0 Binary Output—All Variations 1 0,1,6,7,8					
10	1	Binary Output				
10	2*	Binary Output Status	1	0,1,6,7,8	129	0,1

 Table H.2: SEL-351R DNP Object Table

Object				Request (supported)		Response (may generate)	
Obj	⁺ ^{default} Var	Description	Func Codes (dec)	Qual Codes (hex)	Func Codes (dec)	Qual Codes (hex)	
12	0	Control Block—All Variations					
12	1	Control Relay Output Block	3,4,5,6	17,28	129	echo of request	
12	2	Pattern Control Block					
12	3	Pattern Mask					
20	0	Binary Counter—All Variations	1	0,1,6,7,8	-		
20	1	32-Bit Binary Counter					
20	2	16-Bit Binary Counter	-		-		
20	3	32-Bit Delta Counter					
20	4	16-Bit Delta Counter	-		-		
20	5	32-Bit Binary Counter without Flag	1	0,1,6,7,8	129	0,1,7,8	
20	6*	16-Bit Binary Counter without Flag	1	0,1,6,7,8	129	0,1,7,8	
20	7	32-Bit Delta Counter without Flag	-		-		
20	8	16-Bit Delta Counter without Flag	-		-		
21	0	Frozen Counter—All Variations					
21	1	32-Bit Frozen Counter					
21	2	16-Bit Frozen Counter	-		-		
21	3	32-Bit Frozen Delta Counter	-		-		
21	4	16-Bit Frozen Delta Counter					
21	5	32-Bit Frozen Counter with Time of Freeze	-		-		
21	6	16-Bit Frozen Counter with Time of Freeze	-		-		
21	7	32-Bit Frozen Delta Counter with Time of Freeze					
21	8	16-Bit Frozen Delta Counter with Time of Freeze					
21	9	32-Bit Frozen Counter without Flag					
21	10	16-Bit Frozen Counter without Flag					
21	11	32-Bit Frozen Delta Counter without Flag					
21	12	16-Bit Frozen Delta Counter without Flag					
22	0	Counter Change Event—All Variations	1 6,7,8				
22	1			6,7,8	129	17,28	
22	2*			6,7,8	129,130	17,28	
22	3	32-Bit Delta Counter Change Event without Time					
22	4	16-Bit Delta Counter Change Event without Time					
22	5	32-Bit Counter Change Event with Time	1 6,7,8		129	17,28	
22	6	16-Bit Counter Change Event with Time	1 6,7,8		129	17,28	
22	7	32-Bit Delta Counter Change Event with Time					
22	8	16-Bit Delta Counter Change Event with Time					

Object				Request (supported)		Response (may generate)	
Obj	⁺ ^{default} Var	Description	Func Codes (dec)	Qual Codes (hex)	Func Codes (dec)	Qual Codes (hex)	
23	0	Frozen Counter Event—All Variations					
23	1	32-Bit Frozen Counter Event without Time					
23	2	16-Bit Frozen Counter Event without Time					
23	3	32-Bit Frozen Delta Counter Event without Time					
23	4	16-Bit Frozen Delta Counter Event without Time					
23	5	32-Bit Frozen Counter Event with Time					
23	6	16-Bit Frozen Counter Event with Time					
23	7	32-Bit Frozen Delta Counter Event with Time					
23	8	16-Bit Frozen Delta Counter Event with Time					
30	0	Analog Input—All Variations	1	0,1,6,7,8			
30	1	32-Bit Analog Input	1	0,1,6,7,8	129	0,1,7,8	
30	2	16-Bit Analog Input	1	0,1,6,7,8	129	0,1,7,8	
30	3	32-Bit Analog Input without Flag	1	0,1,6,7,8	129	0,1,7,8	
30	4*	16-Bit Analog Input without Flag	1	0,1,6,7,8	129	0,1,7,8	
31	0	Frozen Analog Input—All Variations					
31	1	32-Bit Frozen Analog Input					
31	2	16-Bit Frozen Analog Input					
31	3	32-Bit Frozen Analog Input with Time of Freeze					
31	4	16-Bit Frozen Analog Input with Time of Freeze					
31	5	32-Bit Frozen Analog Input without Flag					
31	6	16-Bit Frozen Analog Input without Flag					
32	0	Analog Change Event—All Variations	1	6,7,8			
32	1	32-Bit Analog Change Event without Time	1	6,7,8	129	17,28	
32	2*	16-Bit Analog Change Event without Time	1	6,7,8	129,130	17,28	
32	3	32-Bit Analog Change Event with Time	1	6,7,8	129	17,28	
32	4	16-Bit Analog Change Event with Time	1	6,7,8	129	17,28	
33	0	Frozen Analog Event—All Variations					
33	1	32-Bit Frozen Analog Event without Time					
33	2	16-Bit Frozen Analog Event without Time					
33	3	32-Bit Frozen Analog Event with Time					
33	4	16-Bit Frozen Analog Event with Time					
40	0	Analog Output Status—All Variations	1	0,1,6,7,8			
40	1	32-Bit Analog Output Status			129	0,1,7,8	
40	2*	16-Bit Analog Output Status	1	0,1,6,7,8	129	0,1,7,8	

	Object			Request (supported)		oonse enerate)
Obj	* ^{default} Var	Description	Func Codes (dec)	Qual Codes (hex)	Func Codes (dec)	Qual Codes (hex)
41	0	Analog Output Block—All Variations				
41	1	32-Bit Analog Output Block	3,4,5,6	17,28	129	echo of request
41	2	16-Bit Analog Output Block	3,4,5,6	17,28	129	echo of request
50	0	Time and Date—All Variations				
50	1	Time and Date	1,2	7,8 index = 0	129	07, quantity=1
50	2	Time and Date with Interval				
51	0	Time and Date CTO—All Variations				
51	1	Time and Date CTO				
51	2	Unsynchronized Time and Date CTO				07, quantity=1
52	0	Time Delay—All Variations				
52	1	Time Delay Coarse				
52	2	Time Delay Fine			129	07, quantity=1
60	0	All Classes of Data	1,20,21	6		
60	1	Class 0 Data	1	6		
60	2	Class 1 Data	1,20,21	6,7,8		
60	3	Class 2 Data	1,20,21	6,7,8		
60	4	Class 3 Data	1,20,21	6,7,8		
70	1	File Identifier				
80	1	Internal Indications	2	0,1 index = 7		
81	1	Storage Object				
82	1	Device Profile				
83	1	Private Registration Object				
83	2	Private Registration Object Descriptor				
90	90 1 Application Identifier					
100	100 1 Short Floating Point					
100	100 2 Long Floating Point					
100	100 3 Extended Floating Point					
101	01 1 Small Packed Binary-Coded Decimal					
101	2	Medium Packed Binary-Coded Decimal				
101	3	Large Packed Binary-Coded Decimal				
		No object	13,14,23			

ΔΑΤΑ ΜΑΡ

The following is the default object map supported by the SEL-351R (FID = SEL-351R-Rxxx-V0-Zxxxxxx-Dxxxxxxx).

DNP Object Type	Index	Description			
01,02	000–499	Relay Word, where 50B3 is 0 and 50NF is 447 (LT9 is 471 for the SEL-351R-2.)			
01,02	500–999	Relay Word from the SER, encoded same as inputs 000–499 with 500 added.			
01,02	1000–1015	Relay front-panel targets, where 1015 is RESET, 1008 is SEF, 1007 is CONTROL ENABLED, and 1000 is 81.			
01,02	1016–1019	Power factor leading for A-, B-, C-, and 3-phase.			
01,02	1020	Relay Disabled.			
01,02	1021	Relay diagnostic failure.			
01,02	1022	Relay diagnostic warning.			
01,02	1023	New relay event available.			
01,02	1024	Settings change or relay restart.			
01,021	1025	A more recent unread relay event is available.			
(Thes	e 10,12 Object	Types apply to the SEL-351R-0, -1 only.)			
10,12	00–07	Remote bits RB1–RB8.			
10,12	08	Pulse Open command OC.			
10,12	09	Pulse Close command CC.			
10,12	10	Reset demands.			
10,12	11	Reset demand peaks.			
10,12	12	Reset energies.			
10,12	13	Reset breaker monitor.			
10,12	14	Reset front-panel targets.			
10,12	15	Read next relay event.			
10,12	16–19	Remote bit pairs RB1–RB8.			
10,12	20	Open/Close pair OC & CC.			
(The	(These 10,12 Object Types apply to the SEL-351R-2 only.)				
10,12	00–15	Remote bits RB1–RB16.			
10,12	16	Pulse Open command OC.			
10,12	17	Pulse Close command CC.			
10,12	18	Reset demands.			

 Table H.3: SEL-351R DNP Data Map

DNP Object Type	Index	Description	
10,12	19	Reset demand peaks.	
10,12	20	Reset energies.	
10,12	21	Reset breaker monitor.	
10,12	22	Reset front-panel targets.	
10,12	23	Read next relay event.	
10,12	24–31	Remote bit pairs RB1–RB16.	
10,12	32	Open/Close pair OC & CC.	
20,22	00	Active settings group.	
20,22	01	Internal breaker trips.	
20,22	02	External breaker trips.	
30,32	00,01	IA magnitude and angle.	
30,32	02,03	IB magnitude and angle.	
30,32	04,05	IC magnitude and angle.	
30,32	06,07	IN magnitude and angle.	
30,32	08,09	VA magnitude (kV) and angle.	
30,32	10,11	VB magnitude (kV) and angle.	
30,32	12,13	VC magnitude (kV) and angle.	
30,32	14,15	VS magnitude (kV) and angle.	
30,32	16,17	IG magnitude and angle.	
30,32	18,19	I1 magnitude and angle.	
30,32	20,21	3I2 magnitude and angle.	
30,32	22,23	3V0 magnitude (kV) and angle.	
30,32	24,25	V1 magnitude (kV) and angle.	
30,32	26,27	V2 magnitude (kV) and angle.	
30,32	28–31	MW A-, B-, C-, and 3-phase.	
30,32	32–35	MVAR A-, B-, C-, and 3-phase.	
30,32	36–39	Power factor A-, B-, C-, and 3-phase.	
30,32	40	Frequency.	
30,32	41	Always read as 0.	
30,32	42,43	A-phase MWhr in and out.	
30,32	44,45	B-phase MWhr in and out.	
30,32	46,47	C-phase MWhr in and out.	
30,32	48,49	3-phase MWhr in and out.	

DNP Object Type	Index	Description
30,32	50,51	A-phase MVARhr in and out.
30,32	52,53	B-phase MVARhr in and out.
30,32	54,55	C-phase MVARhr in and out.
30,32	56,57	3-phase MVARhr in and out.
30,32	58–63	Demand IA, IB, IC, IN, IG, and 3I2 magnitudes.
30,32	64–67	A-, B-, C-, and 3-phase demand MW in.
30,32	68–71	A-, B-, C-, and 3-phase demand MVAR in.
30,32	72–75	A-, B- C-, and 3-phase demand MW out.
30,32	76–79	A-, B-, C-, and 3-phase demand MVAR out.
30,32	80–85	Peak demand IA, IB, IC, IN, IG, and 3I2 magnitudes.
30,32	86–89	A-, B-, C-, and 3-phase peak demand MW in.
30,32	90–93	A-, B-, C-, and 3-phase peak demand MVAR in.
30,32	94–97	A-, B-, C-, and 3-phase peak demand MW out.
30,32	98–101	A-, B-, C-, and 3-phase peak demand MVAR out.
30,32	102–104	Breaker contact wear percentage (A, B, C).
30,32 ²	105	Fault type (see table for definition).
30,32 ²	106	Fault location.
30,32 ²	107	Fault current.
30,32 ²	108	Fault frequency.
30,32 ²	109	Fault settings group.
30,32 ²	110	Fault recloser shot counter.
30,32 ²	111–113	Fault time in DNP format (high, middle, and low 16 bits).
30,32 ¹	114	Relay internal temperature
30,32 ¹	115	Number of unread faults
30,32 ¹	116	51P1P setting in primary units
30,32 ¹	117	51P2P setting in primary units
30,32 ¹	118	51G1P setting in primary units
30,32 ¹	119	51G2P setting in primary units
30,32 ¹	120	51QP setting in primary units
30,32 ¹	121	51N1P setting in primary units
30,32 ¹	122	51N2P setting in primary units
40,41	00	Active settings group.

Extended mode (DNPE) only
 ² Object type 32 event messages are generated for these points in DNP extended mode (DNPE) only.

Binary inputs (objects 1 and 2) are supported as defined by the previous table. Binary inputs 0–499 and 1000–1023 and 1025 are scanned approximately once per second to generate events. When time is reported with these event objects, it is the time at which the scanner observed the bit change. This may be significantly delayed from when the original source change and should not be used for sequence-of-events determination.

In order to determine an element's point index, consult the Relay Word Bits table in *Section 9: Setting the SEL-351R Recloser Control.* Locate the element in question in the table and note the Relay Word row number. From that row number, subtract the row number of the first Relay Word row (usually 2) and multiply that result by 8. This is the index of the right-most element of the Relay Word row of the element in question. Count over to the original element and add that to get the point index. Binary Inputs 500–999 are derived from the Sequential Events Recorder (SER) and carry the time stamp of actual occurrence. Static reads from these inputs will show the same data as a read from the corresponding index in the 0–499 group. Only points that are actually in the SER list (SET R) will generate events in the 500–999 group.

Analog Inputs (objects 30 and 32) are supported as defined by the preceding table. The values are reported in primary units. Analog inputs 28–35, 42–57, 64–79, 86–104, and 106 are further scaled according to the DECPLM setting (e.g., if DECPLM is 3, then the value is multiplied by 1000). Analog inputs 58–63, 80–85, 107, 115–119, and the even-numbered points in 0–7 and 16–21 (current magnitudes) are scaled according to the DECPLA setting. The even-numbered points in 8–15 and 22–27 (voltage magnitudes) are scaled according to the DECPLV setting. Analog inputs 36–41, 108, and the odd-numbered points in 0–27 (angles) are scaled by 100, and input 114 is scaled by 10. The remaining analogs are not scaled.

Event-class messages are generated whenever an input changes beyond the value given by the ANADB setting. The dead-band check is done after any scaling is applied. The angles (the odd numbered points in 0-27) will only generate an event if, in addition to their dead-band check, the corresponding magnitude (the preceding point) contains a value greater than the value given by the ANADB setting.

In standard mode, analog inputs are scanned at approximately a 1-second rate, except for analogs 105–113. During a scan, all events generated will use the time the scan was initiated. Analogs 105–113 are derived from the history queue data for the most recently read fault. In standard mode, analogs 105–113 do not generate event messages. In extended mode, events for these inputs will use the time the scan was initiated. Analog input 115 is derived from the history queue. Analog 105 is a 16-bit composite value, where the upper byte is defined as follows:

Value	Event Cause
1	Trigger command
2	Pulse command
4	Trip element
8	ER element

And the lower byte is defined as follows:

Value	Fault Type
0	
0	Indeterminate
1	A-Phase
2	B-Phase
4	C-Phase
8	Ground

The lower byte may contain any combination of the above bits (e.g., a 6 is a B to C fault and a 9 is an A to Ground fault). If Analog 105 is 0, fault information has not been read and the related analogs (106–113) do not contain valid data. Analog inputs 116–122 are derived from the present active group settings. If the associated setting is set to OFF, the value will be reported as -1.

Control Relay Output Blocks (object 12, variation 1) are supported. The control relays correspond to the remote bits and other functions, as shown above. The Trip/Close bits take precedence over the control field. The control field is interpreted as follows:

Index	Close (0x4X)	Trip (0x8X)	Latch On (3)	Latch Off (4)	Pulse On (1)	Pulse Off (2)
0–7	Set	Clear	Set	Clear	Pulse	Clear
8-14	Pulse	Do nothing	Pulse	Do nothing	Pulse	Do nothing
15	Read Oldest	Read Newest*	Read Oldest	Read Newest*	Read Oldest	Read Newest*
16	Pulse RB2	Pulse RB1	Pulse RB2	Pulse RB1	Pulse RB2	Pulse RB1
17	Pulse RB4	Pulse RB3	Pulse RB4	Pulse RB3	Pulse RB4	Pulse RB3
18	Pulse RB6	Pulse RB5	Pulse RB6	Pulse RB5	Pulse RB6	Pulse RB5
19	Pulse RB8	Pulse RB7	Pulse RB8	Pulse RB7	Pulse RB8	Pulse RB7
20	Pulse CC	Pulse OC	Pulse CC	Pulse OC	Pulse CC	Pulse OC

* This function is only available in extended mode (DNPE). It functions as "Do Nothing" in standard mode (DNP).

The Status field is used exactly as defined. All other fields are ignored. A pulse operation asserts a point for a single processing interval. Caution should be exercised with multiple remote bit pulses in a single message (i.e., point count > 1), as this may result in some of the pulse commands being ignored and returning an already active status.

Analog Outputs (objects 40 and 41) are supported as defined by the preceding table. Flags returned with object 40 responses are always set to 0. The Control Status field of object 41 requests are ignored. If the value written to index 0 is outside of the range 1 through 6, the relay will not accept the value and will return a hardware error status.

Relay Summary Event Data

In standard mode (DNP) the Relay Event Summary data is available on a first in, first out (FIFO) basis. In extended mode (DNPE), the Relay Event Summary data can be read in two ways: first in, first out (FIFO); or last in, first out (LIFO).

To use the FIFO method, the master should monitor binary input point 1023, which will be on when there is an unread relay event summary. To read the oldest relay event summary, the master should Pulse-On binary output point 15. This will load the relay event summary analogs (points 105–113) with information from the oldest relay event summary, discarding the values

from the previous load. After reading the analogs, the master should again check binary input point 1023, which will be on if there is another unread relay event summary. The master should continue this process until binary input point 1023 is off. If the master attempts to load values using output point 15 when binary input point 1023 is off, the relay event type analog (point 105) will be loaded with zero. With the FIFO method the relay event summaries will always be collected in chronological order.

In extended mode (DNPE) <u>only</u>, the LIFO method is available. To use the LIFO method the master should monitor binary input point 1023, which will be set when there is an unread relay event summary. To read the newest relay event summary, the master should Pulse-Off binary output point 15. This will load the relay event summary analogs (points 105–113) with information from the newest relay event summary, discarding the values from the previous load. After reading the analogs, the master should again check binary input point 1023, which will still be on if there is another unread relay event summary. The master should continue this process until binary input point 1023 is off. If the master attempts to load values using output point 15 when binary input point 1023 is off, the event type analog (point 105) will be loaded with zero. With the LIFO method the relay event summaries will be collected in reverse chronological order, unless binary input point 1025 is set, which the master can use to identify when a newer relay event summary is available.

In extended mode (DNPE), DNP events are generated whenever the values in points 105–113 change. Events are detected every second by the scanning process. The master can collect relay event summaries using event data rather than the static data polling described above. In order for this to work successfully, binary output 15 must be pulsed no faster than once every two seconds. If binary output 15 is pulsed faster, some data may not be recognized and processed by the DNP event scanner.

POINT REMAPPING

The analog and binary input points (objects 1, 2, 30, and 32) may be remapped via the DNP command. The map is composed of 2 lists of indices, one for the analogs (30 and 32) and the other for the binaries (1 and 2). The indices correspond to those given by the relay's default DNP data map. The order they occur in the list determines the index that the corresponding value is reported as to the DNP master. If a value is not in the list, it is not available to the DNP master. All 1026 binaries and 123 analogs may be included in the list, but may occur only once. The maps are stored in nonvolatile memory. The DNP command is only available if DNP has been selected on one of the ports. The DNP command has the following format:

DNP [type]

where type may be A, B, S, T, or omitted.

If the DNP command is issued without parameters, the relay displays both the analog and binary maps, which have the following format:

```
==>DNP<STX>
Analogs = 112 28 17 35 1 56 57 58 59 60 61 62 63 64 65 \
66 67 100 101 102 103
Binaries = Default Map<ETX>
==>
```

If the DNP command is issued with an S parameter, the relay displays only the analog map; likewise, a T causes the relay to display only the binary map. If the map checksum is determined to be invalid, the map will be reported as corrupted during a display command, as follows:

```
-->DNP T<STX>
Binaries = Map Corrupted<ETX>
-->
```

If the map is determined to be corrupted, DNP will respond to all master data requests with an unknown point error. If the DNP command is issued with an A or B parameter at level 2 or greater, the relay requests the user enter indices for the corresponding list, where a parameter of A specifies the Analog list and B specifies the Binary list. The relay accepts lines of indices until a line without a final continuation character (\setminus) is entered. Each line of input is constrained to 80 characters, but all the points may be re-mapped, using multiple lines with continuation characters (\setminus) at the end of the intermediate lines. If a single blank line is entered as the first line, the re-mapping is disabled for that type (i.e., the relay uses the default analog or binary map). For example, the first example remap could be produced with the following commands:

```
-->DNP A
Enter the new DNP Analog map
112 28 17 \<CR>
35 1 56 57 58 59 60 61 62 63 64 65 66 67 100 101 102 \<CR>
103<CR>
Save Changes (Y/N)? Y<CR>
-->DNP B
Enter the new DNP Binary map
<CR>
Save Changes (Y/N)? Y<CR>
-->
```

SETTINGS SHEET_STANDARD MODE DNP PORT_SET P

Protocol (SEL, LMD, DNP, DNPE, MBA, MBB, MB8A, MB8B)	PROTO = <u>DNP</u>
Baud rate (300,600,1200,2400,4800,9600,19200,38400)	SPEED =
DNP Address (0-65534)	DNPADR =
Class for event data (0 for no event, 1–3)	ECLASS =
Time-set request interval, minutes (0 for never, 1–32767)	TIMERQ =
Currents scaling (0-3 decimal places)	DECPLA =
Voltages scaling (0–3 decimal places)	DECPLV =
Miscellaneous data scaling (0-3 decimal places)	DECPLM =
Select/Operate time-out interval, seconds (0.0-30.0)	STIMEO =
Number of data-link retries (0 for no confirm, 1–15)	DRETRY =
Data Link Time-out interval, seconds (0-5)	DTIMEO =
Minimum Delay from DCD to transmission, seconds (0.00-1.00)	MINDLY =
Maximum Delay from DCD to transmission, seconds (0.00–1.00)	MAXDLY =
Transmission delay from RTS assertion, seconds (OFF,0.00-30.00)	PREDLY =
Post-transmit RTS deassertion delay, seconds (0.00-30.00)	PSTDLY =
Analog reporting dead band, counts (0-32767)	ANADB =
Allow Unsolicited Reporting (Y, N, DIAL)	UNSOL =
Enable unsolicited messages on power-up (Y/N)	PUNSOL =
Address of master to Report to (0-65534)	REPADR =
Number of events to transmit on (1-200)	NUMEVE =
Age of oldest event to force transmit on, seconds (0.0-60.0)	AGEEVE =
Time-out for confirmation of unsolicited message, seconds (0-50)	UTIMEO =

SETTINGS SHEET_EXTENDED MODE DNP PORT_SET P

PROTO = DNPE
SPEED =
DNPADR =
CLASSA =
CLASSB =
CLASSC =
TIMERQ =
DECPLA =
DECPLV =
DECPLM =
STIMEO =
DRETRY =
DTIMEO =
MINDLY =
MAXDLY =
PREDLY =
PSTDLY =
ANADBA =
ANADBV =
ANADBM =
UNSOL =
PUNSOL =
REPADR =
NUMEVE =
AGEEVE =
UTIMEO =

OVERVIEW

MIRRORED BITS is a direct relay-to-relay communications protocol that allows protective relays to exchange information quickly and securely, and with minimal expense. The information exchanged can facilitate remote control, remote sensing, or communications-assisted protection schemes such as POTT, DCB, etc. The SEL-351R Recloser Control supports two MIRRORED BITS channels, differentiated by the channel specifiers A and B. Bits transmitted are called TMB1x through TMB8x, where x is the channel specifier (e.g., A or B), and are controlled by the corresponding SELOGIC[®] control equations. Bits received are called RMB1x through RMB8x and are usable as inputs to any SELOGIC control equations. Channel status bits are called ROKx, RBADx, CBADx and LBOKx and are also usable as inputs to any SELOGIC control equations. Further channel status information is available via the COM command.

OPERATION

Message Transmission

All messages are transmitted without idle bits between characters. Idle bits are allowed between messages.

At 4800 baud, one message is transmitted each 1/2 power system cycle.

At 9600 baud, one message is transmitted each 1/4 power system cycle.

At 19200 and 38400 baud, one message is transmitted each 1/8 power system cycle for the SEL-321 and 1/4 power system cycle for the SEL-351 and the SEL-351R.

Message Decoding and Integrity Checks

The relay will deassert a user-accessible flag per channel (hereafter called ROKx) upon failing any of the following received-data checks: Parity, framing, or overrun errors. Receive data redundancy error. Receive message identification error. No message received in the time three messages have been sent.

While ROKx is not asserted, the relay will:

1. Prevent new data from being transferred to the pickup dropout security counters described later. Instead, the relay will send one of the following user selectable values (hereafter called default values) to the security counter inputs:

1 0

The last valid value

The user will be allowed to select one of the default values for each RMB.

2. Enter the synchronization process described below.

The relay will assert ROKx only after successful synchronization as described below and two consecutive messages pass all of the data checks described above. After ROKx is reasserted, received data may be delayed while passing through the security counters described below.

Transfer of received data to RMB1x-RMB8x is supervised by eight user-programmable pickup/dropout security counters settable from 1 (allow every occurrence to pass) to at least eight (require eight consecutive occurrences to pass). The pickup and dropout security count settings are separate.

A pickup/dropout security counter operates identically to a pickup/dropout timer, except that it is set in counts of received messages instead of time. An SEL-351R talking to another SEL-351R sends and receives MIRRORED BITS messages four times per power system cycle. Therefore, a security counter set to two counts will delay a bit by about 1/2 power system cycle. Things become slightly more complicated when two relays of different processing rates are connected via MIRRORED BITS (for instance, an SEL-321 talking to an SEL-351R). The SEL-321 processes power system information each 1/8 power system cycle but processes the pickup/dropout security counters as messages are received. Since the SEL-321 is receiving messages from the SEL-351R, it will receive a message per 1/4 cycle processing interval. So, a counter set to two will again delay a bit by about 1/2 cycle. However, in that same example, a security counter set to two on the SEL-351R will delay a bit by 1/4 cycle, because the SEL-351R is receiving new MIRRORED BITS messages each 1/8 cycle from the SEL-321.

Synchronization

When a node detects a communications error, it deasserts ROKx. If a node detects two consecutive communications errors, it transmits an attention message, which includes its TX_ID setting.

When a node receives an attention message, it checks to see if its TX_ID is included.

If its own TX_ID is included and at least one other TX_ID is included, the node transmits data.

If its own TX_ID is not included, the node deasserts ROKx, includes its TX_ID in the attention message, and transmits the new attention message.

If its own TX_ID is the only TX_ID included, the relay assumes the message is corrupted unless the loop back mode has been enabled. If loop back is not enabled, the node deasserts ROKx and transmits the attention message with its TX_ID included. If loop back is enabled, the relay transmits data.

In summary, when a node detects two consecutive errors, it transmits attention until it receives an attention with its own TX_ID included. If three or four relays are connected in a ring topology, then the attention message will go all the way around the loop, and eventually will be received by the originating node. It will then be killed and data transmission will resume. This method of synchronization allows the relays to determine reliably which byte is the first byte of the message. It also forces mis-synchronized UARTs to become re-synchronized. On the down side, this method takes down the entire loop for a receive error at any node in the loop. This decreases availability. It also makes one-way communications impossible.

Loop-Back Testing

Use the LOOP command to enable loop-back testing.

While in loop-back mode, ROKx is deasserted, and another user accessible flag, LBOKx, will assert and deassert based on the received data checks.

Channel Monitoring

Based on the results of data checks described above, the relay will collect information regarding the 255 most recent communications errors. Each record will contain at least the following fields: Dropout Time/Date Pickup Time/Date Time elapsed during dropout Reason for dropout (See Message Decoding and Integrity Checks)

Use the COMM command to generate a long or summary report of the communications errors.

There is only a single record for each outage, but an outage can evolve. For example, the initial cause could be a data disagreement, but the outage can be perpetuated by framing errors. If the channel is presently down, the COMM record will only show the initial cause, but the COMM summary will display the present cause of failure.

When the duration of an outage exceeds a user-settable threshold, the relay will assert a useraccessible flag, hereafter called RBADx. Note: The user typically will combine RBADx with other alarm conditions using SELOGIC control equations.

When channel unavailability exceeds a user-settable threshold, the relay will assert a user accessible flag, hereafter called CBADx. Note: The user typically will combine CBADx with other alarm conditions using SELOGIC control equations.

MIRRORED BITS PROTOCOL FOR THE PULSAR 9600 BAUD MODEM

The user indicates that a Pulsar MBT modem is to be used by responding "MBT" to the RTS/CTS setting prompt. When the user selects MBT, the baud rate setting will be limited 9600 baud.

The MIRRORED BITS protocol compatible with the Pulsar MBT-9600 modem is identical to the standard MIRRORED BITS protocol with the following exceptions:

The relay injects a delay (idle time) between messages. The length of the delay is one relay processing interval. Note: An idle processing interval guarantees at least 19 idle bits at 9600 baud in an SEL-321 Relay with the system frequency at 65 Hz.

The relay resets RTS (to a negative voltage at the EIA-232 connector) for MIRRORED BITS communications using this specification. The relay sets RTS (to a positive voltage at the EIA-232 connector) for MIRRORED BITS communications using the R6 or original R version of MIRRORED BITS.

SETTINGS

17			n
ι.			
١.	protocol (SEL,LMD,MBA,MBB,MB8A,MB8B)	PROTO = MBA ?	
•			1
'-			

Set PROTO = MBA or MB8A to enable the MIRRORED BITS protocol channel A on this port. Set PROTO = MBB or MB8B to enable the MIRRORED BITS protocol channel B on this port. The standard MIRRORED BITS protocols MBA and MBB use a 7-data bit format for data encoding. The MB8 protocols MB8A and MB8B use an 8-data bit format, which allows MIRRORED BITS to operate on communication channels requiring an 8-data bit format. For the remainder of this section, PROTO = MBA is assumed.

```
baud rate (300-38400) SPEED = 9600 ?
```

Use the SPEED setting to control the rate at which the MIRRORED BITS messages are transmitted, in power system cycles (~), based on the following table:

SPEED	SEL-321	SEL-351
38400	1 message per 1/8 cycle	1 message per 1/4 cycle
19200	1 message per 1/8 cycle	1 message per 1/4 cycle
9600	1 message per 1/4 cycle	1 message per 1/4 cycle
4800	1 message per 1/2 cycle	1 message per 1/2 cycle
enable hardware handshaking	(Y,N,MBT) RTS_CTS= N ?	

Use the MBT option if you are using a Pulsar MBT 9600 baud modem. With this option set, the relay will transmit a message every 1/2 power system cycle and the relay will deassert the RTS signal on the EIA-232 connector. Also, the relay will monitor the CTS signal on the EIA-232 connector, which the modem will deassert if the channel has too many errors. The modem uses the relay's RTS signal to determine whether the new or old MIRRORED BITS protocol is in use.

```
Mirrored Bits Receive bad pickup (1– 10000 sec) RBADPU= 60 ?
```

Use the RBADPU setting to determine how long a channel error must last before the relay element RBADA is asserted. RBADA is deasserted when the channel error is corrected. RBADPU is accurate to ± 1 second.

Mirrored Bits Channel bad pickup (1- 10000 10E-6) CBADPU= 1000 ?

Use the CBADPU setting to determine the ratio of channel down time to the total channel time before the relay element CBADA is asserted. The times used in the calculation are those that are available in the COMM records. See the COMM command in the SEL-321, SEL-351, or SEL-351R manuals for a description of the COMM records.

,			
Mirrored Bits transmit identifier(1 - 4)	$TX_ID = 1$?	
Mirrored Bits receive identifier(1 - 4)	$RX_{ID} = 2$?	
۱ <u>ـــــ</u>			'

Set the RX_ID of the local relay to match the TX_ID of the remote relay. For example, in the three-terminal case, where Relay X transmits to Relay Y, Relay Y transmits to Relay Z, and Relay Z transmits to Relay X:

	TX_ID	RX_ID
Relay X	1	3
Relay Y	2	1
Relay Z	3	2

Mirrored Bits receive default state (string of 1s, 0s or Xs) 87654321 RXDFLT=00000X11 ?

Use the RXDFLT setting to determine the default state the MIRRORED BITS should use in place of received data if an error condition is detected. The setting is a mask of 1s, 0s and/or Xs, for RMB1A–RMB8A, where X represents the most recently received valid value.

Mirrored A	Bits	RMB_ Debounce	ΡU	time	(1-8	msgs)	RMB1PU=	1	?	
Mirrored H	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB1D0=	1	?	
Mirrored H	Bits	RMB_ Debounce	ΡU	time	(1-8	msgs)	RMB2PU=	1	?	
Mirrored A	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB2D0=	1	?	
Mirrored A	Bits	RMB_ Debounce	ΡU	time	(1-8	msgs)	RMB3PU=	1	?	
Mirrored A	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB3D0=	1	?	
Mirrored A	Bits	RMB_ Debounce	ΡU	time	(1-8	msgs)	RMB4PU=	1	?	
Mirrored A	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB4D0=	1	?	
Mirrored H	Bits	RMB_ Debounce	ΡU	time	(1-8	msgs)	RMB5PU=	1	?	
Mirrored H	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB5D0=	1	?	
Mirrored H	Bits	RMB_ Debounce	ΡU	time	(1-8	msgs)	RMB6PU=	1	?	
Mirrored H	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB6D0=	1	?	
Mirrored H	Bits	RMB_ Debounce	PU	time	(1-8	msgs)	RMB7PU=	1	?	
Mirrored H	Bits	RMB_ Debounce	DO	time	(1-8	msgs)	RMB7D0=	1	?	
Mirrored H	Bits	RMB_ Debounce	PU	time	(1-8	msgs)	RMB8PU=	1	?	
Mirrored A	Bits	RMB Debounce	DO	time	(1-8	msqs)	RMB8D0=	1	?	
						0.1				

Supervise the transfer of received data (or default data) to RMB1A–RMB8A with the MIRRORED BITS pickup and dropout security counters. Set the pickup and dropout counters individually for each bit.

SEL-351R RECLOSER CONTROL COMMAND SUMMARY

Access Level O Command	From Access Level 0, you can go to Access Level 1 or to Access Level E (EZ). The Access Level 0 screen prompt is: =
ACC	Enter Access Level 1. If the main board password jumper is not in place, the control prompts you for the Access Level 1 password to enter Access Level 1.
EZA	Enter Access Level E (EZ). If the main board password jumper is not in place, the control prompts you for the Access Level E password to enter Access Level E.
Access Level 1 Command	The Access Level 1 commands primarily allow you to look at information (e.g., settings, metering), not change it. The Access Level 1 screen prompt is: =>
2AC	Enter Access Level 2. If the main board password jumper is not in place, the control prompts you for the Access Level 2 password to enter Access Level 2.
BAC	Enter Access Level B (Breaker). If the main board password jumper is not in place, the control prompts you for the Access Level B password.
BRE	Display breaker/recloser contact wear report.
BRE A	Display breaker/recloser contact wear and trip operation report.
COM p L COM p n COM p m n COM p d1 COM p n	Show a long format communications summary report for all events on MIRRORED BITS TM channel p (where p = A or B). Show a communications summary for latest n event on MIRRORED BITS channel p. Show a communications summary report for events n through m on MIRRORED BITS channel p. Show a communications summary report for events occurring on date d1 on MIRRORED BITS channel p. Show a communications summary for events occurring between dates d1 and d2 on MIRRORED
	BITS channel p. Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD)
COU k	Show the SELOGIC [®] counter values. Enter k for repeat count. (SEL-351R-2 only)
DAT DAT m/d/y DAT y/m/d	Show date. Enter date in this manner if Date Format setting $DATE_F = MDY$. Enter date in this manner if Date Format setting $DATE_F = YMD$.
EVE n EVE L n EVE R n EVE C n EVE XX f	Show event report number n with 1/4-cycle resolution. Show event report number n with 1/16-cycle resolution. Show raw event report number n with 1/16-cycle resolution. Show compressed event report number n for use with SEL-5601 Analytic Assistant. Append parameter f to any of the above EVE commands, where f is A or D. Use A to show only the Analog portion of the event report. Use D to show only the digital protection and control portion of the event report.
EZA	Enter Access Level E (EZ). If the main board password jumper is not in place, the control prompts you for the Access Level E password to enter Access Level E.
GRO	Display active settings group number.
HIS n	Show brief summary of the n latest event reports.

HIS C	Clear the brief summary and corresponding event reports.
IRI	Force synchronization of internal control clock to IRIG-B time-code input.
LDP n LDP m n LDP d1 LDP d1 d2	Show the latest n rows in the Load Profile report. Show rows m through n in the Load Profile report. Show rows in the Load Profile report from date d1. Show rows in the Load Profile report from date d1 to d2. Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).
MET k MET X k MET D MET E MET M	Display instantaneous metering data. Enter k for repeat count. Display same as MET command with phase-to-phase voltages. Enter k for repeat count. Display demand and peak demand data. Select MET RD or MET RP to reset. Display energy metering data. Select MET RE to reset. Display maximum/minimum metering data. Select MET RM to reset.
QUI	Quit. Returns to Access Level 0. Terminates SEL Distributed Port Switch Protocol (LMD) protocol connection.
SER n SER m n SER d1 SER d1 d2	Show the latest n rows in the Sequential Events Recorder (SER) event report. Show rows m through n in the Sequential Events Recorder (SER) event report. Show rows in the Sequential Events Recorder (SER) event report from date d1. Show rows in the Sequential Events Recorder (SER) event report from date d1 to d2. Entry of dates is dependent on the Date Format setting DATE_F (= MDY or YMD).
SHO n SHO EZ n SHO FZ SHO G SHO L n SHO P n SHO R SHO T	Show "regular" settings for settings group n (n = 1–6). Show EZ recloser control settings for settings group n (n = 1–6). Show EZ global settings. Show global settings. Show SELOGIC control equation settings for settings group n (n = 1–6). Show port settings for port n (n = 1, 2, 3, F). Show Sequential Events Recorder (SER) settings. Show text label settings for front-panel display points and extra local control.
STA	Show recloser control self-test status.
TAR R TAR n k	Reset the front-panel tripping targets. Display Relay Word row. If $n = 0$ through 59, display row n. If n is an element name (e.g., 50A1) display the row containing element n. Enter k for repeat count.
TIM	Show or set time (24 hour time). Show time presently in the recloser control by entering just TIM. Example time 22:47:36 is entered with command TIM 22:47:36.
TRI	Trigger an event report.
Access Level E <u>Commands</u>	Access Level E (EZ) commands primarily allow you to set EZ settings and global EZ settings. All Access Level 1 commands can also be executed from Access Level E. The Access Level E screen prompt is: =+>
BTT BTT NOW	Display latest battery load test results and time remaining until next discharge test. Initiate battery load test immediately.
SET EZ n	Change EZ recloser control settings for settings group n ($n = 1-6$). EZ recloser control settings override and change a number of the "regular" settings made with the SET n command (Access Level 2).

SET FZ	Change EZ global settings. EZ global settings override and change a number of the global settings made with the SET G command (Access Level 2).
Access Level B <u>Commands</u>	Access Level B commands primarily allow you to operate control parameters and output contacts. All Access Level 1 and Access Level E commands can also be executed from Access Level B. The screen prompt is: ==>
BRE W	Preload breaker/recloser contact wear.
BRE W A	Preload breaker/recloser contact wear and trip operation counters.
BRE R	Reset breaker/recloser contact wear and trip operation counters.
CLO	Close the recloser or circuit breaker.
GRO n	Change active settings group to settings group $n (n = 1-6)$.
OPE	Open the recloser or circuit breaker.
PUL n k	Pulse output contact n (OUT101 - OUT107, ALARM) for k (1–30) seconds. Parameter n must be specified; k defaults to 1 if not specified.
Access Level 2 <u>Commands</u>	Access Level 2 commands allow unlimited access to control settings, parameters, and output contacts. All Access Level 1, Access Level E, and Access Level B commands are available from Access Level 2. The screen prompt is: =>>
CON n	Control Relay Word bit RBn, Remote Bit n where $n = 1-8$ ($n = 1-16$ in the SEL-351R-2).Execute CON n and the control responds: CONTROL RBn. Then reply with one of the following:SRB nset Remote Bit n (assert RBn).CRB nclear Remote Bit n (deassert RBn).PRB npulse Remote Bit n [assert RBn for 1/4 cycle].
COP m n	Copy settings and logic equations from settings group m to settings group n.
L00	Set MIRRORED BITS port to loopback.
PAS	Show existing Access Level 1, E (EZ), B, and 2 passwords.
PAS 1 xxxxxx PAS E xxxxxx	Change Access Level 1 password to xxxxxx. Change Access Level E (EZ) password to xxxxxx.
PAS B xxxxxx	Change Access Level B password to xxxxx.
PAS 2 xxxxxx	Change Access Level 2 password to xxxxxx.
SET n SET G SET L n SET P n SET R SET T	Change "regular" settings for settings group n (n = 1–6). Change global settings. Change SELOGIC control equation settings for settings group n (n = 1–6). Change port settings for port n (n = 1, 2, 3, F). Change Sequential Events Recorder (SER) settings. Change text label settings for front-panel display and extra local control.
STA C	Clears status warning or failure and reboots recloser control.
VER	Show firmware version and options.
Key Stroke Commands	

Cntrl - Q Cntrl - S Cntrl - X	Send XON command to restart communication port output previously halted by XOFF. Send XOFF command to pause communication port output. Send CANCEL command to abort current command and return to current access level prompt.
Key Stroke Commands When Using SET Command	
<enter> ^ <fntfr></fntfr></enter>	Retains setting and moves on to next setting.

^ <enter></enter>	Returns to previous setting.
< <enter></enter>	Returns to previous setting section.
> <enter></enter>	Skips to next setting section.
END <enter></enter>	Exits setting editing session, then prompts user to save settings.
Ctrl - X	Aborts setting editing session without saving changes.