SEL-2701

Ethernet Processor Instruction Manual

Schweitzer Engineering Laboratories 2350 NE Hopkins Court Pullman, WA USA 99163-5603 Tel: (509) 332-1890 FAX: (509) 332-7990 CAUTION: Equipment components are sensitive to electrostatic discharge (ESD). Undetectable permanent damage can result if you do not use proper ESD procedures. Ground yourself, your work surface, and this equipment before removing any cover from this equipment. If your facility is not equipped to work with these components, contact SEL about returning this device and related SEL equipment for service.

DANGER: Disconnect or de-energize all external connections before opening this device. Contact with hazardous voltages and currents inside this device can cause electrical shock resulting in injury or death.

ATTENTION: Les composants de cet équipement sont sensibles aux décharges électrostatiques (DES). Des dommages permanents non-décelables peuvent résulter de l'absence de précautions contre les DES. Raccordez-vous correctement à la terre, ainsi que la surface de travail et l'appareil avant d'en retirer un panneau. Si vous n'êtes pas équipés pour travailler avec ce type de composants, contacter SEL afin de retourner l'appareil pour un service en usine.

DANGER: Débrancher tous les raccordements externes avant d'ouvrir cet appareil. Tout contact avec des tensions ou courants internes à l'appareil peut causer un choc électrique pouvant entraîner des blessures ou la mort.

Schweitzer Engineering Laboratories, SELOGIC, Connectorized, 🖭, and Job Done are registered trademarks of Schweitzer Engineering Laboratories. All brand or product names appearing in this document are the trademark or registered trademark of their respective holders.

The software (firmware), schematic drawings, relay commands, and relay messages are copyright protected by the United States Copyright Law and International Treaty provisions. All rights are reserved.

You may not copy, alter, disassemble, or reverse-engineer the software. You may not provide the software to any third party.

The information in this manual is furnished for informational use only and is subject to change without notice. The English language manual is the only approved SEL manual.

© 2001, 2002 Schweitzer Engineering Laboratories, Inc. All rights reserved.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit www.selinc.com or contact your customer service representative.

Table of Contents

List of Tables	v
List of Figures	vii
Manual Change Information	ix
Preface	xi
Section 1: Introduction	
Introduction	
Features	
Model Options	
Applications Ethernet Networks	
UCA2	
Specifications	
Section 2: Installation	
Introduction	2.1
Installation	
Initial Checkout	
Network Connections	
Section 3: Settings and Commands	
Introduction	
Ethernet Network Operation Settings	
Data Access Settings	
SEL-2701 Commands	
Section 4: SEL-2030 Host	
Introduction	
Features and Capabilities	
Settings	
Data Access	
Section 5: SEL-400 Series Host	
Introduction	5.1
Features and Capabilities	
Operation	
Data Access	
Section 6: Troubleshooting	
Introduction	
SEL-2701 Firmware IDs	
SEL-2701 Indicator LEDs SEL-2701 Status	
Error Messages and Codes	
Troubleshooting Procedures	
Appendix A: Firmware Versions	
Firmware Versions	Δ 1
SEL-2030	
SEL-421 Relay	

Appendix B: UCA2 GOMSFE Models

Introduction	B.1
GOMSFE Tables	B.2
SEL-2030 Domains	B.3
SEL-2030 Domain–LNO	B.4
SEL Relay Virtual Device	B.6
Communications Card or Non-SEL Virtual Device	B.17
Special Translation Rules	B.29
Appendix C: GOMSFE Model Example	
Introduction	C.1
Settings	
GOMSFE Models	C.4
Glossary	GL.1
Index	IN.1

List of Tables

Section 1: Introduction				
Table 1.1	SEL-2701 Network Connection Options	1.3		
Table 1.2	Ethernet Physical Layer Designators	1.3		

Section 2: Installation

Section 3: Settings and Commands

Table 3.1	SEL-2701 Network Configuration Settings	3.2
Table 3.2	DEFRTR Address Setting Examples	3.3
Table 3.3	SEL-2701 IP Network Address Resolution Settings	3.4
Table 3.4	Basic File Structure	3.5
Table 3.5	Basic File Structure	3.6
Table 3.6	SEL-2701 Telnet Settings	3.7
Table 3.7	SEL-2701 UCA2 Settings	3.8
Table 3.8	Control Characters	
Table 3.9	SEL-2701 Command Summary	
Table 3.10	SEL-2701 Access Levels	
Table 3.11	Access Level User Names and Passwords	3.11
Table 3.12	DATE Command	3.12
Table 3.13	GOOSE Command Variants	
Table 3.14	GOOSE Sender IED Display Information	3.13
Table 3.15	HELP Command Options	
Table 3.16	ID Command Internal Parameters Displayed	3.14
Table 3.17	PING Command Options	
Table 3.18	TIME Command	

Section 4: SEL-2030 Host

Table 4.1	SEL-2030 Port Settings With SEL-2701 Installed	4.3
Table 4.2	SEL-2030 Port Control Settings With SEL-2701 Installed	
Table 4.3	SEL-2030 Automatic Message Settings With SEL-2701 Installed	4.4
Table 4.4	SEL-2030 Access Levels	4.5
Table 4.5	SEL-2030 Access Level User Names and Passwords	4.5
Table 4.6	SEL-2030 LOCAL ELEMENTS2	4.6
Table 4.7	SEL-2030 File Structure	4.7
Table 4.8	Example GLOBE Generic Binary Data Mapping	4.11

Section 5: SEL-400 Series Host

Table 5.1	SEL-400 Series Relay Port Settings With SEL-2701 Installed	. 5.3
Table 5.2	SEL-400 Series Relay Port Control Settings With SEL-2701 Installed	
Table 5.3	SEL-400 Series Relay Access Levels	
	SEL-400 Series Relay Access Level User Names and Passwords	
	SEL-400 Series Relay File Structure	
Table 5.6	GOOSE Bit Pair Value Mapping	
Table 5.7	GLOBE MX Data.	

Section 6: Troubleshooting

Table 6.1	SEL-2701 LED Indicators	. 6.4	1
Table 6.2	Error Codes and Messages	. 6.6	5
Table 6.3	Troubleshooting Procedures	. 6.7	7

Appendix A: Firmware Versions

Table A.1	Firmware Versions	. A.1
Table A.2	SEL-2030 Firmware Compatibility	. A.2
Table A.3	SEL-421 Relay Firmware Compatibility	. A.3

Appendix B: UCA2 GOMSFE Models

Т	able B.1	GOMSFE Model Table Column Definitions	B.2
Т	able B.2	SEL-2030 Domains	B.3
Т	able B.3	Models in LN0 Domain	B.4
Т	able B.4	Device ID Model (DI)—SEL-2030	B.4
Т	able B.5	Globe Model (GLOBE)—SEL-2030	B.5
Т	able B.6	Models in Virtual Device Domain for SEL Relays	
Т	able B.7	Device ID Model (DI)—	
		SEL Relay Connected to an SEL-2030B.6	
Т	able B.8	Fault Identification Model (FAULT)—	
		SEL Relay Connected to an SEL-2030B.7	
Т	able B.9	Generic Control Model (GCTL)-SEL Relay Connected to an SEL-2030	B.8
Т	able B.10	Globe Model (GLOBE)—SEL Relay Connected to an SEL-2030	B.9
Т	able B.11	Polyphase Measurement Unit	
		Model (MMXU)—SEL Relay Connected to an SEL-2030B.10	
Т	able B.12	Models in Virtual Device	
		Domain for Non-SEL IED Connected to an SEL-2030B.17	
Т	able B.13	Device ID Model (DI)—Non-SEL IED Connected to an SEL-2030	B.17
Т	able B.14	Generic Control Model	
		(GCTL)—Non-SEL IED Connected to an SEL-2030B.18	
Т	able B.15	Globe Model (GLOBE)—Non-SEL IED Connected to an SEL-2030	B.18
Т	able B.16	Polyphase Measurement Unit	
		Model (MMXU)—Non-SEL IED Connected to an SEL-2030B.19	
Т	able B.17	Polyphase Meter Unit Model (MMTR)—	
		Non-SEL IED Connected to an SEL-2030B.25	
Т	able B.18	Special Translation Rules	B.29
Т	able B.19	Relay Target Bit Mapping	B.30
Т	able B.20	Event Types	B.30
Appe	endix C: G	OMSFE Model Example	
	able C.1	SEL-2030 Automatic Messaging Settings	C.3
Т	able C.2	SEL-2701 Settings	

List of Figures

Section 1: Intr	oduction	
Figure 1.1	Redundant Substation Ethernet Network.	
Figure 1.2	Example Ethernet Substation Network.	
Figure 1.3	SEL Relays on Ethernet Network Using the SEL-2030.	
Figure 1.4	Non-SEL EIA-232 IEDs on Ethernet Network Using the SEL-2030	
Figure 1.5	OSI Seven-Layer Model	
Figure 1.6	Adding a Node to a Multidrop Network.	
Figure 1.7	Ethernet Star Network	
Section 2: Ins	tallation	
Figure 2.1	SEL-2030 ID Command	
Figure 2.2	SEL-2030 WHO Command.	
Figure 2.3	SEL-2030 STATUS Command.	
Figure 2.4	Two 10/100BASE-T Port Configuration	
Figure 2.5	Two 10BASE-FL Port Configuration.	
Figure 2.6	Two 100BASE-FX Port Configuration.	
Figure 2.7	10BASE-FL and 10/100BASE-T Port Configuration	
Figure 2.8	100BASE-FX and 10/100BASE-T Port Configuration.	
Figure 2.9	100BASE-FX and 10BASE-FL Port Configuration.	
	tings and Commands GOOSE Command Response	
Section 4: SEL	-2030 Host	
Section 5: SEL	-400 Series Host	
Section 6: Tro	ubleshooting	
	Example SEL-2701 Panel.	
Appendix A: F	irmware Versions	
Appendix B: U	CA2 GOMSFE Models	
Appendix C: G	OMSFE Model Example	
Figure C.1	Example SEL-2030/SEL-351S Relay System.	C.2
Figure C.2	GOMSFE Domains.	
Figure C.3	GOMSFE Models Within DD04_FEEDER1 Domain.	
Figure C.4	DI Model.	C.5
Figure C.5	FAULT Model.	
Figure C.6	GCTL Model With RB3 ST (status) Point.	C.5
Figure C.7	MMXU Brick	C.6

This page intentionally left blank

Manual Change Information

The date code at the bottom of each page of this manual reflects the creation or revision date. Date codes are changed only on pages that have been revised and any following pages affected by the revisions (i.e., pagination). If significant revisions are made to a section, the date code on all pages of the section will be changed to reflect the revision date.

Each time revisions are made, both the main table of contents and the affected individual section table of contents are regenerated and the date code is changed to reflect the revision date.

Release Date	Summary of Changes in this Release			
This Manual Cha	inge Information section is provided as a record of changes made to this manual since the initial release.			
20020501	01 Appendix A: Firmware Versions—Updated for new SEL-2701 release. Appendix B: UCA2 GOMSFE Models—All UCA2 control points were made readable. Default data was set for the UCA2 FAULT model.			
20010719	 Reissued entire manual to reflect the following changes: Section 3: Settings and Commands—Updated default value of SUBNETM setting (<i>Table 3.1 on page 3.2</i>), added additional discussion of <i>Network Configuration on page 3.2</i>, and corrected range for Telnet port settings (<i>Table 3.6 on page 3.7</i>), added information on ENTXGOS setting (<i>Table 3.7 on page 3.8</i>). Section 4: SEL-2030 Host—Revised <i>Table 4.5 on page 4.5</i>, added port parameter to description of SEL-2030 port command in <i>Telnet From the SEL-2701 on page 4.7</i>. Added discussion of outgoing GOOSE timing issues on <i>page 4.9</i>. Section 6: Troubleshooting—Correction, changed error code bit 8 to "Reserved for future use" in <i>Table 6.2 on page 6.6</i>. Appendix A: Firmware Versions—Updated for new SEL-2701 release. 			
20010425	Reissued entire manual to reflect the following changes: Section 2: Installation—Clarification Section 3: Settings and Commands—Corrected GOOSE sender detection logic Appendix A: Firmware Versions—Change to SELBOOT Firmware Version only Appendix B: UCA2 GOMSFE Models—Clarification			
20010302	Initial Release			

Changes in this manual to date are summarized below (most recent revisions listed at top).

This page intentionally left blank

Preface

This instruction manual describes applications for an SEL-2701 Ethernet Processor installed in SEL hosts including an SEL-2030 Communications Processor. Main topics include the following:

- ► Installing the SEL-2701
- ► Accessing SEL-2701 settings
- ► Operating the SEL-2701
- ► Accessing data in a host with FTP, Telnet, and UCA2

The following list contains other references with additional information about specific topics in this manual:

- ► SEL-2030 User's Guide
- ► SEL-2030 Reference Manual
- ► IEEE TR 1550-Technical Report UCA2 Draft Specifications
- ► IEC 61850 CD UCA2 Object Modeling Specifications

Manual Overview

You probably will not need to review the entire manual to perform the specific tasks that are your responsibility. The following is an overview of the sections in this instruction manual:

- *Preface.* Describes how this manual is organized and conventions used in this manual.
- *Section 1: Introduction.* Provides an overview of Ethernet networking and a description of the SEL-2701.
- *Section 2: Installation.* Describes how to install the SEL-2701 in various SEL hosts.
- *Section 3: Settings and Commands.* Describes SEL-2701 operation and configuration.
- *Section 4: SEL-2030 Host.* Provides detailed information on how to use the SEL-2701 within the SEL-2030.
- *Section 5: SEL-400 Series Host.* Provides detailed information on how to use the SEL-2701 within the SEL-400 series relays.
- *Section 6: Troubleshooting*. Describes techniques for testing and troubleshooting SEL-2701 installations.
- *Appendix A: Firmware Versions.* Lists the firmware versions applicable to this manual.
- *Appendix B: UCA2 GOMSFE Models.* Lists rules for how the SEL-2701 populates the UCA2 GOMSFE application layer maps.
- *Appendix C: GOMSFE Model Example.* Illustrates how the SEL-2701 populates the GOMSFE models for an SEL-351S Relay connected to an SEL-2030.

Conventions

Numbers	This manual generally displays numbers as decimal values. Hexadecimal numbers include the letter "h" appended to the number. For instance, 11 is the decimal number eleven, but 11h is the hexadecimal number eleven, which equals the decimal value 17.			
Typographic				
Conventions	Example		Description	
	STATUS		Commands you ty	pe appear in bold/uppercase.
	ENTER		Single keystroke command.	
	CTRL + D		Multiple keystroke command.	
	SEL-2701 Ethernet Processor		Command responses.	
IP Addresses	Enter Internet Protocol (II periods (e.g., 199.92.34.1 octet1.octet2.octet3.octet4 the formats shown in the so Octet Entry Formats	09). IP ad 4, where e	dresses are in the ach octet is a val	
	Format Descript		ion	Example
	ууу			163
	0xnn C style hexadecimal 0xA3			
	nnh	SEL style	hexadecimal	A3h
		1		1

Settings

You can set several SEL-2701 and other SEL device settings to NA. NA is a special value that turns off or disables the setting.

This page intentionally left blank

Section 1 Introduction

Introduction

This section introduces the SEL-2701 Ethernet Processor and provides information on the following topics:

- ► Features
- ► Model Options
- ► Applications
- ► Ethernet Networks
- ► UCA2
- ► Specifications

Features

The SEL-2701 is an Ethernet processor card designed for use in SEL hosts including the SEL-2030 Communications Processor and SEL-400 series relays. The SEL-2701 provides the following features:

- ► Powerful processor
- ► Extended temperature rating
- ► Ethernet network connection
 - > Twisted-pair cable
 - > Fiber-optic cable
 - Redundant physical interfaces
- ► Support for TCP/IP protocol suite
 - ➤ FTP (File Transfer Protocol)
 - ≻ Telnet
- ► UCA2 for Field Devices
 - > OSI and TCP/IP protocol stacks
 - ➤ GOMSFE models
 - GOOSE messages

The SEL-2701 is a complete communication processing system with a processor, memory, interface to the host, and Ethernet physical interface. The host and processor card architecture uses the SEL-2701 for all network tasks. The effect of isolating the host processor from communication processing is that network activity does not degrade protection. You can also upgrade or replace the SEL-2701 without disturbing settings or firmware in the host.

The operating temperature range of the SEL-2701 (-40° to $+70^{\circ}$ C) surpasses that of standard office-grade Ethernet network equipment. The combination of operating temperature range and additional environmental hardening, described in *Specifications on page 1.17*, prepares the SEL-2701 for operation in the harsh environment of substation control houses.

You can connect an SEL-2701 to several different Ethernet media. Use fiberoptic cable to electrically isolate devices and provide a medium immune to most electrical and magnetic interference. Use twisted-pair cable to reduce installation cost where electrical isolation and noise concerns have been addressed in other ways. The SEL-2701 twisted-pair interface is significantly more robust than typical office-grade equipment protecting both the Ethernet processor and its host.

The TCP/IP (Transmission Control Protocol/Internet Protocol) protocol suite is one of the most recognized protocol suites (stack plus application protocols) used on Ethernet networks because it is part of the Internet. The SEL-2701 supports the TCP/IP protocol stack. It also supports the TCP/IP application layer protocols, FTP and Telnet.

The SEL-2701 provides a UCA2 (Utility Communication Architecture 2.0) for Field Devices interface for SEL hosts. It also supports the OSI (Open System Interconnect) and TCP/IP protocol stacks for UCA2 operations. The SEL-2701 supports GOMSFE models and GOOSE peer-to-peer messaging.

Model Options

The SEL-2701 is available in several configurations. Each configuration reflects a different combination of Ethernet physical interfaces. You can install an SEL-2701 in any SEL host with a card slot. Please refer to *Appendix A: Firmware Versions* for a list of compatible host and card firmware versions. Order the SEL-2701 Ethernet Processors factory-installed in SEL hosts or individually for field installation or spares. The SEL-2701 Ethernet physical layer configuration is indicated by an option code in the part number as shown in *Table 1.1*.

Network Connection Option	Network Port A	Network Port B
0	10/100BASE-T	10/100BASE-T
1	10BASE-FL	10BASE-FL
2	100BASE-FX	100BASE-FX
3	10/100BASE-T	10BASE-FL
4	10/100BASE-T	100BASE-FX
5	10BASE-FL	100BASE-FX

Table 1.1 SEL-2701 Network Connection Options

The network port standard terms and corresponding network speeds and media are listed in *Table 1.2*.

Table 1.2 Ethernet Physical Layer Designators

Identifier	Media	Speed
10/100BASE-T	Twisted-pair with RJ-45 connector	10 or 100 Mbps
10BASE-FL	Fiber-optic cable with ST connectors	10 Mbps
100BASE-FX	Fiber-optic cable with ST connectors	100 Mbps

See the Model Option Table for the SEL-2701 and your host for complete part number and ordering option information. You can obtain a Model Option Table by contacting SEL through our web site at www.selinc.com or through your local SEL representative.

Applications

The SEL-2701 can assist with many substation networking applications. A sampling of applications is listed below to help give you ideas on how to apply the features of the SEL-2701.

Application Features

Each SEL-2701 application contains a combination of major features. The following paragraphs summarize the major features that you can combine in your application.

Redundant Networks

Use the SEL-2701 to connect SEL hosts to redundant Ethernet networks. An example redundant network connection is shown in *Figure 1.1*. The SEL-2701 has two network ports that allow you to connect both the primary network and the standby network to the SEL-2701. You do not have to install two separate SEL-2701s to support a redundant network system. The benefit of this arrangement is lower equipment and setup cost because there is only one network card and one set of network settings per host.

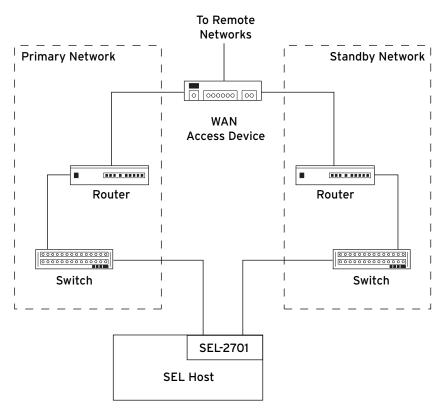


Figure 1.1 Redundant Substation Ethernet Network.

When the SEL-2701 is unable to detect normal operation on the primary network, it automatically switches from the primary network to the standby network. The SEL-2701 returns to the primary network when normal operation on the primary network resumes.

Terminal Access

Use the SEL-2701 to provide terminal access over an Ethernet network to SEL hosts and IEDs (Intelligent Electronic Devices) connected to SEL hosts that incorporate an SEL-2701. Similar to connecting a PC (personal computer) with terminal software to the front port of the host, you can use Telnet to connect to the user interface of the host. The computer connecting to the SEL host can be on the substation LAN (Local Area Network) or a remote LAN with a WAN (Wide Area Network) connection to the substation LAN.

Many PC operating systems include a free Telnet application. Telnet applications operate similarly to serial terminal applications. With a Telnet application, you must specify an IP address and port number rather than a serial port and baud rate to establish a Telnet session with the remote device. After you start a Telnet session, your Telnet software operates as a terminal program passing your keystrokes across the Ethernet network and displaying responses.

If you have a network with the topology shown in *Figure 1.2*, you can establish a direct Telnet connection from the Engineering Workstation to the SEL-2701 in the SEL-2030, the SEL-2030, or the SEL-400 series relay. You can also use the SEL-2030 transparent connection to reach the SEL relays and IEDs connected to SEL-2030 serial ports. In this arrangement, the Telnet application allows you to operate the user interface of the selected device similarly to a direct serial connection.

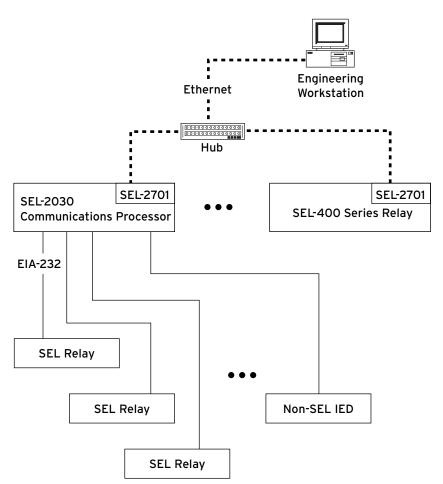


Figure 1.2 Example Ethernet Substation Network.

File Exchange

Use the SEL-2701 to exchange files with SEL hosts across an Ethernet network. The SEL-2701 provides FTP access to files in the SEL host. You can use a PC to collect event reports, sequential events recorder (SER) reports, settings, and snapshots of metering data.

As with Telnet, there are free FTP applications included with several operating systems and web browsers. Start the FTP application, log in, and use point and click operations to exchange files with SEL hosts.

UCA2 Networking

Use the SEL-2701 to provide UCA2 connectivity to SEL hosts including the SEL-2030 and SEL-400 series relays. Data in the host are presented in GOMSFE models. In an SEL-400 series relay, the SEL-2701 automatically populates GOMSFE models with relay measurements and other data. For IEDs connected to the SEL-2030, you must configure the SEL-2030 to collect data. Then the SEL-2701 automatically populates GOMSFE models with the available data.

GOOSE peer-to-peer messaging is part of the GOMSFE model called GLOBE. GOOSE is used for peer-to-peer control and protection messages. The SEL-2701 generates outgoing GOOSE messages based on information in the host. The SEL-2701 also monitors incoming GOOSE messages and passes selected information to the host. If your host is an SEL-2030, the GOOSE messages can be used to transmit information from and pass controls to the connected IEDs.

Application Examples

Networking for Installed SEL Relays Without Card Slots

By adding an SEL-2701 installed in an SEL-2030 to your design or adding an SEL-2701 to your existing SEL-2030 as shown in *Figure 1.3 on page 1.7*, you can quickly and inexpensively gain the advantages of Ethernet and UCA2 network connectivity:

- ► Use Telnet for engineering connections to the SEL-2030 and connected relays.
- Use FTP to collect snapshots of data regions in the SEL-2030 with FTP file exchange.
- ► Use UCA2 master devices to collect data from the SEL-2030 and connected relays.
- ► Use GOOSE to exchange control data between relays connected to the SEL-2030 and other UCA2 IEDs.

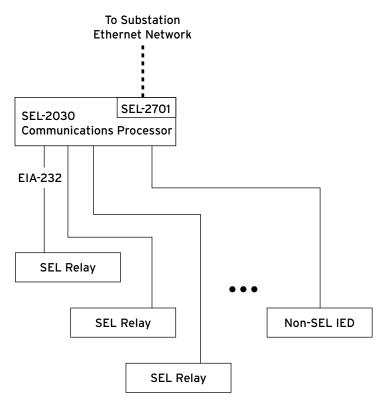


Figure 1.3 SEL Relays on Ethernet Network Using the SEL-2030.

Use the SEL-2701 and SEL-2030 to provide Ethernet networking and UCA2 connectivity for installed SEL relays that do not have card slots. It is not necessary to replace protective relays or choose protective relays on the basis of network interfaces to realize many of the benefits of Ethernet networks and UCA2. All SEL-400 series relays have a network card slot. SEL relays from other families and series do not have card slots. Relays without card slots may use serial communication protocols to send data to other substation devices. For example, a relay may have simultaneous serial connections to another relay, an HMI, and an SEL communications processor. Many installations include SEL-2030 Communications Processors with card slots, but do not have Ethernet network connectivity.

Networking for Non-SEL EIA-232 IEDs

Add an SEL-2030 and SEL-2701 to your design to inexpensively and reliably add Ethernet networking to your serial IEDs and gain the following features:

- ► Use Telnet for engineering connections to the SEL-2030 and connected IEDs.
- Use FTP to collect snapshots of data regions in the SEL-2030 with FTP file exchange.
- Use UCA2 master devices to collect data from the SEL-2030 and connected relays.
- ► Use GOOSE to exchange control data between relays connected to the SEL-2030 and other UCA2 IEDs.

Use the SEL-2701 and SEL-2030 to connect non-SEL IEDs to Ethernet and UCA2 networks as shown in *Figure 1.4 on page 1.8*. Many non-SEL IEDs such as protective relays, PLCs, and transformer monitors do not have UCA2

interfaces but do have EIA-232 serial ports. Add an SEL-2030 and SEL-2701 to your network design to connect non-SEL serial devices to your Ethernet network.

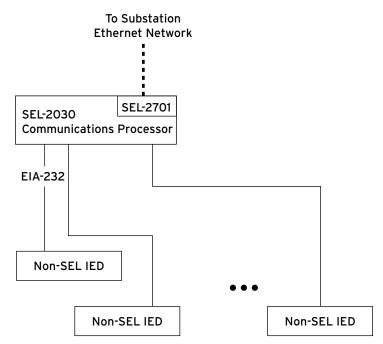


Figure 1.4 Non-SEL EIA-232 IEDs on Ethernet Network Using the SEL-2030.

Some other gateway strategies use PCs or other office-grade hardware as the platform for data collection and conversion. The SEL-2030 performs these functions and offers a solution that is hardened for the substation environment without the errors and upgrades inherent in general purpose operating systems.

Networking for SEL Relays With Card Slots

Use the SEL-2701 to provide a direct Ethernet network connection to an SEL-400 series relay. All SEL-400 series relays have a card slot that will support an SEL-2701. Add an SEL-2701 to your SEL-400 series relays to gain the following features:

- Use Telnet for engineering connections to the SEL-400 series relay.
- ► Use FTP to collect event reports, SER reports, and COMTRADE oscillography directly from the relay.
- Use UCA2 master devices to collect data from SEL-400 series relays.
- Use GOOSE to exchange control data between relays and other UCA2 IEDs.

An SEL-2701 installed in an SEL-400 series relay provides Telnet terminal session access to all of the commands, diagnostics, and reporting features available on the relay serial ports. You can connect to the relay from a PC with an Ethernet network in the substation or from your desk in a central engineering office.

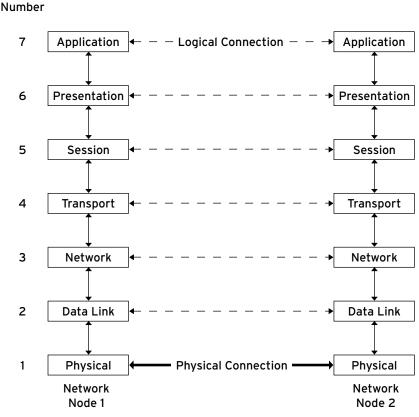
The SEL-2701 also provides FTP file access to event reports and other reports. For example, you can point and click in an FTP application to collect event reports in the standard SEL format or the IEEE binary COMTRADE (Common Format for Transient Data Exchange) format.

Full UCA2 connectivity is available with the SEL-2701 installed directly in an SEL-400 series relay. GOMSFE models are automatically populated with measurements and other relay data. The SEL-2701 processes incoming GOOSE messages and delivers data to the relay through a high-speed network card interface. Within milliseconds of state changes in the relay, the SEL-2701 generates outgoing GOOSE messages.

Substations With Serial and Ethernet IEDs

In a new substation, you can combine the three applications above to provide a substation Ethernet network for three types of IEDs:

- ► SEL relays with serial ports
- ► Non-SEL IEDs with serial ports
- ► SEL-400 series relays


You can choose protective relays, equipment monitors, and other substation IEDs based on quality, reliability, and features rather than on the available network interfaces. In retrofit and upgrade projects, you can add the SEL-2030 and SEL-2701 without disturbing existing protective relays and equipment monitors. To add SEL-2701 Ethernet networking, data access, and control features to your substation protection and control system, develop a network similar to that shown in *Figure 1.2 on page 1.5*.

Ethernet Networks

This section introduces Ethernet networks and some general concepts and terms useful in understanding SEL-2701 application and operation. If you are experienced with Ethernet networks, you may want to proceed to *Section 3: Settings and Commands* for details on the SEL-2701.

OSI Seven-Layer Model

No discussion of networking technology would be complete without an introduction to the ISO (International Standards Organization) OSI (Open Systems Interconnect) seven-layer model. The model represents networking (both software and hardware) in an individual network node by dividing tasks into layers that perform specific functions. The OSI model for networking operation on two separate network nodes is shown in *Figure 1.5*.

Laver

In the OSI model, each layer (for example the data link layer) communicates via a logical connection directly with the same layer in the other device. Actual communication is more complex. Application data, such as characters in a Telnet terminal session or UCA2 GOMSFE models, pass down through the layers and then across the physical medium. Each layer adds some information to the message and forwards it down to the next layer.

Ultimately, the message reaches the lowest layer, the physical layer, and is sent across the physical connection to the second network node. Here the process operates in reverse. Each layer strips off and uses the layer-specific information and passes the remaining information up the chain until the original data become available to the application user.

	As long as there is a defined interface between layers, one layer can be replaced by another that conforms to the interface specification. For example, Ethernet networks can operate over many different media, from wire cables to fiber optics to wireless radio connections. The physical layer can be replaced as long as the interface remains unchanged.	
	A group of layers designed for a specific application can be defined together and called a "stack." The stack may coexist with other stacks on the network or may operate in a way that requires networks to be segregated based on stacks. See <i>TCP/IP</i> , <i>UDP/IP</i> , and <i>OSI on page 1.12</i> for more information on Ethernet stacks.	
Ethernet Physical and Data Link Layers	Ethernet networks operate over many different physical layers. Each standard physical layer and corresponding data link layer has a designator (e.g., 10BASE-T) that identifies the layer specifications. The most popular physical layers for LANs within a single building are fiber optics (10BASE-FL and 100BASE-FX) and twisted-pair (10/100BASE-T). For general use networks, 10 and 100 Mbps are the most popular data transmission speeds.	
	The data transmission speed defines how many bits of information can travel past a certain point on the cable within a second. A bit is the smallest unit of binary data and is either a 1 or a 0. While data transmission speed indicates the relative performance of various networks, it is not a measure of throughput–how quickly useful data travel across the network.	
Media Access	With Ethernet networks, the time required for data to move across the network is not guaranteed. This lack of predictable timing must be considered for time- critical applications such as peer-to-peer protection and control messages. In a deterministic system, all events occur with completely predictable timing and sequence. A basic understanding of Ethernet media access rules is important for understanding why Ethernet networks are not considered deterministic.	
	High-speed bus and multidrop networks can operate over many different physical connections or media (for example, fiber-optic cable or twisted-pair cable). Network operation requires that all devices are connected to a common medium. All network nodes use the same signaling method.	
	Because only one node at a time can successfully send data, multidrop and bus networks must have media access rules to move data effectively across the network. In networks similar to Modbus [®] , there is a single master device. All network traffic is either the master requesting information or a response to the master.	
	A second method of media access control is token rotation. A special message, or token, is controlled by a master or forwarded from each peer to the next. Each node gets the token, acts as the network master, and sends messages to other devices. For lightly loaded networks, token rotation is inefficient because nodes that have no pending network operations still receive the token. A network error may also corrupt or destroy the token message, causing the network to generate a new token. Token generation is very slow, compared to normal network operations.	
	In order to overcome both the drawbacks of master-based and token rotation media access control, Ethernet networks use a system called CSMA/CD (carrier sense multiple access/collision detection). In this system, all nodes can send data at any time. In order for a node to send data, it must first listen for a carrier to determine that no other node is transmitting. Collisions occur when two nodes both transmit data at the same time. Ethernet network nodes have mechanisms to detect collisions.	

	When a collision occurs on an Ethernet network, the sending nodes stop transmitting and insert a delay before listening for a carrier and starting the transmission sequence again. This process is called back-off. If collisions persist, the node will eventually abandon the outgoing message and upper protocol layers must cope with the loss of data. Because of CSMA/CD operation, communication response times on an Ethernet network are not deterministic. Ethernet networks do not have guaranteed delivery times or guaranteed performance. For small, lightly loaded networks, CSMA/CD is efficient and fast. For large networks or during periods of sustained high network traffic, data transport times can become significant.
	For most measurement and status data collection, the nondeterministic performance of Ethernet networking is not a cause for concern. For time sensitive data such as peer-to-peer protection and control, Ethernet network performance, loading, and architecture are important network design considerations. An Ethernet switch, for example, can greatly improve Ethernet network determinism and performance for large networks or slow data transmission speeds. See <i>Hubs, Switches, and Routers on page 1.12</i> for more discussion on the components of Ethernet networks.
TCP/IP, UDP/IP, and OSI	The three most common stacks used on Ethernet networks are TCP/IP, UDP/IP, and OSI. TCP/IP and UDP/IP are the network stacks that have gained fame as the basis of the Internet. Telecommunication equipment is the primary application for the OSI stack. The OSI stack and OSI seven-layer model are two different things. The OSI stack is a network protocol stack that can be modeled using the OSI seven-layer model shown in <i>Figure 1.5 on page 1.10</i> .
	The SEL-2701 operates TCP/IP, UDP/IP, and OSI stacks in parallel to allow future applications to use whatever stack is required. UCA2 operates either on the OSI stack or partially on TCP/IP and OSI. FTP and Telnet are application-layer protocols on the TCP/IP stack.
Hubs, Switches, and Routers	Originally, Ethernet networks were multidrop networks that had a single trunk cable with a tap at each network node. While multidrop networks are simple to imagine, they have two principle drawbacks.
	First, multidrop cable systems can fail if a single section of the trunk cable is damaged or severed. Second, it is difficult and expensive to add new nodes. The tap length, for example, is limited. If you want to add a new node 100 feet from the existing trunk cable, you may have to run 100 feet of trunk cable to the new node and 100 feet of trunk cable back to the existing trunk cable. The resulting configuration is shown in <i>Figure 1.6 on page 1.13</i> .

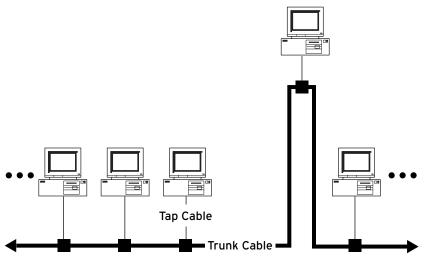


Figure 1.6 Adding a Node to a Multidrop Network.

Ethernet networks have evolved into star networks as shown in *Figure 1.7*. A single cable to the central wiring node connects each node to the network. These individual cables are connected using hubs, switches, or routers to form logical multidrop networks.

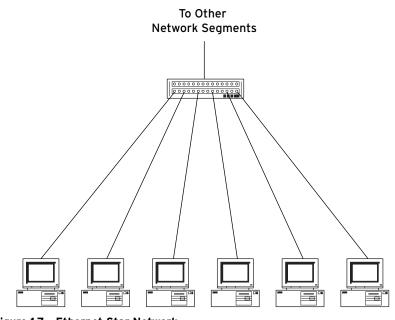


Figure 1.7 Ethernet Star Network.

Hubs

A hub is a device that acts like a trunk cable with very short segments that connect each node cable to the network. A hub repeats all incoming network traffic to all nodes. An uplink connection allows the hub to send data up to other hubs, switches, or routers. Hubs are an easy and inexpensive way to connect many devices to an Ethernet network.

Hubs are primarily passive devices. If a node fails and sends a continuous stream of error data onto the network, the hub repeats the error data to all network nodes. One advantage of hubs is that they are quite reliable, compared to switches and routers.

Switches

A switch acts as a hub, connecting nodes to form a network that operates logically as a multidrop network. In addition to repeating data, however, the switch decodes some parts of Ethernet messages and directs traffic on an Ethernet network.

One method for avoiding message collisions on an Ethernet network is to limit the number of network nodes. A group of nodes that share a common medium is called a collision domain. When there are fewer nodes in a collision domain, fewer collisions occur, and the Ethernet network operates more deterministically and efficiently.

A switch reduces the collision domain of each node to the ultimate minimumtwo nodes. A switch decodes incoming traffic from each network node and directs network traffic. The switch drastically reduces the number of message collisions, greatly improving Ethernet network performance.

While switches are less reliable than hubs, the increased Ethernet network performance offsets the decreased network reliability. Switches operate at the lowest layers (Physical and Data Link Layers) of Ethernet networks and are independent of the network stack or application protocol.

Routers

A router operates similarly to a switch. The difference is that routers keep messages in a local network and send out only messages that need to leave the local network. The router contains tables of how to route messages and decodes some of the Layer 3 or stack information to direct messages. Because routers operate at higher protocol layers than switches and hubs, you must select routers that are compatible with the protocol stacks on your network.

Routers do not forward Ethernet broadcast messages, for example GOOSE messages. Ethernet broadcast messages are not intended for nodes outside of the local network. Some more advanced routers act as network bridges that allow you to route non-routable protocols like GOOSE. You must be very careful if you route broadcast messages because you may drastically increase the traffic across low-bandwidth links between networks. High traffic can significantly diminish the throughput of inter-network connections and significantly increase the charges for metered network access services.

Routers may also act as firewalls. A firewall operates as a security barrier between your local network and the outside world. Used properly, firewalls and device password protection can prevent unauthorized access to critical systems.

	UCA2 is part of the Utility Communications Architecture suite of protocols. The SEL-2701 provides a UCA2 interface. The following paragraphs describe UCA2 and UCA2 features in the SEL-2701.	
UCA History	The UCA for Field Devices Protocol, now known as UCA2 is the result of an EPRI (Electric Power Research Institute) joint development effort that began in the late 1980s. The primary components of UCA are UCA2 and TASE.2 (Telecontrol Application Service Element 2). UCA2 is designed for communication with substation IEDs. TASE.2, also known as ICCP (Inter-Control Center Communication Protocol), is designed to move data between real-time databases.	
	Both TASE.2 and UCA2 are based on an underlying communication protocol, MMS (Manufacturing Messaging Specification). MMS is an industrial automation protocol developed largely by General Motors. General Motors has long served as a research and development center for advanced technologies in industrial automation. While MMS is no longer in wide use in the industrial automation environment, it is a capable protocol that serves as the foundation for both UCA2 and TASE.2.	
UCA2	UCA2 is a profile for object-oriented communication with substation IEDs using MMS. CASM (Common Application Service Models) defines how objects interact with MMS services. GOMSFE is the object model specification for UCA2.	
GOMSFE	GOMSFE is an object model for collecting measurement and status data from substation IEDs. GOMSFE uses an object-oriented abstract to create standard definitions for presenting meters, protective relays, and other devices on UCA2 networks. Unlike previous generations of protocols, UCA2 does not rely on the concept of indices or registers. GOMSFE organizes data into object models called bricks.	
	GOMSFE describes multifunction devices with several bricks, each describing one function. An example of this is a protective relay. A relay may contain metering data that populate a multiphase metering brick. The protective relay may also function as a circuit breaker interface with a brick for a circuit breaker controller.	
	GOMSFE bricks, consist of pieces of data with standard names built from standard data types. For example, the polyphase measurement brick (MMXU) includes A-phase current called MX\$A\$PhsAf. A-phase current is a value of the type FLT32 (32-bit floating point), as are the other phase currents.	
	Standard object models alone do not allow individual manufacturers to innovate and add new features. Because of this potential limitation, GOMSFE allows for the extension of bricks and the creation of custom bricks. <i>Appendix B: UCA2 GOMSFE Models</i> shows the GOMSFE model bricks available in the SEL-2701 when it is installed in an SEL-2030. The model definitions list the SEL-2701 rules for populating the model from data in the host.	
	It would be difficult to distribute and update descriptions of GOMSFE models on every UCA2 network master. A powerful feature of GOMSFE, self- description, makes extended bricks and custom bricks easy to use and eliminates the need to store GOMSFE model specification information on every master. A master UCA2 device can query a slave UCA2 device. The	

slave device then reports a description containing the details of each available standard, extended, or custom brick.

Self-description operates similarly to autoconfiguration of an SEL-2030 port communicating with an SEL IED. The master automatically collects information from the IED on what data are available and how to collect that data. Only a very small amount of user configuration is necessary for the master to begin collecting data.

GOMSFE also utilizes a high-level organizational structure with logical devices and domains. Both logical devices and domains contain GOMSFE bricks. All UCA2 devices have at least one logical device and can include either more logical devices or domains. For a detailed example of GOMSFE models for a relay connected to an SEL-2030, see *Appendix C: GOMSFE Model Example*.

The SEL-2701 contains all of the information necessary to collect data from the host and populate GOMSFE models. All SEL hosts with an SEL-2701 will have a Logical Device 0 (labeled LN0) that contains at least the DI and GLOBE bricks. There will also be at least 1 domain and as many as 18 domains for the host and any devices connected to the host. Devices connected to the host are called virtual devices. For SEL hosts and SEL relays connected to SEL hosts, the SEL-2701 automatically finds data in the host and populates the GOMSFE models.

In devices that are the primary source of information available for GOMSFE models like the SEL-400 series relays, there is a single domain that contains the DID and GLOBE bricks as well as several other bricks with measurement, status, and control for the host. In devices that collect data from other IEDs such as the SEL-2030, there are virtual domains for the connected devices.

The SEL-2030 can collect data from SEL IEDs and from non-SEL IEDs including protective relays, meters, PLCs (programmable logic controllers), and transformer monitors. The SEL-2701 populates models using data collected from the attached IEDs using the rules shown in *Appendix B: UCA2 GOMSFE Models*.

GOOSE GOOSE is part of the GOMSFE brick GLOBE. UCA2 IEDs use GOOSE messages for event-driven peer-to-peer communication and control. Each UCA2 device sends a GOOSE message when an internal data-change event occurs. A data-change event occurs when a monitored point changes state, for example, from one to zero or from zero to one. Event-driven messages limit network traffic and improve response speed by sending messages only when data-change events occur. This is a significant improvement over polling mechanisms that burden the network when no new data values are available.

In addition to the event-driven messages, UCA2 devices send GOOSE messages at a default rate of once every minute. Devices that receive GOOSE messages use the default rate messages to track the status of GOOSE senders and collect initial values when joining the network.

Each GOOSE message contains a text ID name of the GOOSE sender and a special Ethernet multicast destination address. UCA2 devices use the Ethernet multicast destination addresses to filter incoming GOOSE messages. Each device accepts and processes only messages containing information it is configured to use.

Specifications

Standard Features and Functions

Indicators Power/Transmit: Link/Receive:

Port A Enabled:

Port B Enabled:

Red LED, Power/Tx Green LED, Link/Rx Green LED, A Green LED, B

Communication Protocols

Protocol Stacks: File Exchange: Terminal Server: Terminal Client: UCA2: TCP/IP, UDP/IP, OSI FTP Telnet Telnet GOMSFE 0.91

Optional Features and Functions

Physical Layer 10/100BASE-T: 10BASE-FL:

100BASE-FX:

10/100 Mbps, RJ-45 10 Mbps, ST 100 Mbps, ST

Ratings and Type Tests

Environmental Tests (installed in host) Operating Temp.: -40° to +70°C (-40° to +158°F)

Type Tests (installed in host)

Cold:	IEC 60068-2-1 1990,
colu	EN 60068-2-1 1993, Test Ad, 16 hours at $-40 \pm 2^{\circ}$ C
Dry Heat:	IEC 60068-2-2 1974,
Dig ficut.	EN 60068-2-2 1993, Test Bd, 16 hours at $70 \pm 2^{\circ}$ C
Damp Heat, Cyclic:	IEC 60068-2-30 1980, Test Db, 25° to 55°C, 6 cycles, 95% humidity
Vibration:	IEC 60255-21-1 1988
(loiuiloii.	Vibration Endurance Class 1
	Vibration Response Class 2
Shock and Bump:	IEC 60255-21-2 1988
Shoth and Bamp.	Shock Withstand Class 1
	Shock Response Class 2
	Bump Class 1
	IEC 60255-21-3 1993 Class 2 (Single Axis Sine Sweep, 5–35 Hz)
Electrostatic Discharge:	IEC 60255-22-2 1996
(see Note)	IEC 61000-4-2 1995
	10BASE-FL: Level 4
	100BASE-FX: Level 4
	10/100BASE-T with cable > 92 cm (3 ft): Level 4
	10/100BASE-T with cable > 31 cm (1 ft): Level 3
Radiated Radio Frequency	r: IEC 60255-22-3 1989
	ENV 50140 1993 10 V/m
	ENV 50204 1995 10 V/m (900 MHz with modulation)
	IEEE C37.90.2 1995 10 V/m
	10BASE-FL: Level 3 at –27 dBm
	100BASE-FX: Level 3
	10/100BASE-T with STP cable: Level 3
Fast Transient Disturbance	e: IEC 60255-22-4 1992
	IEC 61000-4-4 1995 Level 4
Note: Some ESD tests may	y result in an interruption of communications. Operation of the host will

Note: Some ESD tests may result in an interruption of communications. Operation of the host will not be disrupted. The host and SEL-2701 are not damaged under the test conditions.

Certifications

ISO: Designed and manufactured using ISO-9001 certified quality program.

This page intentionally left blank

Section 2 Installation

Introduction

This section includes information and procedures for SEL-2701 installation. Effective installation includes the following tasks:

- ► Installing the SEL-2701
- ► Performing SEL-2701 initial checkout
- ► Connecting the SEL-2701 to a network

Installation

NOTE: You will need an SEL host instruction manual and a Phillips screwdriver to complete these installation instructions.

CAUTION: Equipment $\underline{\Lambda}$ components are sensitive to electrostatic discharge (ESD). Undetectable permanent damage can result if you do not use proper ESD procedures. Ground yourself, your work surface, and this equipment before removing any cover from this equipment. If your facility is not equipped to work with these components, contact SEL about returning this device and related SEL equipment for service.

To install an SEL-2701 in an SEL host (SEL-2030 and SEL-400 series relays), perform the following steps. If your SEL-2701 is already installed, skip the following steps and proceed with Initial Checkout on page 2.4.

SEL-2030 Only. If you are installing the SEL-2701 in an Step 1. SEL-2030 with firmware R112 or earlier, you must upgrade the SEL-2030 firmware before installing the SEL-2701. Use the SEL-2030 ID command to determine the firmware version of your SEL-2030, as shown on the line labeled FID in *Figure 2.1*. See your SEL-2030 Reference Manual for more information on the ID command.

```
*ID
```

```
"FID=SEL-2030-R113-V0-Z000000-D20010122","08BD"
```

"BFID=SLBT-2030-R103-V0-Z000000-D20010122","094F" "CID=00F2","0255"

"DEVID=COMMUNICATIONS PROCESSOR-S/N 2001051089","0C59"

- "DEVCODE=52","030E"
 - "PARTNO=","0281" "CONFIG=000000","0383"
- "SPECIAL=","02AE

Figure 2.1 SEL-2030 ID Command.

- Step 2. SEL-2030 With SEL-2711 Installed Only. If you have an SEL-2711 installed in your SEL-2030, you may also need to upgrade your SEL-2711 firmware. Contact SEL if you require assistance to determine compatible firmware versions for your application. Use the SEL-2030 ID 17 or ID 18 command to display the firmware version of any installed communications cards.
- Step 3. SEL-2030 With Serial Number Less Than 2001088089. In order to properly protect the SEL-2701 from an ESD (electrostatic discharge) on the SEL-2030 IRIG-B port (BNC connector), you must make the following settings changes:
 - Set the SEL-2030 IRIG-B signal setting (IRIG SIG in Global settings) to M for modulated.
 - If using an IRIG-B source connected to the SEL-2030, configure the IRIG-B source to send a modulated signal to the SEL-2030.
 - If using a time synchronization source other than IRIG-B, temporarily set the SEL-2030 time source setting (TIME SRC in Global settings) to IRIG to access the IRIG-B signal setting (IRIG SIG). Change the IRIG SIG setting to M, then return the SEL-2030 time source setting to its original value.

See the SEL-2030 Reference Manual for more information on SEL-2030 settings.

Step 4. SEL-2030 and SEL-400 Series Relay Installation. Remove power from the host. Remove all back-panel external connections from the host main board. These connections include fiber-optic, serial communication, and IRIG-B cables. DANGER: Disconnect or deenergize all external connections before opening this device. Contact with hazardous voltages and currents inside this device can cause electrical shock resulting in injury or death.

NOTE: In a host with multiple slots, you can install an SEL-2701 in any empty slot.

- Step 5. Loosen the screws and remove the front panel from the host, disconnect all internal cables from the host main board (an SEL-2030 has two connections to the main board), and carefully pull out the drawout assembly containing the host main board. For more information on removing the main-board assembly from your host, see the instruction manual for your host.
- Step 6. Insert the SEL-2701 80-pin connector into an 80-pin receptacle on the underside of the host main board, taking the following precautions:
 - > Ensure the connector pins line up with the guide holes on the host main board.
 - Apply firm pressure while inserting the connector pins into the host receptacle, but do not force the connection. Forcing the connection can cause damage to the pins or guide holes. Rocking the SEL-2701 card slightly from side to side may help align the connector pins.
 - If you encounter resistance or all the pins do not protrude evenly on the upper side of the host main board, stop and withdraw the card. Inspect the pins and receptacle for damage. If pins and receptacle are undamaged, take all the precautions outlined above, and try again to insert the card.
- Step 7. Use the four screws included with the SEL-2701 to attach it to standoffs on the host main board. Tighten the screws to 8.0-in–lbs (0.9 Nm) to prevent stripping the threads in the nylon standoffs.
- Step 8. Reinstall the drawout assembly containing the host main board.
- Step 9. Reconnect internal cables.
- Step 10. Reattach the front panel.
- Step 11. Reattach and re-energize all external connections.
- Step 12. Proceed to *Initial Checkout on page 2.4* for your specific SEL host.

Initial Checkout

SEL-2030 Installations		below to verify that the SEL-2701 is installed properly and rectly in an SEL-2030.
	Step 1.	Apply power to the SEL-2030. The initial power-up sequence takes at least one minute.
	Step 2.	Observe the SEL-2030 front-panel card status LEDs.
		The Card 1 and Card 2 LEDs indicate the status of the protocol cards on Port 17 and Port 18, respectively. When the SEL-2030 and SEL-2701 complete the power-up sequence, the LED will begin to flash if the SEL-2701 is operating correctly. Proceed with <i>Step 3</i> .
		If after several minutes the LED is still on, power up initialization has failed. Proceed with <i>Step 3</i> (<i>Step 5</i> and <i>Step 6</i> may provide additional information about the SEL-2701 status).
		If you have installed an SEL-2701 and the LED is off, then the SEL-2030 is not detecting the card. Return to <i>Installation on page 2.2</i> and follow the steps to verify proper installation.
	Step 3.	Establish a terminal connection from your PC to the SEL-2030
	Step 4.	Enter the ACC command to log in to Access Level 1.
	Step 5.	Enter the WHO command to confirm that the SEL-2030 detects the SEL-2701 correctly on Port 17 or 18. Line 18 of <i>Figure 2.2</i> shows the response to the WHO command when a single SEL-2701 is installed in the SEL-2030 (Port 18).

			2001051089 Date: 03/16/01 Time: 15:59:02
FID=SEL	-2030-R113	3 - V0 - Z000000	D-D20010122 FID=SLBT-2030-R103-V0-Z000000-D20010122
Port#	Device	Protocol	Parameters Identification
1	SEL IED	SEL	9600,8,2,N
2	Other IED	Ascii	9600,8,2,N
3	Other IED	Ascii	9600,8,2,N
4	Other IED	Ascii	9600,8,2,N
5	Other IED	Ascii	9600,8,2,N
6	Other IED	Ascii	9600,8,2,N
7	Other IED	Ascii	9600,8,2,N
8	Master	SEL	9600,8,2,N
9	Printer	Ascii	9600,8,2,N
10	Other IED	Ascii	9600,8,2,N
11	Other IED	Ascii	9600,8,2,N
12	Other IED	Ascii	9600,8,2,N
13	Other IED	Ascii	9600,8,2,N
14	Other IED	Ascii	9600,8,2,N
15	Other IED	Ascii	9600,8,2,N
16	Other IED	Ascii	9600,8,2,N
18	SEL-2701	Ethernet	VTm:HS,CT1:HS,TIm:S,SBt:S
F*	Master	SEL	9600,8,2,N
*>			

Figure 2.2 SEL-2030 WHO Command.

Step 6. Enter the STATUS command to confirm there are no SEL-2701 self-test errors. A report for a functional SEL-2701 displays Normal (0h) for each port where an SEL-2701 is installed, as shown for Port 17 and Port 18 in *Figure 2.3*. If the SEL-2030 reports an error on Port 17 or 18, see *Section 6*: *Troubleshooting* for a detailed description of the error.

*>STA	TUS											
	NICATIONS PR EL-2030-R113							03/16		Time: 3-V0-Z000	16:00 000-D2	 2
SELF-	TESTS											
RAM 512 kl	SRAM b 1024 kb	CODE OK	ARCH 2048	kb	EE OK	PROM	P.S. OK	. S 0	ET K	BATT OK	ERY	
	B Input: Abs oard: Instal											
Port 1	Status Inactive		Success	Rat	е	SET M None		Databa	se	Delays		
2 3	Active Active					None None						
4	Active					None						
5	Active					None						
6	Active					None						
7	Active					None						
8	Active					None						
9	Active					None						
10	Active					None						
11	Active					None						
12	Active					None						
13	Active					None						
14	Active					None						
15	Active					None						
16	Active		NOD			None						
17 18	Normal(Oh) Normal(Oh)		NOR			None						
18 F	Active		NOR1 88%	"		None None						
*>			00%			None						

Figure 2.3 SEL-2030 STATUS Command.

Step 7. Proceed to Section 3: Settings and Commands for information on network settings needed to operate the SEL-2701 on a network.

SEL-400 Series Relay Installations

Use the steps below to verify that the SEL-2701 is installed properly and initializes correctly in an SEL-400 series relay.

- Step 1. Apply power to the relay. The initial power-up sequence takes as long as one minute.
- Step 2. Establish a terminal connection from your PC to the SEL-400 series relay.
- Step 3. Enter the ACC command to log in to Access Level 1.
- Step 4. Enter the **STA A** command to confirm that the SEL-400 series relay detects the SEL-2701 and that there are no SEL-2701 self-test errors. If the relay reports an error, see *Section 6* for a detailed description of the error.

Network Connections

Network Ports	The SEL-2701 can use either the connection on Port A or Port B to operate on a network. These ports work together to provide a primary and backup interface, as described in <i>Network Port Fail-Over Operation on page 3.3 in Section 3: Settings and Commands</i> . The following list describes the SEL-2701 network port options.
	 10/100BASE-T. 10 Mbps or 100 Mbps communications using CAT 5 cable (category 5 twisted-pair) and an RJ-45 connector
	 10BASE-FL. 10 Mbps communications over multimode fiber- optic cable using an ST connector

► **100BASE-FX.** 100 Mbps communications over multimode fiber-optic cable using an ST connector

Rear-panel layouts for the six SEL-2701 network port configurations are shown in *Figure 2.4–Figure 2.9*.

SEL-2701 Rear-Panel Layout

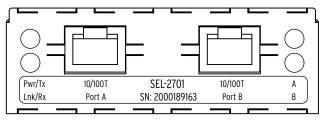


Figure 2.4 Two 10/100BASE-T Port Configuration.

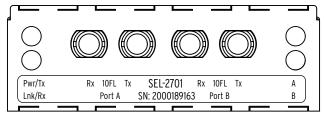


Figure 2.5 Two 10BASE-FL Port Configuration.

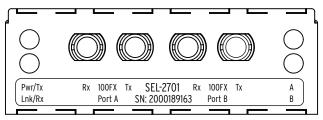


Figure 2.6 Two 100BASE-FX Port Configuration.

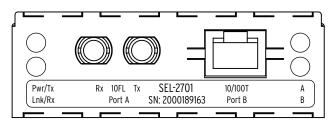


Figure 2.7 10BASE-FL and 10/100BASE-T Port Configuration.

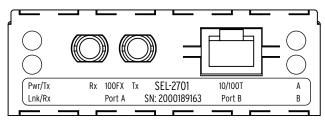


Figure 2.8 100BASE-FX and 10/100BASE-T Port Configuration.

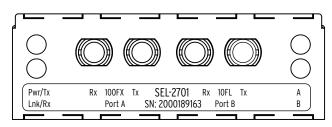


Figure 2.9 100BASE-FX and 10BASE-FL Port Configuration.

While Unshielded Twisted Pair (UTP) cables dominate office Ethernet networks, Shielded Twisted Pair (STP) cables are often used in industrial applications. The SEL-2701 is compatible with standard UTP cables for Ethernet networks as well as STP cables for Ethernet networks.

Typically UTP cables are installed in relatively low-noise environments including offices, homes, and schools. Where noise levels are high, you must either use STP cable or shield UTP using grounded ferrous raceways such as steel conduit.

Several types of STP bulk cable and patch cables are available for use in Ethernet networks. If noise in your environment is severe, you should consider using fiber-optic cables. We strongly advise against using twisted-pair cables for segments that leave or enter the control house.

If you use twisted-pair cables, you should use care to isolate these cables from sources of noise to the maximum extent possible. Do not install twisted-pair cables in trenches, raceways, or wireways with unshielded power, instrumentation, or control cables. Do not install twisted-pair cables in parallel with power, instrumentation, or control wiring within panels, rather make them perpendicular to the other wiring.

You must use a cable and connector rated as Category 5 (CAT 5) to operate the twisted-pair interface (10/100BASE-T) at 100 Mbps. Because lower categories are becoming rare and because you may upgrade a 10 Mbps network to 100 Mbps, we recommend using all CAT 5 components.

Some industrial Ethernet network devices use 9-pin connectors for STP cables. The SEL-2701 RJ-45 connectors are grounded so you can ground the shielded cable using a standard, externally shielded jack with cables terminating at the SEL-2701.

Twisted-Pair Networks

NOTE: Use caution when applying the SEL-2701 with UTP cables as these cables do not provide adequate immunity to interference in electrically noisy environments unless additional shielding measures are employed. This page intentionally left blank

Section 3 Settings and Commands

Introduction

This section provides information about the SEL-2701 settings and commands common to installations in any host. Specifically, it covers the following topics:

- ► Settings for Ethernet network operation
- Settings for data access through protocols including FTP, Telnet, and UCA2
- ► Commands for SEL-2701 diagnostics and configuration

Subsequent sections describe how to access SEL-2701 settings and how the SEL-2701 operates in specific hosts.

Network

Configuration

Ethernet Network Operation Settings

Several settings control how the SEL-2701 operates on an Ethernet network. These settings include IP addressing information, network port fail-over options, and network speed.

Use the network configuration settings shown in *Table 3.1* to configure the SEL-2701 for operation on an IP network and to set other parameters affecting the physical Ethernet network interface operation. See *IP Addresses on page xv in Preface* for the proper format of an IP address.

Label	Description	Range	Default
IPADDR	IP network address	IP address	192.92.92.92
SUBNETM	IP network subnet mask	IP address	255.255.255.0
DEFRTR	Default router	IP address	NULL string
NETPORT	Primary network port (D disables all network ports)	A, B, D	А
FAILOVR	Automatic fail-over enable	Y, N	Y
FTIME	Fail-over time out	5–65535 ms	5
NETASPD ^a	Network speed or auto-detect on Port A	A, 10 Mbps, 100 Mbps	А
NETBSPDa	Network speed or auto-detect on Port B	A, 10 Mbps, 100 Mbps	А

Table 3.1 SEL-2701 Network Configuration Settings

^a This setting applies only to twisted-pair ports (10/100BASE-T).

The SEL-2701 uses the IPADDR and SUBNETM settings to determine the local network and SEL-2701 node address. The SUBNETM setting defines the subnet mask. The subnet mask divides the local node IP address into two parts, a network number and a node address on that network. A subnet mask is four bytes of information and is expressed in the same format as an IP address.

The SEL-2701 uses the DEFRTR address setting to determine how to communicate with nodes on other local networks. The SEL-2701 communicates with the default router to send data to nodes on other local networks. If you change the DEFRTR setting from the default value of Null (meaning that there is no default router), then the default router must be on the same local network as the SEL-2701 or the SEL-2701 will reject the DEFRTR setting. You must also coordinate the default router with your general network implementation and administration plan. See *Table 3.2 on page 3.3* for examples of how IPADDR and SUBNETM define the network and node and how these settings affect the DEFRTR setting.

IPADDR	SUBNETM	Network Number	Node Address	DEFRTR
192.92.92.92	255.255.255.0	192.92.92	92	192.92.92.a ^a
192.92.92.92	255.255.0.0	192.92	92.92	192.92.a ^a .b ^a
192.92.92.92	255.0.0.0	192	92.92.92	192.a ^a .b ^a .c ^a
192.92.92.92	0.0.0.0	n/a	192.92.92.92	a ^a .b ^a .c ^a .d ^a

 Table 3.2
 DEFRTR Address Setting Examples

^a Value in the range 0-255.

The SEL-2701 operates over either twisted-pair or fiber-optic media. Each SEL-2701 is equipped with two network ports. With an initial ordering option, you can select the media for each port (10/100 Mbps twisted-pair, 10 Mbps fiber-optic, or 100 Mbps fiber-optic). Speeds for the physical media are fixed for fiber-optic connections. For twisted-pair connections, the SEL-2701 can auto-detect the network speed or you can set a fixed speed.

The SEL-2701 has two network ports. Network port fail-over mode enables the SEL-2701 to operate as a single network adapter with a primary and standby physical interface. You can connect the two network ports to the same network or different networks depending on your specific Ethernet network architecture. If you have a single network and want to use only one network port, set NETPORT to the port you wish to use and set FAILOVR to N.

Only one network port operates at a time. The fail-over mode operation determines the active port. To use fail-over mode, follow the steps listed below:

- Step 1. Set NETPORT to the preferred network interface.
- Step 2. Set FAILOVR to Y.
- Step 3. Set FTIME to the desired network port fail-over time.

Network Port Fail-Over Operation

NOTE: If you change settings for the host port where the SEL-2701 is installed and the SEL-2701 standby network port is active, the SEL-2701 resets and returns to operation on the primary port.

Network Address Resolution

If the SEL-2701 detects a link failure on the primary port, it activates the standby port after the fail-over time, FTIME, elapses. If the link status on the primary link returns to normal before the fail-over time expires, the fail-over time resets; uninterrupted operation continues on the primary network port. The SEL-2701 checks the primary link periodically and continues checking until it detects a normal link status. The SEL-2701 returns to operation on the primary link when it detects a normal link status.

The SEL-2701 can resolve 20 network host names to corresponding IP addresses. Settings for Network Address Resolution (NAR) are shown in *Table 3.3*. The SEL-2701 uses address resolution any place settings or commands require an IP network name. NAR is similar to DNS (Domain Name Services) used on the Internet, except that NAR uses a local name list rather than a remote name server. You can use names rather than numeric IP addresses for settings like DEFRTR (default router) or when using the SEL-2701 **PING** command. If a remote network host name (HOST 1–Host 20) is set NA, then the SEL-2701 ignores the corresponding IP address setting (IPADR 1–IPADR 20).

Label	Description	Range	Default
HOST1	Remote network host name	16 characters	NA
IPADR1	Remote network host IP address	IP address	NA
HOST2	Remote network host name	16 characters	NA
IPADR2	Remote network host IP address	IP address	NA
•			
•			
•			
HOST20	Remote network host name	16 characters	NA
IPADR20	Remote network host IP address	IP address	NA

Table 3.3 SEL-2701 IP Network Address Resolution Settings

Data Access Settings

Access data using either the standard TCP/IP Telnet and FTP interfaces or through the UCA2 interface. You cannot access all data through all interfaces. Please see the appropriate interface section below for details on data access.

FTP

FTP is a standard application-level protocol for exchanging files between computers over a TCP/IP network. The SEL-2701 operates as an FTP server. It presents SEL-2701 and host files to FTP clients. The SEL-2701 can support as many as three simultaneous FTP sessions, allowing simultaneous FTP access to as many as three separate users.

The host maintains the access control list that determines FTP log-in IDs and passwords. The host also determines which files are available. Some files are available at specific log-in levels, while other files are read-only access. Subsequent host-specific sections describe access control for each host.

File Structure

The basic file structure common to all hosts is organized as a directory and subdirectory tree similar to that used by Unix, DOS, Windows, and other operating systems. The root directory is "/" and has at least one subdirectory. The basic file structure is shown in *Table 3.4*.

Host Directory	Subdirectories	Files
/	Host	See the host-specific sections for available files and directories.
	SEL-2701	DIAGNOSTICS.TXT
	DD01_DeviceID	REGION1.TXT
		REGION1.CAS
		•
		•
		•
		REGIONn.TXT
		REGIONn.CAS

Table 3.4 Basic File Structure

The first subdirectory is for the host. Some hosts do not have a subdirectory. The HOST_ID string, if set, determines this subdirectory name. The SEL-2701 strips any leading or following white-space characters. The SEL-2701 then substitutes the "_" character for any white-space or delimiter characters. For example, if the HOST_ID is IED#983 Sub#45, then the host subdirectory name is IED_983_Sub_45. If the converted HOST_ID is longer than 31 characters, the host subdirectory name becomes the first 31 characters of the converted HOST_ID. The host subdirectory contains settings, reports, and diagnostic files for the host.

The next subdirectory is SEL-2701. This subdirectory contains the file DIAGNOSTICS.TXT that contains records for SEL-2701 system failures. The time and date for the diagnostics file are the same as the time and date of the last system failure event.

The SEL-2701 creates a subdirectory for each virtual device in the host. The subdirectory name is DDnn_substring, where nn is the virtual device number

and substring is the device name derived from an identification string stored in the host that is associated with the virtual device. The SEL-2701 uses the first identification string that it finds in the PORTID, DEVICEID, and FIDID strings. The same substitution rules that govern substitutions for the host subdirectory name govern creation of the substring. For example, if you have an SEL-351 connected to an SEL-2030 on Port 3 with a PORTID setting of "Feeder 1," the subdirectory name will be "DD03_Feeder_1."

Each virtual device subdirectory contains files that represent valid host data regions associated with the virtual device. Data region files provide snapshots of the corresponding host database regions. When an FTP client requests the file, the SEL-2701 sends a file containing values from the host database region. If the voltage VA is 12.47 kV when you make an FTP request for the METER.TXT file, then the file METER.TXT will contain VA = 12.47. If you request the file at another time, when VA is 12.40, the file will contain VA = 12.40. Two file formats are available, ASCII text and compressed ASCII (CASCII). Names of the files correspond to the data region name (i.e. METER.TXT, METER.CAS).

Access Control

FTP settings control some basic file access features. The host is responsible for maintaining names and passwords for access control. The special FTP user name "anonymous" does not require a password. It has the same access rights as the user name in the FTPAUSR setting. For example, if FTPAUSR is set to ACC, the FTP anonymous user has Access Level 1 rights. See the host-specific sections for additional information about access rights. *Table 3.5* lists the settings that affect FTP server operation.

Table 3.5	SEL-2701	FTP Settings
-----------	----------	--------------

Label	Description	Range	Default
FTPSERVa	FTP session enable	Y, N	Ν
FTPCBAN	FTP connect banner	254 characters	SEL-2701 FTP SERVER:
FTPIDLEa	FTP connection timeout	5–255 minutes	5
FTPANMS ^a	Anonymous login enable	Y, N	Ν
FTPAUSR	Host user from which anonymous FTP client inherits access rights	See host- specific section	Empty String

^a If you change these settings and accept the new settings, the SEL-2701 closes all active network connections and briefly pauses network operation.

Telnet is also part of the TCP/IP protocol suite. You can use Telnet to establish terminal access to a remote device. A Telnet connection provides access to the user interface of either the host or the SEL-2701. Host user interface access is similar to an ASCII terminal connection to the front port of an SEL device.

You can use Telnet in the SEL-2701 in one of three ways:

- 1. Connect from your PC to the SEL-2701 user interface.
- 2. Connect from your PC to the host user interface.
- 3. Connect from a host to another Telnet server.

NOTE: SEL advises against enabling anonymous FTP logins (FTPANMS = Y) except under test conditions. The SEL-2701 does not require a password for the special FTP user name "anonymous." If you enable anonymous FTP logins, you are allowing unrestricted access to the SEL-2701 and host files.

Telnet

To determine which modes are available in your installation, see the host-specific section. The SEL-2701 acts as a Telnet server for connections to the SEL-2701 user interface. The user interface provides access to commands for diagnostics and other special features of the SEL-2701. Telnet settings are listed in *Table 3.6*.

Label	Description	Range	Default
T1CBAN	Host Telnet connect banner	254 characters	HOST TERMINAL SERVER:
T1INIT	Telnet session from host enable	Y, N	Y
T1RECV	Telnet session to host enable	Y, N	Ν
T1PNUM ^a	Host Telnet TCP/IP port	1–65534 except 20, 21, 102	23
T2CBAN	SEL-2701 Telnet connect banner	254 characters	SEL-2701 TERMINAL SERVER:
T2RECV	Telnet session to SEL-2701 enable	Y, N	Ν
T2PNUM ^a	SEL-2701 Telnet TCP/IP port	1–65534 except 20, 21, 102	1024
TIDLE	Telnet connection timeout (0 prevents timeout)	0–255 minutes	5

Table 3.6 SEL-2701 Telnet Settings

a If you change these settings and accept the new settings, the SEL-2701 closes all active network connections and briefly pauses network operation.

UCA2 for Field Devices

The SEL-2701 acts as a UCA2 interface for the host. The UCA2 interface consists of several components that make up the UCA2 for Field Devices standard. The SEL-2701 supports Generic Object Model for Substation and Feeder Equipment (GOMSFE) and Generic Object Oriented Substation Event (GOOSE).

UCA2 Settings

Table 3.7 on page 3.8 lists UCA2 settings. See the host-specific sections to access UCA2 settings.

Label	Description	Range	Default
ENUCA	UCA2 interface enable	Y, N	N
NSAPa	Partial Network Service Access Point (NSAP) of SEL-2701	six octets, each 0–FFh	(SEL-2701 MAC address)
ENTXGOS	Outgoing GOOSE message enable	Y ^b , N	Ν
TRMULGR	Outgoing GOOSE multicast group address (xxxxh yyyyh zzzzh)	13 characters	SEL-2701 MAC address with mode bits set to multicast
GOSIED	SEL-2701 GOOSE sender ID	66 characters	Null String
GOSRPTC	GOOSE sending repeat timing coefficient	1.5–1.9	1.9
GOSIED1	GOOSE sender ID for Monitor1	66 characters	Null String
GOSIED2	GOOSE sender ID for Monitor2	66 characters	Null String
•			
•			
•			
GOSIED8	GOOSE sender ID for Monitor8	66 characters	Null String
CTRLB1	Incoming bit pair from GOOSE message 1–8 to control host Control Bit 1	msg: 1–8 bit: 0–160	Null String
CTRLB2	Incoming bit pair from GOOSE message 1–8 to control host Control Bit 2	msg: 1–8 bit: 0–160	Null String
CTRLB3	Incoming bit pair from GOOSE message 1–8 to control host Control Bit 3	msg: 1–8 bit: 0–160	Null String
•			
•			
•			
CTRLB64	Incoming bit pair from GOOSE message 1–8 to control host Control Bit 64	msg: 1–8 bit: 0–160	Null String

Table 3.7	SEL-2701 UCA2 Settin	gs
-----------	----------------------	----

^a If you change this setting and accept the new setting, the SEL-2701 closes all active network connections and briefly pauses network operation.

^b Requires ENUCA set to Y to send GOOSE messages.

The NSAP setting specifies the user-configurable portion of the full OSI NSAP. The complete NSAP for SEL devices is 39h 84h 0Fh 80h 11h 38h 06h 00h 00h 00h 03h 00h 01h xxh xxh xxh xxh xxh xxh 01h. Set the six octets labeled xxh with the NSAP setting. Use the SEL-2701 **STATUS** command to display the full NSAP.

The proper format for the incoming control bit (CTRLB1–CTRLB64) settings is *msg:bit*. The *msg* parameter corresponds to one of the eight GOOSE sender ID monitor settings (GOSIED1–GOSIED8). The *bit* parameter indicates either GOOSE monitor network status or a bit pair in the incoming GOOSE message.

A *bit* parameter value from 1 to 160 specifies which User ST bit pair of the incoming GOOSE message drives the corresponding control bit (CTRLB1–CTRLB64). A *bit* parameter of 0 specifies that the corresponding control bit contains the corresponding GOOSE sender monitor status. When the GOOSE

sender status is logical 1, the SEL-2701 has not detected the GOOSE sender on the network or has stopped receiving new messages from the GOOSE sender. When the status is logical 0, the SEL-2701 has properly detected the GOOSE sender and considers incoming GOOSE message data valid. You can use this bit to supervise control actions in the host with the network status of the GOOSE sender.

GOMSFE

GOMSFE is a collection of object-based models that provide access to data and control mechanisms in UCA2. GOMSFE operation is host specific. Detailed descriptions are in host-specific sections. The supported UCA objects (bricks) include the following:

- ► GLOBE. Device status and settings group handling
- ► Device ID. Device type and versions
- ► Generic Control. Control points within the host
- > Polyphase Measurement Unit. Basic metering data
- ► Circuit Breaker. Circuit breaker control and status
- ► Polyphase Meter Unit. Energy data
- ► Fault. Relay fault history

GOMSFE bricks are organized into groups called domains. Every SEL-2701 installation includes the LN0 domain. Each SEL-2701 installation also has additional domains for virtual devices (DDnn_substring) or the host (substring). For more information about GOMSFE domains and models in your application, see the host-specific sections.

GOOSE

GOOSE provides services for high-speed peer-to-peer transfer of binary information on a multicast, event-driven basis. Primary uses for GOOSE include protection coordination and high-speed communication during trip events. Outgoing GOOSE messages contain as many as 96 host-initiated control points. Incoming GOOSE message data are routed to the host by SEL-2701 settings. The host-specific sections contain details on GOOSE message operation.

The SEL-2701 processes incoming GOOSE messages from as many as eight different network nodes. The eight network nodes correspond to GOOSE IED names that you enter in SEL-2701 settings. At power up and after settings changes, the SEL-2701 automatically monitors the network for GOOSE messages and resolves the text names into MAC addresses. Devices that receive GOOSE messages use default rate GOOSE messages to resolve text GOOSE ID names into Ethernet broadcast groups and addresses. Resolution of GOOSE ID names is discussed in the description of the **GOOSE** command. Use the **GOOSE** command to display the status of GOOSE IED names.

SEL-2701 Commands

The SEL-2701 user interface accepts SEL-2701 commands. There are two ways you can connect to the SEL-2701. First, if your host allows, you can make a transparent connection to the SEL-2701. Second, you can establish a Telnet connection to the SEL-2701 user interface. See the host-specific sections for more information on connecting to the SEL-2701 user interface. Other connections to the SEL-2701, including FTP, require standard protocol commands and do not respond to the SEL-2701 user-interface commands.

Using Commands When you type commands, you can type in either the entire command or just use the first three letters. For example, if you type **STATUS** ENTER or **STA** ENTER the SEL-2701 displays status information. Commands are not case sensitive; you may use upper- or lower-case characters. Access level password entry is case sensitive. *Table 3.9* summarizes the user commands.

As with serial ports on SEL devices, you can control character transmission in a Telnet session using control characters. Send the control characters listed in *Table 3.8* to control long transmissions like event reports and SER reports.

Table 3.8 Control Characters

Control Characters	Key Commands	Results
XON	CTRL + Q	Restart paused transmission and enable subsequent transmissions.
XOFF	CTRL + S	Pause current transmission and block any subsequent transmissions.
CAN	CTRL + X	Cancel current transmission or command and return to cursor.

Command Summary

Table 3.9 summarizes the SEL-2701 commands. Subsequent subsections provide full descriptions of each command in alphabetical order.

Table 3.9 SEL-2701 Command Summary

Command	Description	Access Level
2ACCESS	Go to Access Level 2.	1
ACCESS	Go to Access Level 1.	0 or 2
DATE	View or change date.	1ª or 2
GOOSE	View/reset UCA network GOOSE ID information.	2
HELP	Display available commands or command help.	Any
ID	View internal identification parameters for the SEL-2701.	1 or 2
MEMORY	Display RAM statistics for the SEL-2701.	1 or 2
PING	Ping another node on the network.	2
QUIT	Go to Access Level 0.	Any
STATUS	Display self-test status.	1 or 2
TIME	View or change internal clock.	1ª or 2

^a Limited functions at this access level. See command description below for details.

Access Levels

Access levels control whether you can perform different operations within SEL products. For example, at Access Level 1, you can view settings. You cannot change settings unless you are at Access Level 2. A complete list of access levels for the SEL-2701 is shown in *Table 3.10*.

Table 3.10 SEL-2701 Access Levels

Access Level	Prompt	Allowed SEL-2701 User-Interface Operations
0	#	Log in to Access Level 1.
1	#>	View data and status information.
2	#>>	Perform all Access Level 1 functions plus advanced diag- nostics and set date/time.

Each access level has a password. The SEL-2701 uses passwords set in the host for the same access level. For example, if you have an SEL-2030 and SEL-2701, and have set the SEL-2030 Access Level 2 password to SUB35L2, then SUB35L2 is the password for Access Level 2 on your SEL-2701.

The SEL-2701 uses access levels and passwords in two ways. First, if you are connected to the SEL-2701 user interface, the SEL-2701 limits command access based on your access level. You are connected to the SEL-2701 user interface if you are using a terminal or Telnet program and see one of the prompts shown in *Table 3.10*. For example, if your SEL-2701 is installed in an SEL-2030, you can Telnet to the SEL-2701 or make a transparent connection from one of the SEL-2030 serial ports to the SEL-2701.

Second, the SEL-2701 uses access level names and passwords as user names and passwords for protocols that require you to log in to establish a connection. For example, if you are making an FTP connection to the SEL-2701, you will be prompted for an FTP user name and password. In this case, use host access levels and passwords to connect. Use the host access level for the FTP user name and the corresponding password for the FTP password. Access levels are listed with corresponding passwords in *Table 3.11*.

Table 3.11 Access Level User Names and Passwords

Access Level	User Name	Password
0	QUI	None
1	ACC	User-definable
2	2AC	User-definable

Connections that are closed manually by ending the network connection or by using the SEL-2701 **QUIT** command are terminated. This means that to reestablish the connection and return to the original access level, you must log in using the access level commands and passwords.

When a connection with the SEL-2701 or the host "times out," the connection is closed and the access level is reduced to 0. There is a timeout setting associated with connections to the SEL-2701 and connections to the host through the SEL-2701. The timeout settings and their specific operation are described in the host-specific sections.

2ACCESS

Use the **2ACCESS** command to change to Access Level 2. If the current level is not Access Level 1, the SEL-2701 responds with "Invalid access level." When you enter the **2AC** command, the SEL-2701 prompts you to enter the Access Level 2 password. If the password is Null or you enter the password set in the host, the access level changes to Access Level 2. Passwords are case

DATE

sensitive; you must enter them exactly as set. The host maintains the password and user list. For more details, see the host-specific sections.

If you are unable to enter the correct password after the third failed attempt, the SEL-2701 asserts the ALARM bit in the Status register and terminates the connection for some connection types. See the host-specific sections for more information on how your host uses the ALARM bit from the SEL-2701.

If your connection to the SEL-2701 has an inactivity timeout, the SEL-2701 automatically closes the connection and changes to Access Level 0 when the timeout expires.

ACCESS Use the ACCESS command to change to Access Level 1. For example, if you are at Access Level 0, the SEL-2701 prompts you for the password and moves you to Access Level 1 if you enter the password correctly. For additional details on access level commands, see 2ACCESS on page 3.11.

Table 3.12 illustrates how to use the DATE command to view or set the date.

Table 3.12 DATE Command

Command	Description
DATE	Display internal SEL-2701 date.
DATE mm/dd/yyyy	Set the date if the date format setting for the host is mm/dd/yyyy, where mm is the month, dd is the day of month, and yyyy is the year.
DATE dd/mm/yyyy	Set the date if the date setting for the host is dd/mm/yyyy.
DATE yyyy/mm/dd	Set the date if the date setting for the host is yyyy/mm/dd.

The **DATE** command displays the internal clock date. A setting in the host determines the date format. In order to avoid confusion, the SEL-2701 displays the date format along with the date. For example, if you set the host for a European style date, the SEL-2701 displays the current date and the date format text "dd/mm/yyyy." The date format options are mm/dd/yyyy, dd/mm/ yyyy, and yyyy/mm/dd.

Use the **DATE** command with a date to set the internal clock date. Enter the year in four-digit form. Enter the date in a form that matches the date form of the host. Because there is no way to differentiate between mm/dd/yyyy and dd/mm/yyyy for certain dates (02/03/2001 could be February 3 or March 2), check the date format before entering the date. To see the date format, use the **DATE** command.

Use the **GOOSE** command to display or reset GOOSE messaging information. The **GOOSE** command variants and options are shown in *Table 3.13*.

Table 3.13 GOOSE Command Variants

Command Variant	Description	Access Level
GOOSE	Display GOOSE information.	2
GOOSE count	Display GOOSE information count times.	2
GOOSE R	Clear statistics and listen for GOOSE IDs.	2

SEL-2701 Ethernet Processor Instruction Manual

GOOSE

Also use the **GOOSE** command to display GOOSE monitoring information. You can include an optional parameter for the number of times to display the information. The information displayed for each GOOSE ID is described in *Table 3.14*.

Information	Description
Multicast Group	GOOSE sender Ethernet multicast group
GOOSE ID	Text name for GOOSE sender
StNum	Hexadecimal state number that increments with each state change
SqNum	Hexadecimal sequence number that increments with each GOOSE message
HoldTime	GOOSE message time to live
Timed Out	GOOSE sender inactive indication string
BackTime	Time in milliseconds since last status change

Table 3.14 GOOSE Sender IED Display Information

Because there may be many IEDs on a UCA2 network sending GOOSE messages, each device that receives GOOSE messages implements a filtering mechanism. By filtering messages, the SEL-2701 drastically reduces message processing by ignoring messages that it does not need. This increases overall GOOSE performance of the SEL-2701 and host.

The SEL-2701 filters GOOSE messages according to the Ethernet multicast group in each GOOSE message. The SEL-2701 uses the GOOSE monitor settings in *Table 3.7 on page 3.8* to build a table of Ethernet multicast groups that it will monitor. Each GOOSE message contains a text GOOSE ID and an Ethernet multicast address. The SEL-2701 listens for GOOSE messages and captures the Ethernet multicast group associated with each GOOSE device that the SEL-2701 is programmed to monitor. The SEL-2701 then processes only messages from the Ethernet multicast addresses that it has collected.

When you first power up the SEL-2701, use the **GOOSE R** command, or change the SEL-2701 UCA2 settings, the SEL-2701 listens for GOOSE messages for two minutes to build a table of Ethernet multicast addresses. Because each GOOSE device sends a GOOSE message if there is a state change or every minute if there are no state changes, a two-minute listening period is sufficient to detect all active GOOSE devices.

After the SEL-2701 completes the listening process, it only processes Ethernet multicast messages from devices that it identified during the listening process. If a device fails to send a GOOSE message during the listening process, the SEL-2701 will ignore all future messages from the device.

When you use the **GOOSE** command to display GOOSE statistics, the Ethernet multicast group is shown for each IED that the SEL-2701 is monitoring for GOOSE messages. If the SEL-2701 is in listening mode, or if it has not resolved a GOOSE text ID within the two-minute listening process, the SEL-2701 displays \$\$-\$\$-\$\$-\$\$ for the Ethernet multicast group.

The SEL-2701 tracks GOOSE messages, compiles GOOSE statistics, and decides if the GOOSE ID is inactive. Use the **GOOSE** command to display this information. An example response to the **GOOSE** command is shown in *Figure 3.1 on page 3.14*.

#>>G00
GOOSE Monitor Status:
01-03-A7-00-00-01 SEL-2701
StNum=73 SqNum=2732 HoldTime=54652
01-08-B7-39-AB-02 RELAY 2
StNum=132 SqNum=1404 HoldTime=72356
01-99-3B-9C-12-F2 RELAY 3
StNum=0 SqNum=40 HoldTime=83491 Timed out
\$\$-\$\$-\$\$-\$\$-\$\$ RELAY 4
StNum=0 SqNum=0 HoldTime=0 Timed out
GOOSE Sending Status:
01-30-A7-00-00-03 SFL2701G00SF
StNum=115 SqNum=2054 HoldTime=157629 BackTime=124937
GOOSE Listening Mode: Completed #>>

Figure 3.1 GOOSE Command Response.

Use the **GOOSE R** command to clear statistics and MAC addresses and initiate the process of listening to the network for GOOSE senders. For a more detailed discussion of this process, see *UCA2 for Field Devices on page 3.7*.

Because only a limited set of commands may be available at your current access level, you may want to display a list of available commands. Use the **HELP** command to display a list of available commands for your current access level. The **HELP** command format and options are shown in *Table 3.15*.

Table 3.15 HELP Command Options

Command	Description
HELP	Display command information for the current access level.
HELP command	Display information for a specific command.

It may be necessary to identify the firmware version of your SEL-2701 for diagnostic purposes or to verify that it is compatible with the firmware version of your host. Use the **ID** command to identify the firmware version and several other internal parameters for your SEL-2701. The information displayed by the **ID** command is described in *Table 3.16*.

Table 3.16 ID Command Internal Parameters Displayed

Parameter	Description
FID	Firmware ID
BFID	SELBOOT Firmware ID
CID	Firmware Checksum
DEVID	Device ID
PARTNO	Part Number
CONFIG	Configuration ID

MEMORY

PING

The **MEMORY** command is a diagnostic command for determining if the SEL-2701 is using onboard RAM properly. Use the **MEMORY** command to display RAM statistics for the following areas: memory in use, free memory, free memory blocks, and bytes in largest available block.

When you are setting up or testing substation networks, it is helpful to determine if the network is connected properly and if the other devices are powered up and configured properly. Use the **PING** command to determine if

HELP

ID

another node on the network is available and connected to the network. The SEL-2701 sends ping messages to the remote node until you interrupt the SEL-2701 by pressing ENTER. Command options for the **PING** command are shown in *Table 3.17*.

Table 3.17 PING Command Options

Command	Description	
PING addr	Ping the address represented by addr every second.	
PING addr n	Ping the address addr once every n seconds, where n is a value from 1–255.	

The **PING** command requires the *addr* parameter, which can either be a name in the NAR table for the host, or an actual IP address. In response to the **PING** command, the SEL-2701 displays the status of each ping attempt. When you stop the ping process, the SEL-2701 displays several statistics to summarize the ping attempts.

QUIT To close your connection to the SEL-2701 and start a connection to another device without closing your terminal application, use the **QUIT** command. For example, use **QUIT** to log out and automatically terminate a Telnet session. You may then open a new Telnet session from your Telnet application. You can also use the **QUIT** command to log out of the SEL-2701 for security purposes when the connection will not be closed. For example, if you are connected to an SEL-2701 in a host from one of the host serial ports, you can log out without closing the transparent connection to the SEL-2701.

STATUS Use the **STATUS** command to display the self-test status and configuration of the SEL-2701. The SEL-2701 displays self-test results as either OK or FAIL. The SEL-2701 displays network configuration information and network statistics.

The TIME command is described in *Table 3.18*.

|--|

Command	Description	Access Level
TIME	Display internal clock date.	1 or 2
TIME hh:mm	Set internal clock time to hh hours (24 hour time), mm minutes and 0 seconds.	2
TIME hh:mm:ss	Set internal clock time to hh hours (24 hour time), mm minutes, and ss seconds.	2

Some hosts support time synchronization of the SEL-2701 from the host or time synchronization of the host from the SEL-2701. See the host-specific section for more information on time synchronization.

TIME

This page intentionally left blank

Section 4 SEL-2030 Host

Introduction

This section describes applications where the SEL-2701 is installed in an SEL-2030 host. For detailed explanations of SEL-2701 commands and settings, refer to *Section 3: Settings and Commands*. This section contains information on the following topics:

- ► Using the SEL-2030 to access SEL-2701 settings
- ► Setting the SEL-2030 to control SEL-2701 operation
- ► Accessing data in an SEL-2030 through the SEL-2701
- ► Accessing the SEL-2701 User Interface

See *Section 2: Installation* for instructions on how to install an SEL-2701 in a host. See the *SEL-2030 Reference Manual* and *SEL-2030 User's Guide* for additional information about the SEL-2030. The *SEL-2030 User's Guide* also contains information about upgrading SEL-2701 and SEL-2030 firmware.

Features and Capabilities

Installing an SEL-2701 in either card slot of an SEL-2030 (Port 17 or Port 18) provides the following features and capabilities:

- ► Ethernet Physical Connection
 - > 10/100 Mbps on twisted-pair media
 - > 10 Mbps on fiber-optic media
 - > 100 Mbps on fiber-optic media
 - > Redundant network ports with automatic failover
- ► Telnet
 - ➤ Server for connections to SEL-2701
 - ➤ Server for connections to SEL-2030
 - Client for connection from an SEL-2030 port to a Telnet server
- ► FTP Server for data files within the SEL-2030 and SEL-2701
- ► UCA2
 - ➢ GOMSFE models for connected IEDs
 - ➤ GOMSFE models for data in an SEL-2030
 - ➤ GOOSE messages

Access the settings for the SEL-2701 using the SEL-2030 settings commands and the port number (17 or 18) where the SEL-2701 is installed. These commands provide access to some additional settings that govern how the SEL-2030 interacts with the SEL-2701. This section only describes the SEL-2030 settings and behavior specific to installations that include an SEL-2701. See the *SEL-2030 Reference Manual* for complete syntax and examples for SEL-2030 commands.

Port Settings Use the SEL-2030 port settings to set the SEL-2701 for operation on your network. SEL-2030 port settings also include the SEL-2701 settings described in *Section 3: Settings and Commands*.

Access these settings using the **SET P n** command, where n is the port number (17 or 18) where the SEL-2701 is installed. Port settings for an SEL-2030 port with an installed SEL-2701 are listed in *Table 4.1*. SEL-2030 port control settings with details are listed in *Table 4.2*.

Table 4.1	SEL-2030	Port Settings	With SEL-2701 Installed
-----------	----------	---------------	-------------------------

Settings	Reference
SEL-2030 Port Control	Table 4.2
Network Configuration	Table 3.1 on page 3.2 in Section 3: Settings and Commands
Network Address Resolution	Table 3.3 on page 3.4 in Section 3: Settings and Commands
FTP	Table 3.5 on page 3.6 in Section 3: Settings and Commands
Telnet	Table 3.6 on page 3.7 in Section 3: Settings and Commands
UCA2	Table 3.7 on page 3.8 in Section 3: Settings and Commands

Table 4.2 SEL-2030 Port Control Settings With SEL-2701 Installed
--

Label	Description	Range	Default
SENDTIME	Enable/disable time synchronization of the SEL-2701 from the SEL-2030	Y/N	N
TIMEOUT	Timeout period for Virtual Terminal connection	OFF, 0–30 minutes	OFF
TERTIME1	Length of time the channel must be idle before checking for the termination string	0–600 seconds	1
TERSTRING	Transparent communication termination string		004 which is CTRL + D
TERTIME2	Length of time the channel must be idle before accepting the termination string	0–600 seconds	0

Automatic Message Settings

The SEL-2030 uses the NOCONN SELOGIC control equation to determine whether to allow external connections to the port in question. Access Automatic Message settings using the **SET A n** command, where n is the port number (17 or 18) where the SEL-2701 is installed.

The NOCONN setting, shown in *Table 4.3*, controls the following Telnet connections for the SEL-2701:

- ► Telnet connections to the SEL-2030 through the SEL-2701
- ► Telnet connections out of the SEL-2030 through the SEL-2701

The *SEL-2030 Reference Manual* describes SELOGIC control equations and their syntax. SELOGIC control equations are a language for entering Boolean expressions into the SEL-2030. If the SELOGIC control equations expression evaluates to false or logical 0, the SEL-2701 allows Telnet connections. When the expression evaluates to true or logical 1, the SEL-2701 does not allow new connections and terminates any existing Telnet connections.

 Table 4.3
 SEL-2030 Automatic Message Settings With SEL-2701 Installed

Label	Description	Range	Default
NOCONN	Block external connections to this port.	SELOGIC control equation	NA

Math/Data Movement Settings

Complete User region settings and data storage are available for each port with an installed protocol card. User region data are available to the user for data concentration and manipulation. User region data are also used for some protocols including UCA2. Access Math/Data Movement settings using the **SET M n** command where n is the port number (17 or 18) where the SEL-2701 is installed.

Outgoing Control Point Settings

Outgoing control points are used by the SEL-2030 to send binary information to the SEL-2701. The SEL-2701 uses these bits for protocol-specific operations. For example, the SEL-2701 generates GOOSE messages using the outgoing control points. Access settings for outgoing control points using the **SET O n** command, where n is the port number (17 or 18) where the SEL-2701 is installed.

Access Control

Access Control is the process of deciding who can log in to the SEL-2030 or SEL-2701. The SEL-2030 allows limited functionality at a given access level. The SEL-2030 has the access levels described in *Table 4.4*.

Table 4.4 SEL-2030 Access Levels

Access Level Primary Operations Allowed	
0	Log in to Access Level 1.
1	View data and settings and establish transparent connections.
2	Perform Access Level 1 functions and change settings.

The SEL-2701 user interface uses the SEL-2030 access levels and passwords. When you establish a terminal connection directly to the SEL-2701 user interface, use the passwords programmed into the host SEL-2030. You can change a password using the SEL-2030 **PASSWORD** command at Access Level 2. See the *SEL-2030 Reference Manual* for a full description of the **PASSWORD** command.

To log in as an FTP client, use the user names and access-level passwords shown in *Table 4.5*. You do not need to log in to start a Telnet session. After you connect, you can use the standard SEL-2030 log-in process to change access levels.

Table 4.5 SEL-2030 Access Level User Names and Passwords

Access Level	User Name	Password
0	QUI	None
1	ACC	User-definable
2	2AC	User-definable

Your connection to the SEL-2701 or SEL-2030 may have an associated timeout setting. For example, the TIMEOUT setting in *Table 4.2 on page 4.3* applies to transparent connections to the SEL-2701 from an SEL-2030 port. If there is no activity and the timeout time expires, the SEL-2030 closes the connection and the SEL-2701 automatically returns to Access Level 0.

You can access the SEL-2701 user interface in one of two ways. First, you can connect directly to the SEL-2701 as a Telnet client on the Ethernet network. Second, you can make a transparent connection using the SEL-2030 **PORT n 0** command where n is the port number (17 or 18) where the SEL-2701 is installed.

Once you are connected to the SEL-2701 user interface, you can use the commands described in *SEL-2701 Commands on page 3.10 in Section 3: Settings and Commands.*

SEL-2701 settings are included in the SEL-2030 port settings for the port where the SEL-2701 is installed. SEL-2701 settings are not accessible through the SEL-2701 user interface. The SEL-2701 uses the passwords set in the SEL-2030. The access levels and commands to change access levels are identical to those in the SEL-2030.

SEL-2701 User Interface

Control Points	The SEL-2701 and SEL-2030 exchange binary control information via control points. The SEL-2030 sends 64 control points (CCOUT1–CCOUT64) to the SEL-2701. Incoming message data appear in the SEL-2030 as 64 incoming control points (CCIN1–CCIN64).		
Outgo	bing Control Points		
	The SEL-2701 automatically maps the SEL-2030 control points CCOUT1– CCOUT64 to the SEL-2701 for use in outgoing messages. Use the SEL-2030 output logic settings to control these bits with SELOGIC control equations. Access these settings using the SEL-2030 SET O n command where n is the SEL-2701 port number (17 or 18) where the SEL-2701 is installed. See the <i>SEL-2030 User's Guide</i> and the <i>SEL-2030 Reference Manual</i> for a full description of the output logic settings.		
Incom	ning Control Points		
	The SEL-2701 uses the CTRLB1 and CTRLB64 settings to direct control information from incoming messages to the SEL-2030 control points CCIN1–CCIN64. See <i>Section 3: Settings and Commands</i> for more information on SEL-2701 settings.		
Viewi	wing Control Point Status		
LOCAL Database RegionControl points do not appear in the SEL-2030 database. The SEL-2030 database, so the commands apply only to the SEL-2030 database, so the commands do not display control point values. Use the SEL-2030 C command to view control points. See the SEL-2030 Reference Mana more information on the CARD command.LOCAL Database RegionA new LOCAL database element exists at address 08B1h for each c The database element has the name, ELEMENTS2, and consists of of binary values. Table 4.6 shows the element contents.			
	Table 4.6 SEL-2030 LOCAL ELEMENTS2		
	Row Element Names		
	0 * * * * * * * * NOCONN		
	Display the status of NOCONN using the SEL-2030 VIEW and TAR commands. The subsection <i>Automatic Message Settings on page 4.3</i> describes the operation and settings associated with the NOCONN bit.		
Status Information	The SEL-2030 provides status information on the SEL-2701 in two ways. You can connect to the SEL-2701 or SEL-2030 and use the STATUS command to view status messages and error codes. <i>Section 6: Troubleshooting</i> lists the possible error codes and status messages. See <i>Section 6</i> for more information on collecting status information from the SEL-2701 and host.		
SEL-2701 Alarm	The SEL-2701 alarm is automatically included in the SEL-2030 SALARM bit. Conditions that activate an SEL-2701 alarm also activate the SEL-2030 alarm light and output contact. For example, the SEL-2701 sets the alarm bit if you are unsuccessful when changing access levels with the ACC or 2AC command. The ACC and 2AC commands allow you three attempts to enter the password. If you enter an incorrect password on the third attempt, the SEL-2701 automatically sets the access level to 0 and activates the alarm bit.		

Data Access

FTP

You can access the file structure and contents in *Table 4.7* after logging in as an FTP client. Files named for database regions contain the most current values at the time you request the files. You cannot write files to the SEL-2030. Files associated with the SEL-2701 are in the SEL-2701 directory, as described in *Section 3: Settings and Commands*.

Table 4.7 SEL-2030 File Structure

Root Directory	Subdirectory	File Names
/	SEL-2701	DIAGNOSTICS.TXT
	DD01_DeviceID	REGION1.TXT
		REGION1.CAS
		•
		•
		•
		REGIONn.TXT
		REGIONn.CAS

Telnet

You can establish three types of Telnet connections with the SEL-2030 and SEL-2701.

Telnet to the SEL-2030

For the first connection type, use the TCP/IP host port number (see setting T1PNUM in *Table 3.6 on page 3.7 in Section 3: Settings and Commands*) to Telnet to the SEL-2030. This connection emulates the capabilities of a connection to the SEL-2030 front port, except that no automatic help is available. Help is still available using the SEL-2030 **HELP** command. It also makes available all SEL-2030 commands, including access level commands. Use access control rules and the name the SEL-2030 provides at log in to determine the initial access level.

After establishing a Telnet connection to the SEL-2030, you can make a transparent connection to an IED connected to an SEL-2030 serial port. See the *SEL-2030 Reference Manual* for more information on transparent connections using the **PORT** command.

Use the QUIT command to log out and end the Telnet session.

Telnet From the SEL-2701

For the second connection type, use the SEL-2701 to reach across the Ethernet network to other devices. For example, to connect to a remote device on the Ethernet network, connect to an SEL-2030 serial port that is set for SEL protocol and master connection. Use the **PORT n "ip p"** command to start a connection to a remote device. For n, use the SEL-2030 port number where the SEL-2701 is installed. For ip, enter a network Internet Protocol (IP) address or a text network address from the SEL-2701 network address resolution settings. For p, use the Telnet port number (defaults to standard Telnet port of 23 if not specified).

Use the SEL-2030 transparent connection termination sequence (default is CTRL + D) to close the Telnet connection. If the remote device is an SEL IED

you can use the **QUIT** command to log out before closing the Telnet connection.

Telnet to the SEL-2701

For the third connection type, use the TCP/IP port number (see setting T2PNUM in *Table 3.6 on page 3.7 in Section 3: Settings and Commands*), to Telnet directly to the SEL-2701. This is useful for operating the SEL-2701 user interface to collect diagnostic data and perform other operations with the SEL-2701. Use the QUIT command to log out and end the Telnet session.

The SEL-2701 provides the unique capability to allow both protective relays and other IEDs to integrate into UCA2 systems without the need to install a separate protocol converter and Ethernet network interface on each device. See *Section 3* for a description of UCA2 interface settings.

GOOSE

The SEL-2701 can generate and receive GOOSE messages. Acting as a single source and recipient of GOOSE messages, the SEL-2701 listens for and utilizes data in GOOSE messages from as many as eight GOOSE senders. For a description of SEL-2701 settings for outgoing GOOSE messages and to map incoming messages to specific control bits, see *Section 3*. The SEL-2701 communicates data from incoming GOOSE messages to the SEL-2030 as 64 incoming control points (CCIN1–CCIN64). The SEL-2701 automatically maps the outgoing control points CCOUT1–CCOUT64 to the first 64 outgoing GOOSE message bits.

EXAMPLE 4.1 Outgoing Control Points

The SEL-2701 uses outgoing control points to generate and send outgoing UCA2 GOOSE messages. To send the state of the SEL-2030 ALARM bit as User ST Bit 1 in the outgoing GOOSE message, set the SEL-2030 CCOUT1 setting as shown below. The example assumes that your SEL-2701 is installed on Port 17.

Enter the SEL-2030 SET O 17 command and set CCOUT1. CCOUT1=ALARM

If something either activates or deactivates the SEL-2030 ALARM, the SEL-2701 generates and transmits a new GOOSE message containing a bit pair representing the new state of ALARM. If the state changes to on, the bit pair is 10. If the state changes to off, the bit pair is 01.

EXAMPLE 4.2 Incoming Control Points

In this example, the incoming GOOSE Monitor 1 User ST Bit Pair 1 will control the Port 3 Remote Bit RB1. This example illustrates settings when the SEL-2701 is installed on Port 17 (Card 1). The SEL-2701 settings used to direct information from the incoming GOOSE message to the SEL-2030 and the Port 3 logic settings are shown below.

Port 17, SEL-2701 Settings CTRLB1 = 1:0 CTRLB2 = 1:33 Port 3 Logic Settings SRB1 = 17:CCIN2 * !17:CCIN1 + 17:CCIN1 CRB1 = !17:CCIN2 * !17:CCIN1

In this example, CTRLB1 is set with the special GOOSE Bit 0. Bit 0 is an alarm that turns on when the hold time for the previous GOOSE message has expired and during GOOSE ID resolution. This bit is used

UCA2

to force RB1 to a controlled state if the SEL-2701 no longer considers the GOOSE monitor active.

The first 32 incoming GOOSE bits form the DNA portion of the GOOSE message. Bit 33 is the first User ST bit in the incoming GOOSE message. Incoming GOOSE messages contain bit pairs that indicate status changes. If the bit pair is 10, it indicates a state change to on and 17:CCIN2 will be set. If the bit pair is 01, it indicates a state change to off and 17:CCIN2 will be cleared.

CTRLB1 and CTRLB2 appear inside the SEL-2030 as 17:CCIN1 and 17:CCIN2, respectively. The SRB1 and CRB1 settings for Port 3 set or clear RB1 based on the incoming message data.

When 17:CCIN1 is on, the SEL-2701 considers data from GOOSE Monitor 1 invalid. The !17:CCIN1 term in the SRB1 and CRB1 settings prevents setting or clearing RB1 if the incoming data are invalid. In the SRB1 setting, the 17:CCIN1 term forces RB1 on when incoming data are invalid.

If the 17:CCIN1 term resides in the CRB1 setting as shown below, RB1 is automatically cleared any time the incoming GOOSE message data are invalid.

SRB1 = 17:CCIN2 * !17:CCIN1 CRB1 = !17:CCIN2 * !17:CCIN1 + 17:CCIN1

If there is no 17:CCIN1 term in SRB1 or CRB1, RB1 will not change state when the incoming data are invalid.

The SEL-2701 polls the SEL-2030 control bits (CCOUT1–CCOUT32) every 100 ms. You must design your logic so that control bits remain in any new state for at least 100 ms or the SEL-2701 may not recognize the new state. For example, if CCOUT1 changes from a logical 0 to a logical 1 and back to logical 0 in less than 100 ms, the SEL-2701 may not recognize the changes and not send outgoing GOOSE messages. If CCOUT1 remains in the new state for more than 100 ms, the SEL-2701 will recognize the change and send corresponding GOOSE messages. This behavior only affects control bits that you configure with control equations that include remote bits, breaker bits, other control bits, and intermediate logic bits. Data in the User and Data regions are updated at 500 ms or slower and are not affected.

GOMSFE

GOMSFE is a system that contains both standard ways (bricks) to organize and represent data as well as rules for vendor-specific extensions. On a UCA2 network, the SEL-2701 appears as a single Logical Device. The SEL-2030 Logical Device contains one Virtual Device for each connected IED. Each Virtual Device contains standard and extended GOMSFE model bricks to convey available data. The available data and bricks vary based on the connected IEDs. You can observe available data by browsing the UCA2 interface with an MMS browser.

The model description in *Appendix B: UCA2 GOMSFE Models* provides rules for the population of GOMSFE models. SEL-2701 data are based on labels in the SEL-2030. This process is automatic for SEL relays.

For SEL relays, the SEL-2701 populates models based on data collected by the SEL-2030. To populate models with SEL relay data, use the following steps:

- Step 1. Configure the SEL-2030 port connected to the relay for SEL protocol and perform an autoconfiguration.
- Step 2. Use the GOMSFE tables to determine what SEL-2030 data collection (e.g., 20HISTORY) is necessary for the GOMSFE bricks you want to use.

Step 3. Use "20 message" commands to collect SEL relay data.

When relay data are available in the SEL-2030, the SEL-2701 will automatically collect data from the Data regions and use it to populate available models.

For non-SEL IEDs, the SEL-2701 populates models based on user-entered database register element labels. To populate GOMSFE models for non-SEL IEDs use the following steps:

- Step 1. Configure the SEL-2030 to collect data from the IED into database regions.
- Step 2. Transfer the data into the SEL-2030 User region using Math/ Data Movement commands (**SET M**) and label with the labels listed in *Appendix B*.
- Step 3. The SEL-2701 will automatically collect data from the labeled registers and use it to populate the available models.

Generic Analog Data

The SEL-2701 maps up to 64 analog values to each GLOBE model. The SEL-2701 maps data in the User region with the labels ANALOG01– ANALOG64 to the MX functional component of GLOBE. Only the data that are labeled are presented in the GLOBE model; if you do not label any data ANALOG01–ANALOG64, then no analog value items appear in GLOBE.

You can format the data as 16-bit integers or 32-bit floating point numbers. Use SEL-2030 math/movement settings to move and format data within the SEL-2030. For example, if you want to map the A-phase current scaled by 10 (as an integer) on Port 1 to the GLOBE item ANALOG01, enter 0h,i;;ANALOG01=1:METER:IA*10. To format the data as a floating point value use 0h,f;;ANALOG01:=1:METER:IA*10. See the *SEL-2030 Reference Manual* for complete information on the syntax of SEL-2030 math/movement settings.

Using math/movement settings, you can collect, scale, and manipulate data from any port database of the SEL-2030. The SEL-2701 automatically maps data to the GLOBE model. For example, if you have less than 64 items total, you may want to collect all data to the port (Port 17 or 18) where the SEL-2701 is installed. If you wish to have data associated with a local virtual device, then you can program math/movement settings on each port.

Generic Binary Data

The SEL-2701 maps up to 256 binary values to each GLOBE model. The SEL-2701 maps bits from 16 data words to items within the GLOBE model as shown in *Table 4.8 on page 4.11*. The Example Setting column shows an example math/movement equation that you could use to pack data into DWORD01 using address 1 of the User region. The remaining bits of DWORD01 are unused and will remain zero. You must include the label for the data word in the last math/movement statement that references the data word where you are packing the binary information (see setting for DWORD01B08\$b1 in *Table 4.8*).

Item	Port 2, Target Region Data	Example Setting
DWORD01B01\$b1	52a	001h:0;B = 2:TARGET:52A
DWORD01B02\$b1	EN	001h:1;B = 2:TARGET:EN
DWORD01B03\$b1	IN101	001h:2;B = 2:TARGET:IN101
DWORD01B04\$b1	IN102	001h:3;B = 2:TARGET:IN102
DWORD01B05\$b1	IN103	001h:4;B = 2:TARGET:IN103
DWORD01B06\$b1	IN104	001h:5;B = 2:TARGET:IN104
DWORD01B07\$b1	IN105	001h:6;B = 2:TARGET:IN105
DWORD01B08\$b1	IN106	001h:7;B;DWORD01 = 2:TARGET:IN106
DWORD01B09\$b1	Unused, 0	n/a
DWORD01B10\$b1	Unused, 0	n/a
DWORD01B11\$b1	Unused, 0	n/a
DWORD01B12\$b1	Unused, 0	n/a
DWORD01B13\$b1	Unused, 0	n/a
DWORD01B14\$b1	Unused, 0	n/a
DWORD01B15\$b1	Unused, 0	n/a
DWORD01B16\$b1	Unused, 0	n/a

Table 4.8 Example GLOBE Generic Binary Data Mapping

Remote Bits

You can control the remote bits associated with each SEL-2030 port using the UCA2 GCTL brick. GCTL is a generic control brick that appears in each virtual device domain. Each GCTL brick contains 16 ST (Status) and 16 CO (Control) bits that are associated with RB1–RB16 on that port. You can control the remote bits by writing the 2-bit set (10) or clear (01) code to the appropriate CO bit.

This page intentionally left blank

Section 5 SEL-400 Series Host

Introduction

This section describes applications where the SEL-2701 is installed in an SEL-400 series relay. This section contains information on the following topics:

- ► Using the SEL-400 series relay to access SEL-2701 settings
- Accessing data in an SEL-400 series relay through the SEL-2701
- ► Checking SEL-400 series relay status from the SEL-2030
- ► Accessing the SEL-2701 user interface

For detailed explanations of SEL-2701 commands and settings, refer to *Section 3: Settings and Commands*. See *Section 2: Installation* for instructions on how to install an SEL-2701 in a host. See the instruction manual for your relay for additional information about relay commands, settings, and operations. The relay instruction manual also contains information about upgrading SEL-2701 and relay firmware.

Features and Capabilities

Installing an SEL-2701 in an SEL-400 series relay provides the following features and capabilities:

- ► Ethernet physical connection
 - > 10/100 Mbps on twisted-pair media
 - > 10 Mbps on fiber-optic media
 - > 100 Mbps on fiber-optic media
 - > Redundant network ports with automatic failover
- ► Telnet
 - ➤ Server for connections to SEL-2701
 - \succ Server for connections to the relay
- ► FTP server for data files within the relay and SEL-2701
- ► UCA2
 - ➤ GOMSFE models
 - ➤ GOOSE messages

Access the settings for the SEL-2701 using the relay settings commands and the port number where the SEL-2701 is installed. These commands provide access to some additional settings that govern how the relay interacts with the SEL-2701. This section only describes the relay settings and behavior specific to installations that include an SEL-2701. See the relay instruction manual for complete syntax and examples for relay commands.

Port Settings

Use the relay port settings to set the SEL-2701 for operation on your network. SEL-400 series relay port settings also include the SEL-2701 settings described in *Section 3: Settings and Commands*.

Access these settings with the relay **SET P n** command, where n is the port number where the SEL-2701 is installed. Port settings for a relay port with an installed SEL-2701 are listed in *Table 5.1*. Relay port control settings with details are listed in *Table 5.2*.

Table 5.1 SEL-400 Series Relay Port Settings With SEL-2701 Installed

Settings	Reference
Relay Port Control	Table 5.2
Network Configuration	Table 3.1 on page 3.2 in Section 3: Settings and Commands
Network Address Resolution	Table 3.3 on page 3.4 in Section 3: Settings and Commands
FTP	Table 3.5 on page 3.6 in Section 3: Settings and Commands
Telnet	Table 3.6 on page 3.7 in Section 3: Settings and Commands
UCA2	Table 3.7 on page 3.8 in Section 3: Settings and Commands

Label	Description	Range	Default
TIMEOUT	Timeout period for virtual terminal connection	Off, 0–60 minutes	5
AUTO	Port auto-message enable	Y, N	Υ
FASTOP	Fast operate message enable	Y, N	Υ
TERTIM1	Length of time the channel must be idle before checking for the termination string	0–600 seconds	1
TERSTRN	Transparent communication termination string	Up to 9 characters	\005 which is CTRL + E or \006 which is CTRL + F
TERTIM2	Length of time the channel must be idle before accepting the termination string	0–600 seconds	0

Outgoing Control Points

Outgoing control points are used by the relay to send binary information to the SEL-2701. The SEL-2701 uses these bits for protocol-specific operations. For example, the SEL-2701 generates GOOSE messages using the outgoing control points. Access settings for outgoing control points using the **SET O n** command, where n is the port number where the SEL-2701 is installed.

Operation

Access Control

Access control is the process of deciding who can log in to the relay or SEL-2701. The relay limits functionality based on access level. Relay access levels are described in *Table 5.3*.

Table 5.3 SEL-400 Series Relay Access Levels

Access Level	Primary Operations Allowed
0	Log in to Access Level 1.
1	View data and settings and establish transparent connections.
В	Access Level 1 functions and control/monitor circuit breaker.
Р	Access Level 1 functions plus change Protection settings.
А	Access Level 1 functions plus change Automation settings.
0	Access Level 1 functions plus change Output settings.
2	Access Level 1 functions and change any settings.

The SEL-2701 user interface uses a subset of the relay access levels and passwords. When you establish a terminal connection directly to the SEL-2701 user interface, use the passwords programmed into the relay for Access Levels 0, 1, and 2. You can change a password using the relay **PASSWORD** command at Access Level 2. See your relay instruction manual for a full description of the **PASSWORD** command.

To log in as an FTP client, use the user name and corresponding password for that access level as shown in *Table 5.4*. You do not need to log in to start a Telnet session. After you connect, you can use the standard relay log-in process to change access levels.

Access Level	User Name	Password
0	QUI	None
1	ACC	User-definable
В	BAC	User-definable
Р	PAC	User-definable
А	AAC	User-definable
0	OAC	User-definable
2	2AC	User-definable

You can access the SEL-2701 user interface with a Telnet connection directly to the SEL-2701. Once you are connected to the SEL-2701 user interface, you can use the commands described in *Section 3: Settings and Commands*. SEL-2701 settings are not accessible through the SEL-2701 user interface. Set the SEL-2701 through the relay port settings for the port where the SEL-2701 is installed. Log in to the SEL-2701 access levels using the passwords set in the relay.

SEL-2701 User Interface

Control Points	The SEL-2701 and relay exchange binary control information via control points. The relay sends control points CCOUT1–CCOUTn to the SEL-2701 for outgoing protocol data. Incoming message data appear in the relay as incoming control points CCIN1–CCINn. The total number of CCOUT and CCIN points represented by the n in the previous references varies in different relay models.
	The SEL-2701 automatically uses the CCOUT1–CCOUTn control points in outgoing messages. For example, the SEL-2701 uses outgoing control points to generate GOOSE messages. Use the relay output settings to set these bits with SELOGIC control equations. Access these settings using the relay SET O command. See your relay instruction manual for a full description of the output logic settings.
	Both input and output control points are Relay Word bits. You can use these control points in any SELOGIC control equation in the relay including settings for protection and automation free-form logic. You can view the control point status using the relay TAR command.
Status Information	You can obtain status information on the SEL-2701 directly from the SEL-2701 and through the relay. Connect to the SEL-2701 or relay and use the STATUS command to view status messages and error codes. See <i>Section 6: Troubleshooting</i> for more information on collecting status information from the SEL-2701 and host.
SEL-2701 Alarm	The SEL-2701 alarm is automatically included in the SEL-400 series relay SALARM bit. Conditions that activate an SEL-2701 alarm also activate the SEL-400 series relay alarm light and output contact. For example, the SEL-2701 sets the alarm bit if you are unsuccessful when changing access levels with the ACC or 2AC command. The ACC and 2AC commands allow you three attempts to enter the password. If you enter an incorrect password on the third attempt, the SEL-2701 automatically sets the access level to 0 and activates the alarm bit.
Testing	Use the SEL-400 series relay command TEST DB to test communication with master devices by sending test values to the SEL-2701. The test values replace measured values without disturbing relay protection functions. For example, you can force the value of A-phase current in the database to a test value that you can observe in the UCA2 MMXU model. See the relay instruction manual for details of the TEST DB command.

Data Access

FTP

You can access the file structure and contents described in *Table 5.5* after logging in to the SEL-2701 as an FTP client. Files named for database regions contain the most current values at the time you request the files. You can write files to the SEL-400 series relay only if you are logged in at the appropriate level. See your relay instruction manual for more information on files in the SEL-400 series relays. Files associated with the SEL-2701 are in the SEL-2701 directory, as described in *Section 3: Settings and Commands*.

Root Directory	Subdirectory	File/Subdirectory Names
1	SEL-2701	DIAGNOSTICS.TXT
	DD01_DeviceID	REGION1.TXT
		REGION1.CAS
		•
		•
		•
		REGIONn.CAS
	DeviceID	SETTINGS subdirectory
		REPORTS subdirectory
		EVENTS subdirectory

Table 5.5 SEL-400 Series Relay File Structure

Telnet

You can establish two types of Telnet connections with the relay and the SEL-2701.

Telnet to the Relay

For the first connection type, use the TCP/IP host port number (see setting T1PNUM in *Table 3.6 on page 3.7 in Section 3: Settings and Commands*) to Telnet to the relay. This connection emulates the capabilities of a connection to the relay front port. All relay commands are available, including access level commands. Use the **QUIT** command to log out and end the Telnet session.

Telnet to the SEL-2701

For the second connection type, use the SEL-2701 TCP/IP port number (see setting T2PNUM in *Table 3.6 on page 3.7 in Section 3: Settings and Commands*) to Telnet directly to the SEL-2701. This is useful for operating the SEL-2701 user interface to collect diagnostic data and perform other operations with the SEL-2701. Use the QUIT command to log out and end the Telnet session.

UCA2

The SEL-2701 installed directly in an SEL-400 series relay provides a high performance UCA2 network interface that is designed for operation in a substation environment.

GOOSE

The SEL-2701 can generate and receive GOOSE messages. Acting as a single source and recipient of GOOSE messages, the SEL-2701 listens for and utilizes data in GOOSE messages from as many as eight GOOSE senders. For a description of SEL-2701 settings for outgoing GOOSE messages and to map incoming messages to specific control bits, see *Section 3*. The SEL-2701 communicates data from incoming GOOSE messages to the relay as incoming control points CCIN1–CCINn. The SEL-2701 automatically maps the outgoing control points CCOUT1–CCOUTn to the first User ST outgoing GOOSE message bits. The SEL-2701 does not send any data in the DNA portion of the GOOSE message (first 32 outgoing GOOSE bit pairs).

GOOSE information is sent as bit pairs that can represent four values. The SEL-2701 maps single bits to bit pairs as shown in *Table 5.6*.

GOOSE Bit Pair Value	CCINn or CCOUTn Action
00	Do Nothing
01	Clear
10	Set
11	Invalid–Not Used

Table 5.6 GOOSE Bit Pair Value Mapping

GOMSFE

Relay data is organized into GOMSFE bricks that reside within domains. The domains, bricks, and data available through the UCA2 GOMSFE interface are described in your relay instruction manual.

The GLOBE model contains special extensions that map target and analog data from the SEL-400 series relays. In the MX functional component of GLOBE, the SEL-2701 maps analog values from protection math variables and automation math variables as shown in *Table 5.7*.

Table 5.7 GLOBE MX Data

Item	Math Variables Mapped
ANALOG01-ANALOG32	PMV01–PMV32
ANALOG33-ANALOG64	AMV001–AMV032

The SEL-2701 maps 256 Relay Word bits to the items DWORD01B01– DWORD16B16 for complete details on mapping, see the relay instruction manual.

Remote Bits

You can control the SEL-400 series relay remote bits using the UCA2 GCTL brick. GCTL is a generic control brick that appears in each virtual device domain. Each GCTL brick contains 32 ST (Status) and 32 CO (Control) bits that are associated with RB1–RB32. You can control the remote bits by writing the 2-bit set (10) or clear (01) code to the appropriate CO bit.

This page intentionally left blank

Section 6 Troubleshooting

Introduction

This section describes how to determine the operating status of your SEL-2701 and how to troubleshoot SEL-2701 operation. This section contains information on the following topics:

- ► Determining the firmware ID of your SEL-2701
- ► Reading the SEL-2701 indicator LEDs
- ► Determining the status of your SEL-2701
- ► Interpreting error messages and codes
- ► Troubleshooting an SEL-2701 installation

SEL-2701 Firmware IDs

	Your SEL-2701 contains internal software known as firmware. This firmware consists of two programs, SELBOOT and the SEL-2701 executable. In order to determine if your SEL-2701 is compatible with your host, you will need to obtain the host and SEL-2701 firmware IDs. If you contact SEL for assistance with your SEL-2701, you may also be asked for the firmware IDs of your SEL-2701.		
	If you are unable to use the instructions below to co both the host and the SEL-2701, there may be an ins SEL-2701. See <i>Section 2: Installation</i> for more info installation and initial checkout.	tallation problem with the	
SEL-2030 Host	If your SEL-2701 is installed in an SEL-2030, follow the steps below to determine the firmware IDs of the SEL-2030 and the SEL-2701.		
	Step 1. Connect your PC to the SEL-2030. You can either use a Telnet session to the SEL-2030 or connect a C234A cable your PC serial port to the SEL-2030 front port.		
	Step 2. Start a terminal program. If you are network, use a Telnet application. If y connection, start a terminal application to the SEL-2030 successfully, you will contains an * character when you pre	you are using a serial port on. If you have connected Il see a prompt that	
	Step 3. Display the SEL-2030 firmware ID command. The response to the ID co ASCII and displays the firmware ID checksum value for each line. The SE firmware ID is the string "FID=SEL- SEL-2030 SELBOOT firmware ID is to "FID=SLBT-2030"	mmand is in compressed information, and a EL-2030 executable 2030," and the	
	Step 4. Display the SEL-2701 firmware ID SELBOOT ID n, where n is the port n SEL-2701 is installed. The response the compressed ASCII and displays the f and a checksum value for each line. The firmware ID is the string "FID=SEL- SEL-2701 SELBOOT firmware ID is the "FID=SLBT-2701"	umber where the o the ID command is in irmware ID information, The SEL-2030 executable 2701," and the	
SEL-400 Series Relay Host	If your SEL-2701 is installed in an SEL-400 series relay, follow the steps below to determine the firmware IDs of the relay and the SEL-2701.		
	Step 1. Connect your PC to the front port either use a Telnet session to the SEL connect a C234A cable from your PC SEL-400 series relay front port.	-400 series relay or	
	Step 2. Start a terminal program. If you are network, use a Telnet application. If y connection, start a terminal application to the relay successfully, you will see includes an = character when you pre-	you are using a serial port on. If you have connected a relay prompt that	

- Step 3. Log in to Access Level 1. Use the relay ACC command and enter the password if prompted.
- Step 4. **Display the relay and SEL-2701 firmware IDs.** Enter the relay **VERSION** command. The relay executable ID is listed after "FID=." The relay SELBOOT ID is listed after "BFID=." The SEL-2701 information is listed under the "Communications Card" heading.

SEL-2701 Indicator LEDs

There are four indicator LEDs on the SEL-2701. The LEDs and panel label for the dual twisted-pair SEL-2701 are shown in *Figure 6.1*. The operation of each LED is explained in *Table 6.1*.

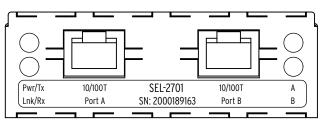


Figure 6.1 Example SEL-2701 Panel.

Table 6.1 SEL-2701 LED Indicators

Location	Color	Label	Operation
Upper left	Red	Pwr/Tx	On when card has power and is not transmitting. Flashes off when transmitting Ethernet messages.
Lower left	Green	Lnk/Rx	On when a good link is detected on the active port. Flashes off when receiving Ethernet messages.
Upper right	Green	А	On if Port A is active.
Lower right	Green	В	On if Port B is active.

The Pwr/Tx indicator flashes off when the SEL-2701 sends out an Ethernet message. The Pwr/Tx indicator is off continuously for extended periods when there is a high outgoing message volume. The Pwr/Tx indicator is on continuously if the host has power, the card is properly installed, and either no Ethernet medium is connected or the port selection setting NETPORT is set to D (disabled).

The Lnk/Rx indicator flashes off for all Ethernet traffic visible to the SEL-2701 regardless of whether the messages are intended for the SEL-2701. During periods of high network traffic volume, the Lnk/Rx indicator is off continuously for sustained periods.

The A and B indicators show which network port is active. If the primary port setting, NETPORT, is set to D, both indicators will be off. If the FAILOVR enable setting is set to No, the A and B indicators reflect the port selected in NETPORT. If FAILOVER is set to Yes, the indicator displays the port selected by the automatic fail-over operation.

SEL-2701 Status

Direct	SEL-2701 or status of your and for verify	In status information about the SEL-2701 from either the the host. Use the instructions below to determine the operational SEL-2701. This information will be helpful for troubleshooting ing proper operation. n status information from the SEL-2701 by establishing a Telnet	
From SEL-2701	session from another node on the Ethernet network. This is useful for collecting detailed diagnostic information from the SEL-2701. Follow the steps below to collect status information from the SEL-2701 directly.		
	Step 1.	Establish a Telnet connection. For the connection parameters enter the IP set in the SEL-2701 setting IPADDR (the default is 192.92.92.92) and the port number set in T2PNUM. See <i>Section 3: Settings and Commands</i> for more information about SEL-2701 settings. If you are connected to the SEL-2701, you will see a "#" character in the prompt after you press ENTER.	
	Step 2.	Log in to Access Level 1. Enter the SEL-2701 ACC command and enter the password if prompted. The SEL-2701 uses the Access Level 1 password for the host. When you are at Access Level 1, the prompt will become "#>."	
	Step 3.	Display status information. Enter the SEL-2701 STA command. The response to the status command shows the hardware status of the SEL-2701, network port operation status, and network statistics. Record or print the status information for later reference.	
From Host	You can use the host to collect some basic information about the SEL-2701. This is useful for determining if the host has properly recognized the card and for collecting error messages and codes from the SEL-2701. See <i>Error Messages and Codes on page 6.6</i> for a detailed explanation of the codes and messages that may be displayed.		
	Step 1.	Connect your PC serial port to the host front port. Use a cable number C234A or equivalent.	
	Step 2.	-	
	Step 3.	Log in to Access Level 1. Enter the SEL host ACC command and enter the password if prompted. When you are at Access Level 1, the prompt will contain a single ">" character ("*>" or "=>").	
	Step 4.	Display status information using the host status command. The response to the status command shows the hardware status and diagnostic information for the host. The error code and any messages from the SEL-2701 are also reported. If your SEL-2701 and host are operating normally, the status reported will be "0h" for the error code and "NORMAL" for the error message. If no status for the SEL-2701 is displayed, the host has failed to recognize and properly initialize the card. In an SEL-2030 the status is reported by port, with ports 17 and 18 displaying the communication card slot status. In an SEL-400 series relay, the status will be reported under "Communi- cations Card" heading that only appears if the relay has recognized an installed card.	

Error Messages and Codes

The SEL-2701 reports both an error code and error message to the host. The error code is a 16-bit register with an assigned error for each bit. While the error code contains simultaneous reporting of all error conditions, the reported string shows the most severe error. The errors are listed in *Table 6.2* from most to least severe, starting with Bit 0. For example, if a RAM check error and a settings failure are detected, the error code will be 0009h and the error message will be "RAM." If there are no errors, the error code is 0h and the error message is "NORMAL."

Bit	Test	Error Message
0	RAM check	RAM
1	Executable code flash check	EXE Code
2	SELBOOT code flash check	SLBT Code
3	Settings check	Settings
4	Executable storage block	Storage
5	MAC address	MAC Addr
6	Shared memory interface failure	SMem Intrf
7	Host commanded read/write test results	R/W Test
8-15	Reserved for future use	

Table 6.2 Error Codes and Messages

Troubleshooting Procedures

Troubleshooting procedures for common problems are listed in *Table 6.3*. The table lists each symptom and the possible causes and corresponding diagnosis/ solutions. Relevant SEL-2701 settings are listed in all capitals. See *Section 3: Settings and Commands* for details of the SEL-2701 settings. Refer to the host-specific section for more information on operation and settings in your host.

Table 6.3	Troubleshootin	g Proce	dures (Sheet 1 of 2)

Possible Cause	Diagnosis/Solution		
SEL-2701 Does Not Appea	r in Host Status Report		
Card not installed properly	If the card did not initialize properly and begin communi- cation with the host, it will not be displayed. Perform <i>Ini- tial Checkout on page 2.4 in Section 2: Installation</i> . Reinstall the card if necessary.		
Pwr/Tx LED Off Continuou	sly		
No power to host	Verify that the host has power (check enabled light or press LED Test).		
High volume of outgoing Ethernet messages	This situation may occur during normal operation. Tempo- rarily disconnect the Ethernet network cables or change NETPORT setting to D and verify that power indicator LED stays on continuously. If LED does not return to On state, check other possible causes.		
Card not installed properly	Perform Initial Checkout on page 2.4 in Section 2: Instal- lation. Reinstall the card if necessary.		
Lnk/Rx Off Continuously			
No power to host	Verify that the host has power (check enabled light or press LED Test).		
High volume of Ethernet messages on network	This situation may occur during normal operation. Tempo- rarily disconnect the Ethernet network cables or change NETPORT setting to D and verify that power indicator LED stays on continuously. If LED does not return to On state, check other possible causes.		
All network ports disabled	Verify that either the A or B network port indicator on the SEL-2701 is on. Change NETPORT setting enable an Ethernet network port.		
Not properly connected to Ethernet network	Verify connections to the Ethernet network. Verify that the Ethernet network is connected to either the A or B network port indicated by the SEL-2701 LEDs and that the medium/ data transmission speeds are correct.		
Card not installed properly	Perform Initial Checkout on page 2.4 in Section 2: Instal- lation. Reinstall the card if necessary.		
Cannot Establish Telnet Connection to Host or SEL-2701			
Not properly connected to Ethernet network	Verify connections to the Ethernet network. Verify that the Ethernet network is connected to either the A or B network port indicated by the SEL-2701 LEDs and that the medium/ data transmission speeds are correct. Check Pwr/Tx and Lnk/Rx LEDs.		
Using incorrect port num- ber or IP address	Verify that you are using the correct Telnet port number (T1PNUM to host and T2PNUM to SEL-2701) and IP address (IPADDR) in your Telnet application.		

Possible Cause	Diagnosis/Solution	
Virtual terminal sessions disabled in host	Check host settings to verify that the virtual terminal ses- sions are enabled. For example, check NOCONN setting on the SEL-2030.	
Incorrect subnet mask set- ting (SUBNETM)	Verify that devices you are connecting to are set with the proper subnet mask. Verify that the IP address of both devices places them in the same subnet.	
Cannot Log In as FTP Clie	nt	
Not properly connected to Ethernet network	Verify connections to the Ethernet network. Verify that the Ethernet network is connected to either the A or B network port indicated by the SEL-2701 LEDs and that the medium/ data transmission speeds are correct. Check Pwr/Tx and Lnk/Rx LEDs.	
Using incorrect IP address	Verify that you are using the correct IP address (IPADDR).	
FTP connections disabled	Verify the SEL-2701 FTPSERV setting.	
Incorrect subnet mask set- ting (SUBNETM)	Verify that devices you are connecting are set with the proper subnet mask. Verify that the IP address of both devices places them in the same subnet.	
Cannot Browse With MMS	Browser	
Not properly connected to Ethernet network	Verify connections to the Ethernet network. Verify that the Ethernet network is connected to either the A or B network port indicated by the SEL-2701 LEDs and that the medium/ data transmission speeds are correct. Check Pwr/Tx and Lnk/Rx LEDs.	
Using incorrect OSI net- work NSAP address	Verify that you are using the correct NSAP address (NSAP).	
UCA2 disabled	Verify the SEL-2701 ENUCA setting.	
Does Not React to Incomi	ng GOOSE Messages	
Not properly connected to Ethernet network	Verify connections to the Ethernet network. Verify that the Ethernet network is connected to either the A or B network port indicated by the SEL-2701 LEDs and that the medium/ data transmission speeds are correct. Check Pwr/Tx and Lnk/Rx LEDs.	
GOOSE message sender not detected by SEL-2701	Verify GOOSE monitor text ID setting (GOSIEDn). Con- nect to the SEL-2701 user interface and use the SEL-2701 GOOSE command to determine if a GOOSE sender was detected. Use the GOOSE R command if it is necessary to detect active GOOSE senders.	

Table 6.3	Troubleshooting	Procedures	(Sheet 2 of 2)
Tuble 0.5	noubleanoothig	1 I I VCEUUIE3	

Appendix A Firmware Versions

Firmware Versions

This manual covers SEL-2701 Ethernet Processors containing firmware bearing the following firmware version numbers (most recent firmware listed at top):

Table A.1 Firmware Versions

Version No.	Description of Changes
SEL-2701-R102-V0-Z000000-D20010719 SLBT-2701-R101-V0-Z000000-D20010425	Corrected issue related to rapid incoming GOOSE messages. Eliminated character loss in Virtual Terminal sessions. Improved handling of Telnet Client
	attempts to disable unsupported Telnet Options. Changed for compatibility with
	SEL-421 Relay modifications. Allowed Telnet connection for TCP/ IP port numbers greater than 32,767.
SEL-2701-R100-V0-Z000000-D20010302 SLBT-2701-R101-V0-Z000000-D20010425	Corrected firmware load issue.
SEL-2701-R100-V0-Z000000-D20010302 SLBT-2701-R100-V0-Z000000-D20010302	Original Product Firmware Release.

Instructions for determining the firmware version of your SEL-2701 and host are in *Section 6: Troubleshooting*.

SEL-2030

The SEL-2701 firmware versions with compatible SEL-2030 firmware versions are listed in *Table A.2*.

Table A.2 SEL-2030 Firmware Compatibility

SEL-2701 Version No.	Compatible SEL-2030 Versions
SEL-2701-R102-V0-Z000000-D20010719	SEL-2030-R114-V0-Z000000-D20010619
SLBT-2701-R101-V0-Z000000-D20010425	SLBT-2030-R103-V0-Z000000-D20010122
SEL-2701-R100-V0-Z000000-D20010302	SEL-2030-R113-V0-Z000000-D20010122
SLBT-2701-R101-V0-Z000000-D20010425	SLBT-2030-R103-V0-Z000000-D20010122
SEL-2701-R100-V0-Z000000-D20010302	SEL-2030-R113-V0-Z000000-D20010122
SLBT-2701-R100-V0-Z000000-D20010302	SLBT-2030-R103-V0-Z000000-D20010122

SEL-421 Relay

The SEL-2701 firmware versions with compatible SEL-421 firmware versions are listed in *Table A.3*.

Table A.3 SEL-421 Relay Firmware Compatibility

SEL-2701 Version No.	Compatible SEL-421 Relay Versions		
SEL-2701-R102-V0-Z000000-D20010719	SEL-421-R100-V0-Z001001-D2001xxxx		
SLBT-2701-R101-V0-Z000000-D20010425	SLBT-4xx-R100-V0-Z001001-D2001xxxx		

This page intentionally left blank

Appendix B UCA2 GOMSFE Models

Introduction

The SEL-2701 presents data in the host as a series of GOMSFE models (bricks). GOMSFE model information is listed in this appendix in a series of tables organized by domains. The SEL-2701 automatically populates these models using the data in the host. This appendix contains information on the following topics:

- ► Domains for SEL-2030 hosts
- ► GOMSFE models in SEL-2030 host domains
- ► Rules for populating GOMSFE models

Domains and models for SEL-400 series relay hosts vary based on the specific relay model. The domains and models are shown in the instruction manual for your SEL-400 series relay.

GOMSFE Tables

The GOMSFE model table column headings are defined in *Table B.1*. Some items in the Decode Method column contain reference to special translation rules listed in *Table B.18 on page B.29*.

Table B.1 GOMSFE Model Table Column Definitions

Column Label	Definition
FC	Functional Component
Name	Name of element or compound element-names of elements within compound elements indented
r/w	Read/write permission
Description	Description of data as implemented by SEL
m/o	Mandatory/optional m-label is present, data are shown if available, value is null if not available o-label is present only if data are avail- able in the host
Decode Method	Value or label used to retrieve information in device database or reference to <i>Table B.18</i>

The Decode Method column contains rules for retrieving information from the host database. The SEL-2701 uses labels to retrieve database values within the specified region. For SEL devices connected to an SEL-2030, the data are typically in data regions (Meter, Target, etc.). Use "20" messages to configure the SEL-2030 to automatically collect, store, and label data in data regions. For example, if the decode method is METER:VA then the value retrieved is A-phase voltage, labeled VA, in the Meter region. For non-SEL devices, the region is usually the User region. Use SET M equations to move and label data within the User region.

Some items have more than one decode method. If there is more than one decode method, they are listed in priority order. In some cases, additional information about the decode method is listed in *Special Translation Rules on page B.29*. Look up the rule number (for example #3) in *Table B.18* for more information. Some information has been hard coded and does not rely on a data lookup. For example, the protocol value Pro in the DI model (listed in *Table B.4 on page B.4*) always contains the value 11.

SEL-2030 Domains

An SEL-2030 contains the domains shown in *Table B.2*. The SEL-2701 uses each port database to create a virtual device with the domain name DDaa*name*. The SEL-2701 determines the *name* portion of the domain name using the rules described in *Section 3: Settings and Commands*.

Domain	Description
	,
LN0	Logical Device 0 domain containing SEL-2030 information
DD01name	Virtual Device 1 domain containing data from Port 1 database
DD02name	Virtual Device 2 domain containing data from Port 2 database
DD03name	Virtual Device 3 domain containing data from Port 3 database
•	•
•	•
•	•
DD17name	Virtual Device 17 domain containing information on Port 17 protocol card and from database
DD18name	Virtual Device 18 domain containing information on Port 18 protocol card and Port 18 database

Table B.2 SEL-2030 Domains

SEL-2030 Domain-LNO

Each device on a UCA2 network has a Logical Device 0 domain, LN0. The models in this domain contain data specific to the SEL-2030. Data elements for each model type are listed in *Table B.4* and *Table B.5 on page B.5*. The models in the LN0 domain are listed in *Table B.3*.

Table B.3 Models in LNO Domain

Model	Description
DI	Device identification data
GLOBE	Basic device and GOOSE information

lable	adie B.4 Device ID Model (DI)-SEL-2030						
FC	Name	r/w	Description	m/o	Decode Method		
DI		r	Device information				
	Name	r	Relay ID	m	GLOBAL:HOST_ID		
	VndID			m			
	Vnd	r	Vendor	m	"SEL"		
	Mdl	r	Device model number ^a	m	GLOBAL:FID #1		
	SerNum	r	Device serial number	m	GLOBAL:SER_NUM		
	SftRev	r	Device software revision ^b	m	GLOBAL:FID #2		
	BootRev ^c	r	Boot code software revision	m	GLOBAL:BFID #2		
	FID ^c	r	Device firmware ID string	m	GLOBAL:FID		
	BootFID ^c	r	Device boot code firmware ID string	m	GLOBAL:BFID		
	CommID						
	CommAdr	r	NSAP	m	#3		
	CommRev	r	SEL-2701 firmware revision ^b	m	#4		
	SftRev ^c	r	SEL-2701 firmware revision	m	#4		
	BootRevc	r	SEL-2701 SELBOOT revision	m	#5		
	Pro	r	Protocol (MMS + CASM)	m	"11"		
	Vndc	r	Vendor	m	"SEL"		
	Mdlc	r	Model	m	"SEL-2701"		
	SerNum ^c	r	SEL-2701 serial number	m	#7		
	FID ^c	r	SEL-2701 firmware ID	m	#8		
	BootFIDc	r	SEL-2701 SELBOOT code	m	#9		

Table B.4 Device ID Model (DI)-SEL-2030

^a Part name and V portion of the FID

^b R portion of the FID

^c Extension to the GOMSFE Device ID component

firmware ID

FC	Name	r/w	Description	m/o	Decode Method
ST					
	ModeDS	r	Device state	m	#10
	b2	r	Test, offline, available, unhealthy	m	
	LocRemDS	r	Remote/local state	m	"2"
	b2	r	0-invalid, 1-local, 2-remote	m	
	AuxIn1–AuxIn16	r	State of physical inputs	0	GLOBAL:ELEMENTS #11
SP					
	PreSetDNA	rw	Preset value for DNA outputs	m	#12
	ForDNA	rw	Force value for DNA inputs	m	#13
	DefDNA	rw	Default value for DNA inputs	m	#14
	PreSetUserSTa	rw	Preset value for UserSt outputs	m	#25
	ForUserST ^a	rw	Force value for UserSt inputs	m	#26
	DefUserST ^a	rw	Default value for UserSt inputs	m	#27
CO					
	GOOSERsa	rw	Force GOOSE addressing re-acquisition	m	#18
CF					
	ClockTOD	rw	Current date and time–use of UCA time sync is pre- ferred for setting date and time	m	#15
	SelOutDNA	rw	Selection for each DNA output	m	#16
	SelInDNA	rw	Selection for each DNA input	m	#17
	SelOutUserSta	rw	Selection for each UserSt output	m	#28
	SelInUserSt ^a	rw	Selection for each UserSt input	m	#29

Table B.5 G	Globe Model	(GLOBE)-9	SEL-2030
-------------	-------------	-----------	----------

SEL Relay Virtual Device

The SEL-2701 displays 16 virtual device domains that represent data collected from the 16 SEL-2030 serial ports. The virtual device domain, associated with a port connected to an SEL relay, contains the models listed in *Table B.6*. The required data collection "20" message format for each brick is listed in *Table B.6*. Entries listed as "None" are automatic and do not require additional configuration. The details of each model in this domain are shown in *Table B.7* through *Table B.11 on page B.10*.

Model	Description	Required "20" Message Format
DI	Relay ID information and SEL-2701 information	None
FAULT1– FAULT20	Relay fault history records ^a	20HISTORY
GCTL	Control of remote bits (RB1-RB16) for port	20TARGET (for status display only)
GLOBE	Basic device information	None
MMXU	Relay metering and measurement data	20METER

Table B.6 Models in Virtual Device Domain for SEL Relays

^a The SEL-2701 automatically generates the models FAULT1-FAULT20. Each instance of the FAULT model represents a row in the relay history report. The most recent history record is in FAULT1. If the relay does not store 20 records or if the fault history is reset, the FAULT models corresponding to empty history records will contain default data.

Table B.7	Device ID Model (DI)-
SEL Relay	Connected to an SEL-2030 (Sheet 1 of 2)

FC	Name	r/w	Description	m/o	Decode Method
DI		r	Device information		
	Name	r	Relay ID	m	LOCAL:PORTID
	Class	r		m	"Protection Relay"
	VndID			m	
	Vnd	r	Vendor	m	"SEL"
	Mdl	r	Device model number ^a	m	LOCAL:FID #1
	SerNum	r	Device serial number	m	LOCAL:SER_NUM USER:SER_NUM #24
	SftRev	r	Device software revision ^b	m	LOCAL:FID #2
	BootRev ^c	r	Boot code software revision	0	LOCAL:BFID #2
	FID ^c	r	Device firmware ID string	0	LOCAL:FID
	BootFID ^c	r	Device boot code firmware ID string	0	LOCAL:BFID
	PartNum ^c	r	Device part number	0	LOCAL:PART_NUM
	CfgNum ^c	r	Device configuration code	0	LOCAL:CONFIG
	Cfg2Num ^c	r	Device special configuration code	0	LOCAL:SPECIAL

FC	Name	r/w	Description	m/o	Decode Method
	CommID			m ^d	
	CommAdr	r	NSAP	m	#3
	CommRev	r	SEL-2701 firmware revision ^b	m	#4
	SftRev ^c	r	SEL-2701 firmware revision	m	#4
	BootRev ^c	r	SEL-2701 SELBOOT revision	m	#5
	Pro	r	Protocol (MMS + CASM)	m	"11"
	Med	r	Physical medium	0	#6
	Vnd ^c	r	Vendor	m	"SEL"
	Mdlc	r	Model	m	"SEL-2701"
	SerNum ^c	r	SEL-2701 serial number	m	#7
	FID ^c	r	SEL-2701 firmware ID	m	#8
	BootFID ^c	r	SEL-2701 SELBOOT code firmware ID	m	#9

 Table B.7
 Device ID Model (DI)

 SEL Relay Connected to an SEL-2030 (Sheet 2 of 2)

^a Part name and V portion of the FID

^b R portion of the FID

c Extension to the GOMSFE Device ID component

^d Same as the CommID of the SEL-2030

 Table B.8
 Fault Identification Model (FAULT)

 SEL Relay Connected to an SEL-2030 (Sheet 1 of 2)

FC	Name	r/w	Description	m/o	Decode Method
MX					
	FltMagA		Magnitude of fault currents	0	
	PhsAf	r	A-phase fault current	0	HISTORY:IA
	PhsBf	r	B-phase fault current	0	HISTORY:IB
	PhsCf	r	C-phase fault current	0	HISTORY:IC
	Neutf	r	Neutral fault current	0	HISTORY:IN
	q	r	Quality of data	0	#21
	FltMagA1		Magnitude of fault currents	0	
	PhsAf	r	A-phase fault current	0	HISTORY:IA1
	PhsBf	r	B-phase fault current	0	HISTORY:IB1
	PhsCf	r	C-phase fault current	0	HISTORY:IC1
	Neutf	r	Neutral fault current	0	HISTORY:IN1
	q	r	Quality of data	0	#21
	FltMagA2		Magnitude of fault currents	0	
	PhsAf	r	A-phase fault current	0	HISTORY:IA2
	PhsBf	r	B-phase fault current	0	HISTORY:IB2
	PhsCf	r	C-phase fault current	0	HISTORY:IC2
	Neutf	r	Neutral fault current	0	HISTORY:IN2
	q	r	Quality of data	0	#21

FC	Name	r/w	Description	m/o	Decode Method
	FltMagA3		Magnitude of fault currents	0	
	PhsAf	r	A-phase fault current	0	HISTORY:IA3
	PhsBf	r	B-phase fault current	0	HISTORY:IB3
	PhsCf	r	C-phase fault current	0	HISTORY:IC3
	Neutf	r	Neutral fault current	0	HISTORY:IN3
	q	r	Quality of data	0	#21
	FltMagA4		Magnitude of fault currents	0	
	PhsAf	r	A-phase fault current	0	HISTORY:IA4
	PhsBf	r	B-phase fault current	0	HISTORY:IB4
	PhsCf	r	C-phase fault current	0	HISTORY:IC4
	Neutf	r	Neutral fault current	0	HISTORY:IN4
	q	r	Quality of data	0	#21
	FltMag		Magnitude of fault current	0	
	f	r		0	HISTORY:CURR
	q	r	Quality of data	0	#21
	FltLoc		Location of fault	0	
	f	r		0	HISTORY:LOC HISTORY:FAULT_LOC
	q	r	Quality of data	0	#21
	FltTim	r	Time and date of fault	0	HISTORY:MONTH #30
	FltDur	r	Fault duration in cycles	0	HISTORY:DURR
	FltFrq	r	Frequency at fault	0	HISTORY:FREQ
ST					
	FltTar	r	Relay targets at time of fault	0	HISTORY:TARGET HISTORY:TARGETS #31
	FltTyp	r	Fault type for common fault types	0	HISTORY:TYPE HISTORY:EVENT #32
	FltTyp2	r	Other fault types	0	HISTORY:TYPE HISTORY:EVENT #33
	FltSht	r	Shot counter at fault	0	HISTORY:SHOT
	FltSG	r	Settings group number at fault	0	HISTORY:GROUP

Table B.8Fault Identification Model (FAULT)-SEL Relay Connected to an SEL-2030 (Sheet 2 of 2)

FC	Name	r/w	Description	m/o	Decode Method
ST					
	OD1-OD16		State last written to this control point	m	RB1-RB16
	b2	r	Status of bit	m	#19
CO					
	OD1-OD16		Control bit	m	RB1-RB16
_	OperDev	rw	Control bit (01 to clear; 10 to set)	m	#20

FC	Name	r/w	Description	m/o	Decode Method
MX					
	ANALOG01– ANALOG64	r	Analog values	0	USER:ANALOG01– USER:ANALOG64
ST					
	ModeDS	r	Device state	m	
	b2	r	Test, offline, available, unhealthy	m	#10
	LocRemDS	r	Remote/local state	m	
	b2	r	0-invalid, 1-local, 2- remote	m	"2"
	CommSt ^a	r	Communications status		
	b2	r	0-invalid, 1-unavail- able, 2-available	m	#34
	DWORD01B01- DWORD01B16				
	b1	r	Binary value	0	USER:DWORD01:0- USER:DWORD01:1:
	DWORD02B01- DWORD02B16				
	b1	r	Binary value	0	USER:DWORD02:0- USER:DWORD02:15
	DWORD03B01- DWORD03B16				
	b1	r	Binary value	0	USER:DWORD03:0- USER:DWORD03:15
	•				
	•				
	DWORD16B01- DWORD16B16				
	b1	r	Binary value	0	USER:DWORD16:0- USER:DWORD16:1:

Table B 10	Globe Model (GLOBE)-SEL Relay Connected to an SEL-2030
	Gibbe Model (GLOBE) SEE Kelay connected to an SEE 2050

a Extension to the GOMSFE-specified GLOBE brick

FC	Name	r/w	Description	m/o	Decode Method
MX			Measurement		
	v		Three-phase voltage	о	
	PhsAf	r	A-phase voltage	0	METER:VA METER:va
	PhsBf	r	B-phase voltage	0	METER:VB METER:vb
	PhsCf	r	C-phase voltage	0	METER:VC METER:vc
	Neutf	r	Neutral voltage	0	METER:VN
	q	r	Quality of data	0	#21
	V1		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	METER:VA1 METER:VAX
	PhsBf	r	B-phase voltage	0	METER:VB1 METER:VBX
	PhsCf	r	C-phase voltage	0	METER:VC1 METER:VCX
	Neutf	r	Neutral voltage	0	METER:VN1
	q	r	Quality of data	0	#21
	V2		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	METER:VA2 METER:VAY
	PhsBf	r	B-phase voltage	0	METER:VB2 METER:VBY
	PhsCf	r	C-phase voltage	0	METER:VC2 METER:VCY
	Neutf	r	Neutral voltage	0	METER:VN2
	q	r	Quality of data	0	#21
	V3		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	METER:VA3
	PhsBf	r	B-phase voltage	0	METER:VB3
	PhsCf	r	C-phase voltage	0	METER:VC3
	Neutf	r	Neutral voltage	0	METER:VN3
	q	r	Quality of data	0	#21
	V4		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	METER:VA4
	PhsBf	r	B-phase voltage	0	METER:VB4
	PhsCf	r	C-phase voltage	0	METER:VC4
	Neutf	r	Neutral voltage	0	METER:VN4
	q	r	Quality of data	0	#21

 Table B.11
 Polyphase Measurement Unit

 Model (MMXU)-SEL Relay Connected to an SEL-2030 (Sheet 1 of 7)

Name	r/w	Description	m/o	Decode Method
Vseq ^a		Sequence voltages	0	
Posif	r	Positive-sequence voltage	0	METER:V1
Negf	r	Negative-sequence voltage	0	METER:V2 METER:3V2 #22
Zerof	r	Zero-sequence voltage	0	METER:V0 METER:3V0 #22
q	r	Quality of data	0	#21
Vseq1 ^a		Sequence voltages	0	
Posif	r	Positive-sequence voltage	0	METER:V1_1
Negf	r	Negative-sequence voltage	0	METER:V2_1
Zerof	r	Zero-sequence voltage	0	METER:V0_1
q	r	Quality of data	о	#21
Vseq2 ^a		Sequence voltages	0	
Posif	r	Positive-sequence voltage	0	METER:V1_2
Negf	r	Negative-sequence voltage	0	METER:V2_2
Zerof	r	Zero-sequence voltage	0	METER:V0_2
q	r	Quality of data	о	#21
Vseq3 ^a		Sequence voltages	0	
Posif	r	Positive-sequence voltage	о	METER:V1_3
Negf	r	Negative-sequence voltage	0	METER:V2_3
Zerof	r	Zero-sequence voltage	о	METER:V0_3
q	r	Quality of data	о	#21
Vseq4 ^a		Sequence voltages	0	
Posif	r	Positive-sequence voltage	о	METER:V1_4
Negf	r	Negative-sequence voltage	0	METER:V2_4
Zerof	r	Zero-sequence voltage	0	METER:V0_4
q	r	Quality of data	0	#21
AuxVa		Auxiliary voltages	0	
f	r		0	METER:VPL
q	r	Quality of data	0	#21
PPV		Delta voltages	0	
PhsABf	r	AB voltage	0	METER:VAB
PhsBCf	r	BC voltage	0	METER:VBC
PhsCAf	r	CA voltage	0	METER:VCA
q	r	Quality of data	0	#21
PPV1		Delta voltages	0	
PhsABf	r	AB voltage	0	METER:VAB1
PhsBCf	r	BC voltage	0	METER:VBC1
PhsCAf	r	CA voltage	0	METER:VCA1
q	r	Quality of data	0	

 Table B.11
 Polyphase Measurement Unit

 Model (MMXU)-SEL Relay Connected to an SEL-2030 (Sheet 2 of 7)

:	Name	r/w	Description	m/o	Decode Method
	PPV2		Delta voltages	0	
	PhsABf	r	AB voltage	0	METER:VAB2
	PhsBCf	r	BC voltage	0	METER:VBC2
	PhsCAf	r	CA voltage	0	METER:VCA2
	q	r	Quality of data	0	#21
	PPV3		Delta voltages	0	
	PhsABf	r	AB voltage	0	METER:VAB3
	PhsBCf	r	BC voltage	0	METER:VBC3
	PhsCAf	r	CA voltage	0	METER:VCA3
	q	r	Quality of data	0	#21
	PPV4		Delta voltages	0	
	PhsABf	r	AB voltage	0	METER:VAB4
	PhsBCf	r	BC voltage	0	METER:VBC4
	PhsCAf	r	CA voltage	0	METER:VCA4
	q	r	Quality of data	0	#21
	А		Three-phase currents	0	
	PhsAf	r	A-phase current	0	METER:IA METER:ia
	PhsBf	r	B-phase current	0	METER:IB METER:ib
	PhsCf	r	C-phase current	0	METER:IC METER:ic
	Neutf	r	Neutral current	0	METER:IR
	q	r	Quality of data	0	#21
	A1		Three-phase currents	0	
	PhsAf	r	A-phase current	0	METER:IA1 METER:IAW1 METER:IAX
	PhsBf	r	B-phase current	0	METER:IB1 METER:IBW1 METER:IBX
	PhsCf	r	C-phase current	0	METER:IC1 METER:ICW1 METER:ICX
	Neutf	r	Neutral current	0	METER:IR1 METER:IRX
	q	r	Quality of data	0	#21

 Table B.11
 Polyphase Measurement Unit

 Model (MMXU)-SEL Relay Connected to an SEL-2030 (Sheet 3 of 7)

C	Name	r/w	Description	m/o	Decode Method
	A2		Three-phase currents	0	
	PhsAf	r	A-phase current	0	METER:IA2 METER:IAW2 METER:IAY
	PhsBf	r	B-phase current	0	METER:IB2 METER:IBW2 METER:IBY
	PhsCf	r	C-phase current	0	METER:IC2 METER:ICW2 METER:ICY
	Neutf	r	Neutral current	0	METER:IR2 METER:IRY
	q	r	Quality of data	0	#21
	A3		Three-phase currents	0	
	PhsAf	r	A-phase current	0	METER:IA3 METER:IAW3
	PhsBf	r	B-phase current	0	METER:IB3 METER:IBW3
	PhsCf	r	C-phase current	0	METER:IC3 METER:ICW3
	Neutf	r	Neutral current	0	METER:IR3
	q	r	Quality of data	0	#21
	A4		Three-phase currents	0	
	PhsAf	r	A-phase current	0	METER:IA4 METER:IAW4
	PhsBf	r	B-phase current	0	METER:IB4 METER:IBW4
	PhsCf	r	C-phase current	0	METER:IC4 METER:ICW4
	Neutf	r	Neutral current	0	METER:IR4
	q	r	Quality of data	0	#21
	Aseq ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	METER:I1
	Negf	r	Negative-sequence current	0	METER:I2 METER:3I2 #22
	Zerof	r	Zero-sequence current	0	METER:I0
	q	r	Quality of data	0	#21
	Aseq1 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	METER:I1_1
	Negf	r	Negative-sequence current	0	METER:I2_1 METER:3I2X #22
	Zerof	r	Zero-sequence current	0	METER:I0_1
	q	r	Quality of data	0	#21

 Table B.11
 Polyphase Measurement Unit

 Model (MMXU)-SEL Relay Connected to an SEL-2030 (Sheet 4 of 7)

N	lame	r/w	Description	m/o	Decode Method
А	seq2 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	METER:I1_2
	Negf	r	Negative-sequence current	0	METER:12_2 METER:312Y #22
	Zerof	r	Zero-sequence current	0	METER:I0_2
	q	r	Quality of data	о	#21
А	seq3 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	METER:I1_3
	Negf	r	Negative-sequence current	о	METER:I2_3
	Zerof	r	Zero-sequence current	0	METER:I0_3
	q	r	Quality of data	о	#21
А	seq4 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	METER:I1_4
	Negf	r	Negative-sequence current	о	METER:I2_4
	Zerof	r	Zero-sequence current	о	METER:I0_4
	q	r	Quality of data	о	#21
А	uxA1a		Auxiliary currents	0	
	f	r		0	METER:IP METER:IPOL
	q	r	Quality of data	о	#21
W	V		Per-phase power	0	
	PhsAf	r	A-phase power	о	METER:PA
	PhsBf	r	B-phase power	о	METER:PB
	PhsCf	r	C-phase power	о	METER:PC
	q	r	Quality of data	0	#21
W	V1		Per-phase power	0	
	PhsAf	r	A-phase power	0	METER:PA1
	PhsBf	r	B-phase power	0	METER:PB1
	PhsCf	r	C-phase power	0	METER:PC1
	q	r	Quality of data	0	#21
W	V2		Per-phase power	0	
	PhsAf	r	A-phase power	0	METER:PA2
	PhsBf	r	B-phase power	0	METER:PB2
	PhsCf	r	C-phase power	0	METER:PC2
	q	r	Quality of data	0	#21
W	V3		Per-phase power	0	
	PhsAf	r	A-phase power	0	METER:PA3
	PhsBf	r	B-phase power	0	METER:PB3
	PhsCf	r	C-phase power	0	METER:PC3
	q	r	Quality of data	0	#21

 Table B.11
 Polyphase Measurement Unit

 Model (MMXU)-SEL Relay Connected to an SEL-2030 (Sheet 5 of 7)

	Name	r/w	Description	m/o	Decode Method
	W4		Per-phase power	0	
	PhsAf	r	A-phase power	о	METER:PA4
	PhsBf	r	B-phase power	о	METER:PB4
	PhsCf	r	C-phase power	0	METER:PC4
	q	r	Quality of data	0	#21
	TotW		Total (Three-phase) power	0	
	f	r	Total power	0	METER:P
	q	r	Quality of data	о	#21
	TotW1		Total (Three-phase) power	0	
	f	r	Total power	0	METER:P1
	q	r	Quality of data	0	#21
	TotW2		Total (Three-phase) power	0	
	f	r	Total power	0	METER:P2
	q	r	Quality of data	о	#21
	TotW3		Total (Three-phase) power	0	
	f	r	Total power	0	METER:P3
	q	r	Quality of data	о	#21
	TotW4		Total (Three-phase) power	0	
	f	r	Total power	0	METER:P4
	q	r	Quality of data	о	#21
	VAr		Per-phase reactive power	0	
	PhsAf	r	A-phase reactive power	о	METER:QA
	PhsBf	r	B-phase reactive power	о	METER:QB
	PhsCf	r	C-phase reactive power	0	METER:QC
	q	r	Quality of data	0	#21
	VAr1		Per-phase reactive power	0	
	PhsAf	r	A-phase reactive power	0	METER:QA1
	PhsBf	r	B-phase reactive power	0	METER:QB1
	PhsCf	r	C-phase reactive power	0	METER:QC1
	q	r	Quality of data	0	#21
	VAr2		Per-phase reactive power	0	
ļ	PhsAf	r	A-phase reactive power	о	METER:QA2
	PhsBf	r	B-phase reactive power	0	METER:QB2
	PhsCf	r	C-phase reactive power	о	METER:QC2
	q	r	Quality of data	о	#21
ļ	VAr3		Per-phase reactive power	0	
ļ	PhsAf	r	A-phase reactive power	0	METER:QA3
ļ	PhsBf	r	B-phase reactive power	0	METER:QB3
	PhsCf	r	C-phase reactive power	0	METER:QC3
	q	r	Quality of data	0	#21

Table B.11	Polyphase Measurement Unit
Model (MM	XU)-SEL Relay Connected to an SEL-2030 (Sheet 6 of 7)

FC	Name	r/w	Description	m/o	Decode Method
	VAr4		Per-phase reactive power	0	
	PhsAf	r	A-phase reactive power	0	METER:QA4
	PhsBf	r	B-phase reactive power	0	METER:QB4
	PhsCf	r	C-phase reactive power	0	METER:QC4
	q	r	Quality of data	0	#21
	TotVAr		Total reactive power	0	
	f	r	Total reactive power	0	METER:Q
	q	r	Quality of data	0	#21
	TotVAr1		Total reactive power	0	
	f	r	Total reactive power	0	METER:Q1
	q	r	Quality of data	0	#21
	TotVAr2		Total reactive power	0	
	f	r	Total reactive power	о	METER:Q2
	q	r	Quality of data	о	#21
	TotVAr3		Total reactive power	0	
	f	r	Total reactive power	0	METER:Q3
	q	r	Quality of data	о	#21
	TotVAr4		Total reactive power	0	
	f	r	Total reactive power	0	METER:Q4
	q	r	Quality of data	о	#21
	Hz		System frequency	0	
	f	r	System frequency	о	METER:FREQ
	q	r	Quality of data	0	#21
CF					
	All MMXU.MX	r	Configuration of data	m	
	u	r	Units for all items	m	#23

 Table B.11
 Polyphase Measurement Unit

 Model (MMXU)-SEL Relay Connected to an SEL-2030 (Sheet 7 of 7)

^a Extension to the GOMSFE MMXU brick

Communications Card or Non-SEL Virtual Device

The models in domains for ports where a non-SEL device (Port 1 to Port 16) or a communications card (Port 17 or 18) is connected contain data from the User region and are listed in *Table B.12*. Use Math/Movement equations in the SEL-2030 to move data elements from the data regions to the User region and label with the required label shown in the Decode Method column.

Table B.12Models in Virtual DeviceDomain for Non-SEL IED Connected to an SEL-2030

Model	Description
DI	Relay ID information and SEL-2701 information
GCTL	Control of remote bits (RB1-RB16) for port
GLOBE	Basic device information
MMXU	Relay metering and measurement data
MMTR	Energy metering data

Table B.13	Device ID Model (DI)-Non-SEL IED Connected to an SEL-2030
------------	---

FC	Name	r/w	Description	m/o	Decode Method
DI		r			
	Name	r	Relay ID	m	LOCAL:PORTID
	VndID				
	Vnd	r	Vendor	m	"Unknown"
	Mdl	r	Device model numbera	0	USER:MODEL #24
	SerNum	r	Device serial number	m	USER:SER_NUM #24
	SftRev	r	Device software revision ^b	0	USER:SFT_REV #24
	CommID			mc	
	CommAdr	r	NSAP	m	#3
	CommRev	r	SEL-2701 firmware revi- sion ^b	m	#4
	SftRev ^d	r	SEL-2701 firmware revision	m	#4
	BootRev ^d	r	SEL-2701 SELBOOT revision	m	#5
	Pro	r	Protocol (MMS + CASM)	m	"11"
	Med	r	Physical medium	0	#6
	MAC	r	Medium access control	0	#7
	Vnd ^d	r	Vendor	m	"SEL"
	Mdl ^d	r	Model	m	"SEL-2701"
	SerNum ^d	r	SEL-2701 serial number	m	#7
	FID ^d	r	SEL-2701 firmware ID	m	#8
	BootFID ^d	r	SEL-2701 SELBOOT code firmware ID	m	#9

^a Part name and V portion of the FID

^b R portion of the FID

^c Same as the CommID of the SEL-2030

^d Extension to the GOMSFE Device ID component

B.18 UCA2 GOMSFE Models Communications Card or Non-SEL Virtual Device

FC	Name	r/w	Description	m/o	Decode Method
ST					
	OD1-OD16		State last written to this control point	m	
	b2	r	Status of bit	m	#19
CO					
	OD1-OD16		Control bit	m	
	OperDev	rw	Control bit (01 to clear; 10 to set)	m	#20

Table B.14 Generic Control Model (GCTL)-Non-SEL IED Connected to an SEL-2030

Table B.15 Globe Model (GLOBE)-Non-SEL IED Connected to an SEL-2030

FC	Name	r/w	Description	m/o	Decode Method
MX					
	ANALOG01– ANALOG64	r	Analog values	0	USER:ANALOG01– USER:ANALOG64
ST					
	CommSta	r	Communications status		
	b2	r	0-invalid, 1-unavail- able, 2-available	m	#34
	DWORD01B01– DWORD01B16				
	b1	r	Binary value	0	USER:DWORD01:0– USER:DWORD01:15
	DWORD02B01– DWORD02B16				
	b1	r	Binary value	0	USER:DWORD02:0– USER:DWORD02:15
	DWORD03B01– DWORD03B16				
	b1	r	Binary value	0	USER:DWORD03:0– USER:DWORD03:15
	•				
	•				
	DWORD16B01– DWORD16B16				
_	b1	r	Binary value	0	USER:DWORD16:0– USER:DWORD16:15

^a Extension to the GOMSFE-specified GLOBE brick

С	Name	r/w	Description	m/o	Decode Method
1X					
	v		Three-phase voltage	о	
	PhsAf	r	A-phase voltage	о	USER:VA
	PhsBf	r	B-phase voltage	0	USER:VB
	PhsCf	r	C-phase voltage	0	USER:VC
	Neutf	r	Neutral voltage	0	USER:VN
	q	r	Quality of data	0	#21
	V1		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	USER:VA1
	PhsBf	r	B-phase voltage	0	USER:VB1
	PhsCf	r	C-phase voltage	0	USER:VC1
	Neutf	r	Neutral voltage	0	USER:VN1
	q	r	Quality of data	0	#21
	V2		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	USER:VA2
	PhsBf	r	B-phase voltage	0	USER:VB2
	PhsCf	r	C-phase voltage	0	USER:VC2
	Neutf	r	Neutral voltage	0	USER:VN2
	q	r	Quality of data	0	#21
	V3		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	USER:VA3
	PhsBf	r	B-phase voltage	о	USER:VB3
	PhsCf	r	C-phase voltage	о	USER:VC3
	Neutf	r	Neutral voltage	о	USER:VN3
	q	r	Quality of data	о	#21
	V4		Three-phase voltage	0	
	PhsAf	r	A-phase voltage	0	USER:VA4
	PhsBf	r	B-phase voltage	0	USER:VB4
	PhsCf	r	C-phase voltage	0	USER:VC4
	Neutf	r	Neutral voltage	о	USER:VN4
	q	r	Quality of data	0	#21
	Vseq ^a		Sequence voltages	0	
	Posif	r	Positive-sequence voltage	о	USER:V1
	Negf	r	Negative-sequence voltage	о	USER:V2
	Zerof	r	Zero-sequence voltage	о	USER:V0
	q	r	Quality of data	0	#21

Table B.16	Polyphase Measurement Unit
Model (MM)	(U)-Non-SEL IED Connected to an SEL-2030 (Sheet 1 of 6)

B.20 UCA2 GOMSFE Models Communications Card or Non-SEL Virtual Device

FC	Name	r/w	Description	m/o	Decode Method
	Vseq1 ^a		Sequence voltages	0	
	Posif	r	Positive-sequence voltage	0	USER:V1_1
	Negf	r	Negative-sequence voltage	0	USER:V2_1
	Zerof	r	Zero-sequence voltage	0	USER:V0_1
	q	r	Quality of data	0	#21
	Vseq2a		Sequence voltages	0	
	Posif	r	Positive-sequence voltage	0	USER:V1_2
	Negf	r	Negative-sequence voltage	0	USER:V2_2
	Zerof	r	Zero-sequence voltage	0	USER:V0_2
	q	r	Quality of data	0	#21
	Vseq3 ^a		Sequence voltages	0	
	Posif	r	Positive-sequence voltage	0	USER:V1_3
	Negf	r	Negative-sequence voltage	0	USER:V2_3
	Zerof	r	Zero-sequence voltage	0	USER:V0_3
	q	r	Quality of data	0	#21
	Vseq4 ^a		Sequence voltages	0	
	Posif	r	Positive-sequence voltage	0	USER:V1_4
	Negf	r	Negative-sequence voltage	0	USER:V2_4
	Zerof	r	Zero-sequence voltage	0	USER:V0_4
	q	r	Quality of data	0	#21
	AuxVa		Auxiliary voltages		
	q	r	Quality of data		#21
	PPV		Delta voltages	0	
	PhsABf	r	AB voltage	0	USER:VAB
	PhsBCf	r	BC voltage	0	USER:VBC
	PhsCAf	r	CA voltage	0	USER:VCA
	q	r	Quality of data	0	#21
	PPV1		Delta voltages	0	
	PhsABf	r	AB voltage	0	USER:VAB1
	PhsBCf	r	BC voltage	0	USER:VBC1
	PhsCAf	r	CA voltage	0	USER:VCA1
	q	r	Quality of data	0	#21
	PPV2		Delta voltages	0	
	PhsABf	r	AB voltage	0	USER:VAB2
	PhsBCf	r	BC voltage	0	USER:VBC2
	PhsCAf	r	CA voltage	0	USER:VCA2
	q	r	Quality of data	0	#21

 Table B.16
 Polyphase Measurement Unit

 Model (MMXU)-Non-SEL IED Connected to an SEL-2030 (Sheet 2 of 6)

Name	r/w	Description	m/o	Decode Method
PPV3		Delta voltages	0	
PhsABf	r	AB voltage	0	USER:VAB3
PhsBCf	r	BC voltage	0	USER:VBC3
PhsCAf	r	CA voltage	0	USER:VCA3
q	r	Quality of data	0	#21
PPV4		Delta voltages	0	
PhsABf	r	AB voltage	0	USER:VAB4
PhsBCf	r	BC voltage	0	USER:VBC4
PhsCAf	r	CA voltage	0	USER:VCA4
q	r	Quality of data	0	#21
А		Three-phase currents	0	
PhsAf	r	A-phase current	0	USER:IA
PhsBf	r	B-phase current	0	USER:IB
PhsCf	r	C-phase current	0	USER:IC
Neutf	r	Neutral current	0	USER:IR
q	r	Quality of data	0	#21
A1		Three-phase currents	0	
PhsAf	r	A-phase current	0	USER:IA1
PhsBf	r	B-phase current	0	USER:IB1
PhsCf	r	C-phase current	0	USER:IC1
Neutf	r	Neutral current	0	USER:IR1
q	r	Quality of data	0	#21
A2		Three-phase currents	0	
PhsAf	r	A-phase current	0	USER:IA2
PhsBf	r	B-phase current	0	USER:IB2
PhsCf	r	C-phase current	0	USER:IC2
Neutf	r	Neutral current	0	USER:IR2
q	r	Quality of data	0	#21
A3		Three-phase currents	0	
PhsAf	r	A-phase current	0	USER:IA3
PhsBf	r	B-phase current	0	USER:IB3
PhsCf	r	C-phase current	0	USER:IC3
Neutf	r	Neutral current	0	USER:IR3
q	r	Quality of data	0	#21
A4		Three-phase currents	0	
PhsAf	r	A-phase current	0	USER:IA4
PhsBf	r	B-phase current	0	USER:IB4
PhsCf	r	C-phase current	0	USER:IC4
Neutf	r	Neutral current	0	USER:IR4
q	r	Quality of data	0	#21

Table B.16	Polyphase Measurement Unit
Model (MM)	XU)-Non-SEL IED Connected to an SEL-2030 (Sheet 3 of 6)

B.22 UCA2 GOMSFE Models Communications Card or Non-SEL Virtual Device

FC	Name	r/w	Description	m/o	Decode Method
	Aseq ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	USER:I1
	Negf	r	Negative-sequence current	0	USER:I2
	Zerof	r	Zero-sequence current	0	USER:I0
	q	r	Quality of data	0	#21
	Aseq1 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	USER:I1_1
	Negf	r	Negative-sequence current	0	USER:I2_1
	Zerof	r	Zero-sequence current	0	USER:I0_1
	q	r	Quality of data	0	#21
	Aseq2 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	USER:I1_2
	Negf	r	Negative-sequence current	0	USER:I2_2
	Zerof	r	Zero-sequence current	0	USER:I0_2
	q	r	Quality of data	0	#21
	Aseq3 ^a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	USER:I1_3
	Negf	r	Negative-sequence current	0	USER:I2_3
	Zerof	r	Zero-sequence current	0	USER:I0_3
	q	r	Quality of data	0	#21
İ	Aseq4a		Sequence currents	0	
	Posif	r	Positive-sequence current	0	USER:I1_4
	Negf	r	Negative-sequence current	0	USER:I2_4
	Zerof	r	Zero-sequence current	0	USER:I0_4
	q	r	Quality of data	0	#21
	AuxA1 ^a		Auxiliary currents		
	q	r	Quality of data		#21
	W		Per-phase power	0	
	PhsAf	r	A-phase power	0	USER:PA
	PhsBf	r	B-phase power	0	USER:PB
	PhsCf	r	C-phase power	0	USER:PC
	q	r	Quality of data	0	#21
ļ	W1		Per-phase power	0	
	PhsAf	r	A-phase power	0	USER:PA1
	PhsBf	r	B-phase power	0	USER:PB1
	PhsCf	r	C-phase power	0	USER:PC1
	q	r	Quality of data	0	#21

 Table B.16
 Polyphase Measurement Unit

 Model (MMXU)-Non-SEL IED Connected to an SEL-2030 (Sheet 4 of 6)

Name	r/w	Description	m/o	Decode Method
W2		Per-phase power	0	
PhsAf	r	A-phase power	0	USER:PA2
PhsBf	r	B-phase power	0	USER:PB2
PhsCf	r	C-phase power	0	USER:PC2
q	r	Quality of data	0	#21
W3		Per-phase power	0	
PhsAf	r	A-phase power	0	USER:PA3
PhsBf	r	B-phase power	0	USER:PB3
PhsCf	r	C-phase power	0	USER:PC3
q	r	Quality of data	0	#21
W4		Per-phase power	0	
PhsAf	r	A-phase power	0	USER:PA4
PhsBf	r	B-phase power	0	USER:PB4
PhsCf	r	C-phase power	0	USER:PC4
q	r	Quality of data	0	#21
TotW		Total (Three-phase) power	0	
f	r	Total power	о	USER:P
q	r	Quality of data	0	#21
TotW1		Total (Three-phase) power	0	
f	r	Total power	о	USER:P1
q	r	Quality of data	о	#21
TotW2		Total (Three-phase) power	0	
f	r	Total power	0	USER:P2
q	r	Quality of data	о	#21
TotW3		Total (Three-phase) power	0	
f	r	Total power	0	USER:P3
q	r	Quality of data	0	#21
TotW4		Total (Three-phase) power	0	
f	r	Total power	0	USER:P4
q	r	Quality of data	0	#21
Var		Per-phase reactive power	0	
PhsAf	r	A-phase reactive power	0	USER:QA
PhsBf	r	B-phase reactive power	0	USER:QB
PhsCf	r	C-phase reactive power	0	USER:QC
q	r	Quality of data	о	#21
Var1		Per-phase reactive power	0	
PhsAf	r	A-phase reactive power	0	
PhsBf	r	B-phase reactive power	о	USER:QB1
PhsCf	r	C-phase reactive power	о	USER:QC1
q	r	Quality of data	0	#21

Table B.16	Polyphase Measurement Unit
Model (MM	XU)-Non-SEL IED Connected to an SEL-2030 (Sheet 5 of 6)

B.24 UCA2 GOMSFE Models Communications Card or Non-SEL Virtual Device

FC	Name	r/w	Description	m/o	Decode Method
	Var2		Per-phase reactive power	0	
	PhsAf	r	A-phase reactive power	0	USER:QA2
	PhsBf	r	B-phase reactive power	0	USER:QB2
	PhsCf	r	C-phase reactive power	0	USER:QC2
	q	r	Quality of data	0	#21
	Var3		Per-phase reactive power	0	
	PhsAf	r	A-phase reactive power	0	USER:QA3
	PhsBf	r	B-phase reactive power	0	USER:QB3
	PhsCf	r	C-phase reactive power	0	USER:QC3
	q	r	Quality of data	0	#21
	Var4		Per-phase reactive power	0	
	PhsAf	r	A-phase reactive power	0	USER:QA4
	PhsBf	r	B-phase reactive power	0	USER:QB4
	PhsCf	r	C-phase reactive power	0	USER:QC4
	q	r	Quality of data	0	#21
	TotVAr		Total reactive power	0	
	f	r	Total reactive power	0	USER:Q
	q	r	Quality of data	0	#21
	TotVAr1		Total reactive power	0	
	f	r	Total reactive power	0	USER:Q1
	q	r	Quality of data	0	#21
	TotVAr2		Total reactive power	0	
	f	r	Total reactive power	0	USER:Q2
	q	r	Quality of data	0	#21
	TotVAr3		Total reactive power	0	
	f	r	Total reactive power	0	USER:Q3
	q	r	Quality of data	0	#21
	TotVAr4		Total reactive power	0	
	f	r	Total reactive power	0	USER:Q4
	q	r	Quality of data	0	#21
	Hz		System frequency	0	
	f	r	System frequency	0	USER:FREQ
	q	r	Quality of data	0	#21

Table B.16 Polyphase Measurement Unit Model (MMXU)-Non-SEL IED Connected to an SEL-2030 (Sheet 6 of 6)

^a Extension to the GOMSFE MMXU brick

FC	Name	r/w	Description	m/o	Decode Method
MX					
	WHr		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:EA
	PhsBf	r	B-phase energy	0	USER:EB
	PhsCf	r	C-phase energy	0	USER:EC
	q	r	Quality of data	0	#21
	WHr1		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:EA1
	PhsBf	r	B-phase energy	0	USER:EB1
	PhsCf	r	C-phase energy	0	SER:EC1
	q	r	Quality of data	0	#21
	WHr2		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:EA2
	PhsBf	r	B-phase energy	0	USER:EB2
	PhsCf	r	C-phase energy	0	USER:EC2
	q	r	Quality of data	0	#21
	WHr3		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:EA3
	PhsBf	r	B-phase energy	0	USER:EB3
	PhsCf	r	C-phase energy	0	USER:EC3
	q	r	Quality of data	0	#21
	WHr4		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:EA4
	PhsBf	r	B-phase energy	0	USER:EB4
	PhsCf	r	C-phase energy	0	USER:EC4
	q	r	Quality of data	0	#21
	TotWHr		Total energy	0	
	f	r	Total energy	0	USER:E
	q	r	Quality of data	0	#21
	TotWHr1		Total energy	0	
	f	r	Total energy	0	USER:E1
	q	r	Quality of data	0	#21
	TotWHr2		Total energy	0	
	f	r	Total energy	0	USER:E2
	q	r	Quality of data	0	#21
	TotWHr3		Total energy	0	
	f	r	Total energy	0	USER:E3
	q	r	Quality of data	0	#21

Table B.17Polyphase Meter Unit Model (MMTR)-Non-SEL IED Connected to an SEL-2030 (Sheet 1 of 4)

B.26 UCA2 GOMSFE Models Communications Card or Non-SEL Virtual Device

FC	Name	r/w	Description	m/o	Decode Method
	TotWHr4		Total energy	0	
	f	r	Total energy	0	USER:E4
	q	r	Quality of data	0	#21
	PosiWHr ^a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:PEA
	PhsBf	r	B-phase energy	0	USER:PEB
	PhsCf	r	C-phase energy	0	USER:PEC
	q	r	Quality of data	0	#21
	PosiWHr1a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:PEA1
	PhsBf	r	B-phase energy	0	USER:PEB1
	PhsCf	r	C-phase energy	0	USER:PEC1
	q	r	Quality of data	0	#21
	PosiWHr2a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:PEA2
	PhsBf	r	B-phase energy	0	USER:PEB2
	PhsCf	r	C-phase energy	0	USER:PEC2
	q	r	Quality of data	0	#21
	PosiWHr3a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:PEA3
	PhsBf	r	B-phase energy	0	USER:PEB3
	PhsCf	r	C-phase energy	0	USER:PEC3
	q	r	Quality of data	0	#21
	PosiWHr4a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:PEA4
	PhsBf	r	B-phase energy	0	USER:PEB4
	PhsCf	r	C-phase energy	0	USER:PEC4
	q	r	Quality of data	0	#21
	PosiTotWHr ^a		Total energy	0	
	f	r	Total energy	0	USER:PE
	q	r	Quality of data	0	#21
	PosiTotWHr1a		Total energy	0	
	f	r	Total energy	0	USER:PE1
	q	r	Quality of data	0	#21
	PosiTotWHr2a		Total energy	0	
	f	r	Total energy	0	USER:PE2
	q	r	Quality of data	0	#21
	PosiTotWHr3a		Total energy	0	
	f	r	Total energy	0	USER:PE3
	q	r	Quality of data	0	#21

Table B.17 Polyphase Meter Unit Model (MMTR)-Non-SEL IED Connected to an SEL-2030 (Sheet 2 of 4)

С	Name	r/w	Description	m/o	Decode Method
	PosiTotWHr4a		Total energy	0	
	f	r	Total energy	0	USER:PE4
	q	r	Quality of data	0	#21
	NegWHr ^a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:NEA
	PhsBf	r	B-phase energy	0	USER:NEB
	PhsCf	r	C-phase energy	0	USER:NEC
	q	r	Quality of data	0	#21
	NegWHr1a		Per-phase energy	0	
	PhsAf	r	A-phase energy	0	USER:NEA1
	PhsBf	r	B-phase energy	0	USER:NEB1
	PhsCf	r	C-phase energy	0	USER:NEC1
	q	r	Quality of data	о	#21
	NegWHr2a		Per-phase energy	0	
	PhsAf	r	A-phase energy	о	USER:NEA2
	PhsBf	r	B-phase energy	о	USER:NEB2
	PhsCf	r	C-phase energy	о	USER:NEC2
	q	r	Quality of data	0	#21
	NegWHr3a		Per-phase energy	0	
	PhsAf	r	A-phase energy	о	USER:NEA3
	PhsBf	r	B-phase energy	о	USER:NEB3
	PhsCf	r	C-phase energy	о	USER:NEC3
	q	r	Quality of data	о	#21
	NegWHr4a		Per-phase energy	0	
	PhsAf	r	A-phase energy	о	USER:NEA4
	PhsBf	r	B-phase energy	о	USER:NEB4
	PhsCf	r	C-phase energy	о	USER:NEC4
	q	r	Quality of data	о	#21
	NegTotWHr ^a		Total energy	0	
	f	r	Total energy	о	USER:NE
	q	r	Quality of data	о	#21
	NegTotWHr1 ^a		Total energy	0	
	f	r	Total energy	о	USER:NE1
	q	r	Quality of data	0	#21
	NegTotWHr2a		Total energy	0	
	f	r	Total energy	0	USER:NE2
	q	r	Quality of data	о	#21
	NegTotWHr3a		Total energy	0	
	f	r	Total energy	о	USER:NE3
	q	r	Quality of data	0	#21

Table B.17Polyphase Meter Unit Model (MMTR)-Non-SEL IED Connected to an SEL-2030 (Sheet 3 of 4)

B.28 UCA2 GOMSFE Models Communications Card or Non-SEL Virtual Device

FC	Name	r/w	Description	m/o	Decode Method
	NegTotWHr4a		Total energy	0	
	f	r	Total energy	0	USER:NE4
	q	r	Quality of data	0	#21
CF					
	All MMTR.MX	r	Configuration of all data	m	

Table B.17 Polyphase Meter Unit Model (MMTR)-Non-SEL IED Connected to an SEL-2030 (Sheet 4 of 4)

^a Extension to the GOMSFE MMTR brick

Special Translation Rules

The rules listed in *Table B.18* apply to the GOMSFE models shown in the preceding paragraphs of this appendix.

 Table B.18
 Special Translation Rules

#	Rule						
1	Device model number from FID string						
2	Software revision code from FID string						
3	Communications address (NSAP)						
4	SEL-2701 software revision code						
5	SEL-2701 SELBOOT software revision code						
6	Current physical medium being used						
7	SEL-2701 serial number						
8	SEL-2701 FID						
9	SEL-2701 SELBOOT FID						
10	Status based on Host Status Register and local status						
11	Target rows 5 and 6						
12	Preset value for DNA outputs						
13	Force value for DNA inputs						
14	Default value for DNA inputs						
15	Access card date and time						
16	Selection for DNA outputs						
17	Selection for DNA inputs						
18	Control to force SEL-2701 to reacquire GOOSE addresses						
19	Last value written to control points						
20	Operate control points to host						
21	Communication failure, Comm Fail, quality indication based on state of port from LOCAL:PORT_STATUS or forced if associated data are forced						
22	Quantity scaled down by factor of three						
23	Unit quantities based on default units for each item						
24	Item at given label treated as a null-terminated string						
25	Preset value for UserSt outputs						
26	Force value for UserSt inputs						
27	Default value for UserSt inputs						
28	Selection for UserSt outputs						
29	Selection for UserSt inputs						
30	Fields labeled MONTH, DAY, YEAR, HOUR, MIN, SEC, and MSEC, converted to date/time						
31	Targets bit map as shown in <i>Table B.19 on page B.30</i>						
32	Fault types as shown in <i>Table B.20 on page B.30</i>						
33	Common fault types as shown in <i>Table B.20</i>						
34	Base communications status on LOCAL:PORT_STATUS Bit 9						

Bit	Target Mapping					
0 ^a	51, LO ^b , ALARM, 52A1, Y59I, ALRM, 51N					
1	50, RS ^c , 52A2, X59I, BKR, 51P					
2	Q, RC1, 87, Y59T, G3, 81					
3	G, N, RC2, X59T, PH3					
4	C, RS ^c , 87C, G2					
5	B, CY¢, 87B, PH2					
6	A, LO ^c , G1, 87A					
7	EN, CLOS, PH1					
8	ZONE4, CY ^b					
9	ZONE3					
10	ZONE2					
11	ZONE1					
12	SOTF					
13	СОММ, Ү					
14	TIME, X					
15	INST					

Table B.19 Relay Target Bit Mapping

^a Least significant (right hand) bit

^b All relays except SEL-279H ^c SEL-279H only

Table B.20 Event Types (Sheet 1 of 8)

Event	Code for Rule #32	Code for Rule #33
!L	0x8000	61
!M	0x8000	65
?AB	0x000C	7003
?ABC	0x000E	7001
?ABCT	0x100E	7101
?ABG	0x000D	7002
?ABGT	0x100D	7102
?ABT	0x100C	7103
?AG	0x0009	7004
?AGT	0x1009	7104
?BC	0x0006	7006
?BCG	0x0007	7005
?BCGT	0x1007	7105
?BCT	0x1007	7106
?BG	0x0005	7007
?BGT	0x1005	7107
?CA	0x000A	7009
?CAG	0x000B	7008
?CAGT	0x100B	7108
?CAT	0x100A	7109

Event	Code for Rule #32	Code for Rule #33
?CG	0x0003	7010
?CGT	0x1003	7110
1AB	0x001C	1003
1ABC	0x001E	1001
1ABCT	0x101E	1101
1ABG	0x001D	1002
1ABGT	0x101D	1102
1ABT	0x101C	1103
1AG	0x0019	1004
1AGT	0x1019	1104
1BC	0x0016	1006
1BCG	0x0017	1005
1BCGT	0x1017	1105
1BCT	0x1016	1106
1BG	0x0015	1007
1BGT	0x1015	1107
1CA	0x001A	1009
1CAG	0x001B	1008
1CAGT	0x101B	1108
1CAT	0x101A	1109
1CG	0x0013	1010
1CGT	0x1013	1110
10UT	0x8000	88
10UT X	0x8000	9035
10UT Y	0x8000	9036
25T1	0x8000	34
25T2	0x8000	35
27B	0x8000	30
27L	0x8000	31
2AB	0x002C	2003
2ABC	0x002E	2001
2ABCT	0x102E	2101
2ABG	0x002D	2002
2ABGT	0x102D	2102
2ABT	0x102C	2103
2AG	0x0029	2004
2AGT	0x1029	2104
2BC	0x0026	2006
2BCG	0x0027	2005
2BCGT	0x1027	2105
2BCT	0x1026	2106

Table B.20 Event Types (Sheet 2 o	DT 8)
-----------------------------------	-------

Event	Code for Rule #32	Code for Rule #33
2BG	0x0025	2007
2BGT	0x1025	2107
2CA	0x002A	2009
2CAG	0x002B	2008
2CAGT	0x102B	2108
2CAT	0x102A	2109
2CG	0x0023	2010
2CGT	0x1023	2110
20UT	0x8000	89
20UT X	0x8000	9037
20UT Y	0x8000	9038
3AB	0x004C	3003
3ABC	0x004E	3001
3ABCT	0x104E	3101
3ABG	0x004D	3002
3ABGT	0x104D	3102
3ABT	0x104C	3103
3AG	0x0049	3004
3AGT	0x1049	3104
3BC	0x0046	3006
3BCG	0x0047	3005
3BCGT	0x1047	3105
3BCT	0x1046	3106
3BG	0x0045	3007
3BGT	0x1045	3107
3CA	0x004A	3009
3CAG	0x004B	3008
3CAGT	0x104B	3108
3CAT	0x104A	3109
3CG	0x0043	3010
3CGT	0x1043	3110
3PC1	0x8000	40
3PC2	0x8000	41
3PRI	0x8000	51
4AB	0x008C	4003
4ABC	0x008E	4001
4ABCT	0x108E	4101
4ABG	0x008D	4002
4ABGT	0x108D	4102
4ABT	0x108C	4103
4AG	0x0089	4004

Table B.20Event Types (Sheet 3 of 8)

Event	Code for Rule #32	Code for Rule #33
4AGT	0x1089	4104
4BC	0x0086	4006
4BCG	0x0087	4005
4BCGT	0x1087	4105
4BCT	0x1086	4106
4BG	0x0085	4007
4BGT	0x1085	4107
4CA	0x008A	4009
4CAG	0x008B	4008
4CAGT	0x108B	4108
4CAT	0x108A	4109
4CG	0x0083	4010
4CGT	0x1083	4110
52A1	0x8000	46
52A2	0x8000	47
52BT1	0x8000	48
52BT2	0x8000	49
59B	0x8000	32
59L	0x8000	33
5AB	0x010C	5003
5ABC	0x010E	5001
5ABCT	0x110E	5101
5ABG	0x010D	5002
5ABGT	0x110D	5102
5ABT	0x110C	5103
5AG	0x0109	5004
5AGT	0x1109	5104
5BC	0x0106	5006
5BCG	0x0107	5005
5BCGT	0x1107	5105
5BCT	0x1106	5106
5BG	0x0105	5007
5BGT	0x1105	5107
5CA	0x010A	5009
5CAG	0x010B	5008
5CAGT	0x110B	5108
5CAT	0x110A	5109
5CG	0x0103	5010
5CGT	0x1103	5110
6AB	0x020C	8003
6ABC	0x020E	8001

Table B.20Event Types (Sheet 4 of 8)

Event	Code for Rule #32	Code for Rule #33
6ABCT	0x120E	8101
6ABG	0x020D	8002
6ABGT	0x120D	8102
6ABT	0x120C	8103
6AG	0x0209	8004
6AGT	0x1209	8104
6BC	0x0206	8006
6BCG	0x0207	8005
6BCGT	0x1207	8105
6BCT	0x1206	8106
6BG	0x0205	8007
6BGT	0x1205	8107
6CA	0x020A	8009
6CAG	0x020B	8008
6CAGT	0x120B	8108
6CAT	0x120A	8109
6CG	0x0203	8010
6CGT	0x1203	8110
790IT	0x8000	50
79RST	0x8000	52
79SH	0x8000	53
86BFT	0x8000	20
86TR	0x8000	85
86TR X	0x8000	9027
86TR Y	0x8000	9028
Α	0x0008	55
AB	0x000C	3
ABC	0x000E	1
ABCT	0x100E	101
ABG	0x000D	2
ABGT	0x100D	102
ABT	0x100C	103
AG	0x0009	4
AGT	0x1009	104
В	0x0004	56
BC	0x0006	6
BCG	0x0007	5
BCGT	0x1007	105
BCT	0x1006	106
BFI	0x8000	83
BFI X	0x8000	9023

 Table B.20
 Event Types (Sheet 5 of 8)

Event	Code for Rule #32	Code for Rule #33
BFI Y	0x8000	9024
BG	0x0005	7
BGT	0x1005	107
С	0x0002	57
CA	0x000A	9
CAG	0x000B	8
CAGT	0x100B	108
CAT	0x100A	109
CG	0x0003	10
CGT	0x1003	110
CLOSE	0x8000	28
CLOSE X	0x8000	9007
CLOSE Y	0x8000	9008
CLS1	0x8000	36
CLS2	0x8000	37
CYCL	0x8000	43
D	0x8000	58
DT	0x8000	11
E	0x8000	59
ER	0x2000	12
ER1	0x2000 90	
ER2	0x2000	91
ET	0x8000	13
ET1	0x8000	71
ET2	0x8000	72
EXT	0x8000	18
EXT X	0x8000	9029
EXT Y	0x8000	9030
EXTC	0x8000	17
FAULT	0x8000	75
FAULT X	0x8000	9003
FAULT Y	0x8000	9004
G	0x0001	62
Н	0x8000	63
НАВ	0x000C	6003
HABC	0x000E	6001
НАВСТ	0x100E	6101
HABG	0x000D	6002
HABGT	0x100D	6102
HABT	0x100C	6103
HAG	0x0009	6004

 Table B.20
 Event Types (Sheet 6 of 8)

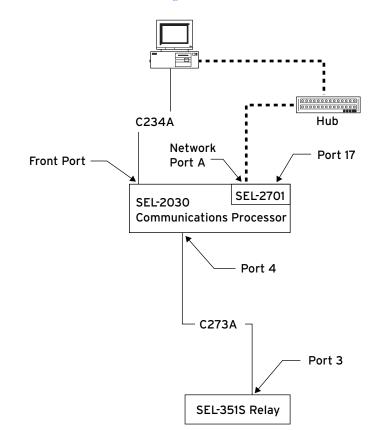
Table B.20 Event Types (Sheet 7 of 8)		
Event	Code for Rule #32	Code for Rule #33
HAGT	0x1009	6104
HBC	0x0006	6006
HBCG	0x0007	6005
HBCGT	0x1007	6105
НВСТ	0x1007	6106
HBG	0x0005	6007
HBGT	0x1005	6107
НСА	0x000A	6009
HCAG	0x000B	6008
HCAGT	0x100B	6108
HCAT	0x100A	6109
HCG	0x0003	6010
HCGT	0x1003	6110
Ι	0x8000	64
INT	0x8000	29
LJAM	0x8000	81
LJAM X	0x8000	9019
LJAM Y	0x8000	9020
LLOSS	0x8000	82
LLOSS X	0x8000	9021
LLOSS Y	0x8000	9022
LOCK	0x8000	44
LTCH	0x8000	54
MER	0x8000	70
OPEN	0x8000	14
OPEN X	0x8000	9005
OPEN Y	0x8000	9006
OTT	0x8000	45
PULSE	0x8000	92
RETRIP	0x8000	84
RETRIP X	0x8000	9025
RETRIP Y	0x8000	9026
RSET	0x8000	42
RUN	0x8000	76
RUN X	0x8000	9009
RUN Y	0x8000	9010
SPC1	0x8000	38
SPC2	0x8000	39
SPRI	0x8000	74
ST	0x8000	60
START	0x8000	77
	l	I

 Table B.20
 Event Types (Sheet 7 of 8)

Event	Code for Rule #32	Code for Rule #33
START X	0x8000	9011
START Y	0x8000	9012
STL	0x8000	80
STL X	0x8000	9017
STL Y	0x8000	9018
STOP	0x8000	78
STOP X	0x8000	9013
STOP Y	0x8000	9014
THERM	0x8000	79
THERM X	0x8000	9015
THERM Y	0x8000	9016
TIMER1	0x8000	86
TIMER1 X	0x8000	9031
TIMER1 Y	0x8000	9032
TIMER2	0x8000	87
TIMER2 X	0x8000	9033
TIMER2 Y	0x8000	9034
TR	0x8000	16
TRI	0x8000	73
TRIG	0x8000	15
TRIG X	0x8000	9001
TRIG Y	0x8000	9002
TRIP	0x8000	19
TRIP3	0x8000	27
TRIPA	0x8000	21
TRIPAB	0x8000	24
TRIPB	0x8000	22
TRIPBC	0x8000	25
TRIPC	0x8000	23
TRIPCA	0x8000	26
TRP1	0x8000	93
TRP2	0x8000	94
TRP3	0x8000	95
W	0x8000	66
Х	0x8000	67
Y	0x8000	68
ZT	0x8000	69
other	0x8000	9999

Table B.20	Event	Types	(Sheet	8 of 8)
	Lvene	19903	(Sincer	0010,

This page intentionally left blank


Appendix C GOMSFE Model Example

Introduction

This appendix illustrates how to use the SEL-2030 and SEL-2701 to provide a UCA2 interface for data collection and control. An example is provided with an SEL-351S Relay connected to an SEL-2030. The step-by-step format will allow you to duplicate this work or adjust it to meet the requirements of your specific project. This appendix contains information on the following topics:

- ► SEL-2030 data collection settings
- ► SEL-2030/SEL-2701 network settings
- ► GOMSFE models of SEL-351S Relay data

Settings

In this example, the SEL-351S Relay is connected to Port 5 of the SEL-2030 with a C273A cable as shown in *Figure C.1*.

Figure C.1 Example SEL-2030/SEL-351S Relay System.

The steps below configure the SEL-2030 to collect data from the relay and configure the SEL-2701 in Card Slot 1 (Port 17) for UCA2:

- Step 1. Connect the cables as shown in *Figure C.1*.
- Step 2. Apply power to the relay, SEL-2030, and PC.
- Step 3. Start a serial port terminal application on the PC and connect to the SEL-2030.
- Step 4. Log in to the SEL-2030 at Access Level 2.
- Step 5. Configure the SEL-2030 serial port connected to the SEL-351S Relay with the SET P 4 command. Change the Device Type selection to S for SEL. Start an Autoconfiguration when prompted and accept the remaining port settings.
- Step 6. Configure the SEL-2030 automatic messaging to collect data from the SEL-351S Relay with the SET A 4 command. Set the automatic messaging settings as shown in *Table C.1 on page C.3*. The 20METER and 20TARGET "20" messages collect analog measurement and status data. The 20HISTORY "20" message collects relay event history records.

Setting	Description
ISSUE1 = P00:00:01.0	Send message every second
MESG1 = 20METER	Collect metering information from the relay with SEL binary Fast Meter
ISSUE2 = P00:00:01.0	Send message every second
MESG2 = 20TARGET	Collect target information from the relay with SEL binary Fast Meter
ISSUE3 = P00:15:00.0	Send message every 15 minutes
MESG3 = 20HISTORY	Collect relay history information with standard SEL message

Table C.1 SEL-2030 Automatic Messaging Settings

Step 7. Set the SEL-2030 port settings and SEL-2701 settings with the SET P 17 command. Relevant example settings are shown in *Table C.2*; other settings not shown are not critical for the example.

Table C.2 SEL-2701 Settings

Setting	Description
IPADDR = 10.201.0.16	IP address of SEL-2701
SUBNETM = 255.255.0.0	Subnet mask for SEL-2701 messages
DEFRTR = "10.201.0.1"	Default router for messages not on the same subnet as the SEL-2701
NETPORT = A	Enable network Port A
FAILOVR = Y	Enable automatic failover to Port B if network connected to Port A fails
FTIME = 5	Five-second failover timeout
NETASPD = A	Automatic speed sense (10/100 Mbps) on Port A
NETBSPD = A	Automatic speed sense (10/100 Mbps) on Port B
ENUCA = Y	Enable UCA2 protocol interface
NSAP = 0030.a700.0003	User-configured portion of NSAP

To add control using the GCTL model and a discrete output on the relay, continue the serial port terminal session and follow the steps listed below:

Step 1.	Connect transparently to the relay with the PORT 4 command
	and enable the relay to respond to Fast Operate commands. Use
	the relay SET P 3 command and set FASTOP to Y.

- Step 2. Use the SET L command to set OUT103, Relay Output 3, to RB3. This makes RB3 control OUT103.
- Step 3. Terminate the transparent connection. Use the SEL-2030 transparent connection termination string (default is CTRL + D) to terminate the transparent connection.
- Step 4. Enable Fast Operate messages on the SEL-2030 Port 4 with the SEL-2030 SET A 4 command; set SEND_OPER to Y.

GOMSFE Models

<u>File</u>	Explorer Database	<u>M</u> onitor	<u>T</u> ools	<u>H</u> elp			-	
	Domains DD02_L DD02_L DD02_L DD04_L DD04_L DD05_L DD06_L DD06_L DD06_L DD06_L DD06_L DD06_L DD00_L DD00_L DD00_L DD00_L DD01_L D011_L D014_L D	Jnknown JEEDER1 Jnknown Jnknown Jnknown Jnknown Jnknown Jnknown Jnknown Jnknown Jnknown Jnknown	E					
					_	_	 _	

Figure C.2 through *Figure C.7 on page C.6* show GOMSFE models visible in an MMS browser once you complete the steps above.

Figure C.2 GOMSFE Domains.

L

File Edit View	e t Explorer w Database	Monitor	Tools		×
			Tools	<u>Tehh</u>	
	Domains		-		_
	🔁 DD01_H 🔁 DD02_L		E		
	⊡ DD04_n ⊡ • N u Nan		مامد		
			103		
		FAULT01			
	± 🔽	FAULT02	2		
	÷ 🔨	FAULT03	3		
		FAULT04			
		FAULT 05			
		FAULTOE			
		FAULT07			
		FAULTOS FAULTOS			
		FAULTUS			
		FAULT11			
		FAULT12			
		FAULT13			
	± 🔂	FAULT14	1		
	÷ 🔨	FAULT15	5		
		FAULT16			
		FAULT17			
		FAULT18			_
		FAULT19			
		FAULT20	J		
	+				
		GLOBE			
	🗄 🗏 Nan				
	🕀 💮 Nan		;		
. ÷	🗂 DD05_L	Inknown			•
<u> </u>					_

Figure C.3 GOMSFE Models Within DD04_FEEDER1 Domain.

🛢 SEL2030	DD04_FEEDE	R1\NV\DI
<u>D</u> etail On	<u>₩</u> rite	
Object	Va	
		EDER1, Protection Relay, SEL, SEL-351S-7-R103-V0, NULL
- Name - Class		EDER1 otection Relay
		EL.SEL-351S-7-R103-V0.NULL.R103.FID=SEL-351S-7-R1
T - Vnd	ŚE	
-Mdl		L-351S-7-R103-V0
-SerN		
L SftB		us)=SEL-351S-7-B103-V0-Z001001-D19991014
		30.A766.7788X016X016X008,11,1,SEL,SEL-2701,NUL
− ⊢Com	nAdr 00:	30.A766.7788
- Com		
- SftR - Boot		
	nev AU 11	08
-Med	1	
-Vnd	SE	
-Mdl		L-2701
-SerNum -FID		JLL D=SEL-2701-X016-V0-Z000000-D20001025
		ID=SLBT-2701-X018-V0-2000000-020001025
		F

Figure C.4 DI Model.

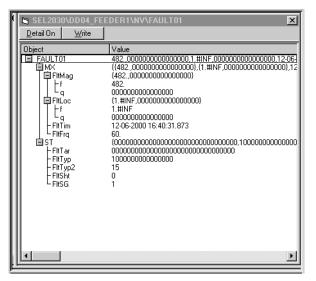


Figure C.5 FAULT Model.

SEL2030V	ND04_FEEDER1\NV\GCTL.ST
Object GCTL ST GOD01 GOD02 GOD03 Lb2 GOD04 GOD05 GOD06 GOD07 GOD08 GOD09 GOD09 GOD09 GOD011 GOD12 GOD13 GOD14 GOD15 GOD16	Value 10.10.01.01.01.01.01.01.01.01.01.01.01.0

Figure C.6 GCTL Model With RB3 ST (status) Point.

Figure C.7 MMXU Brick.

Glossary

EPRI	Electric Power Research Institute						
Ethernet	Physical layer of specification for networking contained in IEEE 802.3.						
FTP	File Transfer Protocol. TCP/IP application layer services for exchanging files between nodes on a TCP/IP network.						
GOMSFE	Generic Object Model for Substation and Feeder Equipment. Presentation layer for UCA2 used for IED communication.						
GOOSE	Generic Object Oriented Substation Event. UCA2 peer-to-peer broadcast mes- saging for protection.						
Host	The device into which the SEL-2701 has been installed.						
ICCP	Inter Control Center Protocol. Part of EPRI's UCA protocol suite.						
IED	Intelligent Electronic Device. Usually a protective relay or other smart substa- tion monitoring or control device.						
ISO	International Standards Organization.						
LAN	Local Area Network						
LED	Light Emitting Diode.						
MAC	Media Access Control used in Ethernet.						
Node	A device connected to the network.						
OSI	Open System Interface. The seven-layer protocol stack developed by ISO and used in UCA2.						
OSI Model	Name of generic seven-layer protocol stack model taken from ISO's OSI stack and used to describe modern networking concepts and stacks.						
RAM	Random Access Memory.						
SEL	Schweitzer Engineering Laboratories.						
TCP/IP	Transport Control Protocol/Internet Protocol. The protocol stack commonly used for Ethernet and the Internet. TCP/IP maintains and manages connec- tions between devices on a network transparently to the application and pre- sentation layers above.						
Telnet	TCP/IP application layer protocol for terminal session connections between devices on a TCP/IP network.						
UCA	Utility Communications Architecture. Suite of utility protocols developed by EPRI including ICCP/TASE.2 and UCA2 for Field Devices.						
UCA2	UCA protocol suite version 2.0 developed by EPRI including GOMSFE and GOOSE.						

- **UDP/IP** Universal Data-gram Protocol/Internet Protocol. Another protocol stack used for Ethernet and the Internet. Unlike TCP/IP, UDP/IP does not maintain connections and allows broadcast messaging.
 - WAN Wide Area Network

Index

Page numbers appearing in bold mark the location of the topic's primary discussion.

Access Control

for FTP **3.6** See also TCP/IP in SEL-2030 **4.5** in SEL-400 series relay **5.4**

Access Levels 3.11

Address See IP

ALARM Bit 3.12, 4.6, 5.5

Anonymous User for FTP 3.6

Applications examples 1.6–1.9 features 1.4–1.6

ASCII

ASCII text files **3.6** compressed ASCII files **3.6**

Brick See UCA2, GOMSFE

Cables See Physical Interface

Carrier Sense Multiple Access/Collision Detection See CSMA/CD

CASM See UCA2

Collision Domain 1.14

Common Application Service Models See UCA2

Common Format for Transient Data Exchange See COMTRADE

COMTRADE definition 1.9 oscillography reports 1.8

Control Points 4.6, 5.5 incoming control points 4.6, 4.8–4.9 outgoing control points 4.6, 4.8, 5.3 viewing control points 4.6

CSMA/CD definition 1.11

Date

See SEL-2701 Commands

DIAGNOSTICS.TXT 3.5

DNS definition 3.4

Electrostatic Discharge See ESD

EPRI definition 1.15

ESD sensitivity 2.2 Specification 1.17

Ethernet broadcast messages 1.14 See also UCA2, GOOSE collision detection 1.11 data link layer 1.11, 1.14 media access 1.11-1.12 multicast group 3.13 networking concepts 1.10-1.14 physical and data link layer designators 10/100BASE-T 1.3, 1.11, 2.6 100BASE-FX 1.3, 1.11, 2.6 10BASE-FL 1.3, 1.11, 2.6 physical interface 1.3 See also Physical Interface physical layer 1.3, **1.10**, 1.11, 1.14 redundant networks 1.4

Event Reports

downloading via FTP 1.6, 1.8 Fail-Over

feature operation 1.4, **3.3–3.4**, 6.4

Fiber-Optic Cable See Physical Interface

File Exchange features 1.6

Firmware Version of SEL-2030 6.2 of SEL-2701 3.14, 6.2 compatability with SEL-2030 A.2 of SEL-400 series relay 6.2

FTP See TCP/IP

Generic Object Model for Substation and Feeder Equipment (GOMSFE) See UCA2

Generic Object Oriented Substation Event (GOOSE) See UCA2 GLOBE See UCA2, GOMSFE, models

GOMSFE See UCA2

GOOSE See UCA2

HMI serial connections 1.7

Hubs See Network Hardware

Human Machine Interface See HMI

ICCP

See TASE.2

IEC See Specifications

IED

connected to SEL-2030 host 1.6, 1.7 definition 1.5 non-SEL serial IEDs connecting to ethernet network 1.7–1.8

IEEE

See also Specifications COMTRADE reports **1.9**

Institute of Electrical and Electronics Engineers See IEEE

Intelligent Electronic Devices See IED

Inter-Control Center Communication Protocol See TASE.2

International Standards Organization See ISO

IP

address 1.5, 3.2, 3.4, 6.7 resolution **3.4** port number **1.5**

ISO

See also Specifications definition **1.10**

Media

See Physical Interface

METER.TXT 3.6

Metering Data downloading via FTP 1.6 See also TCP/IP

MMS definition 1.15

Modbus® 1.11

Model Options configuration 1.3, 2.6, 3.3 LED indications 6.4 Model Option Table 1.3 rear-panel layout 2.6

Network Address Resolution 3.4

Network Architecture multidrop networks 1.12 star networks 1.13

Network Configuration 3.2

Network Determinism 1.11, 1.14

Network Hardware 1.12–1.14 firewalls description 1.14 hubs description 1.13 routers description 1.14 switches description 1.14 used to improve network determinism 1.12, 1.14 Network Ports

See Model Options

Networking Concepts 1.10–1.14 See also Ethernet

NSAP 3.8, 6.8

Open Systems Interconnect See OSI

Operating Temperature 1.2 See also Specifications

Oscillography See COMTRADE

OSI

See also Specifications definition 1.10 physical layer 1.10 protocol stack 1.2, 1.11 application 1.12 Seven-Layer model 1.10–1.11

Passwords 3.11, 4.5

Physical Interface cable noise immunity 2.7 fiber-optic cable 1.2, 1.11, 3.3 STP cable 2.7 definition 2.7 twisted-pair 1.11, 3.3, 5.2, 6.4 UTP cable 2.7 definition 2.7

Physical Layer See also Ethernet application in OSI network model 1.10 See also OSI

PLC mapping data into GOMSFE models 1.16 serial connections 1.7

Port Fail-Over See Fail-Over

Programmable Logic Controller See PLC

Protocols See also OSI; TCP/IP; or UDP/IP stack 1.2 application 1.12 definition 1.11

Routers See Network Hardware

Safety hazardous voltage caution 2.3

Security access levels 3.11 passwords 3.11, 4.5

SEL-2030 access control 4.5 binary control points See Control Points database regions 3.6, 4.6, 4.10, **B.2** downloading snapshots via FTP 1.6, 1.7, 4.7 firmware version See Firmware Version GOOSE control data 1.6, 1.7, 4.8-4.9 See also UCA2 LED operation 2.4 network access for IEDs without card slots 1.6-1.7, C.3 populating GOMSFE models 4.9 rules **B.4–B.37** special translation rules **B.29** remote bits 4.11 SEL-2701 installation 2.2 initial checkout 2.4 status 6.5 SEL-2701 operation 4.5-4.6 Telnet connection 1.5, 1.6, 4.7-4.8 transparent connection 1.5, 4.7 UCA2 connectivity 1.6, 1.7, 4.8-4.10

SEL-2030 Commands

ACC 2.4, 6.5 CARD 4.6 HELP 4.7 ID 6.2 MAP 4.6 PASSWORD 4.5 PORT 4.5, 4.7, C.3 QUIT 4.7 SET A 4.3, C.2, C.3 SET L C.3 SET M 4.4, 4.10 SET O 4.4, 4.6, 4.8 SET P 4.3, C.2, C.3 STATUS 2.5, 4.6, 6.5 TAR 4.6 VIEW 4.6 WHO 2.4

SEL-2030 Settings 4.3–4.4 automatic message settings 4.3–4.4, C.3 math/data movement settings 4.4 NOCONN 4.4, 4.6, 6.8 outgoing control point settings 4.4 port control settings 4.3 SENDTIME 4.3 TERSTRING 4.3 TERSTRIME 4.3 TERTIME1 4.3 TERTIME1 4.3 TERTIME2 4.3 TIMEOUT 4.3, 4.5

SEL-2701 Commands 3.10–3.15 2ACCESS 3.11–3.12, 4.6 ACCESS 3.12, 4.6, 6.5 DATE 3.12 GOOSE 3.9, 3.12–3.14, 6.8 GOOSE R 3.13, 6.8 HELP 3.14 ID 3.14 MEMORY 3.14 PING 3.4, 3.14 QUIT 3.11, 3.15, 5.6 STATUS 3.8, 3.15, 4.6, 5.5, 6.5

summary 3.10 syntax 3.10 TIME 3.15 SEL-2701 Installation 2.2, 6.4

See also Model Options in SEL-2030 2.4 in SEL-400 series relay 2.5 status 6.5

SEL-2701 Settings

CTRLB 3.8 DEFRTR 3.2, 3.4, C.3 ENTXGOS 3.8 ENUCA 3.8, 6.8, C.3 FAILOVR 3.2, 6.4, C.3 FTIME **3.2**, C.3 FTPANMS 3.6 FTPAUSR 3.6 FTPCBAN 3.6 FTPIDLE 3.6 FTPSERV 3.6, 6.8 GOSIED 3.8, 6.8 HOST 3.4 IPADDR 3.2, 6.5, 6.7, C.3 IPADR 3.4 NETASPD 3.2, C.3 NETBSPD 3.2, C.3 NETPORT 3.2, 6.4, 6.7, C.3 network configuration 3.2 NSAPOSI 3.8

SUBNETM **3.2**, 6.8, C.3 T1CBAN **3.7** T1INIT **3.7** T1PNUM **3.7**, 4.7, 5.6, 6.7 T1RECV **3.7** T2CBAN **3.7** T2PNUM **3.7**, 4.8, 6.5, 6.7 T2RECV **3.7** T1DLE **3.7** TRMULGR **3.8**

SEL-400 Series Relay access control 5.4 binary control points See Control Points firmware version See Firmware Version FTP access 5.6 GOOSE control data 1.8, 5.7 See also UCA2 network card slot 1.8 networking 1.8-1.9 populating GOMSFE models 5.7 remote bits 5.7 SEL-2701 installation 2.2 initial checkout 2.5 status 6.5 SEL-2701 operation 5.4-5.5 Telnet connection 1.5, 1.8, 5.6 UCA2 connectivity 1.6, 1.8, 5.6-5.7

SEL-400 Series Relay Commands

2AC 5.5 ACC 2.5, 5.5, 6.3, 6.5 PASSWORD 5.4 QUIT 5.6 SET O 5.3, 5.5 SET P 5.3 STA A 2.5, 6.5 TAR 5.5 TEST DB 5.5 VERSION 6.3

SEL-400 Series Relay Settings 5.3 AUTO 5.3

FASTOP 5.3 port settings 5.3 TERSTRN 5.3 TERTIM1 5.3 TERTIM2 5.3 TIMEOUT 5.3

SELBOOT 6.2

SELOGIC Control Equations 4.4, 4.6, 4.8, 5.5

Sequential Events Recorder See SER

SER downloading reports via FTP 1.6, 1.8 See also TCP/IP, FTP

Settings

See also SEL-2030 Settings See also SEL-2701 Settings See also SEL-400 Series Relay Settings data access **3.5–3.9** downloading via FTP **1.6** See also TCP/IP, FTP

Specifications 1.17

STP Cable See Physical Interface

Substation integration of serial and Ethernet IEDs 1.9

Switches See Network Hardware

Targets relay target mapping for GOMSFE B.30

TASE.2

definition 1.15 ICCP definition 1.15

TCP/IP

application layer 1.2 definition 1.2 FTP 1.2, 1.6 access control 3.6, 4.5, 5.4 anonymous user 3.6 downloading SER reports 1.6, 1.8 downloading settings 1.6, 3.5 downloading snapshots 1.6, 1.7 file structure **3.5–3.6**, 4.7, 5.6 security 3.11 SEL-2701 related settings 3.5-3.6 simultaneous users 3.5 protocol stack 1.2, 1.11 application 1.12 Telnet 1.2, 1.5 access control 4.5, 5.4 security 3.11 SEL-2030 related settings 4.3 SEL-2701 related settings 3.6-3.7 transmission control characters 3.10 user interface access 1.5, 3.6, 4.7, 5.6, 6.5

Telecontrol Application Service Element 2 See TASE.2

Telnet See TCP/IP, Telnet

Terminal Access features 1.5

Time See SEL-2701 Commands

Token Ring Network 1.11

Troubleshooting error codes 6.6 procedures 6.7–6.8 Twisted-Pair See Physical Interface UCA for Field Devices Protocol See UCA2 UCA2 CASM definition 1.15 description 1.15-1.16 GOMSFE bricks description 1.15 See also UCA2, GOMSFE, models definition 3.7 description 1.15-1.16 implementation in SEL-2701 3.9 domain 1.16, 3.9, C.4 logical device 1.16 models 1.2, 1.6, 1.9 DI 1.16, 3.9, B.4, B.6, B.17, C.5 FAULT 3.9, B.7, C.5 event types B.30 GCTL 3.9, 4.11, 5.7, B.8, B.18, C.5 GLOBE 1.6, 1.16, 3.9, B.5, B.9, B.18 MMTR 3.9, B.25 MMXU 1.15, 3.9, 5.5, B.10, B.19, C.6 network transmission 1.10 populating models in SEL-2030 4.9 rules **B.4–B.37** special translation rules **B.29** populating models in SEL-400 series relay 5.7 self-description feature 1.15 XCBR 3.9 GOOSE control data 1.6, 1.7, 1.8, 4.8-4.9, 5.5, 5.7 See also Control Points definition 3.7 description 1.16, 3.9 Ethernet broadcast messages 1.14 Ethernet multicast group 3.13 IED name resolution 3.9 message format 3.8 peer-to-peer messaging 1.2, 1.6 SEL-2030 incoming message control 4.8-4.9 SEL-2030 outgoing message control 4.4, 4.8 SEL-400 series relay outgoing message control 5.3 history 1.15 implementation in SEL-2701 3.7-3.9 interface 1.2 master device collecting data from SEL-2030

1.6, 1.7, 4.8-4.10

collecting data from SEL-400 series relay 1.8, **5.6–5.7** networking **1.6** SEL-2701 related settings **3.7–3.9**

UDP/IP

protocol stack 1.11 application 1.12

User Interface

access via host 4.5, 5.4 SEL-2701 command entry **3.10** Telnet access 1.5, **3.6**

UTP Cable

See Physical Interface

Virtual Devices 1.16, 3.6